mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 11:03:14 +00:00 
			
		
		
		
	 95a5afca4a
			
		
	
	
		95a5afca4a
		
	
	
	
	
		
			
			Some code here depends on CONFIG_KMOD to not try to load protocol modules or similar, replace by CONFIG_MODULES where more than just request_module depends on CONFIG_KMOD and and also use try_then_request_module in ebtables. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			545 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			545 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * net/sched/ematch.c		Extended Match API
 | |
|  *
 | |
|  *		This program is free software; you can redistribute it and/or
 | |
|  *		modify it under the terms of the GNU General Public License
 | |
|  *		as published by the Free Software Foundation; either version
 | |
|  *		2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Authors:	Thomas Graf <tgraf@suug.ch>
 | |
|  *
 | |
|  * ==========================================================================
 | |
|  *
 | |
|  * An extended match (ematch) is a small classification tool not worth
 | |
|  * writing a full classifier for. Ematches can be interconnected to form
 | |
|  * a logic expression and get attached to classifiers to extend their
 | |
|  * functionatlity.
 | |
|  *
 | |
|  * The userspace part transforms the logic expressions into an array
 | |
|  * consisting of multiple sequences of interconnected ematches separated
 | |
|  * by markers. Precedence is implemented by a special ematch kind
 | |
|  * referencing a sequence beyond the marker of the current sequence
 | |
|  * causing the current position in the sequence to be pushed onto a stack
 | |
|  * to allow the current position to be overwritten by the position referenced
 | |
|  * in the special ematch. Matching continues in the new sequence until a
 | |
|  * marker is reached causing the position to be restored from the stack.
 | |
|  *
 | |
|  * Example:
 | |
|  *          A AND (B1 OR B2) AND C AND D
 | |
|  *
 | |
|  *              ------->-PUSH-------
 | |
|  *    -->--    /         -->--      \   -->--
 | |
|  *   /     \  /         /     \      \ /     \
 | |
|  * +-------+-------+-------+-------+-------+--------+
 | |
|  * | A AND | B AND | C AND | D END | B1 OR | B2 END |
 | |
|  * +-------+-------+-------+-------+-------+--------+
 | |
|  *                    \                      /
 | |
|  *                     --------<-POP---------
 | |
|  *
 | |
|  * where B is a virtual ematch referencing to sequence starting with B1.
 | |
|  *
 | |
|  * ==========================================================================
 | |
|  *
 | |
|  * How to write an ematch in 60 seconds
 | |
|  * ------------------------------------
 | |
|  *
 | |
|  *   1) Provide a matcher function:
 | |
|  *      static int my_match(struct sk_buff *skb, struct tcf_ematch *m,
 | |
|  *                          struct tcf_pkt_info *info)
 | |
|  *      {
 | |
|  *      	struct mydata *d = (struct mydata *) m->data;
 | |
|  *
 | |
|  *      	if (...matching goes here...)
 | |
|  *      		return 1;
 | |
|  *      	else
 | |
|  *      		return 0;
 | |
|  *      }
 | |
|  *
 | |
|  *   2) Fill out a struct tcf_ematch_ops:
 | |
|  *      static struct tcf_ematch_ops my_ops = {
 | |
|  *      	.kind = unique id,
 | |
|  *      	.datalen = sizeof(struct mydata),
 | |
|  *      	.match = my_match,
 | |
|  *      	.owner = THIS_MODULE,
 | |
|  *      };
 | |
|  *
 | |
|  *   3) Register/Unregister your ematch:
 | |
|  *      static int __init init_my_ematch(void)
 | |
|  *      {
 | |
|  *      	return tcf_em_register(&my_ops);
 | |
|  *      }
 | |
|  *
 | |
|  *      static void __exit exit_my_ematch(void)
 | |
|  *      {
 | |
|  *      	return tcf_em_unregister(&my_ops);
 | |
|  *      }
 | |
|  *
 | |
|  *      module_init(init_my_ematch);
 | |
|  *      module_exit(exit_my_ematch);
 | |
|  *
 | |
|  *   4) By now you should have two more seconds left, barely enough to
 | |
|  *      open up a beer to watch the compilation going.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/rtnetlink.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <net/pkt_cls.h>
 | |
| 
 | |
| static LIST_HEAD(ematch_ops);
 | |
| static DEFINE_RWLOCK(ematch_mod_lock);
 | |
| 
 | |
| static inline struct tcf_ematch_ops * tcf_em_lookup(u16 kind)
 | |
| {
 | |
| 	struct tcf_ematch_ops *e = NULL;
 | |
| 
 | |
| 	read_lock(&ematch_mod_lock);
 | |
| 	list_for_each_entry(e, &ematch_ops, link) {
 | |
| 		if (kind == e->kind) {
 | |
| 			if (!try_module_get(e->owner))
 | |
| 				e = NULL;
 | |
| 			read_unlock(&ematch_mod_lock);
 | |
| 			return e;
 | |
| 		}
 | |
| 	}
 | |
| 	read_unlock(&ematch_mod_lock);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tcf_em_register - register an extended match
 | |
|  *
 | |
|  * @ops: ematch operations lookup table
 | |
|  *
 | |
|  * This function must be called by ematches to announce their presence.
 | |
|  * The given @ops must have kind set to a unique identifier and the
 | |
|  * callback match() must be implemented. All other callbacks are optional
 | |
|  * and a fallback implementation is used instead.
 | |
|  *
 | |
|  * Returns -EEXISTS if an ematch of the same kind has already registered.
 | |
|  */
 | |
| int tcf_em_register(struct tcf_ematch_ops *ops)
 | |
| {
 | |
| 	int err = -EEXIST;
 | |
| 	struct tcf_ematch_ops *e;
 | |
| 
 | |
| 	if (ops->match == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	write_lock(&ematch_mod_lock);
 | |
| 	list_for_each_entry(e, &ematch_ops, link)
 | |
| 		if (ops->kind == e->kind)
 | |
| 			goto errout;
 | |
| 
 | |
| 	list_add_tail(&ops->link, &ematch_ops);
 | |
| 	err = 0;
 | |
| errout:
 | |
| 	write_unlock(&ematch_mod_lock);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(tcf_em_register);
 | |
| 
 | |
| /**
 | |
|  * tcf_em_unregister - unregster and extended match
 | |
|  *
 | |
|  * @ops: ematch operations lookup table
 | |
|  *
 | |
|  * This function must be called by ematches to announce their disappearance
 | |
|  * for examples when the module gets unloaded. The @ops parameter must be
 | |
|  * the same as the one used for registration.
 | |
|  *
 | |
|  * Returns -ENOENT if no matching ematch was found.
 | |
|  */
 | |
| int tcf_em_unregister(struct tcf_ematch_ops *ops)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct tcf_ematch_ops *e;
 | |
| 
 | |
| 	write_lock(&ematch_mod_lock);
 | |
| 	list_for_each_entry(e, &ematch_ops, link) {
 | |
| 		if (e == ops) {
 | |
| 			list_del(&e->link);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = -ENOENT;
 | |
| out:
 | |
| 	write_unlock(&ematch_mod_lock);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(tcf_em_unregister);
 | |
| 
 | |
| static inline struct tcf_ematch * tcf_em_get_match(struct tcf_ematch_tree *tree,
 | |
| 						   int index)
 | |
| {
 | |
| 	return &tree->matches[index];
 | |
| }
 | |
| 
 | |
| 
 | |
| static int tcf_em_validate(struct tcf_proto *tp,
 | |
| 			   struct tcf_ematch_tree_hdr *tree_hdr,
 | |
| 			   struct tcf_ematch *em, struct nlattr *nla, int idx)
 | |
| {
 | |
| 	int err = -EINVAL;
 | |
| 	struct tcf_ematch_hdr *em_hdr = nla_data(nla);
 | |
| 	int data_len = nla_len(nla) - sizeof(*em_hdr);
 | |
| 	void *data = (void *) em_hdr + sizeof(*em_hdr);
 | |
| 
 | |
| 	if (!TCF_EM_REL_VALID(em_hdr->flags))
 | |
| 		goto errout;
 | |
| 
 | |
| 	if (em_hdr->kind == TCF_EM_CONTAINER) {
 | |
| 		/* Special ematch called "container", carries an index
 | |
| 		 * referencing an external ematch sequence. */
 | |
| 		u32 ref;
 | |
| 
 | |
| 		if (data_len < sizeof(ref))
 | |
| 			goto errout;
 | |
| 		ref = *(u32 *) data;
 | |
| 
 | |
| 		if (ref >= tree_hdr->nmatches)
 | |
| 			goto errout;
 | |
| 
 | |
| 		/* We do not allow backward jumps to avoid loops and jumps
 | |
| 		 * to our own position are of course illegal. */
 | |
| 		if (ref <= idx)
 | |
| 			goto errout;
 | |
| 
 | |
| 
 | |
| 		em->data = ref;
 | |
| 	} else {
 | |
| 		/* Note: This lookup will increase the module refcnt
 | |
| 		 * of the ematch module referenced. In case of a failure,
 | |
| 		 * a destroy function is called by the underlying layer
 | |
| 		 * which automatically releases the reference again, therefore
 | |
| 		 * the module MUST not be given back under any circumstances
 | |
| 		 * here. Be aware, the destroy function assumes that the
 | |
| 		 * module is held if the ops field is non zero. */
 | |
| 		em->ops = tcf_em_lookup(em_hdr->kind);
 | |
| 
 | |
| 		if (em->ops == NULL) {
 | |
| 			err = -ENOENT;
 | |
| #ifdef CONFIG_MODULES
 | |
| 			__rtnl_unlock();
 | |
| 			request_module("ematch-kind-%u", em_hdr->kind);
 | |
| 			rtnl_lock();
 | |
| 			em->ops = tcf_em_lookup(em_hdr->kind);
 | |
| 			if (em->ops) {
 | |
| 				/* We dropped the RTNL mutex in order to
 | |
| 				 * perform the module load. Tell the caller
 | |
| 				 * to replay the request. */
 | |
| 				module_put(em->ops->owner);
 | |
| 				err = -EAGAIN;
 | |
| 			}
 | |
| #endif
 | |
| 			goto errout;
 | |
| 		}
 | |
| 
 | |
| 		/* ematch module provides expected length of data, so we
 | |
| 		 * can do a basic sanity check. */
 | |
| 		if (em->ops->datalen && data_len < em->ops->datalen)
 | |
| 			goto errout;
 | |
| 
 | |
| 		if (em->ops->change) {
 | |
| 			err = em->ops->change(tp, data, data_len, em);
 | |
| 			if (err < 0)
 | |
| 				goto errout;
 | |
| 		} else if (data_len > 0) {
 | |
| 			/* ematch module doesn't provide an own change
 | |
| 			 * procedure and expects us to allocate and copy
 | |
| 			 * the ematch data.
 | |
| 			 *
 | |
| 			 * TCF_EM_SIMPLE may be specified stating that the
 | |
| 			 * data only consists of a u32 integer and the module
 | |
| 			 * does not expected a memory reference but rather
 | |
| 			 * the value carried. */
 | |
| 			if (em_hdr->flags & TCF_EM_SIMPLE) {
 | |
| 				if (data_len < sizeof(u32))
 | |
| 					goto errout;
 | |
| 				em->data = *(u32 *) data;
 | |
| 			} else {
 | |
| 				void *v = kmemdup(data, data_len, GFP_KERNEL);
 | |
| 				if (v == NULL) {
 | |
| 					err = -ENOBUFS;
 | |
| 					goto errout;
 | |
| 				}
 | |
| 				em->data = (unsigned long) v;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	em->matchid = em_hdr->matchid;
 | |
| 	em->flags = em_hdr->flags;
 | |
| 	em->datalen = data_len;
 | |
| 
 | |
| 	err = 0;
 | |
| errout:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static const struct nla_policy em_policy[TCA_EMATCH_TREE_MAX + 1] = {
 | |
| 	[TCA_EMATCH_TREE_HDR]	= { .len = sizeof(struct tcf_ematch_tree_hdr) },
 | |
| 	[TCA_EMATCH_TREE_LIST]	= { .type = NLA_NESTED },
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * tcf_em_tree_validate - validate ematch config TLV and build ematch tree
 | |
|  *
 | |
|  * @tp: classifier kind handle
 | |
|  * @nla: ematch tree configuration TLV
 | |
|  * @tree: destination ematch tree variable to store the resulting
 | |
|  *        ematch tree.
 | |
|  *
 | |
|  * This function validates the given configuration TLV @nla and builds an
 | |
|  * ematch tree in @tree. The resulting tree must later be copied into
 | |
|  * the private classifier data using tcf_em_tree_change(). You MUST NOT
 | |
|  * provide the ematch tree variable of the private classifier data directly,
 | |
|  * the changes would not be locked properly.
 | |
|  *
 | |
|  * Returns a negative error code if the configuration TLV contains errors.
 | |
|  */
 | |
| int tcf_em_tree_validate(struct tcf_proto *tp, struct nlattr *nla,
 | |
| 			 struct tcf_ematch_tree *tree)
 | |
| {
 | |
| 	int idx, list_len, matches_len, err;
 | |
| 	struct nlattr *tb[TCA_EMATCH_TREE_MAX + 1];
 | |
| 	struct nlattr *rt_match, *rt_hdr, *rt_list;
 | |
| 	struct tcf_ematch_tree_hdr *tree_hdr;
 | |
| 	struct tcf_ematch *em;
 | |
| 
 | |
| 	memset(tree, 0, sizeof(*tree));
 | |
| 	if (!nla)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = nla_parse_nested(tb, TCA_EMATCH_TREE_MAX, nla, em_policy);
 | |
| 	if (err < 0)
 | |
| 		goto errout;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	rt_hdr = tb[TCA_EMATCH_TREE_HDR];
 | |
| 	rt_list = tb[TCA_EMATCH_TREE_LIST];
 | |
| 
 | |
| 	if (rt_hdr == NULL || rt_list == NULL)
 | |
| 		goto errout;
 | |
| 
 | |
| 	tree_hdr = nla_data(rt_hdr);
 | |
| 	memcpy(&tree->hdr, tree_hdr, sizeof(*tree_hdr));
 | |
| 
 | |
| 	rt_match = nla_data(rt_list);
 | |
| 	list_len = nla_len(rt_list);
 | |
| 	matches_len = tree_hdr->nmatches * sizeof(*em);
 | |
| 
 | |
| 	tree->matches = kzalloc(matches_len, GFP_KERNEL);
 | |
| 	if (tree->matches == NULL)
 | |
| 		goto errout;
 | |
| 
 | |
| 	/* We do not use nla_parse_nested here because the maximum
 | |
| 	 * number of attributes is unknown. This saves us the allocation
 | |
| 	 * for a tb buffer which would serve no purpose at all.
 | |
| 	 *
 | |
| 	 * The array of rt attributes is parsed in the order as they are
 | |
| 	 * provided, their type must be incremental from 1 to n. Even
 | |
| 	 * if it does not serve any real purpose, a failure of sticking
 | |
| 	 * to this policy will result in parsing failure. */
 | |
| 	for (idx = 0; nla_ok(rt_match, list_len); idx++) {
 | |
| 		err = -EINVAL;
 | |
| 
 | |
| 		if (rt_match->nla_type != (idx + 1))
 | |
| 			goto errout_abort;
 | |
| 
 | |
| 		if (idx >= tree_hdr->nmatches)
 | |
| 			goto errout_abort;
 | |
| 
 | |
| 		if (nla_len(rt_match) < sizeof(struct tcf_ematch_hdr))
 | |
| 			goto errout_abort;
 | |
| 
 | |
| 		em = tcf_em_get_match(tree, idx);
 | |
| 
 | |
| 		err = tcf_em_validate(tp, tree_hdr, em, rt_match, idx);
 | |
| 		if (err < 0)
 | |
| 			goto errout_abort;
 | |
| 
 | |
| 		rt_match = nla_next(rt_match, &list_len);
 | |
| 	}
 | |
| 
 | |
| 	/* Check if the number of matches provided by userspace actually
 | |
| 	 * complies with the array of matches. The number was used for
 | |
| 	 * the validation of references and a mismatch could lead to
 | |
| 	 * undefined references during the matching process. */
 | |
| 	if (idx != tree_hdr->nmatches) {
 | |
| 		err = -EINVAL;
 | |
| 		goto errout_abort;
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| errout:
 | |
| 	return err;
 | |
| 
 | |
| errout_abort:
 | |
| 	tcf_em_tree_destroy(tp, tree);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(tcf_em_tree_validate);
 | |
| 
 | |
| /**
 | |
|  * tcf_em_tree_destroy - destroy an ematch tree
 | |
|  *
 | |
|  * @tp: classifier kind handle
 | |
|  * @tree: ematch tree to be deleted
 | |
|  *
 | |
|  * This functions destroys an ematch tree previously created by
 | |
|  * tcf_em_tree_validate()/tcf_em_tree_change(). You must ensure that
 | |
|  * the ematch tree is not in use before calling this function.
 | |
|  */
 | |
| void tcf_em_tree_destroy(struct tcf_proto *tp, struct tcf_ematch_tree *tree)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (tree->matches == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < tree->hdr.nmatches; i++) {
 | |
| 		struct tcf_ematch *em = tcf_em_get_match(tree, i);
 | |
| 
 | |
| 		if (em->ops) {
 | |
| 			if (em->ops->destroy)
 | |
| 				em->ops->destroy(tp, em);
 | |
| 			else if (!tcf_em_is_simple(em))
 | |
| 				kfree((void *) em->data);
 | |
| 			module_put(em->ops->owner);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tree->hdr.nmatches = 0;
 | |
| 	kfree(tree->matches);
 | |
| 	tree->matches = NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(tcf_em_tree_destroy);
 | |
| 
 | |
| /**
 | |
|  * tcf_em_tree_dump - dump ematch tree into a rtnl message
 | |
|  *
 | |
|  * @skb: skb holding the rtnl message
 | |
|  * @t: ematch tree to be dumped
 | |
|  * @tlv: TLV type to be used to encapsulate the tree
 | |
|  *
 | |
|  * This function dumps a ematch tree into a rtnl message. It is valid to
 | |
|  * call this function while the ematch tree is in use.
 | |
|  *
 | |
|  * Returns -1 if the skb tailroom is insufficient.
 | |
|  */
 | |
| int tcf_em_tree_dump(struct sk_buff *skb, struct tcf_ematch_tree *tree, int tlv)
 | |
| {
 | |
| 	int i;
 | |
| 	u8 *tail;
 | |
| 	struct nlattr *top_start;
 | |
| 	struct nlattr *list_start;
 | |
| 
 | |
| 	top_start = nla_nest_start(skb, tlv);
 | |
| 	if (top_start == NULL)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	NLA_PUT(skb, TCA_EMATCH_TREE_HDR, sizeof(tree->hdr), &tree->hdr);
 | |
| 
 | |
| 	list_start = nla_nest_start(skb, TCA_EMATCH_TREE_LIST);
 | |
| 	if (list_start == NULL)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	tail = skb_tail_pointer(skb);
 | |
| 	for (i = 0; i < tree->hdr.nmatches; i++) {
 | |
| 		struct nlattr *match_start = (struct nlattr *)tail;
 | |
| 		struct tcf_ematch *em = tcf_em_get_match(tree, i);
 | |
| 		struct tcf_ematch_hdr em_hdr = {
 | |
| 			.kind = em->ops ? em->ops->kind : TCF_EM_CONTAINER,
 | |
| 			.matchid = em->matchid,
 | |
| 			.flags = em->flags
 | |
| 		};
 | |
| 
 | |
| 		NLA_PUT(skb, i+1, sizeof(em_hdr), &em_hdr);
 | |
| 
 | |
| 		if (em->ops && em->ops->dump) {
 | |
| 			if (em->ops->dump(skb, em) < 0)
 | |
| 				goto nla_put_failure;
 | |
| 		} else if (tcf_em_is_container(em) || tcf_em_is_simple(em)) {
 | |
| 			u32 u = em->data;
 | |
| 			nla_put_nohdr(skb, sizeof(u), &u);
 | |
| 		} else if (em->datalen > 0)
 | |
| 			nla_put_nohdr(skb, em->datalen, (void *) em->data);
 | |
| 
 | |
| 		tail = skb_tail_pointer(skb);
 | |
| 		match_start->nla_len = tail - (u8 *)match_start;
 | |
| 	}
 | |
| 
 | |
| 	nla_nest_end(skb, list_start);
 | |
| 	nla_nest_end(skb, top_start);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nla_put_failure:
 | |
| 	return -1;
 | |
| }
 | |
| EXPORT_SYMBOL(tcf_em_tree_dump);
 | |
| 
 | |
| static inline int tcf_em_match(struct sk_buff *skb, struct tcf_ematch *em,
 | |
| 			       struct tcf_pkt_info *info)
 | |
| {
 | |
| 	int r = em->ops->match(skb, em, info);
 | |
| 	return tcf_em_is_inverted(em) ? !r : r;
 | |
| }
 | |
| 
 | |
| /* Do not use this function directly, use tcf_em_tree_match instead */
 | |
| int __tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree,
 | |
| 			struct tcf_pkt_info *info)
 | |
| {
 | |
| 	int stackp = 0, match_idx = 0, res = 0;
 | |
| 	struct tcf_ematch *cur_match;
 | |
| 	int stack[CONFIG_NET_EMATCH_STACK];
 | |
| 
 | |
| proceed:
 | |
| 	while (match_idx < tree->hdr.nmatches) {
 | |
| 		cur_match = tcf_em_get_match(tree, match_idx);
 | |
| 
 | |
| 		if (tcf_em_is_container(cur_match)) {
 | |
| 			if (unlikely(stackp >= CONFIG_NET_EMATCH_STACK))
 | |
| 				goto stack_overflow;
 | |
| 
 | |
| 			stack[stackp++] = match_idx;
 | |
| 			match_idx = cur_match->data;
 | |
| 			goto proceed;
 | |
| 		}
 | |
| 
 | |
| 		res = tcf_em_match(skb, cur_match, info);
 | |
| 
 | |
| 		if (tcf_em_early_end(cur_match, res))
 | |
| 			break;
 | |
| 
 | |
| 		match_idx++;
 | |
| 	}
 | |
| 
 | |
| pop_stack:
 | |
| 	if (stackp > 0) {
 | |
| 		match_idx = stack[--stackp];
 | |
| 		cur_match = tcf_em_get_match(tree, match_idx);
 | |
| 
 | |
| 		if (tcf_em_early_end(cur_match, res))
 | |
| 			goto pop_stack;
 | |
| 		else {
 | |
| 			match_idx++;
 | |
| 			goto proceed;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return res;
 | |
| 
 | |
| stack_overflow:
 | |
| 	if (net_ratelimit())
 | |
| 		printk("Local stack overflow, increase NET_EMATCH_STACK\n");
 | |
| 	return -1;
 | |
| }
 | |
| EXPORT_SYMBOL(__tcf_em_tree_match);
 |