mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 07:02:06 +00:00 
			
		
		
		
	 925d169f5b
			
		
	
	
		925d169f5b
		
	
	
	
	
		
			
			* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (39 commits)
  Btrfs: deal with errors from updating the tree log
  Btrfs: allow subvol deletion by unprivileged user with -o user_subvol_rm_allowed
  Btrfs: make SNAP_DESTROY async
  Btrfs: add SNAP_CREATE_ASYNC ioctl
  Btrfs: add START_SYNC, WAIT_SYNC ioctls
  Btrfs: async transaction commit
  Btrfs: fix deadlock in btrfs_commit_transaction
  Btrfs: fix lockdep warning on clone ioctl
  Btrfs: fix clone ioctl where range is adjacent to extent
  Btrfs: fix delalloc checks in clone ioctl
  Btrfs: drop unused variable in block_alloc_rsv
  Btrfs: cleanup warnings from gcc 4.6 (nonbugs)
  Btrfs: Fix variables set but not read (bugs found by gcc 4.6)
  Btrfs: Use ERR_CAST helpers
  Btrfs: use memdup_user helpers
  Btrfs: fix raid code for removing missing drives
  Btrfs: Switch the extent buffer rbtree into a radix tree
  Btrfs: restructure try_release_extent_buffer()
  Btrfs: use the flusher threads for delalloc throttling
  Btrfs: tune the chunk allocation to 5% of the FS as metadata
  ...
Fix up trivial conflicts in fs/btrfs/super.c and fs/fs-writeback.c, and
remove use of INIT_RCU_HEAD in fs/btrfs/extent_io.c (that init macro was
useless and removed in commit 5e8067adfd: "rcu head remove init")
		
	
			
		
			
				
	
	
		
			3865 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3865 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/bitops.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include "extent_io.h"
 | |
| #include "extent_map.h"
 | |
| #include "compat.h"
 | |
| #include "ctree.h"
 | |
| #include "btrfs_inode.h"
 | |
| 
 | |
| static struct kmem_cache *extent_state_cache;
 | |
| static struct kmem_cache *extent_buffer_cache;
 | |
| 
 | |
| static LIST_HEAD(buffers);
 | |
| static LIST_HEAD(states);
 | |
| 
 | |
| #define LEAK_DEBUG 0
 | |
| #if LEAK_DEBUG
 | |
| static DEFINE_SPINLOCK(leak_lock);
 | |
| #endif
 | |
| 
 | |
| #define BUFFER_LRU_MAX 64
 | |
| 
 | |
| struct tree_entry {
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	struct rb_node rb_node;
 | |
| };
 | |
| 
 | |
| struct extent_page_data {
 | |
| 	struct bio *bio;
 | |
| 	struct extent_io_tree *tree;
 | |
| 	get_extent_t *get_extent;
 | |
| 
 | |
| 	/* tells writepage not to lock the state bits for this range
 | |
| 	 * it still does the unlocking
 | |
| 	 */
 | |
| 	unsigned int extent_locked:1;
 | |
| 
 | |
| 	/* tells the submit_bio code to use a WRITE_SYNC */
 | |
| 	unsigned int sync_io:1;
 | |
| };
 | |
| 
 | |
| int __init extent_io_init(void)
 | |
| {
 | |
| 	extent_state_cache = kmem_cache_create("extent_state",
 | |
| 			sizeof(struct extent_state), 0,
 | |
| 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 | |
| 	if (!extent_state_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	extent_buffer_cache = kmem_cache_create("extent_buffers",
 | |
| 			sizeof(struct extent_buffer), 0,
 | |
| 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 | |
| 	if (!extent_buffer_cache)
 | |
| 		goto free_state_cache;
 | |
| 	return 0;
 | |
| 
 | |
| free_state_cache:
 | |
| 	kmem_cache_destroy(extent_state_cache);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void extent_io_exit(void)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	while (!list_empty(&states)) {
 | |
| 		state = list_entry(states.next, struct extent_state, leak_list);
 | |
| 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
 | |
| 		       "state %lu in tree %p refs %d\n",
 | |
| 		       (unsigned long long)state->start,
 | |
| 		       (unsigned long long)state->end,
 | |
| 		       state->state, state->tree, atomic_read(&state->refs));
 | |
| 		list_del(&state->leak_list);
 | |
| 		kmem_cache_free(extent_state_cache, state);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	while (!list_empty(&buffers)) {
 | |
| 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
 | |
| 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
 | |
| 		       "refs %d\n", (unsigned long long)eb->start,
 | |
| 		       eb->len, atomic_read(&eb->refs));
 | |
| 		list_del(&eb->leak_list);
 | |
| 		kmem_cache_free(extent_buffer_cache, eb);
 | |
| 	}
 | |
| 	if (extent_state_cache)
 | |
| 		kmem_cache_destroy(extent_state_cache);
 | |
| 	if (extent_buffer_cache)
 | |
| 		kmem_cache_destroy(extent_buffer_cache);
 | |
| }
 | |
| 
 | |
| void extent_io_tree_init(struct extent_io_tree *tree,
 | |
| 			  struct address_space *mapping, gfp_t mask)
 | |
| {
 | |
| 	tree->state = RB_ROOT;
 | |
| 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 | |
| 	tree->ops = NULL;
 | |
| 	tree->dirty_bytes = 0;
 | |
| 	spin_lock_init(&tree->lock);
 | |
| 	spin_lock_init(&tree->buffer_lock);
 | |
| 	tree->mapping = mapping;
 | |
| }
 | |
| 
 | |
| static struct extent_state *alloc_extent_state(gfp_t mask)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| #if LEAK_DEBUG
 | |
| 	unsigned long flags;
 | |
| #endif
 | |
| 
 | |
| 	state = kmem_cache_alloc(extent_state_cache, mask);
 | |
| 	if (!state)
 | |
| 		return state;
 | |
| 	state->state = 0;
 | |
| 	state->private = 0;
 | |
| 	state->tree = NULL;
 | |
| #if LEAK_DEBUG
 | |
| 	spin_lock_irqsave(&leak_lock, flags);
 | |
| 	list_add(&state->leak_list, &states);
 | |
| 	spin_unlock_irqrestore(&leak_lock, flags);
 | |
| #endif
 | |
| 	atomic_set(&state->refs, 1);
 | |
| 	init_waitqueue_head(&state->wq);
 | |
| 	return state;
 | |
| }
 | |
| 
 | |
| void free_extent_state(struct extent_state *state)
 | |
| {
 | |
| 	if (!state)
 | |
| 		return;
 | |
| 	if (atomic_dec_and_test(&state->refs)) {
 | |
| #if LEAK_DEBUG
 | |
| 		unsigned long flags;
 | |
| #endif
 | |
| 		WARN_ON(state->tree);
 | |
| #if LEAK_DEBUG
 | |
| 		spin_lock_irqsave(&leak_lock, flags);
 | |
| 		list_del(&state->leak_list);
 | |
| 		spin_unlock_irqrestore(&leak_lock, flags);
 | |
| #endif
 | |
| 		kmem_cache_free(extent_state_cache, state);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 | |
| 				   struct rb_node *node)
 | |
| {
 | |
| 	struct rb_node **p = &root->rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct tree_entry *entry;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		entry = rb_entry(parent, struct tree_entry, rb_node);
 | |
| 
 | |
| 		if (offset < entry->start)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (offset > entry->end)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			return parent;
 | |
| 	}
 | |
| 
 | |
| 	entry = rb_entry(node, struct tree_entry, rb_node);
 | |
| 	rb_link_node(node, parent, p);
 | |
| 	rb_insert_color(node, root);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 | |
| 				     struct rb_node **prev_ret,
 | |
| 				     struct rb_node **next_ret)
 | |
| {
 | |
| 	struct rb_root *root = &tree->state;
 | |
| 	struct rb_node *n = root->rb_node;
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct rb_node *orig_prev = NULL;
 | |
| 	struct tree_entry *entry;
 | |
| 	struct tree_entry *prev_entry = NULL;
 | |
| 
 | |
| 	while (n) {
 | |
| 		entry = rb_entry(n, struct tree_entry, rb_node);
 | |
| 		prev = n;
 | |
| 		prev_entry = entry;
 | |
| 
 | |
| 		if (offset < entry->start)
 | |
| 			n = n->rb_left;
 | |
| 		else if (offset > entry->end)
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			return n;
 | |
| 	}
 | |
| 
 | |
| 	if (prev_ret) {
 | |
| 		orig_prev = prev;
 | |
| 		while (prev && offset > prev_entry->end) {
 | |
| 			prev = rb_next(prev);
 | |
| 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 | |
| 		}
 | |
| 		*prev_ret = prev;
 | |
| 		prev = orig_prev;
 | |
| 	}
 | |
| 
 | |
| 	if (next_ret) {
 | |
| 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 | |
| 		while (prev && offset < prev_entry->start) {
 | |
| 			prev = rb_prev(prev);
 | |
| 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 | |
| 		}
 | |
| 		*next_ret = prev;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 | |
| 					  u64 offset)
 | |
| {
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct rb_node *ret;
 | |
| 
 | |
| 	ret = __etree_search(tree, offset, &prev, NULL);
 | |
| 	if (!ret)
 | |
| 		return prev;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 | |
| 		     struct extent_state *other)
 | |
| {
 | |
| 	if (tree->ops && tree->ops->merge_extent_hook)
 | |
| 		tree->ops->merge_extent_hook(tree->mapping->host, new,
 | |
| 					     other);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * utility function to look for merge candidates inside a given range.
 | |
|  * Any extents with matching state are merged together into a single
 | |
|  * extent in the tree.  Extents with EXTENT_IO in their state field
 | |
|  * are not merged because the end_io handlers need to be able to do
 | |
|  * operations on them without sleeping (or doing allocations/splits).
 | |
|  *
 | |
|  * This should be called with the tree lock held.
 | |
|  */
 | |
| static int merge_state(struct extent_io_tree *tree,
 | |
| 		       struct extent_state *state)
 | |
| {
 | |
| 	struct extent_state *other;
 | |
| 	struct rb_node *other_node;
 | |
| 
 | |
| 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 | |
| 		return 0;
 | |
| 
 | |
| 	other_node = rb_prev(&state->rb_node);
 | |
| 	if (other_node) {
 | |
| 		other = rb_entry(other_node, struct extent_state, rb_node);
 | |
| 		if (other->end == state->start - 1 &&
 | |
| 		    other->state == state->state) {
 | |
| 			merge_cb(tree, state, other);
 | |
| 			state->start = other->start;
 | |
| 			other->tree = NULL;
 | |
| 			rb_erase(&other->rb_node, &tree->state);
 | |
| 			free_extent_state(other);
 | |
| 		}
 | |
| 	}
 | |
| 	other_node = rb_next(&state->rb_node);
 | |
| 	if (other_node) {
 | |
| 		other = rb_entry(other_node, struct extent_state, rb_node);
 | |
| 		if (other->start == state->end + 1 &&
 | |
| 		    other->state == state->state) {
 | |
| 			merge_cb(tree, state, other);
 | |
| 			other->start = state->start;
 | |
| 			state->tree = NULL;
 | |
| 			rb_erase(&state->rb_node, &tree->state);
 | |
| 			free_extent_state(state);
 | |
| 			state = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_state_cb(struct extent_io_tree *tree,
 | |
| 			 struct extent_state *state, int *bits)
 | |
| {
 | |
| 	if (tree->ops && tree->ops->set_bit_hook) {
 | |
| 		return tree->ops->set_bit_hook(tree->mapping->host,
 | |
| 					       state, bits);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void clear_state_cb(struct extent_io_tree *tree,
 | |
| 			   struct extent_state *state, int *bits)
 | |
| {
 | |
| 	if (tree->ops && tree->ops->clear_bit_hook)
 | |
| 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * insert an extent_state struct into the tree.  'bits' are set on the
 | |
|  * struct before it is inserted.
 | |
|  *
 | |
|  * This may return -EEXIST if the extent is already there, in which case the
 | |
|  * state struct is freed.
 | |
|  *
 | |
|  * The tree lock is not taken internally.  This is a utility function and
 | |
|  * probably isn't what you want to call (see set/clear_extent_bit).
 | |
|  */
 | |
| static int insert_state(struct extent_io_tree *tree,
 | |
| 			struct extent_state *state, u64 start, u64 end,
 | |
| 			int *bits)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	int bits_to_set = *bits & ~EXTENT_CTLBITS;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (end < start) {
 | |
| 		printk(KERN_ERR "btrfs end < start %llu %llu\n",
 | |
| 		       (unsigned long long)end,
 | |
| 		       (unsigned long long)start);
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 	state->start = start;
 | |
| 	state->end = end;
 | |
| 	ret = set_state_cb(tree, state, bits);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (bits_to_set & EXTENT_DIRTY)
 | |
| 		tree->dirty_bytes += end - start + 1;
 | |
| 	state->state |= bits_to_set;
 | |
| 	node = tree_insert(&tree->state, end, &state->rb_node);
 | |
| 	if (node) {
 | |
| 		struct extent_state *found;
 | |
| 		found = rb_entry(node, struct extent_state, rb_node);
 | |
| 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 | |
| 		       "%llu %llu\n", (unsigned long long)found->start,
 | |
| 		       (unsigned long long)found->end,
 | |
| 		       (unsigned long long)start, (unsigned long long)end);
 | |
| 		free_extent_state(state);
 | |
| 		return -EEXIST;
 | |
| 	}
 | |
| 	state->tree = tree;
 | |
| 	merge_state(tree, state);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 | |
| 		     u64 split)
 | |
| {
 | |
| 	if (tree->ops && tree->ops->split_extent_hook)
 | |
| 		return tree->ops->split_extent_hook(tree->mapping->host,
 | |
| 						    orig, split);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * split a given extent state struct in two, inserting the preallocated
 | |
|  * struct 'prealloc' as the newly created second half.  'split' indicates an
 | |
|  * offset inside 'orig' where it should be split.
 | |
|  *
 | |
|  * Before calling,
 | |
|  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 | |
|  * are two extent state structs in the tree:
 | |
|  * prealloc: [orig->start, split - 1]
 | |
|  * orig: [ split, orig->end ]
 | |
|  *
 | |
|  * The tree locks are not taken by this function. They need to be held
 | |
|  * by the caller.
 | |
|  */
 | |
| static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 | |
| 		       struct extent_state *prealloc, u64 split)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	split_cb(tree, orig, split);
 | |
| 
 | |
| 	prealloc->start = orig->start;
 | |
| 	prealloc->end = split - 1;
 | |
| 	prealloc->state = orig->state;
 | |
| 	orig->start = split;
 | |
| 
 | |
| 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 | |
| 	if (node) {
 | |
| 		free_extent_state(prealloc);
 | |
| 		return -EEXIST;
 | |
| 	}
 | |
| 	prealloc->tree = tree;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * utility function to clear some bits in an extent state struct.
 | |
|  * it will optionally wake up any one waiting on this state (wake == 1), or
 | |
|  * forcibly remove the state from the tree (delete == 1).
 | |
|  *
 | |
|  * If no bits are set on the state struct after clearing things, the
 | |
|  * struct is freed and removed from the tree
 | |
|  */
 | |
| static int clear_state_bit(struct extent_io_tree *tree,
 | |
| 			    struct extent_state *state,
 | |
| 			    int *bits, int wake)
 | |
| {
 | |
| 	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
 | |
| 	int ret = state->state & bits_to_clear;
 | |
| 
 | |
| 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 | |
| 		u64 range = state->end - state->start + 1;
 | |
| 		WARN_ON(range > tree->dirty_bytes);
 | |
| 		tree->dirty_bytes -= range;
 | |
| 	}
 | |
| 	clear_state_cb(tree, state, bits);
 | |
| 	state->state &= ~bits_to_clear;
 | |
| 	if (wake)
 | |
| 		wake_up(&state->wq);
 | |
| 	if (state->state == 0) {
 | |
| 		if (state->tree) {
 | |
| 			rb_erase(&state->rb_node, &tree->state);
 | |
| 			state->tree = NULL;
 | |
| 			free_extent_state(state);
 | |
| 		} else {
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| 	} else {
 | |
| 		merge_state(tree, state);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * clear some bits on a range in the tree.  This may require splitting
 | |
|  * or inserting elements in the tree, so the gfp mask is used to
 | |
|  * indicate which allocations or sleeping are allowed.
 | |
|  *
 | |
|  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 | |
|  * the given range from the tree regardless of state (ie for truncate).
 | |
|  *
 | |
|  * the range [start, end] is inclusive.
 | |
|  *
 | |
|  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
 | |
|  * bits were already set, or zero if none of the bits were already set.
 | |
|  */
 | |
| int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		     int bits, int wake, int delete,
 | |
| 		     struct extent_state **cached_state,
 | |
| 		     gfp_t mask)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 	struct extent_state *cached;
 | |
| 	struct extent_state *prealloc = NULL;
 | |
| 	struct rb_node *next_node;
 | |
| 	struct rb_node *node;
 | |
| 	u64 last_end;
 | |
| 	int err;
 | |
| 	int set = 0;
 | |
| 	int clear = 0;
 | |
| 
 | |
| 	if (delete)
 | |
| 		bits |= ~EXTENT_CTLBITS;
 | |
| 	bits |= EXTENT_FIRST_DELALLOC;
 | |
| 
 | |
| 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 | |
| 		clear = 1;
 | |
| again:
 | |
| 	if (!prealloc && (mask & __GFP_WAIT)) {
 | |
| 		prealloc = alloc_extent_state(mask);
 | |
| 		if (!prealloc)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	if (cached_state) {
 | |
| 		cached = *cached_state;
 | |
| 
 | |
| 		if (clear) {
 | |
| 			*cached_state = NULL;
 | |
| 			cached_state = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (cached && cached->tree && cached->start == start) {
 | |
| 			if (clear)
 | |
| 				atomic_dec(&cached->refs);
 | |
| 			state = cached;
 | |
| 			goto hit_next;
 | |
| 		}
 | |
| 		if (clear)
 | |
| 			free_extent_state(cached);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * this search will find the extents that end after
 | |
| 	 * our range starts
 | |
| 	 */
 | |
| 	node = tree_search(tree, start);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 	state = rb_entry(node, struct extent_state, rb_node);
 | |
| hit_next:
 | |
| 	if (state->start > end)
 | |
| 		goto out;
 | |
| 	WARN_ON(state->end < start);
 | |
| 	last_end = state->end;
 | |
| 
 | |
| 	/*
 | |
| 	 *     | ---- desired range ---- |
 | |
| 	 *  | state | or
 | |
| 	 *  | ------------- state -------------- |
 | |
| 	 *
 | |
| 	 * We need to split the extent we found, and may flip
 | |
| 	 * bits on second half.
 | |
| 	 *
 | |
| 	 * If the extent we found extends past our range, we
 | |
| 	 * just split and search again.  It'll get split again
 | |
| 	 * the next time though.
 | |
| 	 *
 | |
| 	 * If the extent we found is inside our range, we clear
 | |
| 	 * the desired bit on it.
 | |
| 	 */
 | |
| 
 | |
| 	if (state->start < start) {
 | |
| 		if (!prealloc)
 | |
| 			prealloc = alloc_extent_state(GFP_ATOMIC);
 | |
| 		err = split_state(tree, state, prealloc, start);
 | |
| 		BUG_ON(err == -EEXIST);
 | |
| 		prealloc = NULL;
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		if (state->end <= end) {
 | |
| 			set |= clear_state_bit(tree, state, &bits, wake);
 | |
| 			if (last_end == (u64)-1)
 | |
| 				goto out;
 | |
| 			start = last_end + 1;
 | |
| 		}
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 *                        | state |
 | |
| 	 * We need to split the extent, and clear the bit
 | |
| 	 * on the first half
 | |
| 	 */
 | |
| 	if (state->start <= end && state->end > end) {
 | |
| 		if (!prealloc)
 | |
| 			prealloc = alloc_extent_state(GFP_ATOMIC);
 | |
| 		err = split_state(tree, state, prealloc, end + 1);
 | |
| 		BUG_ON(err == -EEXIST);
 | |
| 		if (wake)
 | |
| 			wake_up(&state->wq);
 | |
| 
 | |
| 		set |= clear_state_bit(tree, prealloc, &bits, wake);
 | |
| 
 | |
| 		prealloc = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (state->end < end && prealloc && !need_resched())
 | |
| 		next_node = rb_next(&state->rb_node);
 | |
| 	else
 | |
| 		next_node = NULL;
 | |
| 
 | |
| 	set |= clear_state_bit(tree, state, &bits, wake);
 | |
| 	if (last_end == (u64)-1)
 | |
| 		goto out;
 | |
| 	start = last_end + 1;
 | |
| 	if (start <= end && next_node) {
 | |
| 		state = rb_entry(next_node, struct extent_state,
 | |
| 				 rb_node);
 | |
| 		if (state->start == start)
 | |
| 			goto hit_next;
 | |
| 	}
 | |
| 	goto search_again;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	if (prealloc)
 | |
| 		free_extent_state(prealloc);
 | |
| 
 | |
| 	return set;
 | |
| 
 | |
| search_again:
 | |
| 	if (start > end)
 | |
| 		goto out;
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	if (mask & __GFP_WAIT)
 | |
| 		cond_resched();
 | |
| 	goto again;
 | |
| }
 | |
| 
 | |
| static int wait_on_state(struct extent_io_tree *tree,
 | |
| 			 struct extent_state *state)
 | |
| 		__releases(tree->lock)
 | |
| 		__acquires(tree->lock)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	schedule();
 | |
| 	spin_lock(&tree->lock);
 | |
| 	finish_wait(&state->wq, &wait);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * waits for one or more bits to clear on a range in the state tree.
 | |
|  * The range [start, end] is inclusive.
 | |
|  * The tree lock is taken by this function
 | |
|  */
 | |
| int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| again:
 | |
| 	while (1) {
 | |
| 		/*
 | |
| 		 * this search will find all the extents that end after
 | |
| 		 * our range starts
 | |
| 		 */
 | |
| 		node = tree_search(tree, start);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 
 | |
| 		if (state->start > end)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (state->state & bits) {
 | |
| 			start = state->start;
 | |
| 			atomic_inc(&state->refs);
 | |
| 			wait_on_state(tree, state);
 | |
| 			free_extent_state(state);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		start = state->end + 1;
 | |
| 
 | |
| 		if (start > end)
 | |
| 			break;
 | |
| 
 | |
| 		if (need_resched()) {
 | |
| 			spin_unlock(&tree->lock);
 | |
| 			cond_resched();
 | |
| 			spin_lock(&tree->lock);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_state_bits(struct extent_io_tree *tree,
 | |
| 			   struct extent_state *state,
 | |
| 			   int *bits)
 | |
| {
 | |
| 	int ret;
 | |
| 	int bits_to_set = *bits & ~EXTENT_CTLBITS;
 | |
| 
 | |
| 	ret = set_state_cb(tree, state, bits);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 | |
| 		u64 range = state->end - state->start + 1;
 | |
| 		tree->dirty_bytes += range;
 | |
| 	}
 | |
| 	state->state |= bits_to_set;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cache_state(struct extent_state *state,
 | |
| 			struct extent_state **cached_ptr)
 | |
| {
 | |
| 	if (cached_ptr && !(*cached_ptr)) {
 | |
| 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 | |
| 			*cached_ptr = state;
 | |
| 			atomic_inc(&state->refs);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set some bits on a range in the tree.  This may require allocations or
 | |
|  * sleeping, so the gfp mask is used to indicate what is allowed.
 | |
|  *
 | |
|  * If any of the exclusive bits are set, this will fail with -EEXIST if some
 | |
|  * part of the range already has the desired bits set.  The start of the
 | |
|  * existing range is returned in failed_start in this case.
 | |
|  *
 | |
|  * [start, end] is inclusive This takes the tree lock.
 | |
|  */
 | |
| 
 | |
| int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		   int bits, int exclusive_bits, u64 *failed_start,
 | |
| 		   struct extent_state **cached_state, gfp_t mask)
 | |
| {
 | |
| 	struct extent_state *state;
 | |
| 	struct extent_state *prealloc = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	int err = 0;
 | |
| 	u64 last_start;
 | |
| 	u64 last_end;
 | |
| 
 | |
| 	bits |= EXTENT_FIRST_DELALLOC;
 | |
| again:
 | |
| 	if (!prealloc && (mask & __GFP_WAIT)) {
 | |
| 		prealloc = alloc_extent_state(mask);
 | |
| 		if (!prealloc)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	if (cached_state && *cached_state) {
 | |
| 		state = *cached_state;
 | |
| 		if (state->start == start && state->tree) {
 | |
| 			node = &state->rb_node;
 | |
| 			goto hit_next;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, start);
 | |
| 	if (!node) {
 | |
| 		err = insert_state(tree, prealloc, start, end, &bits);
 | |
| 		prealloc = NULL;
 | |
| 		BUG_ON(err == -EEXIST);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	state = rb_entry(node, struct extent_state, rb_node);
 | |
| hit_next:
 | |
| 	last_start = state->start;
 | |
| 	last_end = state->end;
 | |
| 
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 * | state |
 | |
| 	 *
 | |
| 	 * Just lock what we found and keep going
 | |
| 	 */
 | |
| 	if (state->start == start && state->end <= end) {
 | |
| 		struct rb_node *next_node;
 | |
| 		if (state->state & exclusive_bits) {
 | |
| 			*failed_start = state->start;
 | |
| 			err = -EEXIST;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		err = set_state_bits(tree, state, &bits);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		cache_state(state, cached_state);
 | |
| 		merge_state(tree, state);
 | |
| 		if (last_end == (u64)-1)
 | |
| 			goto out;
 | |
| 
 | |
| 		start = last_end + 1;
 | |
| 		if (start < end && prealloc && !need_resched()) {
 | |
| 			next_node = rb_next(node);
 | |
| 			if (next_node) {
 | |
| 				state = rb_entry(next_node, struct extent_state,
 | |
| 						 rb_node);
 | |
| 				if (state->start == start)
 | |
| 					goto hit_next;
 | |
| 			}
 | |
| 		}
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *     | ---- desired range ---- |
 | |
| 	 * | state |
 | |
| 	 *   or
 | |
| 	 * | ------------- state -------------- |
 | |
| 	 *
 | |
| 	 * We need to split the extent we found, and may flip bits on
 | |
| 	 * second half.
 | |
| 	 *
 | |
| 	 * If the extent we found extends past our
 | |
| 	 * range, we just split and search again.  It'll get split
 | |
| 	 * again the next time though.
 | |
| 	 *
 | |
| 	 * If the extent we found is inside our range, we set the
 | |
| 	 * desired bit on it.
 | |
| 	 */
 | |
| 	if (state->start < start) {
 | |
| 		if (state->state & exclusive_bits) {
 | |
| 			*failed_start = start;
 | |
| 			err = -EEXIST;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		err = split_state(tree, state, prealloc, start);
 | |
| 		BUG_ON(err == -EEXIST);
 | |
| 		prealloc = NULL;
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		if (state->end <= end) {
 | |
| 			err = set_state_bits(tree, state, &bits);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 			cache_state(state, cached_state);
 | |
| 			merge_state(tree, state);
 | |
| 			if (last_end == (u64)-1)
 | |
| 				goto out;
 | |
| 			start = last_end + 1;
 | |
| 		}
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 *     | state | or               | state |
 | |
| 	 *
 | |
| 	 * There's a hole, we need to insert something in it and
 | |
| 	 * ignore the extent we found.
 | |
| 	 */
 | |
| 	if (state->start > start) {
 | |
| 		u64 this_end;
 | |
| 		if (end < last_start)
 | |
| 			this_end = end;
 | |
| 		else
 | |
| 			this_end = last_start - 1;
 | |
| 		err = insert_state(tree, prealloc, start, this_end,
 | |
| 				   &bits);
 | |
| 		BUG_ON(err == -EEXIST);
 | |
| 		if (err) {
 | |
| 			prealloc = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		cache_state(prealloc, cached_state);
 | |
| 		prealloc = NULL;
 | |
| 		start = this_end + 1;
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * | ---- desired range ---- |
 | |
| 	 *                        | state |
 | |
| 	 * We need to split the extent, and set the bit
 | |
| 	 * on the first half
 | |
| 	 */
 | |
| 	if (state->start <= end && state->end > end) {
 | |
| 		if (state->state & exclusive_bits) {
 | |
| 			*failed_start = start;
 | |
| 			err = -EEXIST;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		err = split_state(tree, state, prealloc, end + 1);
 | |
| 		BUG_ON(err == -EEXIST);
 | |
| 
 | |
| 		err = set_state_bits(tree, prealloc, &bits);
 | |
| 		if (err) {
 | |
| 			prealloc = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		cache_state(prealloc, cached_state);
 | |
| 		merge_state(tree, prealloc);
 | |
| 		prealloc = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	goto search_again;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	if (prealloc)
 | |
| 		free_extent_state(prealloc);
 | |
| 
 | |
| 	return err;
 | |
| 
 | |
| search_again:
 | |
| 	if (start > end)
 | |
| 		goto out;
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	if (mask & __GFP_WAIT)
 | |
| 		cond_resched();
 | |
| 	goto again;
 | |
| }
 | |
| 
 | |
| /* wrappers around set/clear extent bit */
 | |
| int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		     gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
 | |
| 			      NULL, mask);
 | |
| }
 | |
| 
 | |
| int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		    int bits, gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end, bits, 0, NULL,
 | |
| 			      NULL, mask);
 | |
| }
 | |
| 
 | |
| int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		      int bits, gfp_t mask)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
 | |
| }
 | |
| 
 | |
| int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 			struct extent_state **cached_state, gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end,
 | |
| 			      EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
 | |
| 			      0, NULL, cached_state, mask);
 | |
| }
 | |
| 
 | |
| int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		       gfp_t mask)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end,
 | |
| 				EXTENT_DIRTY | EXTENT_DELALLOC |
 | |
| 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
 | |
| }
 | |
| 
 | |
| int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		     gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
 | |
| 			      NULL, mask);
 | |
| }
 | |
| 
 | |
| static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		       gfp_t mask)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
 | |
| 				NULL, mask);
 | |
| }
 | |
| 
 | |
| int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 			gfp_t mask)
 | |
| {
 | |
| 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
 | |
| 			      NULL, mask);
 | |
| }
 | |
| 
 | |
| static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
 | |
| 				 u64 end, struct extent_state **cached_state,
 | |
| 				 gfp_t mask)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
 | |
| 				cached_state, mask);
 | |
| }
 | |
| 
 | |
| int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
 | |
| {
 | |
| 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * either insert or lock state struct between start and end use mask to tell
 | |
|  * us if waiting is desired.
 | |
|  */
 | |
| int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		     int bits, struct extent_state **cached_state, gfp_t mask)
 | |
| {
 | |
| 	int err;
 | |
| 	u64 failed_start;
 | |
| 	while (1) {
 | |
| 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
 | |
| 				     EXTENT_LOCKED, &failed_start,
 | |
| 				     cached_state, mask);
 | |
| 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
 | |
| 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
 | |
| 			start = failed_start;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 		WARN_ON(start > end);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
 | |
| {
 | |
| 	return lock_extent_bits(tree, start, end, 0, NULL, mask);
 | |
| }
 | |
| 
 | |
| int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		    gfp_t mask)
 | |
| {
 | |
| 	int err;
 | |
| 	u64 failed_start;
 | |
| 
 | |
| 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
 | |
| 			     &failed_start, NULL, mask);
 | |
| 	if (err == -EEXIST) {
 | |
| 		if (failed_start > start)
 | |
| 			clear_extent_bit(tree, start, failed_start - 1,
 | |
| 					 EXTENT_LOCKED, 1, 0, NULL, mask);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 			 struct extent_state **cached, gfp_t mask)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
 | |
| 				mask);
 | |
| }
 | |
| 
 | |
| int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		  gfp_t mask)
 | |
| {
 | |
| 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
 | |
| 				mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to set pages and extents in the tree dirty
 | |
|  */
 | |
| int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
 | |
| {
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	while (index <= end_index) {
 | |
| 		page = find_get_page(tree->mapping, index);
 | |
| 		BUG_ON(!page);
 | |
| 		__set_page_dirty_nobuffers(page);
 | |
| 		page_cache_release(page);
 | |
| 		index++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to set both pages and extents in the tree writeback
 | |
|  */
 | |
| static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
 | |
| {
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	while (index <= end_index) {
 | |
| 		page = find_get_page(tree->mapping, index);
 | |
| 		BUG_ON(!page);
 | |
| 		set_page_writeback(page);
 | |
| 		page_cache_release(page);
 | |
| 		index++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find the first offset in the io tree with 'bits' set. zero is
 | |
|  * returned if we find something, and *start_ret and *end_ret are
 | |
|  * set to reflect the state struct that was found.
 | |
|  *
 | |
|  * If nothing was found, 1 is returned, < 0 on error
 | |
|  */
 | |
| int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
 | |
| 			  u64 *start_ret, u64 *end_ret, int bits)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, start);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (1) {
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 		if (state->end >= start && (state->state & bits)) {
 | |
| 			*start_ret = state->start;
 | |
| 			*end_ret = state->end;
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		node = rb_next(node);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* find the first state struct with 'bits' set after 'start', and
 | |
|  * return it.  tree->lock must be held.  NULL will returned if
 | |
|  * nothing was found after 'start'
 | |
|  */
 | |
| struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
 | |
| 						 u64 start, int bits)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, start);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (1) {
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 		if (state->end >= start && (state->state & bits))
 | |
| 			return state;
 | |
| 
 | |
| 		node = rb_next(node);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find a contiguous range of bytes in the file marked as delalloc, not
 | |
|  * more than 'max_bytes'.  start and end are used to return the range,
 | |
|  *
 | |
|  * 1 is returned if we find something, 0 if nothing was in the tree
 | |
|  */
 | |
| static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
 | |
| 					u64 *start, u64 *end, u64 max_bytes,
 | |
| 					struct extent_state **cached_state)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 	u64 cur_start = *start;
 | |
| 	u64 found = 0;
 | |
| 	u64 total_bytes = 0;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, cur_start);
 | |
| 	if (!node) {
 | |
| 		if (!found)
 | |
| 			*end = (u64)-1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 		if (found && (state->start != cur_start ||
 | |
| 			      (state->state & EXTENT_BOUNDARY))) {
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (!(state->state & EXTENT_DELALLOC)) {
 | |
| 			if (!found)
 | |
| 				*end = state->end;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (!found) {
 | |
| 			*start = state->start;
 | |
| 			*cached_state = state;
 | |
| 			atomic_inc(&state->refs);
 | |
| 		}
 | |
| 		found++;
 | |
| 		*end = state->end;
 | |
| 		cur_start = state->end + 1;
 | |
| 		node = rb_next(node);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 		total_bytes += state->end - state->start + 1;
 | |
| 		if (total_bytes >= max_bytes)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| static noinline int __unlock_for_delalloc(struct inode *inode,
 | |
| 					  struct page *locked_page,
 | |
| 					  u64 start, u64 end)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct page *pages[16];
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long nr_pages = end_index - index + 1;
 | |
| 	int i;
 | |
| 
 | |
| 	if (index == locked_page->index && end_index == index)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (nr_pages > 0) {
 | |
| 		ret = find_get_pages_contig(inode->i_mapping, index,
 | |
| 				     min_t(unsigned long, nr_pages,
 | |
| 				     ARRAY_SIZE(pages)), pages);
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			if (pages[i] != locked_page)
 | |
| 				unlock_page(pages[i]);
 | |
| 			page_cache_release(pages[i]);
 | |
| 		}
 | |
| 		nr_pages -= ret;
 | |
| 		index += ret;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int lock_delalloc_pages(struct inode *inode,
 | |
| 					struct page *locked_page,
 | |
| 					u64 delalloc_start,
 | |
| 					u64 delalloc_end)
 | |
| {
 | |
| 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long start_index = index;
 | |
| 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long pages_locked = 0;
 | |
| 	struct page *pages[16];
 | |
| 	unsigned long nrpages;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	/* the caller is responsible for locking the start index */
 | |
| 	if (index == locked_page->index && index == end_index)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* skip the page at the start index */
 | |
| 	nrpages = end_index - index + 1;
 | |
| 	while (nrpages > 0) {
 | |
| 		ret = find_get_pages_contig(inode->i_mapping, index,
 | |
| 				     min_t(unsigned long,
 | |
| 				     nrpages, ARRAY_SIZE(pages)), pages);
 | |
| 		if (ret == 0) {
 | |
| 			ret = -EAGAIN;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		/* now we have an array of pages, lock them all */
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			/*
 | |
| 			 * the caller is taking responsibility for
 | |
| 			 * locked_page
 | |
| 			 */
 | |
| 			if (pages[i] != locked_page) {
 | |
| 				lock_page(pages[i]);
 | |
| 				if (!PageDirty(pages[i]) ||
 | |
| 				    pages[i]->mapping != inode->i_mapping) {
 | |
| 					ret = -EAGAIN;
 | |
| 					unlock_page(pages[i]);
 | |
| 					page_cache_release(pages[i]);
 | |
| 					goto done;
 | |
| 				}
 | |
| 			}
 | |
| 			page_cache_release(pages[i]);
 | |
| 			pages_locked++;
 | |
| 		}
 | |
| 		nrpages -= ret;
 | |
| 		index += ret;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	ret = 0;
 | |
| done:
 | |
| 	if (ret && pages_locked) {
 | |
| 		__unlock_for_delalloc(inode, locked_page,
 | |
| 			      delalloc_start,
 | |
| 			      ((u64)(start_index + pages_locked - 1)) <<
 | |
| 			      PAGE_CACHE_SHIFT);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find a contiguous range of bytes in the file marked as delalloc, not
 | |
|  * more than 'max_bytes'.  start and end are used to return the range,
 | |
|  *
 | |
|  * 1 is returned if we find something, 0 if nothing was in the tree
 | |
|  */
 | |
| static noinline u64 find_lock_delalloc_range(struct inode *inode,
 | |
| 					     struct extent_io_tree *tree,
 | |
| 					     struct page *locked_page,
 | |
| 					     u64 *start, u64 *end,
 | |
| 					     u64 max_bytes)
 | |
| {
 | |
| 	u64 delalloc_start;
 | |
| 	u64 delalloc_end;
 | |
| 	u64 found;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	int ret;
 | |
| 	int loops = 0;
 | |
| 
 | |
| again:
 | |
| 	/* step one, find a bunch of delalloc bytes starting at start */
 | |
| 	delalloc_start = *start;
 | |
| 	delalloc_end = 0;
 | |
| 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 | |
| 				    max_bytes, &cached_state);
 | |
| 	if (!found || delalloc_end <= *start) {
 | |
| 		*start = delalloc_start;
 | |
| 		*end = delalloc_end;
 | |
| 		free_extent_state(cached_state);
 | |
| 		return found;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * start comes from the offset of locked_page.  We have to lock
 | |
| 	 * pages in order, so we can't process delalloc bytes before
 | |
| 	 * locked_page
 | |
| 	 */
 | |
| 	if (delalloc_start < *start)
 | |
| 		delalloc_start = *start;
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure to limit the number of pages we try to lock down
 | |
| 	 * if we're looping.
 | |
| 	 */
 | |
| 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
 | |
| 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
 | |
| 
 | |
| 	/* step two, lock all the pages after the page that has start */
 | |
| 	ret = lock_delalloc_pages(inode, locked_page,
 | |
| 				  delalloc_start, delalloc_end);
 | |
| 	if (ret == -EAGAIN) {
 | |
| 		/* some of the pages are gone, lets avoid looping by
 | |
| 		 * shortening the size of the delalloc range we're searching
 | |
| 		 */
 | |
| 		free_extent_state(cached_state);
 | |
| 		if (!loops) {
 | |
| 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
 | |
| 			max_bytes = PAGE_CACHE_SIZE - offset;
 | |
| 			loops = 1;
 | |
| 			goto again;
 | |
| 		} else {
 | |
| 			found = 0;
 | |
| 			goto out_failed;
 | |
| 		}
 | |
| 	}
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	/* step three, lock the state bits for the whole range */
 | |
| 	lock_extent_bits(tree, delalloc_start, delalloc_end,
 | |
| 			 0, &cached_state, GFP_NOFS);
 | |
| 
 | |
| 	/* then test to make sure it is all still delalloc */
 | |
| 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 | |
| 			     EXTENT_DELALLOC, 1, cached_state);
 | |
| 	if (!ret) {
 | |
| 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
 | |
| 				     &cached_state, GFP_NOFS);
 | |
| 		__unlock_for_delalloc(inode, locked_page,
 | |
| 			      delalloc_start, delalloc_end);
 | |
| 		cond_resched();
 | |
| 		goto again;
 | |
| 	}
 | |
| 	free_extent_state(cached_state);
 | |
| 	*start = delalloc_start;
 | |
| 	*end = delalloc_end;
 | |
| out_failed:
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| int extent_clear_unlock_delalloc(struct inode *inode,
 | |
| 				struct extent_io_tree *tree,
 | |
| 				u64 start, u64 end, struct page *locked_page,
 | |
| 				unsigned long op)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct page *pages[16];
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long nr_pages = end_index - index + 1;
 | |
| 	int i;
 | |
| 	int clear_bits = 0;
 | |
| 
 | |
| 	if (op & EXTENT_CLEAR_UNLOCK)
 | |
| 		clear_bits |= EXTENT_LOCKED;
 | |
| 	if (op & EXTENT_CLEAR_DIRTY)
 | |
| 		clear_bits |= EXTENT_DIRTY;
 | |
| 
 | |
| 	if (op & EXTENT_CLEAR_DELALLOC)
 | |
| 		clear_bits |= EXTENT_DELALLOC;
 | |
| 
 | |
| 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
 | |
| 	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
 | |
| 		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
 | |
| 		    EXTENT_SET_PRIVATE2)))
 | |
| 		return 0;
 | |
| 
 | |
| 	while (nr_pages > 0) {
 | |
| 		ret = find_get_pages_contig(inode->i_mapping, index,
 | |
| 				     min_t(unsigned long,
 | |
| 				     nr_pages, ARRAY_SIZE(pages)), pages);
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 
 | |
| 			if (op & EXTENT_SET_PRIVATE2)
 | |
| 				SetPagePrivate2(pages[i]);
 | |
| 
 | |
| 			if (pages[i] == locked_page) {
 | |
| 				page_cache_release(pages[i]);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (op & EXTENT_CLEAR_DIRTY)
 | |
| 				clear_page_dirty_for_io(pages[i]);
 | |
| 			if (op & EXTENT_SET_WRITEBACK)
 | |
| 				set_page_writeback(pages[i]);
 | |
| 			if (op & EXTENT_END_WRITEBACK)
 | |
| 				end_page_writeback(pages[i]);
 | |
| 			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
 | |
| 				unlock_page(pages[i]);
 | |
| 			page_cache_release(pages[i]);
 | |
| 		}
 | |
| 		nr_pages -= ret;
 | |
| 		index += ret;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * count the number of bytes in the tree that have a given bit(s)
 | |
|  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 | |
|  * cached.  The total number found is returned.
 | |
|  */
 | |
| u64 count_range_bits(struct extent_io_tree *tree,
 | |
| 		     u64 *start, u64 search_end, u64 max_bytes,
 | |
| 		     unsigned long bits)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 	u64 cur_start = *start;
 | |
| 	u64 total_bytes = 0;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	if (search_end <= cur_start) {
 | |
| 		WARN_ON(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
 | |
| 		total_bytes = tree->dirty_bytes;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, cur_start);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (1) {
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 		if (state->start > search_end)
 | |
| 			break;
 | |
| 		if (state->end >= cur_start && (state->state & bits)) {
 | |
| 			total_bytes += min(search_end, state->end) + 1 -
 | |
| 				       max(cur_start, state->start);
 | |
| 			if (total_bytes >= max_bytes)
 | |
| 				break;
 | |
| 			if (!found) {
 | |
| 				*start = state->start;
 | |
| 				found = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		node = rb_next(node);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return total_bytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set the private field for a given byte offset in the tree.  If there isn't
 | |
|  * an extent_state there already, this does nothing.
 | |
|  */
 | |
| int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, start);
 | |
| 	if (!node) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	state = rb_entry(node, struct extent_state, rb_node);
 | |
| 	if (state->start != start) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	state->private = private;
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_state *state;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	/*
 | |
| 	 * this search will find all the extents that end after
 | |
| 	 * our range starts.
 | |
| 	 */
 | |
| 	node = tree_search(tree, start);
 | |
| 	if (!node) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	state = rb_entry(node, struct extent_state, rb_node);
 | |
| 	if (state->start != start) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	*private = state->private;
 | |
| out:
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * searches a range in the state tree for a given mask.
 | |
|  * If 'filled' == 1, this returns 1 only if every extent in the tree
 | |
|  * has the bits set.  Otherwise, 1 is returned if any bit in the
 | |
|  * range is found set.
 | |
|  */
 | |
| int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
 | |
| 		   int bits, int filled, struct extent_state *cached)
 | |
| {
 | |
| 	struct extent_state *state = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	int bitset = 0;
 | |
| 
 | |
| 	spin_lock(&tree->lock);
 | |
| 	if (cached && cached->tree && cached->start == start)
 | |
| 		node = &cached->rb_node;
 | |
| 	else
 | |
| 		node = tree_search(tree, start);
 | |
| 	while (node && start <= end) {
 | |
| 		state = rb_entry(node, struct extent_state, rb_node);
 | |
| 
 | |
| 		if (filled && state->start > start) {
 | |
| 			bitset = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (state->start > end)
 | |
| 			break;
 | |
| 
 | |
| 		if (state->state & bits) {
 | |
| 			bitset = 1;
 | |
| 			if (!filled)
 | |
| 				break;
 | |
| 		} else if (filled) {
 | |
| 			bitset = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (state->end == (u64)-1)
 | |
| 			break;
 | |
| 
 | |
| 		start = state->end + 1;
 | |
| 		if (start > end)
 | |
| 			break;
 | |
| 		node = rb_next(node);
 | |
| 		if (!node) {
 | |
| 			if (filled)
 | |
| 				bitset = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&tree->lock);
 | |
| 	return bitset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to set a given page up to date if all the
 | |
|  * extents in the tree for that page are up to date
 | |
|  */
 | |
| static int check_page_uptodate(struct extent_io_tree *tree,
 | |
| 			       struct page *page)
 | |
| {
 | |
| 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | |
| 	u64 end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
 | |
| 		SetPageUptodate(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to unlock a page if all the extents in the tree
 | |
|  * for that page are unlocked
 | |
|  */
 | |
| static int check_page_locked(struct extent_io_tree *tree,
 | |
| 			     struct page *page)
 | |
| {
 | |
| 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | |
| 	u64 end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
 | |
| 		unlock_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to end page writeback if all the extents
 | |
|  * in the tree for that page are done with writeback
 | |
|  */
 | |
| static int check_page_writeback(struct extent_io_tree *tree,
 | |
| 			     struct page *page)
 | |
| {
 | |
| 	end_page_writeback(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* lots and lots of room for performance fixes in the end_bio funcs */
 | |
| 
 | |
| /*
 | |
|  * after a writepage IO is done, we need to:
 | |
|  * clear the uptodate bits on error
 | |
|  * clear the writeback bits in the extent tree for this IO
 | |
|  * end_page_writeback if the page has no more pending IO
 | |
|  *
 | |
|  * Scheduling is not allowed, so the extent state tree is expected
 | |
|  * to have one and only one object corresponding to this IO.
 | |
|  */
 | |
| static void end_bio_extent_writepage(struct bio *bio, int err)
 | |
| {
 | |
| 	int uptodate = err == 0;
 | |
| 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
 | |
| 	struct extent_io_tree *tree;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	int whole_page;
 | |
| 	int ret;
 | |
| 
 | |
| 	do {
 | |
| 		struct page *page = bvec->bv_page;
 | |
| 		tree = &BTRFS_I(page->mapping->host)->io_tree;
 | |
| 
 | |
| 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
 | |
| 			 bvec->bv_offset;
 | |
| 		end = start + bvec->bv_len - 1;
 | |
| 
 | |
| 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
 | |
| 			whole_page = 1;
 | |
| 		else
 | |
| 			whole_page = 0;
 | |
| 
 | |
| 		if (--bvec >= bio->bi_io_vec)
 | |
| 			prefetchw(&bvec->bv_page->flags);
 | |
| 		if (tree->ops && tree->ops->writepage_end_io_hook) {
 | |
| 			ret = tree->ops->writepage_end_io_hook(page, start,
 | |
| 						       end, NULL, uptodate);
 | |
| 			if (ret)
 | |
| 				uptodate = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (!uptodate && tree->ops &&
 | |
| 		    tree->ops->writepage_io_failed_hook) {
 | |
| 			ret = tree->ops->writepage_io_failed_hook(bio, page,
 | |
| 							 start, end, NULL);
 | |
| 			if (ret == 0) {
 | |
| 				uptodate = (err == 0);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!uptodate) {
 | |
| 			clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
 | |
| 			ClearPageUptodate(page);
 | |
| 			SetPageError(page);
 | |
| 		}
 | |
| 
 | |
| 		if (whole_page)
 | |
| 			end_page_writeback(page);
 | |
| 		else
 | |
| 			check_page_writeback(tree, page);
 | |
| 	} while (bvec >= bio->bi_io_vec);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * after a readpage IO is done, we need to:
 | |
|  * clear the uptodate bits on error
 | |
|  * set the uptodate bits if things worked
 | |
|  * set the page up to date if all extents in the tree are uptodate
 | |
|  * clear the lock bit in the extent tree
 | |
|  * unlock the page if there are no other extents locked for it
 | |
|  *
 | |
|  * Scheduling is not allowed, so the extent state tree is expected
 | |
|  * to have one and only one object corresponding to this IO.
 | |
|  */
 | |
| static void end_bio_extent_readpage(struct bio *bio, int err)
 | |
| {
 | |
| 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 | |
| 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
 | |
| 	struct bio_vec *bvec = bio->bi_io_vec;
 | |
| 	struct extent_io_tree *tree;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	int whole_page;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (err)
 | |
| 		uptodate = 0;
 | |
| 
 | |
| 	do {
 | |
| 		struct page *page = bvec->bv_page;
 | |
| 		tree = &BTRFS_I(page->mapping->host)->io_tree;
 | |
| 
 | |
| 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
 | |
| 			bvec->bv_offset;
 | |
| 		end = start + bvec->bv_len - 1;
 | |
| 
 | |
| 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
 | |
| 			whole_page = 1;
 | |
| 		else
 | |
| 			whole_page = 0;
 | |
| 
 | |
| 		if (++bvec <= bvec_end)
 | |
| 			prefetchw(&bvec->bv_page->flags);
 | |
| 
 | |
| 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
 | |
| 			ret = tree->ops->readpage_end_io_hook(page, start, end,
 | |
| 							      NULL);
 | |
| 			if (ret)
 | |
| 				uptodate = 0;
 | |
| 		}
 | |
| 		if (!uptodate && tree->ops &&
 | |
| 		    tree->ops->readpage_io_failed_hook) {
 | |
| 			ret = tree->ops->readpage_io_failed_hook(bio, page,
 | |
| 							 start, end, NULL);
 | |
| 			if (ret == 0) {
 | |
| 				uptodate =
 | |
| 					test_bit(BIO_UPTODATE, &bio->bi_flags);
 | |
| 				if (err)
 | |
| 					uptodate = 0;
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (uptodate) {
 | |
| 			set_extent_uptodate(tree, start, end,
 | |
| 					    GFP_ATOMIC);
 | |
| 		}
 | |
| 		unlock_extent(tree, start, end, GFP_ATOMIC);
 | |
| 
 | |
| 		if (whole_page) {
 | |
| 			if (uptodate) {
 | |
| 				SetPageUptodate(page);
 | |
| 			} else {
 | |
| 				ClearPageUptodate(page);
 | |
| 				SetPageError(page);
 | |
| 			}
 | |
| 			unlock_page(page);
 | |
| 		} else {
 | |
| 			if (uptodate) {
 | |
| 				check_page_uptodate(tree, page);
 | |
| 			} else {
 | |
| 				ClearPageUptodate(page);
 | |
| 				SetPageError(page);
 | |
| 			}
 | |
| 			check_page_locked(tree, page);
 | |
| 		}
 | |
| 	} while (bvec <= bvec_end);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IO done from prepare_write is pretty simple, we just unlock
 | |
|  * the structs in the extent tree when done, and set the uptodate bits
 | |
|  * as appropriate.
 | |
|  */
 | |
| static void end_bio_extent_preparewrite(struct bio *bio, int err)
 | |
| {
 | |
| 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 | |
| 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
 | |
| 	struct extent_io_tree *tree;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 
 | |
| 	do {
 | |
| 		struct page *page = bvec->bv_page;
 | |
| 		tree = &BTRFS_I(page->mapping->host)->io_tree;
 | |
| 
 | |
| 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
 | |
| 			bvec->bv_offset;
 | |
| 		end = start + bvec->bv_len - 1;
 | |
| 
 | |
| 		if (--bvec >= bio->bi_io_vec)
 | |
| 			prefetchw(&bvec->bv_page->flags);
 | |
| 
 | |
| 		if (uptodate) {
 | |
| 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
 | |
| 		} else {
 | |
| 			ClearPageUptodate(page);
 | |
| 			SetPageError(page);
 | |
| 		}
 | |
| 
 | |
| 		unlock_extent(tree, start, end, GFP_ATOMIC);
 | |
| 
 | |
| 	} while (bvec >= bio->bi_io_vec);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| static struct bio *
 | |
| extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
 | |
| 		 gfp_t gfp_flags)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio = bio_alloc(gfp_flags, nr_vecs);
 | |
| 
 | |
| 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
 | |
| 		while (!bio && (nr_vecs /= 2))
 | |
| 			bio = bio_alloc(gfp_flags, nr_vecs);
 | |
| 	}
 | |
| 
 | |
| 	if (bio) {
 | |
| 		bio->bi_size = 0;
 | |
| 		bio->bi_bdev = bdev;
 | |
| 		bio->bi_sector = first_sector;
 | |
| 	}
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
 | |
| 			  unsigned long bio_flags)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
 | |
| 	struct page *page = bvec->bv_page;
 | |
| 	struct extent_io_tree *tree = bio->bi_private;
 | |
| 	u64 start;
 | |
| 
 | |
| 	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
 | |
| 
 | |
| 	bio->bi_private = NULL;
 | |
| 
 | |
| 	bio_get(bio);
 | |
| 
 | |
| 	if (tree->ops && tree->ops->submit_bio_hook)
 | |
| 		tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
 | |
| 					   mirror_num, bio_flags, start);
 | |
| 	else
 | |
| 		submit_bio(rw, bio);
 | |
| 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 	bio_put(bio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int submit_extent_page(int rw, struct extent_io_tree *tree,
 | |
| 			      struct page *page, sector_t sector,
 | |
| 			      size_t size, unsigned long offset,
 | |
| 			      struct block_device *bdev,
 | |
| 			      struct bio **bio_ret,
 | |
| 			      unsigned long max_pages,
 | |
| 			      bio_end_io_t end_io_func,
 | |
| 			      int mirror_num,
 | |
| 			      unsigned long prev_bio_flags,
 | |
| 			      unsigned long bio_flags)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct bio *bio;
 | |
| 	int nr;
 | |
| 	int contig = 0;
 | |
| 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
 | |
| 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
 | |
| 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
 | |
| 
 | |
| 	if (bio_ret && *bio_ret) {
 | |
| 		bio = *bio_ret;
 | |
| 		if (old_compressed)
 | |
| 			contig = bio->bi_sector == sector;
 | |
| 		else
 | |
| 			contig = bio->bi_sector + (bio->bi_size >> 9) ==
 | |
| 				sector;
 | |
| 
 | |
| 		if (prev_bio_flags != bio_flags || !contig ||
 | |
| 		    (tree->ops && tree->ops->merge_bio_hook &&
 | |
| 		     tree->ops->merge_bio_hook(page, offset, page_size, bio,
 | |
| 					       bio_flags)) ||
 | |
| 		    bio_add_page(bio, page, page_size, offset) < page_size) {
 | |
| 			ret = submit_one_bio(rw, bio, mirror_num,
 | |
| 					     prev_bio_flags);
 | |
| 			bio = NULL;
 | |
| 		} else {
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	if (this_compressed)
 | |
| 		nr = BIO_MAX_PAGES;
 | |
| 	else
 | |
| 		nr = bio_get_nr_vecs(bdev);
 | |
| 
 | |
| 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
 | |
| 
 | |
| 	bio_add_page(bio, page, page_size, offset);
 | |
| 	bio->bi_end_io = end_io_func;
 | |
| 	bio->bi_private = tree;
 | |
| 
 | |
| 	if (bio_ret)
 | |
| 		*bio_ret = bio;
 | |
| 	else
 | |
| 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void set_page_extent_mapped(struct page *page)
 | |
| {
 | |
| 	if (!PagePrivate(page)) {
 | |
| 		SetPagePrivate(page);
 | |
| 		page_cache_get(page);
 | |
| 		set_page_private(page, EXTENT_PAGE_PRIVATE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_page_extent_head(struct page *page, unsigned long len)
 | |
| {
 | |
| 	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * basic readpage implementation.  Locked extent state structs are inserted
 | |
|  * into the tree that are removed when the IO is done (by the end_io
 | |
|  * handlers)
 | |
|  */
 | |
| static int __extent_read_full_page(struct extent_io_tree *tree,
 | |
| 				   struct page *page,
 | |
| 				   get_extent_t *get_extent,
 | |
| 				   struct bio **bio, int mirror_num,
 | |
| 				   unsigned long *bio_flags)
 | |
| {
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | |
| 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	u64 end;
 | |
| 	u64 cur = start;
 | |
| 	u64 extent_offset;
 | |
| 	u64 last_byte = i_size_read(inode);
 | |
| 	u64 block_start;
 | |
| 	u64 cur_end;
 | |
| 	sector_t sector;
 | |
| 	struct extent_map *em;
 | |
| 	struct block_device *bdev;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	int ret;
 | |
| 	int nr = 0;
 | |
| 	size_t page_offset = 0;
 | |
| 	size_t iosize;
 | |
| 	size_t disk_io_size;
 | |
| 	size_t blocksize = inode->i_sb->s_blocksize;
 | |
| 	unsigned long this_bio_flag = 0;
 | |
| 
 | |
| 	set_page_extent_mapped(page);
 | |
| 
 | |
| 	end = page_end;
 | |
| 	while (1) {
 | |
| 		lock_extent(tree, start, end, GFP_NOFS);
 | |
| 		ordered = btrfs_lookup_ordered_extent(inode, start);
 | |
| 		if (!ordered)
 | |
| 			break;
 | |
| 		unlock_extent(tree, start, end, GFP_NOFS);
 | |
| 		btrfs_start_ordered_extent(inode, ordered, 1);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 	}
 | |
| 
 | |
| 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
 | |
| 		char *userpage;
 | |
| 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 		if (zero_offset) {
 | |
| 			iosize = PAGE_CACHE_SIZE - zero_offset;
 | |
| 			userpage = kmap_atomic(page, KM_USER0);
 | |
| 			memset(userpage + zero_offset, 0, iosize);
 | |
| 			flush_dcache_page(page);
 | |
| 			kunmap_atomic(userpage, KM_USER0);
 | |
| 		}
 | |
| 	}
 | |
| 	while (cur <= end) {
 | |
| 		if (cur >= last_byte) {
 | |
| 			char *userpage;
 | |
| 			iosize = PAGE_CACHE_SIZE - page_offset;
 | |
| 			userpage = kmap_atomic(page, KM_USER0);
 | |
| 			memset(userpage + page_offset, 0, iosize);
 | |
| 			flush_dcache_page(page);
 | |
| 			kunmap_atomic(userpage, KM_USER0);
 | |
| 			set_extent_uptodate(tree, cur, cur + iosize - 1,
 | |
| 					    GFP_NOFS);
 | |
| 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
 | |
| 			break;
 | |
| 		}
 | |
| 		em = get_extent(inode, page, page_offset, cur,
 | |
| 				end - cur + 1, 0);
 | |
| 		if (IS_ERR(em) || !em) {
 | |
| 			SetPageError(page);
 | |
| 			unlock_extent(tree, cur, end, GFP_NOFS);
 | |
| 			break;
 | |
| 		}
 | |
| 		extent_offset = cur - em->start;
 | |
| 		BUG_ON(extent_map_end(em) <= cur);
 | |
| 		BUG_ON(end < cur);
 | |
| 
 | |
| 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
 | |
| 			this_bio_flag = EXTENT_BIO_COMPRESSED;
 | |
| 
 | |
| 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 | |
| 		cur_end = min(extent_map_end(em) - 1, end);
 | |
| 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
 | |
| 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
 | |
| 			disk_io_size = em->block_len;
 | |
| 			sector = em->block_start >> 9;
 | |
| 		} else {
 | |
| 			sector = (em->block_start + extent_offset) >> 9;
 | |
| 			disk_io_size = iosize;
 | |
| 		}
 | |
| 		bdev = em->bdev;
 | |
| 		block_start = em->block_start;
 | |
| 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
 | |
| 			block_start = EXTENT_MAP_HOLE;
 | |
| 		free_extent_map(em);
 | |
| 		em = NULL;
 | |
| 
 | |
| 		/* we've found a hole, just zero and go on */
 | |
| 		if (block_start == EXTENT_MAP_HOLE) {
 | |
| 			char *userpage;
 | |
| 			userpage = kmap_atomic(page, KM_USER0);
 | |
| 			memset(userpage + page_offset, 0, iosize);
 | |
| 			flush_dcache_page(page);
 | |
| 			kunmap_atomic(userpage, KM_USER0);
 | |
| 
 | |
| 			set_extent_uptodate(tree, cur, cur + iosize - 1,
 | |
| 					    GFP_NOFS);
 | |
| 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
 | |
| 			cur = cur + iosize;
 | |
| 			page_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* the get_extent function already copied into the page */
 | |
| 		if (test_range_bit(tree, cur, cur_end,
 | |
| 				   EXTENT_UPTODATE, 1, NULL)) {
 | |
| 			check_page_uptodate(tree, page);
 | |
| 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
 | |
| 			cur = cur + iosize;
 | |
| 			page_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* we have an inline extent but it didn't get marked up
 | |
| 		 * to date.  Error out
 | |
| 		 */
 | |
| 		if (block_start == EXTENT_MAP_INLINE) {
 | |
| 			SetPageError(page);
 | |
| 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
 | |
| 			cur = cur + iosize;
 | |
| 			page_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = 0;
 | |
| 		if (tree->ops && tree->ops->readpage_io_hook) {
 | |
| 			ret = tree->ops->readpage_io_hook(page, cur,
 | |
| 							  cur + iosize - 1);
 | |
| 		}
 | |
| 		if (!ret) {
 | |
| 			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
 | |
| 			pnr -= page->index;
 | |
| 			ret = submit_extent_page(READ, tree, page,
 | |
| 					 sector, disk_io_size, page_offset,
 | |
| 					 bdev, bio, pnr,
 | |
| 					 end_bio_extent_readpage, mirror_num,
 | |
| 					 *bio_flags,
 | |
| 					 this_bio_flag);
 | |
| 			nr++;
 | |
| 			*bio_flags = this_bio_flag;
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			SetPageError(page);
 | |
| 		cur = cur + iosize;
 | |
| 		page_offset += iosize;
 | |
| 	}
 | |
| 	if (!nr) {
 | |
| 		if (!PageError(page))
 | |
| 			SetPageUptodate(page);
 | |
| 		unlock_page(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
 | |
| 			    get_extent_t *get_extent)
 | |
| {
 | |
| 	struct bio *bio = NULL;
 | |
| 	unsigned long bio_flags = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
 | |
| 				      &bio_flags);
 | |
| 	if (bio)
 | |
| 		submit_one_bio(READ, bio, 0, bio_flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline void update_nr_written(struct page *page,
 | |
| 				      struct writeback_control *wbc,
 | |
| 				      unsigned long nr_written)
 | |
| {
 | |
| 	wbc->nr_to_write -= nr_written;
 | |
| 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
 | |
| 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
 | |
| 		page->mapping->writeback_index = page->index + nr_written;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the writepage semantics are similar to regular writepage.  extent
 | |
|  * records are inserted to lock ranges in the tree, and as dirty areas
 | |
|  * are found, they are marked writeback.  Then the lock bits are removed
 | |
|  * and the end_io handler clears the writeback ranges
 | |
|  */
 | |
| static int __extent_writepage(struct page *page, struct writeback_control *wbc,
 | |
| 			      void *data)
 | |
| {
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	struct extent_page_data *epd = data;
 | |
| 	struct extent_io_tree *tree = epd->tree;
 | |
| 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | |
| 	u64 delalloc_start;
 | |
| 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	u64 end;
 | |
| 	u64 cur = start;
 | |
| 	u64 extent_offset;
 | |
| 	u64 last_byte = i_size_read(inode);
 | |
| 	u64 block_start;
 | |
| 	u64 iosize;
 | |
| 	sector_t sector;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct extent_map *em;
 | |
| 	struct block_device *bdev;
 | |
| 	int ret;
 | |
| 	int nr = 0;
 | |
| 	size_t pg_offset = 0;
 | |
| 	size_t blocksize;
 | |
| 	loff_t i_size = i_size_read(inode);
 | |
| 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
 | |
| 	u64 nr_delalloc;
 | |
| 	u64 delalloc_end;
 | |
| 	int page_started;
 | |
| 	int compressed;
 | |
| 	int write_flags;
 | |
| 	unsigned long nr_written = 0;
 | |
| 
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL)
 | |
| 		write_flags = WRITE_SYNC_PLUG;
 | |
| 	else
 | |
| 		write_flags = WRITE;
 | |
| 
 | |
| 	WARN_ON(!PageLocked(page));
 | |
| 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
 | |
| 	if (page->index > end_index ||
 | |
| 	   (page->index == end_index && !pg_offset)) {
 | |
| 		page->mapping->a_ops->invalidatepage(page, 0);
 | |
| 		unlock_page(page);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (page->index == end_index) {
 | |
| 		char *userpage;
 | |
| 
 | |
| 		userpage = kmap_atomic(page, KM_USER0);
 | |
| 		memset(userpage + pg_offset, 0,
 | |
| 		       PAGE_CACHE_SIZE - pg_offset);
 | |
| 		kunmap_atomic(userpage, KM_USER0);
 | |
| 		flush_dcache_page(page);
 | |
| 	}
 | |
| 	pg_offset = 0;
 | |
| 
 | |
| 	set_page_extent_mapped(page);
 | |
| 
 | |
| 	delalloc_start = start;
 | |
| 	delalloc_end = 0;
 | |
| 	page_started = 0;
 | |
| 	if (!epd->extent_locked) {
 | |
| 		u64 delalloc_to_write = 0;
 | |
| 		/*
 | |
| 		 * make sure the wbc mapping index is at least updated
 | |
| 		 * to this page.
 | |
| 		 */
 | |
| 		update_nr_written(page, wbc, 0);
 | |
| 
 | |
| 		while (delalloc_end < page_end) {
 | |
| 			nr_delalloc = find_lock_delalloc_range(inode, tree,
 | |
| 						       page,
 | |
| 						       &delalloc_start,
 | |
| 						       &delalloc_end,
 | |
| 						       128 * 1024 * 1024);
 | |
| 			if (nr_delalloc == 0) {
 | |
| 				delalloc_start = delalloc_end + 1;
 | |
| 				continue;
 | |
| 			}
 | |
| 			tree->ops->fill_delalloc(inode, page, delalloc_start,
 | |
| 						 delalloc_end, &page_started,
 | |
| 						 &nr_written);
 | |
| 			/*
 | |
| 			 * delalloc_end is already one less than the total
 | |
| 			 * length, so we don't subtract one from
 | |
| 			 * PAGE_CACHE_SIZE
 | |
| 			 */
 | |
| 			delalloc_to_write += (delalloc_end - delalloc_start +
 | |
| 					      PAGE_CACHE_SIZE) >>
 | |
| 					      PAGE_CACHE_SHIFT;
 | |
| 			delalloc_start = delalloc_end + 1;
 | |
| 		}
 | |
| 		if (wbc->nr_to_write < delalloc_to_write) {
 | |
| 			int thresh = 8192;
 | |
| 
 | |
| 			if (delalloc_to_write < thresh * 2)
 | |
| 				thresh = delalloc_to_write;
 | |
| 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
 | |
| 						 thresh);
 | |
| 		}
 | |
| 
 | |
| 		/* did the fill delalloc function already unlock and start
 | |
| 		 * the IO?
 | |
| 		 */
 | |
| 		if (page_started) {
 | |
| 			ret = 0;
 | |
| 			/*
 | |
| 			 * we've unlocked the page, so we can't update
 | |
| 			 * the mapping's writeback index, just update
 | |
| 			 * nr_to_write.
 | |
| 			 */
 | |
| 			wbc->nr_to_write -= nr_written;
 | |
| 			goto done_unlocked;
 | |
| 		}
 | |
| 	}
 | |
| 	if (tree->ops && tree->ops->writepage_start_hook) {
 | |
| 		ret = tree->ops->writepage_start_hook(page, start,
 | |
| 						      page_end);
 | |
| 		if (ret == -EAGAIN) {
 | |
| 			redirty_page_for_writepage(wbc, page);
 | |
| 			update_nr_written(page, wbc, nr_written);
 | |
| 			unlock_page(page);
 | |
| 			ret = 0;
 | |
| 			goto done_unlocked;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't want to touch the inode after unlocking the page,
 | |
| 	 * so we update the mapping writeback index now
 | |
| 	 */
 | |
| 	update_nr_written(page, wbc, nr_written + 1);
 | |
| 
 | |
| 	end = page_end;
 | |
| 	if (last_byte <= start) {
 | |
| 		if (tree->ops && tree->ops->writepage_end_io_hook)
 | |
| 			tree->ops->writepage_end_io_hook(page, start,
 | |
| 							 page_end, NULL, 1);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	blocksize = inode->i_sb->s_blocksize;
 | |
| 
 | |
| 	while (cur <= end) {
 | |
| 		if (cur >= last_byte) {
 | |
| 			if (tree->ops && tree->ops->writepage_end_io_hook)
 | |
| 				tree->ops->writepage_end_io_hook(page, cur,
 | |
| 							 page_end, NULL, 1);
 | |
| 			break;
 | |
| 		}
 | |
| 		em = epd->get_extent(inode, page, pg_offset, cur,
 | |
| 				     end - cur + 1, 1);
 | |
| 		if (IS_ERR(em) || !em) {
 | |
| 			SetPageError(page);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		extent_offset = cur - em->start;
 | |
| 		BUG_ON(extent_map_end(em) <= cur);
 | |
| 		BUG_ON(end < cur);
 | |
| 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 | |
| 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
 | |
| 		sector = (em->block_start + extent_offset) >> 9;
 | |
| 		bdev = em->bdev;
 | |
| 		block_start = em->block_start;
 | |
| 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 | |
| 		free_extent_map(em);
 | |
| 		em = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * compressed and inline extents are written through other
 | |
| 		 * paths in the FS
 | |
| 		 */
 | |
| 		if (compressed || block_start == EXTENT_MAP_HOLE ||
 | |
| 		    block_start == EXTENT_MAP_INLINE) {
 | |
| 			/*
 | |
| 			 * end_io notification does not happen here for
 | |
| 			 * compressed extents
 | |
| 			 */
 | |
| 			if (!compressed && tree->ops &&
 | |
| 			    tree->ops->writepage_end_io_hook)
 | |
| 				tree->ops->writepage_end_io_hook(page, cur,
 | |
| 							 cur + iosize - 1,
 | |
| 							 NULL, 1);
 | |
| 			else if (compressed) {
 | |
| 				/* we don't want to end_page_writeback on
 | |
| 				 * a compressed extent.  this happens
 | |
| 				 * elsewhere
 | |
| 				 */
 | |
| 				nr++;
 | |
| 			}
 | |
| 
 | |
| 			cur += iosize;
 | |
| 			pg_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* leave this out until we have a page_mkwrite call */
 | |
| 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
 | |
| 				   EXTENT_DIRTY, 0, NULL)) {
 | |
| 			cur = cur + iosize;
 | |
| 			pg_offset += iosize;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (tree->ops && tree->ops->writepage_io_hook) {
 | |
| 			ret = tree->ops->writepage_io_hook(page, cur,
 | |
| 						cur + iosize - 1);
 | |
| 		} else {
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 		if (ret) {
 | |
| 			SetPageError(page);
 | |
| 		} else {
 | |
| 			unsigned long max_nr = end_index + 1;
 | |
| 
 | |
| 			set_range_writeback(tree, cur, cur + iosize - 1);
 | |
| 			if (!PageWriteback(page)) {
 | |
| 				printk(KERN_ERR "btrfs warning page %lu not "
 | |
| 				       "writeback, cur %llu end %llu\n",
 | |
| 				       page->index, (unsigned long long)cur,
 | |
| 				       (unsigned long long)end);
 | |
| 			}
 | |
| 
 | |
| 			ret = submit_extent_page(write_flags, tree, page,
 | |
| 						 sector, iosize, pg_offset,
 | |
| 						 bdev, &epd->bio, max_nr,
 | |
| 						 end_bio_extent_writepage,
 | |
| 						 0, 0, 0);
 | |
| 			if (ret)
 | |
| 				SetPageError(page);
 | |
| 		}
 | |
| 		cur = cur + iosize;
 | |
| 		pg_offset += iosize;
 | |
| 		nr++;
 | |
| 	}
 | |
| done:
 | |
| 	if (nr == 0) {
 | |
| 		/* make sure the mapping tag for page dirty gets cleared */
 | |
| 		set_page_writeback(page);
 | |
| 		end_page_writeback(page);
 | |
| 	}
 | |
| 	unlock_page(page);
 | |
| 
 | |
| done_unlocked:
 | |
| 
 | |
| 	/* drop our reference on any cached states */
 | |
| 	free_extent_state(cached_state);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 | |
|  * @mapping: address space structure to write
 | |
|  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 | |
|  * @writepage: function called for each page
 | |
|  * @data: data passed to writepage function
 | |
|  *
 | |
|  * If a page is already under I/O, write_cache_pages() skips it, even
 | |
|  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 | |
|  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 | |
|  * and msync() need to guarantee that all the data which was dirty at the time
 | |
|  * the call was made get new I/O started against them.  If wbc->sync_mode is
 | |
|  * WB_SYNC_ALL then we were called for data integrity and we must wait for
 | |
|  * existing IO to complete.
 | |
|  */
 | |
| static int extent_write_cache_pages(struct extent_io_tree *tree,
 | |
| 			     struct address_space *mapping,
 | |
| 			     struct writeback_control *wbc,
 | |
| 			     writepage_t writepage, void *data,
 | |
| 			     void (*flush_fn)(void *))
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int done = 0;
 | |
| 	int nr_to_write_done = 0;
 | |
| 	struct pagevec pvec;
 | |
| 	int nr_pages;
 | |
| 	pgoff_t index;
 | |
| 	pgoff_t end;		/* Inclusive */
 | |
| 	int scanned = 0;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	if (wbc->range_cyclic) {
 | |
| 		index = mapping->writeback_index; /* Start from prev offset */
 | |
| 		end = -1;
 | |
| 	} else {
 | |
| 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
 | |
| 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 | |
| 		scanned = 1;
 | |
| 	}
 | |
| retry:
 | |
| 	while (!done && !nr_to_write_done && (index <= end) &&
 | |
| 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 | |
| 			      PAGECACHE_TAG_DIRTY, min(end - index,
 | |
| 				  (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
 | |
| 		unsigned i;
 | |
| 
 | |
| 		scanned = 1;
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			/*
 | |
| 			 * At this point we hold neither mapping->tree_lock nor
 | |
| 			 * lock on the page itself: the page may be truncated or
 | |
| 			 * invalidated (changing page->mapping to NULL), or even
 | |
| 			 * swizzled back from swapper_space to tmpfs file
 | |
| 			 * mapping
 | |
| 			 */
 | |
| 			if (tree->ops && tree->ops->write_cache_pages_lock_hook)
 | |
| 				tree->ops->write_cache_pages_lock_hook(page);
 | |
| 			else
 | |
| 				lock_page(page);
 | |
| 
 | |
| 			if (unlikely(page->mapping != mapping)) {
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!wbc->range_cyclic && page->index > end) {
 | |
| 				done = 1;
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (wbc->sync_mode != WB_SYNC_NONE) {
 | |
| 				if (PageWriteback(page))
 | |
| 					flush_fn(data);
 | |
| 				wait_on_page_writeback(page);
 | |
| 			}
 | |
| 
 | |
| 			if (PageWriteback(page) ||
 | |
| 			    !clear_page_dirty_for_io(page)) {
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ret = (*writepage)(page, wbc, data);
 | |
| 
 | |
| 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
 | |
| 				unlock_page(page);
 | |
| 				ret = 0;
 | |
| 			}
 | |
| 			if (ret)
 | |
| 				done = 1;
 | |
| 
 | |
| 			/*
 | |
| 			 * the filesystem may choose to bump up nr_to_write.
 | |
| 			 * We have to make sure to honor the new nr_to_write
 | |
| 			 * at any time
 | |
| 			 */
 | |
| 			nr_to_write_done = wbc->nr_to_write <= 0;
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	if (!scanned && !done) {
 | |
| 		/*
 | |
| 		 * We hit the last page and there is more work to be done: wrap
 | |
| 		 * back to the start of the file
 | |
| 		 */
 | |
| 		scanned = 1;
 | |
| 		index = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void flush_epd_write_bio(struct extent_page_data *epd)
 | |
| {
 | |
| 	if (epd->bio) {
 | |
| 		if (epd->sync_io)
 | |
| 			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
 | |
| 		else
 | |
| 			submit_one_bio(WRITE, epd->bio, 0, 0);
 | |
| 		epd->bio = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline void flush_write_bio(void *data)
 | |
| {
 | |
| 	struct extent_page_data *epd = data;
 | |
| 	flush_epd_write_bio(epd);
 | |
| }
 | |
| 
 | |
| int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
 | |
| 			  get_extent_t *get_extent,
 | |
| 			  struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 	struct extent_page_data epd = {
 | |
| 		.bio = NULL,
 | |
| 		.tree = tree,
 | |
| 		.get_extent = get_extent,
 | |
| 		.extent_locked = 0,
 | |
| 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 | |
| 	};
 | |
| 	struct writeback_control wbc_writepages = {
 | |
| 		.sync_mode	= wbc->sync_mode,
 | |
| 		.older_than_this = NULL,
 | |
| 		.nr_to_write	= 64,
 | |
| 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
 | |
| 		.range_end	= (loff_t)-1,
 | |
| 	};
 | |
| 
 | |
| 	ret = __extent_writepage(page, wbc, &epd);
 | |
| 
 | |
| 	extent_write_cache_pages(tree, mapping, &wbc_writepages,
 | |
| 				 __extent_writepage, &epd, flush_write_bio);
 | |
| 	flush_epd_write_bio(&epd);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
 | |
| 			      u64 start, u64 end, get_extent_t *get_extent,
 | |
| 			      int mode)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct page *page;
 | |
| 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
 | |
| 		PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	struct extent_page_data epd = {
 | |
| 		.bio = NULL,
 | |
| 		.tree = tree,
 | |
| 		.get_extent = get_extent,
 | |
| 		.extent_locked = 1,
 | |
| 		.sync_io = mode == WB_SYNC_ALL,
 | |
| 	};
 | |
| 	struct writeback_control wbc_writepages = {
 | |
| 		.sync_mode	= mode,
 | |
| 		.older_than_this = NULL,
 | |
| 		.nr_to_write	= nr_pages * 2,
 | |
| 		.range_start	= start,
 | |
| 		.range_end	= end + 1,
 | |
| 	};
 | |
| 
 | |
| 	while (start <= end) {
 | |
| 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
 | |
| 		if (clear_page_dirty_for_io(page))
 | |
| 			ret = __extent_writepage(page, &wbc_writepages, &epd);
 | |
| 		else {
 | |
| 			if (tree->ops && tree->ops->writepage_end_io_hook)
 | |
| 				tree->ops->writepage_end_io_hook(page, start,
 | |
| 						 start + PAGE_CACHE_SIZE - 1,
 | |
| 						 NULL, 1);
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		page_cache_release(page);
 | |
| 		start += PAGE_CACHE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	flush_epd_write_bio(&epd);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int extent_writepages(struct extent_io_tree *tree,
 | |
| 		      struct address_space *mapping,
 | |
| 		      get_extent_t *get_extent,
 | |
| 		      struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct extent_page_data epd = {
 | |
| 		.bio = NULL,
 | |
| 		.tree = tree,
 | |
| 		.get_extent = get_extent,
 | |
| 		.extent_locked = 0,
 | |
| 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 | |
| 	};
 | |
| 
 | |
| 	ret = extent_write_cache_pages(tree, mapping, wbc,
 | |
| 				       __extent_writepage, &epd,
 | |
| 				       flush_write_bio);
 | |
| 	flush_epd_write_bio(&epd);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int extent_readpages(struct extent_io_tree *tree,
 | |
| 		     struct address_space *mapping,
 | |
| 		     struct list_head *pages, unsigned nr_pages,
 | |
| 		     get_extent_t get_extent)
 | |
| {
 | |
| 	struct bio *bio = NULL;
 | |
| 	unsigned page_idx;
 | |
| 	unsigned long bio_flags = 0;
 | |
| 
 | |
| 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 | |
| 		struct page *page = list_entry(pages->prev, struct page, lru);
 | |
| 
 | |
| 		prefetchw(&page->flags);
 | |
| 		list_del(&page->lru);
 | |
| 		if (!add_to_page_cache_lru(page, mapping,
 | |
| 					page->index, GFP_KERNEL)) {
 | |
| 			__extent_read_full_page(tree, page, get_extent,
 | |
| 						&bio, 0, &bio_flags);
 | |
| 		}
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 	BUG_ON(!list_empty(pages));
 | |
| 	if (bio)
 | |
| 		submit_one_bio(READ, bio, 0, bio_flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * basic invalidatepage code, this waits on any locked or writeback
 | |
|  * ranges corresponding to the page, and then deletes any extent state
 | |
|  * records from the tree
 | |
|  */
 | |
| int extent_invalidatepage(struct extent_io_tree *tree,
 | |
| 			  struct page *page, unsigned long offset)
 | |
| {
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
 | |
| 	u64 end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
 | |
| 
 | |
| 	start += (offset + blocksize - 1) & ~(blocksize - 1);
 | |
| 	if (start > end)
 | |
| 		return 0;
 | |
| 
 | |
| 	lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
 | |
| 	wait_on_page_writeback(page);
 | |
| 	clear_extent_bit(tree, start, end,
 | |
| 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
 | |
| 			 EXTENT_DO_ACCOUNTING,
 | |
| 			 1, 1, &cached_state, GFP_NOFS);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * simple commit_write call, set_range_dirty is used to mark both
 | |
|  * the pages and the extent records as dirty
 | |
|  */
 | |
| int extent_commit_write(struct extent_io_tree *tree,
 | |
| 			struct inode *inode, struct page *page,
 | |
| 			unsigned from, unsigned to)
 | |
| {
 | |
| 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
 | |
| 
 | |
| 	set_page_extent_mapped(page);
 | |
| 	set_page_dirty(page);
 | |
| 
 | |
| 	if (pos > inode->i_size) {
 | |
| 		i_size_write(inode, pos);
 | |
| 		mark_inode_dirty(inode);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int extent_prepare_write(struct extent_io_tree *tree,
 | |
| 			 struct inode *inode, struct page *page,
 | |
| 			 unsigned from, unsigned to, get_extent_t *get_extent)
 | |
| {
 | |
| 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
 | |
| 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
 | |
| 	u64 block_start;
 | |
| 	u64 orig_block_start;
 | |
| 	u64 block_end;
 | |
| 	u64 cur_end;
 | |
| 	struct extent_map *em;
 | |
| 	unsigned blocksize = 1 << inode->i_blkbits;
 | |
| 	size_t page_offset = 0;
 | |
| 	size_t block_off_start;
 | |
| 	size_t block_off_end;
 | |
| 	int err = 0;
 | |
| 	int iocount = 0;
 | |
| 	int ret = 0;
 | |
| 	int isnew;
 | |
| 
 | |
| 	set_page_extent_mapped(page);
 | |
| 
 | |
| 	block_start = (page_start + from) & ~((u64)blocksize - 1);
 | |
| 	block_end = (page_start + to - 1) | (blocksize - 1);
 | |
| 	orig_block_start = block_start;
 | |
| 
 | |
| 	lock_extent(tree, page_start, page_end, GFP_NOFS);
 | |
| 	while (block_start <= block_end) {
 | |
| 		em = get_extent(inode, page, page_offset, block_start,
 | |
| 				block_end - block_start + 1, 1);
 | |
| 		if (IS_ERR(em) || !em)
 | |
| 			goto err;
 | |
| 
 | |
| 		cur_end = min(block_end, extent_map_end(em) - 1);
 | |
| 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
 | |
| 		block_off_end = block_off_start + blocksize;
 | |
| 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
 | |
| 
 | |
| 		if (!PageUptodate(page) && isnew &&
 | |
| 		    (block_off_end > to || block_off_start < from)) {
 | |
| 			void *kaddr;
 | |
| 
 | |
| 			kaddr = kmap_atomic(page, KM_USER0);
 | |
| 			if (block_off_end > to)
 | |
| 				memset(kaddr + to, 0, block_off_end - to);
 | |
| 			if (block_off_start < from)
 | |
| 				memset(kaddr + block_off_start, 0,
 | |
| 				       from - block_off_start);
 | |
| 			flush_dcache_page(page);
 | |
| 			kunmap_atomic(kaddr, KM_USER0);
 | |
| 		}
 | |
| 		if ((em->block_start != EXTENT_MAP_HOLE &&
 | |
| 		     em->block_start != EXTENT_MAP_INLINE) &&
 | |
| 		    !isnew && !PageUptodate(page) &&
 | |
| 		    (block_off_end > to || block_off_start < from) &&
 | |
| 		    !test_range_bit(tree, block_start, cur_end,
 | |
| 				    EXTENT_UPTODATE, 1, NULL)) {
 | |
| 			u64 sector;
 | |
| 			u64 extent_offset = block_start - em->start;
 | |
| 			size_t iosize;
 | |
| 			sector = (em->block_start + extent_offset) >> 9;
 | |
| 			iosize = (cur_end - block_start + blocksize) &
 | |
| 				~((u64)blocksize - 1);
 | |
| 			/*
 | |
| 			 * we've already got the extent locked, but we
 | |
| 			 * need to split the state such that our end_bio
 | |
| 			 * handler can clear the lock.
 | |
| 			 */
 | |
| 			set_extent_bit(tree, block_start,
 | |
| 				       block_start + iosize - 1,
 | |
| 				       EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
 | |
| 			ret = submit_extent_page(READ, tree, page,
 | |
| 					 sector, iosize, page_offset, em->bdev,
 | |
| 					 NULL, 1,
 | |
| 					 end_bio_extent_preparewrite, 0,
 | |
| 					 0, 0);
 | |
| 			if (ret && !err)
 | |
| 				err = ret;
 | |
| 			iocount++;
 | |
| 			block_start = block_start + iosize;
 | |
| 		} else {
 | |
| 			set_extent_uptodate(tree, block_start, cur_end,
 | |
| 					    GFP_NOFS);
 | |
| 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
 | |
| 			block_start = cur_end + 1;
 | |
| 		}
 | |
| 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 	if (iocount) {
 | |
| 		wait_extent_bit(tree, orig_block_start,
 | |
| 				block_end, EXTENT_LOCKED);
 | |
| 	}
 | |
| 	check_page_uptodate(tree, page);
 | |
| err:
 | |
| 	/* FIXME, zero out newly allocated blocks on error */
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a helper for releasepage, this tests for areas of the page that
 | |
|  * are locked or under IO and drops the related state bits if it is safe
 | |
|  * to drop the page.
 | |
|  */
 | |
| int try_release_extent_state(struct extent_map_tree *map,
 | |
| 			     struct extent_io_tree *tree, struct page *page,
 | |
| 			     gfp_t mask)
 | |
| {
 | |
| 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | |
| 	u64 end = start + PAGE_CACHE_SIZE - 1;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	if (test_range_bit(tree, start, end,
 | |
| 			   EXTENT_IOBITS, 0, NULL))
 | |
| 		ret = 0;
 | |
| 	else {
 | |
| 		if ((mask & GFP_NOFS) == GFP_NOFS)
 | |
| 			mask = GFP_NOFS;
 | |
| 		/*
 | |
| 		 * at this point we can safely clear everything except the
 | |
| 		 * locked bit and the nodatasum bit
 | |
| 		 */
 | |
| 		clear_extent_bit(tree, start, end,
 | |
| 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
 | |
| 				 0, 0, NULL, mask);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a helper for releasepage.  As long as there are no locked extents
 | |
|  * in the range corresponding to the page, both state records and extent
 | |
|  * map records are removed
 | |
|  */
 | |
| int try_release_extent_mapping(struct extent_map_tree *map,
 | |
| 			       struct extent_io_tree *tree, struct page *page,
 | |
| 			       gfp_t mask)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 | |
| 	u64 end = start + PAGE_CACHE_SIZE - 1;
 | |
| 
 | |
| 	if ((mask & __GFP_WAIT) &&
 | |
| 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
 | |
| 		u64 len;
 | |
| 		while (start <= end) {
 | |
| 			len = end - start + 1;
 | |
| 			write_lock(&map->lock);
 | |
| 			em = lookup_extent_mapping(map, start, len);
 | |
| 			if (!em || IS_ERR(em)) {
 | |
| 				write_unlock(&map->lock);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
 | |
| 			    em->start != start) {
 | |
| 				write_unlock(&map->lock);
 | |
| 				free_extent_map(em);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (!test_range_bit(tree, em->start,
 | |
| 					    extent_map_end(em) - 1,
 | |
| 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
 | |
| 					    0, NULL)) {
 | |
| 				remove_extent_mapping(map, em);
 | |
| 				/* once for the rb tree */
 | |
| 				free_extent_map(em);
 | |
| 			}
 | |
| 			start = extent_map_end(em);
 | |
| 			write_unlock(&map->lock);
 | |
| 
 | |
| 			/* once for us */
 | |
| 			free_extent_map(em);
 | |
| 		}
 | |
| 	}
 | |
| 	return try_release_extent_state(map, tree, page, mask);
 | |
| }
 | |
| 
 | |
| sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
 | |
| 		get_extent_t *get_extent)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	u64 start = iblock << inode->i_blkbits;
 | |
| 	sector_t sector = 0;
 | |
| 	size_t blksize = (1 << inode->i_blkbits);
 | |
| 	struct extent_map *em;
 | |
| 
 | |
| 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
 | |
| 			 0, &cached_state, GFP_NOFS);
 | |
| 	em = get_extent(inode, NULL, 0, start, blksize, 0);
 | |
| 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
 | |
| 			     start + blksize - 1, &cached_state, GFP_NOFS);
 | |
| 	if (!em || IS_ERR(em))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (em->block_start > EXTENT_MAP_LAST_BYTE)
 | |
| 		goto out;
 | |
| 
 | |
| 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
 | |
| out:
 | |
| 	free_extent_map(em);
 | |
| 	return sector;
 | |
| }
 | |
| 
 | |
| int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 | |
| 		__u64 start, __u64 len, get_extent_t *get_extent)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 off = start;
 | |
| 	u64 max = start + len;
 | |
| 	u32 flags = 0;
 | |
| 	u64 disko = 0;
 | |
| 	struct extent_map *em = NULL;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	int end = 0;
 | |
| 	u64 em_start = 0, em_len = 0;
 | |
| 	unsigned long emflags;
 | |
| 	ret = 0;
 | |
| 
 | |
| 	if (len == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
 | |
| 			 &cached_state, GFP_NOFS);
 | |
| 	em = get_extent(inode, NULL, 0, off, max - off, 0);
 | |
| 	if (!em)
 | |
| 		goto out;
 | |
| 	if (IS_ERR(em)) {
 | |
| 		ret = PTR_ERR(em);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	while (!end) {
 | |
| 		off = em->start + em->len;
 | |
| 		if (off >= max)
 | |
| 			end = 1;
 | |
| 
 | |
| 		em_start = em->start;
 | |
| 		em_len = em->len;
 | |
| 
 | |
| 		disko = 0;
 | |
| 		flags = 0;
 | |
| 
 | |
| 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
 | |
| 			end = 1;
 | |
| 			flags |= FIEMAP_EXTENT_LAST;
 | |
| 		} else if (em->block_start == EXTENT_MAP_HOLE) {
 | |
| 			flags |= FIEMAP_EXTENT_UNWRITTEN;
 | |
| 		} else if (em->block_start == EXTENT_MAP_INLINE) {
 | |
| 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
 | |
| 				  FIEMAP_EXTENT_NOT_ALIGNED);
 | |
| 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
 | |
| 			flags |= (FIEMAP_EXTENT_DELALLOC |
 | |
| 				  FIEMAP_EXTENT_UNKNOWN);
 | |
| 		} else {
 | |
| 			disko = em->block_start;
 | |
| 		}
 | |
| 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
 | |
| 			flags |= FIEMAP_EXTENT_ENCODED;
 | |
| 
 | |
| 		emflags = em->flags;
 | |
| 		free_extent_map(em);
 | |
| 		em = NULL;
 | |
| 
 | |
| 		if (!end) {
 | |
| 			em = get_extent(inode, NULL, 0, off, max - off, 0);
 | |
| 			if (!em)
 | |
| 				goto out;
 | |
| 			if (IS_ERR(em)) {
 | |
| 				ret = PTR_ERR(em);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			emflags = em->flags;
 | |
| 		}
 | |
| 		if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
 | |
| 			flags |= FIEMAP_EXTENT_LAST;
 | |
| 			end = 1;
 | |
| 		}
 | |
| 
 | |
| 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
 | |
| 					em_len, flags);
 | |
| 		if (ret)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| out_free:
 | |
| 	free_extent_map(em);
 | |
| out:
 | |
| 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
 | |
| 			     &cached_state, GFP_NOFS);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline struct page *extent_buffer_page(struct extent_buffer *eb,
 | |
| 					      unsigned long i)
 | |
| {
 | |
| 	struct page *p;
 | |
| 	struct address_space *mapping;
 | |
| 
 | |
| 	if (i == 0)
 | |
| 		return eb->first_page;
 | |
| 	i += eb->start >> PAGE_CACHE_SHIFT;
 | |
| 	mapping = eb->first_page->mapping;
 | |
| 	if (!mapping)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * extent_buffer_page is only called after pinning the page
 | |
| 	 * by increasing the reference count.  So we know the page must
 | |
| 	 * be in the radix tree.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	p = radix_tree_lookup(&mapping->page_tree, i);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static inline unsigned long num_extent_pages(u64 start, u64 len)
 | |
| {
 | |
| 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
 | |
| 		(start >> PAGE_CACHE_SHIFT);
 | |
| }
 | |
| 
 | |
| static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
 | |
| 						   u64 start,
 | |
| 						   unsigned long len,
 | |
| 						   gfp_t mask)
 | |
| {
 | |
| 	struct extent_buffer *eb = NULL;
 | |
| #if LEAK_DEBUG
 | |
| 	unsigned long flags;
 | |
| #endif
 | |
| 
 | |
| 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
 | |
| 	eb->start = start;
 | |
| 	eb->len = len;
 | |
| 	spin_lock_init(&eb->lock);
 | |
| 	init_waitqueue_head(&eb->lock_wq);
 | |
| 
 | |
| #if LEAK_DEBUG
 | |
| 	spin_lock_irqsave(&leak_lock, flags);
 | |
| 	list_add(&eb->leak_list, &buffers);
 | |
| 	spin_unlock_irqrestore(&leak_lock, flags);
 | |
| #endif
 | |
| 	atomic_set(&eb->refs, 1);
 | |
| 
 | |
| 	return eb;
 | |
| }
 | |
| 
 | |
| static void __free_extent_buffer(struct extent_buffer *eb)
 | |
| {
 | |
| #if LEAK_DEBUG
 | |
| 	unsigned long flags;
 | |
| 	spin_lock_irqsave(&leak_lock, flags);
 | |
| 	list_del(&eb->leak_list);
 | |
| 	spin_unlock_irqrestore(&leak_lock, flags);
 | |
| #endif
 | |
| 	kmem_cache_free(extent_buffer_cache, eb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper for releasing extent buffer page.
 | |
|  */
 | |
| static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
 | |
| 						unsigned long start_idx)
 | |
| {
 | |
| 	unsigned long index;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!eb->first_page)
 | |
| 		return;
 | |
| 
 | |
| 	index = num_extent_pages(eb->start, eb->len);
 | |
| 	if (start_idx >= index)
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		index--;
 | |
| 		page = extent_buffer_page(eb, index);
 | |
| 		if (page)
 | |
| 			page_cache_release(page);
 | |
| 	} while (index != start_idx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper for releasing the extent buffer.
 | |
|  */
 | |
| static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
 | |
| {
 | |
| 	btrfs_release_extent_buffer_page(eb, 0);
 | |
| 	__free_extent_buffer(eb);
 | |
| }
 | |
| 
 | |
| struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
 | |
| 					  u64 start, unsigned long len,
 | |
| 					  struct page *page0,
 | |
| 					  gfp_t mask)
 | |
| {
 | |
| 	unsigned long num_pages = num_extent_pages(start, len);
 | |
| 	unsigned long i;
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct extent_buffer *exists = NULL;
 | |
| 	struct page *p;
 | |
| 	struct address_space *mapping = tree->mapping;
 | |
| 	int uptodate = 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
 | |
| 	if (eb && atomic_inc_not_zero(&eb->refs)) {
 | |
| 		rcu_read_unlock();
 | |
| 		mark_page_accessed(eb->first_page);
 | |
| 		return eb;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	eb = __alloc_extent_buffer(tree, start, len, mask);
 | |
| 	if (!eb)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (page0) {
 | |
| 		eb->first_page = page0;
 | |
| 		i = 1;
 | |
| 		index++;
 | |
| 		page_cache_get(page0);
 | |
| 		mark_page_accessed(page0);
 | |
| 		set_page_extent_mapped(page0);
 | |
| 		set_page_extent_head(page0, len);
 | |
| 		uptodate = PageUptodate(page0);
 | |
| 	} else {
 | |
| 		i = 0;
 | |
| 	}
 | |
| 	for (; i < num_pages; i++, index++) {
 | |
| 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
 | |
| 		if (!p) {
 | |
| 			WARN_ON(1);
 | |
| 			goto free_eb;
 | |
| 		}
 | |
| 		set_page_extent_mapped(p);
 | |
| 		mark_page_accessed(p);
 | |
| 		if (i == 0) {
 | |
| 			eb->first_page = p;
 | |
| 			set_page_extent_head(p, len);
 | |
| 		} else {
 | |
| 			set_page_private(p, EXTENT_PAGE_PRIVATE);
 | |
| 		}
 | |
| 		if (!PageUptodate(p))
 | |
| 			uptodate = 0;
 | |
| 		unlock_page(p);
 | |
| 	}
 | |
| 	if (uptodate)
 | |
| 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 
 | |
| 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 | |
| 	if (ret)
 | |
| 		goto free_eb;
 | |
| 
 | |
| 	spin_lock(&tree->buffer_lock);
 | |
| 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
 | |
| 	if (ret == -EEXIST) {
 | |
| 		exists = radix_tree_lookup(&tree->buffer,
 | |
| 						start >> PAGE_CACHE_SHIFT);
 | |
| 		/* add one reference for the caller */
 | |
| 		atomic_inc(&exists->refs);
 | |
| 		spin_unlock(&tree->buffer_lock);
 | |
| 		radix_tree_preload_end();
 | |
| 		goto free_eb;
 | |
| 	}
 | |
| 	/* add one reference for the tree */
 | |
| 	atomic_inc(&eb->refs);
 | |
| 	spin_unlock(&tree->buffer_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 	return eb;
 | |
| 
 | |
| free_eb:
 | |
| 	if (!atomic_dec_and_test(&eb->refs))
 | |
| 		return exists;
 | |
| 	btrfs_release_extent_buffer(eb);
 | |
| 	return exists;
 | |
| }
 | |
| 
 | |
| struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
 | |
| 					 u64 start, unsigned long len,
 | |
| 					  gfp_t mask)
 | |
| {
 | |
| 	struct extent_buffer *eb;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
 | |
| 	if (eb && atomic_inc_not_zero(&eb->refs)) {
 | |
| 		rcu_read_unlock();
 | |
| 		mark_page_accessed(eb->first_page);
 | |
| 		return eb;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void free_extent_buffer(struct extent_buffer *eb)
 | |
| {
 | |
| 	if (!eb)
 | |
| 		return;
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&eb->refs))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(1);
 | |
| }
 | |
| 
 | |
| int clear_extent_buffer_dirty(struct extent_io_tree *tree,
 | |
| 			      struct extent_buffer *eb)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	unsigned long num_pages;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 		if (!PageDirty(page))
 | |
| 			continue;
 | |
| 
 | |
| 		lock_page(page);
 | |
| 		if (i == 0)
 | |
| 			set_page_extent_head(page, eb->len);
 | |
| 		else
 | |
| 			set_page_private(page, EXTENT_PAGE_PRIVATE);
 | |
| 
 | |
| 		clear_page_dirty_for_io(page);
 | |
| 		spin_lock_irq(&page->mapping->tree_lock);
 | |
| 		if (!PageDirty(page)) {
 | |
| 			radix_tree_tag_clear(&page->mapping->page_tree,
 | |
| 						page_index(page),
 | |
| 						PAGECACHE_TAG_DIRTY);
 | |
| 		}
 | |
| 		spin_unlock_irq(&page->mapping->tree_lock);
 | |
| 		unlock_page(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
 | |
| 				    struct extent_buffer *eb)
 | |
| {
 | |
| 	return wait_on_extent_writeback(tree, eb->start,
 | |
| 					eb->start + eb->len - 1);
 | |
| }
 | |
| 
 | |
| int set_extent_buffer_dirty(struct extent_io_tree *tree,
 | |
| 			     struct extent_buffer *eb)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	unsigned long num_pages;
 | |
| 	int was_dirty = 0;
 | |
| 
 | |
| 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	for (i = 0; i < num_pages; i++)
 | |
| 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
 | |
| 	return was_dirty;
 | |
| }
 | |
| 
 | |
| int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
 | |
| 				struct extent_buffer *eb,
 | |
| 				struct extent_state **cached_state)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct page *page;
 | |
| 	unsigned long num_pages;
 | |
| 
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 
 | |
| 	clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
 | |
| 			      cached_state, GFP_NOFS);
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 		if (page)
 | |
| 			ClearPageUptodate(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int set_extent_buffer_uptodate(struct extent_io_tree *tree,
 | |
| 				struct extent_buffer *eb)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct page *page;
 | |
| 	unsigned long num_pages;
 | |
| 
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 
 | |
| 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
 | |
| 			    GFP_NOFS);
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
 | |
| 		    ((i == num_pages - 1) &&
 | |
| 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
 | |
| 			check_page_uptodate(tree, page);
 | |
| 			continue;
 | |
| 		}
 | |
| 		SetPageUptodate(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int extent_range_uptodate(struct extent_io_tree *tree,
 | |
| 			  u64 start, u64 end)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 	int pg_uptodate = 1;
 | |
| 	int uptodate;
 | |
| 	unsigned long index;
 | |
| 
 | |
| 	ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
 | |
| 	if (ret)
 | |
| 		return 1;
 | |
| 	while (start <= end) {
 | |
| 		index = start >> PAGE_CACHE_SHIFT;
 | |
| 		page = find_get_page(tree->mapping, index);
 | |
| 		uptodate = PageUptodate(page);
 | |
| 		page_cache_release(page);
 | |
| 		if (!uptodate) {
 | |
| 			pg_uptodate = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		start += PAGE_CACHE_SIZE;
 | |
| 	}
 | |
| 	return pg_uptodate;
 | |
| }
 | |
| 
 | |
| int extent_buffer_uptodate(struct extent_io_tree *tree,
 | |
| 			   struct extent_buffer *eb,
 | |
| 			   struct extent_state *cached_state)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned long num_pages;
 | |
| 	unsigned long i;
 | |
| 	struct page *page;
 | |
| 	int pg_uptodate = 1;
 | |
| 
 | |
| 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
 | |
| 		return 1;
 | |
| 
 | |
| 	ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
 | |
| 			   EXTENT_UPTODATE, 1, cached_state);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			pg_uptodate = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pg_uptodate;
 | |
| }
 | |
| 
 | |
| int read_extent_buffer_pages(struct extent_io_tree *tree,
 | |
| 			     struct extent_buffer *eb,
 | |
| 			     u64 start, int wait,
 | |
| 			     get_extent_t *get_extent, int mirror_num)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	unsigned long start_i;
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| 	int ret = 0;
 | |
| 	int locked_pages = 0;
 | |
| 	int all_uptodate = 1;
 | |
| 	int inc_all_pages = 0;
 | |
| 	unsigned long num_pages;
 | |
| 	struct bio *bio = NULL;
 | |
| 	unsigned long bio_flags = 0;
 | |
| 
 | |
| 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
 | |
| 			   EXTENT_UPTODATE, 1, NULL)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (start) {
 | |
| 		WARN_ON(start < eb->start);
 | |
| 		start_i = (start >> PAGE_CACHE_SHIFT) -
 | |
| 			(eb->start >> PAGE_CACHE_SHIFT);
 | |
| 	} else {
 | |
| 		start_i = 0;
 | |
| 	}
 | |
| 
 | |
| 	num_pages = num_extent_pages(eb->start, eb->len);
 | |
| 	for (i = start_i; i < num_pages; i++) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 		if (!wait) {
 | |
| 			if (!trylock_page(page))
 | |
| 				goto unlock_exit;
 | |
| 		} else {
 | |
| 			lock_page(page);
 | |
| 		}
 | |
| 		locked_pages++;
 | |
| 		if (!PageUptodate(page))
 | |
| 			all_uptodate = 0;
 | |
| 	}
 | |
| 	if (all_uptodate) {
 | |
| 		if (start_i == 0)
 | |
| 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 		goto unlock_exit;
 | |
| 	}
 | |
| 
 | |
| 	for (i = start_i; i < num_pages; i++) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 		if (inc_all_pages)
 | |
| 			page_cache_get(page);
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			if (start_i == 0)
 | |
| 				inc_all_pages = 1;
 | |
| 			ClearPageError(page);
 | |
| 			err = __extent_read_full_page(tree, page,
 | |
| 						      get_extent, &bio,
 | |
| 						      mirror_num, &bio_flags);
 | |
| 			if (err)
 | |
| 				ret = err;
 | |
| 		} else {
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bio)
 | |
| 		submit_one_bio(READ, bio, mirror_num, bio_flags);
 | |
| 
 | |
| 	if (ret || !wait)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = start_i; i < num_pages; i++) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 		wait_on_page_locked(page);
 | |
| 		if (!PageUptodate(page))
 | |
| 			ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 | |
| 	return ret;
 | |
| 
 | |
| unlock_exit:
 | |
| 	i = start_i;
 | |
| 	while (locked_pages > 0) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 		i++;
 | |
| 		unlock_page(page);
 | |
| 		locked_pages--;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void read_extent_buffer(struct extent_buffer *eb, void *dstv,
 | |
| 			unsigned long start,
 | |
| 			unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	char *dst = (char *)dstv;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	WARN_ON(start > eb->len);
 | |
| 	WARN_ON(start + len > eb->start + eb->len);
 | |
| 
 | |
| 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 
 | |
| 		cur = min(len, (PAGE_CACHE_SIZE - offset));
 | |
| 		kaddr = kmap_atomic(page, KM_USER1);
 | |
| 		memcpy(dst, kaddr + offset, cur);
 | |
| 		kunmap_atomic(kaddr, KM_USER1);
 | |
| 
 | |
| 		dst += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
 | |
| 			       unsigned long min_len, char **token, char **map,
 | |
| 			       unsigned long *map_start,
 | |
| 			       unsigned long *map_len, int km)
 | |
| {
 | |
| 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
 | |
| 	char *kaddr;
 | |
| 	struct page *p;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_i = (start_offset + start + min_len - 1) >>
 | |
| 		PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	if (i != end_i)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (i == 0) {
 | |
| 		offset = start_offset;
 | |
| 		*map_start = 0;
 | |
| 	} else {
 | |
| 		offset = 0;
 | |
| 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
 | |
| 	}
 | |
| 
 | |
| 	if (start + min_len > eb->len) {
 | |
| 		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
 | |
| 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
 | |
| 		       eb->len, start, min_len);
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	p = extent_buffer_page(eb, i);
 | |
| 	kaddr = kmap_atomic(p, km);
 | |
| 	*token = kaddr;
 | |
| 	*map = kaddr + offset;
 | |
| 	*map_len = PAGE_CACHE_SIZE - offset;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
 | |
| 		      unsigned long min_len,
 | |
| 		      char **token, char **map,
 | |
| 		      unsigned long *map_start,
 | |
| 		      unsigned long *map_len, int km)
 | |
| {
 | |
| 	int err;
 | |
| 	int save = 0;
 | |
| 	if (eb->map_token) {
 | |
| 		unmap_extent_buffer(eb, eb->map_token, km);
 | |
| 		eb->map_token = NULL;
 | |
| 		save = 1;
 | |
| 	}
 | |
| 	err = map_private_extent_buffer(eb, start, min_len, token, map,
 | |
| 				       map_start, map_len, km);
 | |
| 	if (!err && save) {
 | |
| 		eb->map_token = *token;
 | |
| 		eb->kaddr = *map;
 | |
| 		eb->map_start = *map_start;
 | |
| 		eb->map_len = *map_len;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
 | |
| {
 | |
| 	kunmap_atomic(token, km);
 | |
| }
 | |
| 
 | |
| int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
 | |
| 			  unsigned long start,
 | |
| 			  unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	char *ptr = (char *)ptrv;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	WARN_ON(start > eb->len);
 | |
| 	WARN_ON(start + len > eb->start + eb->len);
 | |
| 
 | |
| 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 
 | |
| 		cur = min(len, (PAGE_CACHE_SIZE - offset));
 | |
| 
 | |
| 		kaddr = kmap_atomic(page, KM_USER0);
 | |
| 		ret = memcmp(ptr, kaddr + offset, cur);
 | |
| 		kunmap_atomic(kaddr, KM_USER0);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ptr += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
 | |
| 			 unsigned long start, unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	char *src = (char *)srcv;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	WARN_ON(start > eb->len);
 | |
| 	WARN_ON(start + len > eb->start + eb->len);
 | |
| 
 | |
| 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 		WARN_ON(!PageUptodate(page));
 | |
| 
 | |
| 		cur = min(len, PAGE_CACHE_SIZE - offset);
 | |
| 		kaddr = kmap_atomic(page, KM_USER1);
 | |
| 		memcpy(kaddr + offset, src, cur);
 | |
| 		kunmap_atomic(kaddr, KM_USER1);
 | |
| 
 | |
| 		src += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void memset_extent_buffer(struct extent_buffer *eb, char c,
 | |
| 			  unsigned long start, unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	WARN_ON(start > eb->len);
 | |
| 	WARN_ON(start + len > eb->start + eb->len);
 | |
| 
 | |
| 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = extent_buffer_page(eb, i);
 | |
| 		WARN_ON(!PageUptodate(page));
 | |
| 
 | |
| 		cur = min(len, PAGE_CACHE_SIZE - offset);
 | |
| 		kaddr = kmap_atomic(page, KM_USER0);
 | |
| 		memset(kaddr + offset, c, cur);
 | |
| 		kunmap_atomic(kaddr, KM_USER0);
 | |
| 
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 | |
| 			unsigned long dst_offset, unsigned long src_offset,
 | |
| 			unsigned long len)
 | |
| {
 | |
| 	u64 dst_len = dst->len;
 | |
| 	size_t cur;
 | |
| 	size_t offset;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	WARN_ON(src->len != dst_len);
 | |
| 
 | |
| 	offset = (start_offset + dst_offset) &
 | |
| 		((unsigned long)PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		page = extent_buffer_page(dst, i);
 | |
| 		WARN_ON(!PageUptodate(page));
 | |
| 
 | |
| 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
 | |
| 
 | |
| 		kaddr = kmap_atomic(page, KM_USER0);
 | |
| 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
 | |
| 		kunmap_atomic(kaddr, KM_USER0);
 | |
| 
 | |
| 		src_offset += cur;
 | |
| 		len -= cur;
 | |
| 		offset = 0;
 | |
| 		i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void move_pages(struct page *dst_page, struct page *src_page,
 | |
| 		       unsigned long dst_off, unsigned long src_off,
 | |
| 		       unsigned long len)
 | |
| {
 | |
| 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
 | |
| 	if (dst_page == src_page) {
 | |
| 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
 | |
| 	} else {
 | |
| 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
 | |
| 		char *p = dst_kaddr + dst_off + len;
 | |
| 		char *s = src_kaddr + src_off + len;
 | |
| 
 | |
| 		while (len--)
 | |
| 			*--p = *--s;
 | |
| 
 | |
| 		kunmap_atomic(src_kaddr, KM_USER1);
 | |
| 	}
 | |
| 	kunmap_atomic(dst_kaddr, KM_USER0);
 | |
| }
 | |
| 
 | |
| static void copy_pages(struct page *dst_page, struct page *src_page,
 | |
| 		       unsigned long dst_off, unsigned long src_off,
 | |
| 		       unsigned long len)
 | |
| {
 | |
| 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
 | |
| 	char *src_kaddr;
 | |
| 
 | |
| 	if (dst_page != src_page)
 | |
| 		src_kaddr = kmap_atomic(src_page, KM_USER1);
 | |
| 	else
 | |
| 		src_kaddr = dst_kaddr;
 | |
| 
 | |
| 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
 | |
| 	kunmap_atomic(dst_kaddr, KM_USER0);
 | |
| 	if (dst_page != src_page)
 | |
| 		kunmap_atomic(src_kaddr, KM_USER1);
 | |
| }
 | |
| 
 | |
| void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
 | |
| 			   unsigned long src_offset, unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t dst_off_in_page;
 | |
| 	size_t src_off_in_page;
 | |
| 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long dst_i;
 | |
| 	unsigned long src_i;
 | |
| 
 | |
| 	if (src_offset + len > dst->len) {
 | |
| 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
 | |
| 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 	if (dst_offset + len > dst->len) {
 | |
| 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
 | |
| 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		dst_off_in_page = (start_offset + dst_offset) &
 | |
| 			((unsigned long)PAGE_CACHE_SIZE - 1);
 | |
| 		src_off_in_page = (start_offset + src_offset) &
 | |
| 			((unsigned long)PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
 | |
| 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
 | |
| 					       src_off_in_page));
 | |
| 		cur = min_t(unsigned long, cur,
 | |
| 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
 | |
| 
 | |
| 		copy_pages(extent_buffer_page(dst, dst_i),
 | |
| 			   extent_buffer_page(dst, src_i),
 | |
| 			   dst_off_in_page, src_off_in_page, cur);
 | |
| 
 | |
| 		src_offset += cur;
 | |
| 		dst_offset += cur;
 | |
| 		len -= cur;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
 | |
| 			   unsigned long src_offset, unsigned long len)
 | |
| {
 | |
| 	size_t cur;
 | |
| 	size_t dst_off_in_page;
 | |
| 	size_t src_off_in_page;
 | |
| 	unsigned long dst_end = dst_offset + len - 1;
 | |
| 	unsigned long src_end = src_offset + len - 1;
 | |
| 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	unsigned long dst_i;
 | |
| 	unsigned long src_i;
 | |
| 
 | |
| 	if (src_offset + len > dst->len) {
 | |
| 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
 | |
| 		       "len %lu len %lu\n", src_offset, len, dst->len);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 	if (dst_offset + len > dst->len) {
 | |
| 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
 | |
| 		       "len %lu len %lu\n", dst_offset, len, dst->len);
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 	if (dst_offset < src_offset) {
 | |
| 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
 | |
| 		return;
 | |
| 	}
 | |
| 	while (len > 0) {
 | |
| 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
 | |
| 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 		dst_off_in_page = (start_offset + dst_end) &
 | |
| 			((unsigned long)PAGE_CACHE_SIZE - 1);
 | |
| 		src_off_in_page = (start_offset + src_end) &
 | |
| 			((unsigned long)PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 		cur = min_t(unsigned long, len, src_off_in_page + 1);
 | |
| 		cur = min(cur, dst_off_in_page + 1);
 | |
| 		move_pages(extent_buffer_page(dst, dst_i),
 | |
| 			   extent_buffer_page(dst, src_i),
 | |
| 			   dst_off_in_page - cur + 1,
 | |
| 			   src_off_in_page - cur + 1, cur);
 | |
| 
 | |
| 		dst_end -= cur;
 | |
| 		src_end -= cur;
 | |
| 		len -= cur;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct extent_buffer *eb =
 | |
| 			container_of(head, struct extent_buffer, rcu_head);
 | |
| 
 | |
| 	btrfs_release_extent_buffer(eb);
 | |
| }
 | |
| 
 | |
| int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
 | |
| {
 | |
| 	u64 start = page_offset(page);
 | |
| 	struct extent_buffer *eb;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	spin_lock(&tree->buffer_lock);
 | |
| 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
 | |
| 	if (!eb)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * set @eb->refs to 0 if it is already 1, and then release the @eb.
 | |
| 	 * Or go back.
 | |
| 	 */
 | |
| 	if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
 | |
| out:
 | |
| 	spin_unlock(&tree->buffer_lock);
 | |
| 
 | |
| 	/* at this point we can safely release the extent buffer */
 | |
| 	if (atomic_read(&eb->refs) == 0)
 | |
| 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
 | |
| 	return ret;
 | |
| }
 |