mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 09:36:25 +00:00 
			
		
		
		
	 7b71876980
			
		
	
	
		7b71876980
		
	
	
	
	
		
			
			boilerplate. SGI-PV: 913862 SGI-Modid: xfs-linux:xfs-kern:23903a Signed-off-by: Nathan Scott <nathans@sgi.com>
		
			
				
	
	
		
			588 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			588 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_types.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_inum.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_buf_item.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_dir.h"
 | |
| #include "xfs_dmapi.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_extfree_item.h"
 | |
| 
 | |
| 
 | |
| kmem_zone_t	*xfs_efi_zone;
 | |
| kmem_zone_t	*xfs_efd_zone;
 | |
| 
 | |
| STATIC void	xfs_efi_item_unlock(xfs_efi_log_item_t *);
 | |
| STATIC void	xfs_efi_item_abort(xfs_efi_log_item_t *);
 | |
| STATIC void	xfs_efd_item_abort(xfs_efd_log_item_t *);
 | |
| 
 | |
| 
 | |
| void
 | |
| xfs_efi_item_free(xfs_efi_log_item_t *efip)
 | |
| {
 | |
| 	int nexts = efip->efi_format.efi_nextents;
 | |
| 
 | |
| 	if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
 | |
| 		kmem_free(efip, sizeof(xfs_efi_log_item_t) +
 | |
| 				(nexts - 1) * sizeof(xfs_extent_t));
 | |
| 	} else {
 | |
| 		kmem_zone_free(xfs_efi_zone, efip);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This returns the number of iovecs needed to log the given efi item.
 | |
|  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
 | |
|  * structure.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC uint
 | |
| xfs_efi_item_size(xfs_efi_log_item_t *efip)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to fill in the vector of log iovecs for the
 | |
|  * given efi log item. We use only 1 iovec, and we point that
 | |
|  * at the efi_log_format structure embedded in the efi item.
 | |
|  * It is at this point that we assert that all of the extent
 | |
|  * slots in the efi item have been filled.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efi_item_format(xfs_efi_log_item_t	*efip,
 | |
| 		    xfs_log_iovec_t	*log_vector)
 | |
| {
 | |
| 	uint	size;
 | |
| 
 | |
| 	ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
 | |
| 
 | |
| 	efip->efi_format.efi_type = XFS_LI_EFI;
 | |
| 
 | |
| 	size = sizeof(xfs_efi_log_format_t);
 | |
| 	size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
 | |
| 	efip->efi_format.efi_size = 1;
 | |
| 
 | |
| 	log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
 | |
| 	log_vector->i_len = size;
 | |
| 	XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT);
 | |
| 	ASSERT(size >= sizeof(xfs_efi_log_format_t));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Pinning has no meaning for an efi item, so just return.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efi_item_pin(xfs_efi_log_item_t *efip)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * While EFIs cannot really be pinned, the unpin operation is the
 | |
|  * last place at which the EFI is manipulated during a transaction.
 | |
|  * Here we coordinate with xfs_efi_cancel() to determine who gets to
 | |
|  * free the EFI.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
 | |
| {
 | |
| 	xfs_mount_t	*mp;
 | |
| 	SPLDECL(s);
 | |
| 
 | |
| 	mp = efip->efi_item.li_mountp;
 | |
| 	AIL_LOCK(mp, s);
 | |
| 	if (efip->efi_flags & XFS_EFI_CANCELED) {
 | |
| 		/*
 | |
| 		 * xfs_trans_delete_ail() drops the AIL lock.
 | |
| 		 */
 | |
| 		xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
 | |
| 		xfs_efi_item_free(efip);
 | |
| 	} else {
 | |
| 		efip->efi_flags |= XFS_EFI_COMMITTED;
 | |
| 		AIL_UNLOCK(mp, s);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * like unpin only we have to also clear the xaction descriptor
 | |
|  * pointing the log item if we free the item.  This routine duplicates
 | |
|  * unpin because efi_flags is protected by the AIL lock.  Freeing
 | |
|  * the descriptor and then calling unpin would force us to drop the AIL
 | |
|  * lock which would open up a race condition.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
 | |
| {
 | |
| 	xfs_mount_t	*mp;
 | |
| 	xfs_log_item_desc_t	*lidp;
 | |
| 	SPLDECL(s);
 | |
| 
 | |
| 	mp = efip->efi_item.li_mountp;
 | |
| 	AIL_LOCK(mp, s);
 | |
| 	if (efip->efi_flags & XFS_EFI_CANCELED) {
 | |
| 		/*
 | |
| 		 * free the xaction descriptor pointing to this item
 | |
| 		 */
 | |
| 		lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
 | |
| 		xfs_trans_free_item(tp, lidp);
 | |
| 		/*
 | |
| 		 * pull the item off the AIL.
 | |
| 		 * xfs_trans_delete_ail() drops the AIL lock.
 | |
| 		 */
 | |
| 		xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
 | |
| 		xfs_efi_item_free(efip);
 | |
| 	} else {
 | |
| 		efip->efi_flags |= XFS_EFI_COMMITTED;
 | |
| 		AIL_UNLOCK(mp, s);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Efi items have no locking or pushing.  However, since EFIs are
 | |
|  * pulled from the AIL when their corresponding EFDs are committed
 | |
|  * to disk, their situation is very similar to being pinned.  Return
 | |
|  * XFS_ITEM_PINNED so that the caller will eventually flush the log.
 | |
|  * This should help in getting the EFI out of the AIL.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC uint
 | |
| xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
 | |
| {
 | |
| 	return XFS_ITEM_PINNED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Efi items have no locking, so just return.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
 | |
| {
 | |
| 	if (efip->efi_item.li_flags & XFS_LI_ABORTED)
 | |
| 		xfs_efi_item_abort(efip);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The EFI is logged only once and cannot be moved in the log, so
 | |
|  * simply return the lsn at which it's been logged.  The canceled
 | |
|  * flag is not paid any attention here.  Checking for that is delayed
 | |
|  * until the EFI is unpinned.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC xfs_lsn_t
 | |
| xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
 | |
| {
 | |
| 	return lsn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when the transaction logging the EFI is aborted.
 | |
|  * Free up the EFI and return.  No need to clean up the slot for
 | |
|  * the item in the transaction.  That was done by the unpin code
 | |
|  * which is called prior to this routine in the abort/fs-shutdown path.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efi_item_abort(xfs_efi_log_item_t *efip)
 | |
| {
 | |
| 	xfs_efi_item_free(efip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There isn't much you can do to push on an efi item.  It is simply
 | |
|  * stuck waiting for all of its corresponding efd items to be
 | |
|  * committed to disk.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efi_item_push(xfs_efi_log_item_t *efip)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The EFI dependency tracking op doesn't do squat.  It can't because
 | |
|  * it doesn't know where the free extent is coming from.  The dependency
 | |
|  * tracking has to be handled by the "enclosing" metadata object.  For
 | |
|  * example, for inodes, the inode is locked throughout the extent freeing
 | |
|  * so the dependency should be recorded there.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the ops vector shared by all efi log items.
 | |
|  */
 | |
| STATIC struct xfs_item_ops xfs_efi_item_ops = {
 | |
| 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
 | |
| 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
 | |
| 					xfs_efi_item_format,
 | |
| 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
 | |
| 	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
 | |
| 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
 | |
| 					xfs_efi_item_unpin_remove,
 | |
| 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
 | |
| 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
 | |
| 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
 | |
| 					xfs_efi_item_committed,
 | |
| 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_efi_item_push,
 | |
| 	.iop_abort	= (void(*)(xfs_log_item_t*))xfs_efi_item_abort,
 | |
| 	.iop_pushbuf	= NULL,
 | |
| 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
 | |
| 					xfs_efi_item_committing
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize an efi item with the given number of extents.
 | |
|  */
 | |
| xfs_efi_log_item_t *
 | |
| xfs_efi_init(xfs_mount_t	*mp,
 | |
| 	     uint		nextents)
 | |
| 
 | |
| {
 | |
| 	xfs_efi_log_item_t	*efip;
 | |
| 	uint			size;
 | |
| 
 | |
| 	ASSERT(nextents > 0);
 | |
| 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
 | |
| 		size = (uint)(sizeof(xfs_efi_log_item_t) +
 | |
| 			((nextents - 1) * sizeof(xfs_extent_t)));
 | |
| 		efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
 | |
| 	} else {
 | |
| 		efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
 | |
| 							     KM_SLEEP);
 | |
| 	}
 | |
| 
 | |
| 	efip->efi_item.li_type = XFS_LI_EFI;
 | |
| 	efip->efi_item.li_ops = &xfs_efi_item_ops;
 | |
| 	efip->efi_item.li_mountp = mp;
 | |
| 	efip->efi_format.efi_nextents = nextents;
 | |
| 	efip->efi_format.efi_id = (__psint_t)(void*)efip;
 | |
| 
 | |
| 	return (efip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called by the efd item code below to release references to
 | |
|  * the given efi item.  Each efd calls this with the number of
 | |
|  * extents that it has logged, and when the sum of these reaches
 | |
|  * the total number of extents logged by this efi item we can free
 | |
|  * the efi item.
 | |
|  *
 | |
|  * Freeing the efi item requires that we remove it from the AIL.
 | |
|  * We'll use the AIL lock to protect our counters as well as
 | |
|  * the removal from the AIL.
 | |
|  */
 | |
| void
 | |
| xfs_efi_release(xfs_efi_log_item_t	*efip,
 | |
| 		uint			nextents)
 | |
| {
 | |
| 	xfs_mount_t	*mp;
 | |
| 	int		extents_left;
 | |
| 	SPLDECL(s);
 | |
| 
 | |
| 	mp = efip->efi_item.li_mountp;
 | |
| 	ASSERT(efip->efi_next_extent > 0);
 | |
| 	ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
 | |
| 
 | |
| 	AIL_LOCK(mp, s);
 | |
| 	ASSERT(efip->efi_next_extent >= nextents);
 | |
| 	efip->efi_next_extent -= nextents;
 | |
| 	extents_left = efip->efi_next_extent;
 | |
| 	if (extents_left == 0) {
 | |
| 		/*
 | |
| 		 * xfs_trans_delete_ail() drops the AIL lock.
 | |
| 		 */
 | |
| 		xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
 | |
| 		xfs_efi_item_free(efip);
 | |
| 	} else {
 | |
| 		AIL_UNLOCK(mp, s);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when the transaction that should be committing the
 | |
|  * EFD corresponding to the given EFI is aborted.  The committed and
 | |
|  * canceled flags are used to coordinate the freeing of the EFI and
 | |
|  * the references by the transaction that committed it.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efi_cancel(
 | |
| 	xfs_efi_log_item_t	*efip)
 | |
| {
 | |
| 	xfs_mount_t	*mp;
 | |
| 	SPLDECL(s);
 | |
| 
 | |
| 	mp = efip->efi_item.li_mountp;
 | |
| 	AIL_LOCK(mp, s);
 | |
| 	if (efip->efi_flags & XFS_EFI_COMMITTED) {
 | |
| 		/*
 | |
| 		 * xfs_trans_delete_ail() drops the AIL lock.
 | |
| 		 */
 | |
| 		xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
 | |
| 		xfs_efi_item_free(efip);
 | |
| 	} else {
 | |
| 		efip->efi_flags |= XFS_EFI_CANCELED;
 | |
| 		AIL_UNLOCK(mp, s);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_efd_item_free(xfs_efd_log_item_t *efdp)
 | |
| {
 | |
| 	int nexts = efdp->efd_format.efd_nextents;
 | |
| 
 | |
| 	if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
 | |
| 		kmem_free(efdp, sizeof(xfs_efd_log_item_t) +
 | |
| 				(nexts - 1) * sizeof(xfs_extent_t));
 | |
| 	} else {
 | |
| 		kmem_zone_free(xfs_efd_zone, efdp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This returns the number of iovecs needed to log the given efd item.
 | |
|  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
 | |
|  * structure.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC uint
 | |
| xfs_efd_item_size(xfs_efd_log_item_t *efdp)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to fill in the vector of log iovecs for the
 | |
|  * given efd log item. We use only 1 iovec, and we point that
 | |
|  * at the efd_log_format structure embedded in the efd item.
 | |
|  * It is at this point that we assert that all of the extent
 | |
|  * slots in the efd item have been filled.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efd_item_format(xfs_efd_log_item_t	*efdp,
 | |
| 		    xfs_log_iovec_t	*log_vector)
 | |
| {
 | |
| 	uint	size;
 | |
| 
 | |
| 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
 | |
| 
 | |
| 	efdp->efd_format.efd_type = XFS_LI_EFD;
 | |
| 
 | |
| 	size = sizeof(xfs_efd_log_format_t);
 | |
| 	size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
 | |
| 	efdp->efd_format.efd_size = 1;
 | |
| 
 | |
| 	log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
 | |
| 	log_vector->i_len = size;
 | |
| 	XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT);
 | |
| 	ASSERT(size >= sizeof(xfs_efd_log_format_t));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Pinning has no meaning for an efd item, so just return.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Since pinning has no meaning for an efd item, unpinning does
 | |
|  * not either.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Efd items have no locking, so just return success.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC uint
 | |
| xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
 | |
| {
 | |
| 	return XFS_ITEM_LOCKED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Efd items have no locking or pushing, so return failure
 | |
|  * so that the caller doesn't bother with us.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
 | |
| {
 | |
| 	if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
 | |
| 		xfs_efd_item_abort(efdp);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When the efd item is committed to disk, all we need to do
 | |
|  * is delete our reference to our partner efi item and then
 | |
|  * free ourselves.  Since we're freeing ourselves we must
 | |
|  * return -1 to keep the transaction code from further referencing
 | |
|  * this item.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC xfs_lsn_t
 | |
| xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we got a log I/O error, it's always the case that the LR with the
 | |
| 	 * EFI got unpinned and freed before the EFD got aborted.
 | |
| 	 */
 | |
| 	if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
 | |
| 		xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
 | |
| 
 | |
| 	xfs_efd_item_free(efdp);
 | |
| 	return (xfs_lsn_t)-1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The transaction of which this EFD is a part has been aborted.
 | |
|  * Inform its companion EFI of this fact and then clean up after
 | |
|  * ourselves.  No need to clean up the slot for the item in the
 | |
|  * transaction.  That was done by the unpin code which is called
 | |
|  * prior to this routine in the abort/fs-shutdown path.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_efd_item_abort(xfs_efd_log_item_t *efdp)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we got a log I/O error, it's always the case that the LR with the
 | |
| 	 * EFI got unpinned and freed before the EFD got aborted. So don't
 | |
| 	 * reference the EFI at all in that case.
 | |
| 	 */
 | |
| 	if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
 | |
| 		xfs_efi_cancel(efdp->efd_efip);
 | |
| 
 | |
| 	xfs_efd_item_free(efdp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There isn't much you can do to push on an efd item.  It is simply
 | |
|  * stuck waiting for the log to be flushed to disk.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efd_item_push(xfs_efd_log_item_t *efdp)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The EFD dependency tracking op doesn't do squat.  It can't because
 | |
|  * it doesn't know where the free extent is coming from.  The dependency
 | |
|  * tracking has to be handled by the "enclosing" metadata object.  For
 | |
|  * example, for inodes, the inode is locked throughout the extent freeing
 | |
|  * so the dependency should be recorded there.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the ops vector shared by all efd log items.
 | |
|  */
 | |
| STATIC struct xfs_item_ops xfs_efd_item_ops = {
 | |
| 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
 | |
| 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
 | |
| 					xfs_efd_item_format,
 | |
| 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
 | |
| 	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
 | |
| 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
 | |
| 					xfs_efd_item_unpin_remove,
 | |
| 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
 | |
| 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
 | |
| 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
 | |
| 					xfs_efd_item_committed,
 | |
| 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_efd_item_push,
 | |
| 	.iop_abort	= (void(*)(xfs_log_item_t*))xfs_efd_item_abort,
 | |
| 	.iop_pushbuf	= NULL,
 | |
| 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
 | |
| 					xfs_efd_item_committing
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize an efd item with the given number of extents.
 | |
|  */
 | |
| xfs_efd_log_item_t *
 | |
| xfs_efd_init(xfs_mount_t	*mp,
 | |
| 	     xfs_efi_log_item_t	*efip,
 | |
| 	     uint		nextents)
 | |
| 
 | |
| {
 | |
| 	xfs_efd_log_item_t	*efdp;
 | |
| 	uint			size;
 | |
| 
 | |
| 	ASSERT(nextents > 0);
 | |
| 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
 | |
| 		size = (uint)(sizeof(xfs_efd_log_item_t) +
 | |
| 			((nextents - 1) * sizeof(xfs_extent_t)));
 | |
| 		efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
 | |
| 	} else {
 | |
| 		efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
 | |
| 							     KM_SLEEP);
 | |
| 	}
 | |
| 
 | |
| 	efdp->efd_item.li_type = XFS_LI_EFD;
 | |
| 	efdp->efd_item.li_ops = &xfs_efd_item_ops;
 | |
| 	efdp->efd_item.li_mountp = mp;
 | |
| 	efdp->efd_efip = efip;
 | |
| 	efdp->efd_format.efd_nextents = nextents;
 | |
| 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
 | |
| 
 | |
| 	return (efdp);
 | |
| }
 |