mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 14:30:50 +00:00 
			
		
		
		
	 a429d2609c
			
		
	
	
		a429d2609c
		
	
	
	
	
		
			
			Many cipher implementations use 4-byte/8-byte loads/stores which require alignment on some architectures. This patch explicitly sets the alignment requirements for them. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			326 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* 
 | |
|  * Cryptographic API.
 | |
|  *
 | |
|  * TEA, XTEA, and XETA crypto alogrithms
 | |
|  *
 | |
|  * The TEA and Xtended TEA algorithms were developed by David Wheeler 
 | |
|  * and Roger Needham at the Computer Laboratory of Cambridge University.
 | |
|  *
 | |
|  * Due to the order of evaluation in XTEA many people have incorrectly
 | |
|  * implemented it.  XETA (XTEA in the wrong order), exists for
 | |
|  * compatibility with these implementations.
 | |
|  *
 | |
|  * Copyright (c) 2004 Aaron Grothe ajgrothe@yahoo.com
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mm.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <asm/scatterlist.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| #define TEA_KEY_SIZE		16
 | |
| #define TEA_BLOCK_SIZE		8
 | |
| #define TEA_ROUNDS		32
 | |
| #define TEA_DELTA		0x9e3779b9
 | |
| 
 | |
| #define XTEA_KEY_SIZE		16
 | |
| #define XTEA_BLOCK_SIZE		8
 | |
| #define XTEA_ROUNDS		32
 | |
| #define XTEA_DELTA		0x9e3779b9
 | |
| 
 | |
| struct tea_ctx {
 | |
| 	u32 KEY[4];
 | |
| };
 | |
| 
 | |
| struct xtea_ctx {
 | |
| 	u32 KEY[4];
 | |
| };
 | |
| 
 | |
| static int tea_setkey(void *ctx_arg, const u8 *in_key,
 | |
|                        unsigned int key_len, u32 *flags)
 | |
| { 
 | |
| 	struct tea_ctx *ctx = ctx_arg;
 | |
| 	const __le32 *key = (const __le32 *)in_key;
 | |
| 	
 | |
| 	if (key_len != 16)
 | |
| 	{
 | |
| 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ctx->KEY[0] = le32_to_cpu(key[0]);
 | |
| 	ctx->KEY[1] = le32_to_cpu(key[1]);
 | |
| 	ctx->KEY[2] = le32_to_cpu(key[2]);
 | |
| 	ctx->KEY[3] = le32_to_cpu(key[3]);
 | |
| 
 | |
| 	return 0; 
 | |
| 
 | |
| }
 | |
| 
 | |
| static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
 | |
| { 
 | |
| 	u32 y, z, n, sum = 0;
 | |
| 	u32 k0, k1, k2, k3;
 | |
| 
 | |
| 	struct tea_ctx *ctx = ctx_arg;
 | |
| 	const __le32 *in = (const __le32 *)src;
 | |
| 	__le32 *out = (__le32 *)dst;
 | |
| 
 | |
| 	y = le32_to_cpu(in[0]);
 | |
| 	z = le32_to_cpu(in[1]);
 | |
| 
 | |
| 	k0 = ctx->KEY[0];
 | |
| 	k1 = ctx->KEY[1];
 | |
| 	k2 = ctx->KEY[2];
 | |
| 	k3 = ctx->KEY[3];
 | |
| 
 | |
| 	n = TEA_ROUNDS;
 | |
| 
 | |
| 	while (n-- > 0) {
 | |
| 		sum += TEA_DELTA;
 | |
| 		y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
 | |
| 		z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
 | |
| 	}
 | |
| 	
 | |
| 	out[0] = cpu_to_le32(y);
 | |
| 	out[1] = cpu_to_le32(z);
 | |
| }
 | |
| 
 | |
| static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
 | |
| { 
 | |
| 	u32 y, z, n, sum;
 | |
| 	u32 k0, k1, k2, k3;
 | |
| 	struct tea_ctx *ctx = ctx_arg;
 | |
| 	const __le32 *in = (const __le32 *)src;
 | |
| 	__le32 *out = (__le32 *)dst;
 | |
| 
 | |
| 	y = le32_to_cpu(in[0]);
 | |
| 	z = le32_to_cpu(in[1]);
 | |
| 
 | |
| 	k0 = ctx->KEY[0];
 | |
| 	k1 = ctx->KEY[1];
 | |
| 	k2 = ctx->KEY[2];
 | |
| 	k3 = ctx->KEY[3];
 | |
| 
 | |
| 	sum = TEA_DELTA << 5;
 | |
| 
 | |
| 	n = TEA_ROUNDS;
 | |
| 
 | |
| 	while (n-- > 0) {
 | |
| 		z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
 | |
| 		y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
 | |
| 		sum -= TEA_DELTA;
 | |
| 	}
 | |
| 	
 | |
| 	out[0] = cpu_to_le32(y);
 | |
| 	out[1] = cpu_to_le32(z);
 | |
| }
 | |
| 
 | |
| static int xtea_setkey(void *ctx_arg, const u8 *in_key,
 | |
|                        unsigned int key_len, u32 *flags)
 | |
| { 
 | |
| 	struct xtea_ctx *ctx = ctx_arg;
 | |
| 	const __le32 *key = (const __le32 *)in_key;
 | |
| 	
 | |
| 	if (key_len != 16)
 | |
| 	{
 | |
| 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ctx->KEY[0] = le32_to_cpu(key[0]);
 | |
| 	ctx->KEY[1] = le32_to_cpu(key[1]);
 | |
| 	ctx->KEY[2] = le32_to_cpu(key[2]);
 | |
| 	ctx->KEY[3] = le32_to_cpu(key[3]);
 | |
| 
 | |
| 	return 0; 
 | |
| 
 | |
| }
 | |
| 
 | |
| static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
 | |
| { 
 | |
| 	u32 y, z, sum = 0;
 | |
| 	u32 limit = XTEA_DELTA * XTEA_ROUNDS;
 | |
| 
 | |
| 	struct xtea_ctx *ctx = ctx_arg;
 | |
| 	const __le32 *in = (const __le32 *)src;
 | |
| 	__le32 *out = (__le32 *)dst;
 | |
| 
 | |
| 	y = le32_to_cpu(in[0]);
 | |
| 	z = le32_to_cpu(in[1]);
 | |
| 
 | |
| 	while (sum != limit) {
 | |
| 		y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); 
 | |
| 		sum += XTEA_DELTA;
 | |
| 		z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); 
 | |
| 	}
 | |
| 	
 | |
| 	out[0] = cpu_to_le32(y);
 | |
| 	out[1] = cpu_to_le32(z);
 | |
| }
 | |
| 
 | |
| static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
 | |
| { 
 | |
| 	u32 y, z, sum;
 | |
| 	struct tea_ctx *ctx = ctx_arg;
 | |
| 	const __le32 *in = (const __le32 *)src;
 | |
| 	__le32 *out = (__le32 *)dst;
 | |
| 
 | |
| 	y = le32_to_cpu(in[0]);
 | |
| 	z = le32_to_cpu(in[1]);
 | |
| 
 | |
| 	sum = XTEA_DELTA * XTEA_ROUNDS;
 | |
| 
 | |
| 	while (sum) {
 | |
| 		z -= ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 & 3]);
 | |
| 		sum -= XTEA_DELTA;
 | |
| 		y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
 | |
| 	}
 | |
| 	
 | |
| 	out[0] = cpu_to_le32(y);
 | |
| 	out[1] = cpu_to_le32(z);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
 | |
| { 
 | |
| 	u32 y, z, sum = 0;
 | |
| 	u32 limit = XTEA_DELTA * XTEA_ROUNDS;
 | |
| 
 | |
| 	struct xtea_ctx *ctx = ctx_arg;
 | |
| 	const __le32 *in = (const __le32 *)src;
 | |
| 	__le32 *out = (__le32 *)dst;
 | |
| 
 | |
| 	y = le32_to_cpu(in[0]);
 | |
| 	z = le32_to_cpu(in[1]);
 | |
| 
 | |
| 	while (sum != limit) {
 | |
| 		y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
 | |
| 		sum += XTEA_DELTA;
 | |
| 		z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
 | |
| 	}
 | |
| 	
 | |
| 	out[0] = cpu_to_le32(y);
 | |
| 	out[1] = cpu_to_le32(z);
 | |
| }
 | |
| 
 | |
| static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
 | |
| { 
 | |
| 	u32 y, z, sum;
 | |
| 	struct tea_ctx *ctx = ctx_arg;
 | |
| 	const __le32 *in = (const __le32 *)src;
 | |
| 	__le32 *out = (__le32 *)dst;
 | |
| 
 | |
| 	y = le32_to_cpu(in[0]);
 | |
| 	z = le32_to_cpu(in[1]);
 | |
| 
 | |
| 	sum = XTEA_DELTA * XTEA_ROUNDS;
 | |
| 
 | |
| 	while (sum) {
 | |
| 		z -= (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 & 3];
 | |
| 		sum -= XTEA_DELTA;
 | |
| 		y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
 | |
| 	}
 | |
| 	
 | |
| 	out[0] = cpu_to_le32(y);
 | |
| 	out[1] = cpu_to_le32(z);
 | |
| }
 | |
| 
 | |
| static struct crypto_alg tea_alg = {
 | |
| 	.cra_name		=	"tea",
 | |
| 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
 | |
| 	.cra_blocksize		=	TEA_BLOCK_SIZE,
 | |
| 	.cra_ctxsize		=	sizeof (struct tea_ctx),
 | |
| 	.cra_alignmask		=	3,
 | |
| 	.cra_module		=	THIS_MODULE,
 | |
| 	.cra_list		=	LIST_HEAD_INIT(tea_alg.cra_list),
 | |
| 	.cra_u			=	{ .cipher = {
 | |
| 	.cia_min_keysize	=	TEA_KEY_SIZE,
 | |
| 	.cia_max_keysize	=	TEA_KEY_SIZE,
 | |
| 	.cia_setkey		= 	tea_setkey,
 | |
| 	.cia_encrypt		=	tea_encrypt,
 | |
| 	.cia_decrypt		=	tea_decrypt } }
 | |
| };
 | |
| 
 | |
| static struct crypto_alg xtea_alg = {
 | |
| 	.cra_name		=	"xtea",
 | |
| 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
 | |
| 	.cra_blocksize		=	XTEA_BLOCK_SIZE,
 | |
| 	.cra_ctxsize		=	sizeof (struct xtea_ctx),
 | |
| 	.cra_alignmask		=	3,
 | |
| 	.cra_module		=	THIS_MODULE,
 | |
| 	.cra_list		=	LIST_HEAD_INIT(xtea_alg.cra_list),
 | |
| 	.cra_u			=	{ .cipher = {
 | |
| 	.cia_min_keysize	=	XTEA_KEY_SIZE,
 | |
| 	.cia_max_keysize	=	XTEA_KEY_SIZE,
 | |
| 	.cia_setkey		= 	xtea_setkey,
 | |
| 	.cia_encrypt		=	xtea_encrypt,
 | |
| 	.cia_decrypt		=	xtea_decrypt } }
 | |
| };
 | |
| 
 | |
| static struct crypto_alg xeta_alg = {
 | |
| 	.cra_name		=	"xeta",
 | |
| 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
 | |
| 	.cra_blocksize		=	XTEA_BLOCK_SIZE,
 | |
| 	.cra_ctxsize		=	sizeof (struct xtea_ctx),
 | |
| 	.cra_alignmask		=	3,
 | |
| 	.cra_module		=	THIS_MODULE,
 | |
| 	.cra_list		=	LIST_HEAD_INIT(xtea_alg.cra_list),
 | |
| 	.cra_u			=	{ .cipher = {
 | |
| 	.cia_min_keysize	=	XTEA_KEY_SIZE,
 | |
| 	.cia_max_keysize	=	XTEA_KEY_SIZE,
 | |
| 	.cia_setkey		= 	xtea_setkey,
 | |
| 	.cia_encrypt		=	xeta_encrypt,
 | |
| 	.cia_decrypt		=	xeta_decrypt } }
 | |
| };
 | |
| 
 | |
| static int __init init(void)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	
 | |
| 	ret = crypto_register_alg(&tea_alg);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = crypto_register_alg(&xtea_alg);
 | |
| 	if (ret < 0) {
 | |
| 		crypto_unregister_alg(&tea_alg);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = crypto_register_alg(&xeta_alg);
 | |
| 	if (ret < 0) {
 | |
| 		crypto_unregister_alg(&tea_alg);
 | |
| 		crypto_unregister_alg(&xtea_alg);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:	
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit fini(void)
 | |
| {
 | |
| 	crypto_unregister_alg(&tea_alg);
 | |
| 	crypto_unregister_alg(&xtea_alg);
 | |
| 	crypto_unregister_alg(&xeta_alg);
 | |
| }
 | |
| 
 | |
| MODULE_ALIAS("xtea");
 | |
| MODULE_ALIAS("xeta");
 | |
| 
 | |
| module_init(init);
 | |
| module_exit(fini);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptographic Algorithms");
 |