mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 08:26:29 +00:00 
			
		
		
		
	 1a1d92c10d
			
		
	
	
		1a1d92c10d
		
	
	
	
	
		
			
			* Rougly half of callers already do it by not checking return value * Code in drivers/acpi/osl.c does the following to be sure: (void)kmem_cache_destroy(cache); * Those who check it printk something, however, slab_error already printed the name of failed cache. * XFS BUGs on failed kmem_cache_destroy which is not the decision low-level filesystem driver should make. Converted to ignore. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			1096 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1096 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/net/sunrpc/sched.c
 | |
|  *
 | |
|  * Scheduling for synchronous and asynchronous RPC requests.
 | |
|  *
 | |
|  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
 | |
|  * 
 | |
|  * TCP NFS related read + write fixes
 | |
|  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mempool.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/smp_lock.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/mutex.h>
 | |
| 
 | |
| #include <linux/sunrpc/clnt.h>
 | |
| 
 | |
| #ifdef RPC_DEBUG
 | |
| #define RPCDBG_FACILITY		RPCDBG_SCHED
 | |
| #define RPC_TASK_MAGIC_ID	0xf00baa
 | |
| static int			rpc_task_id;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * RPC slabs and memory pools
 | |
|  */
 | |
| #define RPC_BUFFER_MAXSIZE	(2048)
 | |
| #define RPC_BUFFER_POOLSIZE	(8)
 | |
| #define RPC_TASK_POOLSIZE	(8)
 | |
| static kmem_cache_t	*rpc_task_slabp __read_mostly;
 | |
| static kmem_cache_t	*rpc_buffer_slabp __read_mostly;
 | |
| static mempool_t	*rpc_task_mempool __read_mostly;
 | |
| static mempool_t	*rpc_buffer_mempool __read_mostly;
 | |
| 
 | |
| static void			__rpc_default_timer(struct rpc_task *task);
 | |
| static void			rpciod_killall(void);
 | |
| static void			rpc_async_schedule(void *);
 | |
| 
 | |
| /*
 | |
|  * RPC tasks sit here while waiting for conditions to improve.
 | |
|  */
 | |
| static RPC_WAITQ(delay_queue, "delayq");
 | |
| 
 | |
| /*
 | |
|  * All RPC tasks are linked into this list
 | |
|  */
 | |
| static LIST_HEAD(all_tasks);
 | |
| 
 | |
| /*
 | |
|  * rpciod-related stuff
 | |
|  */
 | |
| static DEFINE_MUTEX(rpciod_mutex);
 | |
| static unsigned int		rpciod_users;
 | |
| struct workqueue_struct *rpciod_workqueue;
 | |
| 
 | |
| /*
 | |
|  * Spinlock for other critical sections of code.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(rpc_sched_lock);
 | |
| 
 | |
| /*
 | |
|  * Disable the timer for a given RPC task. Should be called with
 | |
|  * queue->lock and bh_disabled in order to avoid races within
 | |
|  * rpc_run_timer().
 | |
|  */
 | |
| static inline void
 | |
| __rpc_disable_timer(struct rpc_task *task)
 | |
| {
 | |
| 	dprintk("RPC: %4d disabling timer\n", task->tk_pid);
 | |
| 	task->tk_timeout_fn = NULL;
 | |
| 	task->tk_timeout = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run a timeout function.
 | |
|  * We use the callback in order to allow __rpc_wake_up_task()
 | |
|  * and friends to disable the timer synchronously on SMP systems
 | |
|  * without calling del_timer_sync(). The latter could cause a
 | |
|  * deadlock if called while we're holding spinlocks...
 | |
|  */
 | |
| static void rpc_run_timer(struct rpc_task *task)
 | |
| {
 | |
| 	void (*callback)(struct rpc_task *);
 | |
| 
 | |
| 	callback = task->tk_timeout_fn;
 | |
| 	task->tk_timeout_fn = NULL;
 | |
| 	if (callback && RPC_IS_QUEUED(task)) {
 | |
| 		dprintk("RPC: %4d running timer\n", task->tk_pid);
 | |
| 		callback(task);
 | |
| 	}
 | |
| 	smp_mb__before_clear_bit();
 | |
| 	clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
 | |
| 	smp_mb__after_clear_bit();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up a timer for the current task.
 | |
|  */
 | |
| static inline void
 | |
| __rpc_add_timer(struct rpc_task *task, rpc_action timer)
 | |
| {
 | |
| 	if (!task->tk_timeout)
 | |
| 		return;
 | |
| 
 | |
| 	dprintk("RPC: %4d setting alarm for %lu ms\n",
 | |
| 			task->tk_pid, task->tk_timeout * 1000 / HZ);
 | |
| 
 | |
| 	if (timer)
 | |
| 		task->tk_timeout_fn = timer;
 | |
| 	else
 | |
| 		task->tk_timeout_fn = __rpc_default_timer;
 | |
| 	set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
 | |
| 	mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete any timer for the current task. Because we use del_timer_sync(),
 | |
|  * this function should never be called while holding queue->lock.
 | |
|  */
 | |
| static void
 | |
| rpc_delete_timer(struct rpc_task *task)
 | |
| {
 | |
| 	if (RPC_IS_QUEUED(task))
 | |
| 		return;
 | |
| 	if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
 | |
| 		del_singleshot_timer_sync(&task->tk_timer);
 | |
| 		dprintk("RPC: %4d deleting timer\n", task->tk_pid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add new request to a priority queue.
 | |
|  */
 | |
| static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
 | |
| {
 | |
| 	struct list_head *q;
 | |
| 	struct rpc_task *t;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&task->u.tk_wait.links);
 | |
| 	q = &queue->tasks[task->tk_priority];
 | |
| 	if (unlikely(task->tk_priority > queue->maxpriority))
 | |
| 		q = &queue->tasks[queue->maxpriority];
 | |
| 	list_for_each_entry(t, q, u.tk_wait.list) {
 | |
| 		if (t->tk_cookie == task->tk_cookie) {
 | |
| 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	list_add_tail(&task->u.tk_wait.list, q);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add new request to wait queue.
 | |
|  *
 | |
|  * Swapper tasks always get inserted at the head of the queue.
 | |
|  * This should avoid many nasty memory deadlocks and hopefully
 | |
|  * improve overall performance.
 | |
|  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 | |
|  */
 | |
| static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 | |
| {
 | |
| 	BUG_ON (RPC_IS_QUEUED(task));
 | |
| 
 | |
| 	if (RPC_IS_PRIORITY(queue))
 | |
| 		__rpc_add_wait_queue_priority(queue, task);
 | |
| 	else if (RPC_IS_SWAPPER(task))
 | |
| 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 | |
| 	else
 | |
| 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 | |
| 	task->u.tk_wait.rpc_waitq = queue;
 | |
| 	queue->qlen++;
 | |
| 	rpc_set_queued(task);
 | |
| 
 | |
| 	dprintk("RPC: %4d added to queue %p \"%s\"\n",
 | |
| 				task->tk_pid, queue, rpc_qname(queue));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove request from a priority queue.
 | |
|  */
 | |
| static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 | |
| {
 | |
| 	struct rpc_task *t;
 | |
| 
 | |
| 	if (!list_empty(&task->u.tk_wait.links)) {
 | |
| 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
 | |
| 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
 | |
| 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
 | |
| 	}
 | |
| 	list_del(&task->u.tk_wait.list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove request from queue.
 | |
|  * Note: must be called with spin lock held.
 | |
|  */
 | |
| static void __rpc_remove_wait_queue(struct rpc_task *task)
 | |
| {
 | |
| 	struct rpc_wait_queue *queue;
 | |
| 	queue = task->u.tk_wait.rpc_waitq;
 | |
| 
 | |
| 	if (RPC_IS_PRIORITY(queue))
 | |
| 		__rpc_remove_wait_queue_priority(task);
 | |
| 	else
 | |
| 		list_del(&task->u.tk_wait.list);
 | |
| 	queue->qlen--;
 | |
| 	dprintk("RPC: %4d removed from queue %p \"%s\"\n",
 | |
| 				task->tk_pid, queue, rpc_qname(queue));
 | |
| }
 | |
| 
 | |
| static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 | |
| {
 | |
| 	queue->priority = priority;
 | |
| 	queue->count = 1 << (priority * 2);
 | |
| }
 | |
| 
 | |
| static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
 | |
| {
 | |
| 	queue->cookie = cookie;
 | |
| 	queue->nr = RPC_BATCH_COUNT;
 | |
| }
 | |
| 
 | |
| static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
 | |
| 	rpc_set_waitqueue_cookie(queue, 0);
 | |
| }
 | |
| 
 | |
| static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_init(&queue->lock);
 | |
| 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 | |
| 		INIT_LIST_HEAD(&queue->tasks[i]);
 | |
| 	queue->maxpriority = maxprio;
 | |
| 	rpc_reset_waitqueue_priority(queue);
 | |
| #ifdef RPC_DEBUG
 | |
| 	queue->name = qname;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 | |
| {
 | |
| 	__rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
 | |
| }
 | |
| 
 | |
| void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 | |
| {
 | |
| 	__rpc_init_priority_wait_queue(queue, qname, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(rpc_init_wait_queue);
 | |
| 
 | |
| static int rpc_wait_bit_interruptible(void *word)
 | |
| {
 | |
| 	if (signal_pending(current))
 | |
| 		return -ERESTARTSYS;
 | |
| 	schedule();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark an RPC call as having completed by clearing the 'active' bit
 | |
|  */
 | |
| static inline void rpc_mark_complete_task(struct rpc_task *task)
 | |
| {
 | |
| 	rpc_clear_active(task);
 | |
| 	wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allow callers to wait for completion of an RPC call
 | |
|  */
 | |
| int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
 | |
| {
 | |
| 	if (action == NULL)
 | |
| 		action = rpc_wait_bit_interruptible;
 | |
| 	return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 | |
| 			action, TASK_INTERRUPTIBLE);
 | |
| }
 | |
| EXPORT_SYMBOL(__rpc_wait_for_completion_task);
 | |
| 
 | |
| /*
 | |
|  * Make an RPC task runnable.
 | |
|  *
 | |
|  * Note: If the task is ASYNC, this must be called with 
 | |
|  * the spinlock held to protect the wait queue operation.
 | |
|  */
 | |
| static void rpc_make_runnable(struct rpc_task *task)
 | |
| {
 | |
| 	int do_ret;
 | |
| 
 | |
| 	BUG_ON(task->tk_timeout_fn);
 | |
| 	do_ret = rpc_test_and_set_running(task);
 | |
| 	rpc_clear_queued(task);
 | |
| 	if (do_ret)
 | |
| 		return;
 | |
| 	if (RPC_IS_ASYNC(task)) {
 | |
| 		int status;
 | |
| 
 | |
| 		INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
 | |
| 		status = queue_work(task->tk_workqueue, &task->u.tk_work);
 | |
| 		if (status < 0) {
 | |
| 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
 | |
| 			task->tk_status = status;
 | |
| 			return;
 | |
| 		}
 | |
| 	} else
 | |
| 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare for sleeping on a wait queue.
 | |
|  * By always appending tasks to the list we ensure FIFO behavior.
 | |
|  * NB: An RPC task will only receive interrupt-driven events as long
 | |
|  * as it's on a wait queue.
 | |
|  */
 | |
| static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 | |
| 			rpc_action action, rpc_action timer)
 | |
| {
 | |
| 	dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
 | |
| 				rpc_qname(q), jiffies);
 | |
| 
 | |
| 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
 | |
| 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Mark the task as being activated if so needed */
 | |
| 	rpc_set_active(task);
 | |
| 
 | |
| 	__rpc_add_wait_queue(q, task);
 | |
| 
 | |
| 	BUG_ON(task->tk_callback != NULL);
 | |
| 	task->tk_callback = action;
 | |
| 	__rpc_add_timer(task, timer);
 | |
| }
 | |
| 
 | |
| void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 | |
| 				rpc_action action, rpc_action timer)
 | |
| {
 | |
| 	/*
 | |
| 	 * Protect the queue operations.
 | |
| 	 */
 | |
| 	spin_lock_bh(&q->lock);
 | |
| 	__rpc_sleep_on(q, task, action, timer);
 | |
| 	spin_unlock_bh(&q->lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __rpc_do_wake_up_task - wake up a single rpc_task
 | |
|  * @task: task to be woken up
 | |
|  *
 | |
|  * Caller must hold queue->lock, and have cleared the task queued flag.
 | |
|  */
 | |
| static void __rpc_do_wake_up_task(struct rpc_task *task)
 | |
| {
 | |
| 	dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
 | |
| 
 | |
| #ifdef RPC_DEBUG
 | |
| 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
 | |
| #endif
 | |
| 	/* Has the task been executed yet? If not, we cannot wake it up! */
 | |
| 	if (!RPC_IS_ACTIVATED(task)) {
 | |
| 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	__rpc_disable_timer(task);
 | |
| 	__rpc_remove_wait_queue(task);
 | |
| 
 | |
| 	rpc_make_runnable(task);
 | |
| 
 | |
| 	dprintk("RPC:      __rpc_wake_up_task done\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up the specified task
 | |
|  */
 | |
| static void __rpc_wake_up_task(struct rpc_task *task)
 | |
| {
 | |
| 	if (rpc_start_wakeup(task)) {
 | |
| 		if (RPC_IS_QUEUED(task))
 | |
| 			__rpc_do_wake_up_task(task);
 | |
| 		rpc_finish_wakeup(task);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Default timeout handler if none specified by user
 | |
|  */
 | |
| static void
 | |
| __rpc_default_timer(struct rpc_task *task)
 | |
| {
 | |
| 	dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
 | |
| 	task->tk_status = -ETIMEDOUT;
 | |
| 	rpc_wake_up_task(task);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up the specified task
 | |
|  */
 | |
| void rpc_wake_up_task(struct rpc_task *task)
 | |
| {
 | |
| 	if (rpc_start_wakeup(task)) {
 | |
| 		if (RPC_IS_QUEUED(task)) {
 | |
| 			struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
 | |
| 
 | |
| 			spin_lock_bh(&queue->lock);
 | |
| 			__rpc_do_wake_up_task(task);
 | |
| 			spin_unlock_bh(&queue->lock);
 | |
| 		}
 | |
| 		rpc_finish_wakeup(task);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up the next task on a priority queue.
 | |
|  */
 | |
| static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	struct list_head *q;
 | |
| 	struct rpc_task *task;
 | |
| 
 | |
| 	/*
 | |
| 	 * Service a batch of tasks from a single cookie.
 | |
| 	 */
 | |
| 	q = &queue->tasks[queue->priority];
 | |
| 	if (!list_empty(q)) {
 | |
| 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 | |
| 		if (queue->cookie == task->tk_cookie) {
 | |
| 			if (--queue->nr)
 | |
| 				goto out;
 | |
| 			list_move_tail(&task->u.tk_wait.list, q);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Check if we need to switch queues.
 | |
| 		 */
 | |
| 		if (--queue->count)
 | |
| 			goto new_cookie;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Service the next queue.
 | |
| 	 */
 | |
| 	do {
 | |
| 		if (q == &queue->tasks[0])
 | |
| 			q = &queue->tasks[queue->maxpriority];
 | |
| 		else
 | |
| 			q = q - 1;
 | |
| 		if (!list_empty(q)) {
 | |
| 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 | |
| 			goto new_queue;
 | |
| 		}
 | |
| 	} while (q != &queue->tasks[queue->priority]);
 | |
| 
 | |
| 	rpc_reset_waitqueue_priority(queue);
 | |
| 	return NULL;
 | |
| 
 | |
| new_queue:
 | |
| 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 | |
| new_cookie:
 | |
| 	rpc_set_waitqueue_cookie(queue, task->tk_cookie);
 | |
| out:
 | |
| 	__rpc_wake_up_task(task);
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up the next task on the wait queue.
 | |
|  */
 | |
| struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	struct rpc_task	*task = NULL;
 | |
| 
 | |
| 	dprintk("RPC:      wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
 | |
| 	spin_lock_bh(&queue->lock);
 | |
| 	if (RPC_IS_PRIORITY(queue))
 | |
| 		task = __rpc_wake_up_next_priority(queue);
 | |
| 	else {
 | |
| 		task_for_first(task, &queue->tasks[0])
 | |
| 			__rpc_wake_up_task(task);
 | |
| 	}
 | |
| 	spin_unlock_bh(&queue->lock);
 | |
| 
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rpc_wake_up - wake up all rpc_tasks
 | |
|  * @queue: rpc_wait_queue on which the tasks are sleeping
 | |
|  *
 | |
|  * Grabs queue->lock
 | |
|  */
 | |
| void rpc_wake_up(struct rpc_wait_queue *queue)
 | |
| {
 | |
| 	struct rpc_task *task, *next;
 | |
| 	struct list_head *head;
 | |
| 
 | |
| 	spin_lock_bh(&queue->lock);
 | |
| 	head = &queue->tasks[queue->maxpriority];
 | |
| 	for (;;) {
 | |
| 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
 | |
| 			__rpc_wake_up_task(task);
 | |
| 		if (head == &queue->tasks[0])
 | |
| 			break;
 | |
| 		head--;
 | |
| 	}
 | |
| 	spin_unlock_bh(&queue->lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 | |
|  * @queue: rpc_wait_queue on which the tasks are sleeping
 | |
|  * @status: status value to set
 | |
|  *
 | |
|  * Grabs queue->lock
 | |
|  */
 | |
| void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 | |
| {
 | |
| 	struct rpc_task *task, *next;
 | |
| 	struct list_head *head;
 | |
| 
 | |
| 	spin_lock_bh(&queue->lock);
 | |
| 	head = &queue->tasks[queue->maxpriority];
 | |
| 	for (;;) {
 | |
| 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
 | |
| 			task->tk_status = status;
 | |
| 			__rpc_wake_up_task(task);
 | |
| 		}
 | |
| 		if (head == &queue->tasks[0])
 | |
| 			break;
 | |
| 		head--;
 | |
| 	}
 | |
| 	spin_unlock_bh(&queue->lock);
 | |
| }
 | |
| 
 | |
| static void __rpc_atrun(struct rpc_task *task)
 | |
| {
 | |
| 	rpc_wake_up_task(task);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run a task at a later time
 | |
|  */
 | |
| void rpc_delay(struct rpc_task *task, unsigned long delay)
 | |
| {
 | |
| 	task->tk_timeout = delay;
 | |
| 	rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper to call task->tk_ops->rpc_call_prepare
 | |
|  */
 | |
| static void rpc_prepare_task(struct rpc_task *task)
 | |
| {
 | |
| 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper that calls task->tk_ops->rpc_call_done if it exists
 | |
|  */
 | |
| void rpc_exit_task(struct rpc_task *task)
 | |
| {
 | |
| 	task->tk_action = NULL;
 | |
| 	if (task->tk_ops->rpc_call_done != NULL) {
 | |
| 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
 | |
| 		if (task->tk_action != NULL) {
 | |
| 			WARN_ON(RPC_ASSASSINATED(task));
 | |
| 			/* Always release the RPC slot and buffer memory */
 | |
| 			xprt_release(task);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(rpc_exit_task);
 | |
| 
 | |
| /*
 | |
|  * This is the RPC `scheduler' (or rather, the finite state machine).
 | |
|  */
 | |
| static int __rpc_execute(struct rpc_task *task)
 | |
| {
 | |
| 	int		status = 0;
 | |
| 
 | |
| 	dprintk("RPC: %4d rpc_execute flgs %x\n",
 | |
| 				task->tk_pid, task->tk_flags);
 | |
| 
 | |
| 	BUG_ON(RPC_IS_QUEUED(task));
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * Garbage collection of pending timers...
 | |
| 		 */
 | |
| 		rpc_delete_timer(task);
 | |
| 
 | |
| 		/*
 | |
| 		 * Execute any pending callback.
 | |
| 		 */
 | |
| 		if (RPC_DO_CALLBACK(task)) {
 | |
| 			/* Define a callback save pointer */
 | |
| 			void (*save_callback)(struct rpc_task *);
 | |
| 	
 | |
| 			/* 
 | |
| 			 * If a callback exists, save it, reset it,
 | |
| 			 * call it.
 | |
| 			 * The save is needed to stop from resetting
 | |
| 			 * another callback set within the callback handler
 | |
| 			 * - Dave
 | |
| 			 */
 | |
| 			save_callback=task->tk_callback;
 | |
| 			task->tk_callback=NULL;
 | |
| 			lock_kernel();
 | |
| 			save_callback(task);
 | |
| 			unlock_kernel();
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Perform the next FSM step.
 | |
| 		 * tk_action may be NULL when the task has been killed
 | |
| 		 * by someone else.
 | |
| 		 */
 | |
| 		if (!RPC_IS_QUEUED(task)) {
 | |
| 			if (task->tk_action == NULL)
 | |
| 				break;
 | |
| 			lock_kernel();
 | |
| 			task->tk_action(task);
 | |
| 			unlock_kernel();
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Lockless check for whether task is sleeping or not.
 | |
| 		 */
 | |
| 		if (!RPC_IS_QUEUED(task))
 | |
| 			continue;
 | |
| 		rpc_clear_running(task);
 | |
| 		if (RPC_IS_ASYNC(task)) {
 | |
| 			/* Careful! we may have raced... */
 | |
| 			if (RPC_IS_QUEUED(task))
 | |
| 				return 0;
 | |
| 			if (rpc_test_and_set_running(task))
 | |
| 				return 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* sync task: sleep here */
 | |
| 		dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
 | |
| 		/* Note: Caller should be using rpc_clnt_sigmask() */
 | |
| 		status = out_of_line_wait_on_bit(&task->tk_runstate,
 | |
| 				RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
 | |
| 				TASK_INTERRUPTIBLE);
 | |
| 		if (status == -ERESTARTSYS) {
 | |
| 			/*
 | |
| 			 * When a sync task receives a signal, it exits with
 | |
| 			 * -ERESTARTSYS. In order to catch any callbacks that
 | |
| 			 * clean up after sleeping on some queue, we don't
 | |
| 			 * break the loop here, but go around once more.
 | |
| 			 */
 | |
| 			dprintk("RPC: %4d got signal\n", task->tk_pid);
 | |
| 			task->tk_flags |= RPC_TASK_KILLED;
 | |
| 			rpc_exit(task, -ERESTARTSYS);
 | |
| 			rpc_wake_up_task(task);
 | |
| 		}
 | |
| 		rpc_set_running(task);
 | |
| 		dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
 | |
| 	}
 | |
| 
 | |
| 	dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status);
 | |
| 	/* Wake up anyone who is waiting for task completion */
 | |
| 	rpc_mark_complete_task(task);
 | |
| 	/* Release all resources associated with the task */
 | |
| 	rpc_release_task(task);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * User-visible entry point to the scheduler.
 | |
|  *
 | |
|  * This may be called recursively if e.g. an async NFS task updates
 | |
|  * the attributes and finds that dirty pages must be flushed.
 | |
|  * NOTE: Upon exit of this function the task is guaranteed to be
 | |
|  *	 released. In particular note that tk_release() will have
 | |
|  *	 been called, so your task memory may have been freed.
 | |
|  */
 | |
| int
 | |
| rpc_execute(struct rpc_task *task)
 | |
| {
 | |
| 	rpc_set_active(task);
 | |
| 	rpc_set_running(task);
 | |
| 	return __rpc_execute(task);
 | |
| }
 | |
| 
 | |
| static void rpc_async_schedule(void *arg)
 | |
| {
 | |
| 	__rpc_execute((struct rpc_task *)arg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rpc_malloc - allocate an RPC buffer
 | |
|  * @task: RPC task that will use this buffer
 | |
|  * @size: requested byte size
 | |
|  *
 | |
|  * We try to ensure that some NFS reads and writes can always proceed
 | |
|  * by using a mempool when allocating 'small' buffers.
 | |
|  * In order to avoid memory starvation triggering more writebacks of
 | |
|  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
 | |
|  */
 | |
| void * rpc_malloc(struct rpc_task *task, size_t size)
 | |
| {
 | |
| 	struct rpc_rqst *req = task->tk_rqstp;
 | |
| 	gfp_t	gfp;
 | |
| 
 | |
| 	if (task->tk_flags & RPC_TASK_SWAPPER)
 | |
| 		gfp = GFP_ATOMIC;
 | |
| 	else
 | |
| 		gfp = GFP_NOFS;
 | |
| 
 | |
| 	if (size > RPC_BUFFER_MAXSIZE) {
 | |
| 		req->rq_buffer = kmalloc(size, gfp);
 | |
| 		if (req->rq_buffer)
 | |
| 			req->rq_bufsize = size;
 | |
| 	} else {
 | |
| 		req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
 | |
| 		if (req->rq_buffer)
 | |
| 			req->rq_bufsize = RPC_BUFFER_MAXSIZE;
 | |
| 	}
 | |
| 	return req->rq_buffer;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rpc_free - free buffer allocated via rpc_malloc
 | |
|  * @task: RPC task with a buffer to be freed
 | |
|  *
 | |
|  */
 | |
| void rpc_free(struct rpc_task *task)
 | |
| {
 | |
| 	struct rpc_rqst *req = task->tk_rqstp;
 | |
| 
 | |
| 	if (req->rq_buffer) {
 | |
| 		if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
 | |
| 			mempool_free(req->rq_buffer, rpc_buffer_mempool);
 | |
| 		else
 | |
| 			kfree(req->rq_buffer);
 | |
| 		req->rq_buffer = NULL;
 | |
| 		req->rq_bufsize = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Creation and deletion of RPC task structures
 | |
|  */
 | |
| void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
 | |
| {
 | |
| 	memset(task, 0, sizeof(*task));
 | |
| 	init_timer(&task->tk_timer);
 | |
| 	task->tk_timer.data     = (unsigned long) task;
 | |
| 	task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
 | |
| 	atomic_set(&task->tk_count, 1);
 | |
| 	task->tk_client = clnt;
 | |
| 	task->tk_flags  = flags;
 | |
| 	task->tk_ops = tk_ops;
 | |
| 	if (tk_ops->rpc_call_prepare != NULL)
 | |
| 		task->tk_action = rpc_prepare_task;
 | |
| 	task->tk_calldata = calldata;
 | |
| 
 | |
| 	/* Initialize retry counters */
 | |
| 	task->tk_garb_retry = 2;
 | |
| 	task->tk_cred_retry = 2;
 | |
| 
 | |
| 	task->tk_priority = RPC_PRIORITY_NORMAL;
 | |
| 	task->tk_cookie = (unsigned long)current;
 | |
| 
 | |
| 	/* Initialize workqueue for async tasks */
 | |
| 	task->tk_workqueue = rpciod_workqueue;
 | |
| 
 | |
| 	if (clnt) {
 | |
| 		atomic_inc(&clnt->cl_users);
 | |
| 		if (clnt->cl_softrtry)
 | |
| 			task->tk_flags |= RPC_TASK_SOFT;
 | |
| 		if (!clnt->cl_intr)
 | |
| 			task->tk_flags |= RPC_TASK_NOINTR;
 | |
| 	}
 | |
| 
 | |
| #ifdef RPC_DEBUG
 | |
| 	task->tk_magic = RPC_TASK_MAGIC_ID;
 | |
| 	task->tk_pid = rpc_task_id++;
 | |
| #endif
 | |
| 	/* Add to global list of all tasks */
 | |
| 	spin_lock(&rpc_sched_lock);
 | |
| 	list_add_tail(&task->tk_task, &all_tasks);
 | |
| 	spin_unlock(&rpc_sched_lock);
 | |
| 
 | |
| 	BUG_ON(task->tk_ops == NULL);
 | |
| 
 | |
| 	/* starting timestamp */
 | |
| 	task->tk_start = jiffies;
 | |
| 
 | |
| 	dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
 | |
| 				current->pid);
 | |
| }
 | |
| 
 | |
| static struct rpc_task *
 | |
| rpc_alloc_task(void)
 | |
| {
 | |
| 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
 | |
| }
 | |
| 
 | |
| static void rpc_free_task(struct rpc_task *task)
 | |
| {
 | |
| 	dprintk("RPC: %4d freeing task\n", task->tk_pid);
 | |
| 	mempool_free(task, rpc_task_mempool);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a new task for the specified client.  We have to
 | |
|  * clean up after an allocation failure, as the client may
 | |
|  * have specified "oneshot".
 | |
|  */
 | |
| struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
 | |
| {
 | |
| 	struct rpc_task	*task;
 | |
| 
 | |
| 	task = rpc_alloc_task();
 | |
| 	if (!task)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	rpc_init_task(task, clnt, flags, tk_ops, calldata);
 | |
| 
 | |
| 	dprintk("RPC: %4d allocated task\n", task->tk_pid);
 | |
| 	task->tk_flags |= RPC_TASK_DYNAMIC;
 | |
| out:
 | |
| 	return task;
 | |
| 
 | |
| cleanup:
 | |
| 	/* Check whether to release the client */
 | |
| 	if (clnt) {
 | |
| 		printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
 | |
| 			atomic_read(&clnt->cl_users), clnt->cl_oneshot);
 | |
| 		atomic_inc(&clnt->cl_users); /* pretend we were used ... */
 | |
| 		rpc_release_client(clnt);
 | |
| 	}
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| void rpc_release_task(struct rpc_task *task)
 | |
| {
 | |
| 	const struct rpc_call_ops *tk_ops = task->tk_ops;
 | |
| 	void *calldata = task->tk_calldata;
 | |
| 
 | |
| #ifdef RPC_DEBUG
 | |
| 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
 | |
| #endif
 | |
| 	if (!atomic_dec_and_test(&task->tk_count))
 | |
| 		return;
 | |
| 	dprintk("RPC: %4d release task\n", task->tk_pid);
 | |
| 
 | |
| 	/* Remove from global task list */
 | |
| 	spin_lock(&rpc_sched_lock);
 | |
| 	list_del(&task->tk_task);
 | |
| 	spin_unlock(&rpc_sched_lock);
 | |
| 
 | |
| 	BUG_ON (RPC_IS_QUEUED(task));
 | |
| 
 | |
| 	/* Synchronously delete any running timer */
 | |
| 	rpc_delete_timer(task);
 | |
| 
 | |
| 	/* Release resources */
 | |
| 	if (task->tk_rqstp)
 | |
| 		xprt_release(task);
 | |
| 	if (task->tk_msg.rpc_cred)
 | |
| 		rpcauth_unbindcred(task);
 | |
| 	if (task->tk_client) {
 | |
| 		rpc_release_client(task->tk_client);
 | |
| 		task->tk_client = NULL;
 | |
| 	}
 | |
| 
 | |
| #ifdef RPC_DEBUG
 | |
| 	task->tk_magic = 0;
 | |
| #endif
 | |
| 	if (task->tk_flags & RPC_TASK_DYNAMIC)
 | |
| 		rpc_free_task(task);
 | |
| 	if (tk_ops->rpc_release)
 | |
| 		tk_ops->rpc_release(calldata);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
 | |
|  * @clnt: pointer to RPC client
 | |
|  * @flags: RPC flags
 | |
|  * @ops: RPC call ops
 | |
|  * @data: user call data
 | |
|  */
 | |
| struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
 | |
| 					const struct rpc_call_ops *ops,
 | |
| 					void *data)
 | |
| {
 | |
| 	struct rpc_task *task;
 | |
| 	task = rpc_new_task(clnt, flags, ops, data);
 | |
| 	if (task == NULL) {
 | |
| 		if (ops->rpc_release != NULL)
 | |
| 			ops->rpc_release(data);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 	atomic_inc(&task->tk_count);
 | |
| 	rpc_execute(task);
 | |
| 	return task;
 | |
| }
 | |
| EXPORT_SYMBOL(rpc_run_task);
 | |
| 
 | |
| /*
 | |
|  * Kill all tasks for the given client.
 | |
|  * XXX: kill their descendants as well?
 | |
|  */
 | |
| void rpc_killall_tasks(struct rpc_clnt *clnt)
 | |
| {
 | |
| 	struct rpc_task	*rovr;
 | |
| 	struct list_head *le;
 | |
| 
 | |
| 	dprintk("RPC:      killing all tasks for client %p\n", clnt);
 | |
| 
 | |
| 	/*
 | |
| 	 * Spin lock all_tasks to prevent changes...
 | |
| 	 */
 | |
| 	spin_lock(&rpc_sched_lock);
 | |
| 	alltask_for_each(rovr, le, &all_tasks) {
 | |
| 		if (! RPC_IS_ACTIVATED(rovr))
 | |
| 			continue;
 | |
| 		if (!clnt || rovr->tk_client == clnt) {
 | |
| 			rovr->tk_flags |= RPC_TASK_KILLED;
 | |
| 			rpc_exit(rovr, -EIO);
 | |
| 			rpc_wake_up_task(rovr);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&rpc_sched_lock);
 | |
| }
 | |
| 
 | |
| static DECLARE_MUTEX_LOCKED(rpciod_running);
 | |
| 
 | |
| static void rpciod_killall(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	while (!list_empty(&all_tasks)) {
 | |
| 		clear_thread_flag(TIF_SIGPENDING);
 | |
| 		rpc_killall_tasks(NULL);
 | |
| 		flush_workqueue(rpciod_workqueue);
 | |
| 		if (!list_empty(&all_tasks)) {
 | |
| 			dprintk("rpciod_killall: waiting for tasks to exit\n");
 | |
| 			yield();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(¤t->sighand->siglock, flags);
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irqrestore(¤t->sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start up the rpciod process if it's not already running.
 | |
|  */
 | |
| int
 | |
| rpciod_up(void)
 | |
| {
 | |
| 	struct workqueue_struct *wq;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	mutex_lock(&rpciod_mutex);
 | |
| 	dprintk("rpciod_up: users %d\n", rpciod_users);
 | |
| 	rpciod_users++;
 | |
| 	if (rpciod_workqueue)
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * If there's no pid, we should be the first user.
 | |
| 	 */
 | |
| 	if (rpciod_users > 1)
 | |
| 		printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
 | |
| 	/*
 | |
| 	 * Create the rpciod thread and wait for it to start.
 | |
| 	 */
 | |
| 	error = -ENOMEM;
 | |
| 	wq = create_workqueue("rpciod");
 | |
| 	if (wq == NULL) {
 | |
| 		printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
 | |
| 		rpciod_users--;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rpciod_workqueue = wq;
 | |
| 	error = 0;
 | |
| out:
 | |
| 	mutex_unlock(&rpciod_mutex);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void
 | |
| rpciod_down(void)
 | |
| {
 | |
| 	mutex_lock(&rpciod_mutex);
 | |
| 	dprintk("rpciod_down sema %d\n", rpciod_users);
 | |
| 	if (rpciod_users) {
 | |
| 		if (--rpciod_users)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		printk(KERN_WARNING "rpciod_down: no users??\n");
 | |
| 
 | |
| 	if (!rpciod_workqueue) {
 | |
| 		dprintk("rpciod_down: Nothing to do!\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rpciod_killall();
 | |
| 
 | |
| 	destroy_workqueue(rpciod_workqueue);
 | |
| 	rpciod_workqueue = NULL;
 | |
|  out:
 | |
| 	mutex_unlock(&rpciod_mutex);
 | |
| }
 | |
| 
 | |
| #ifdef RPC_DEBUG
 | |
| void rpc_show_tasks(void)
 | |
| {
 | |
| 	struct list_head *le;
 | |
| 	struct rpc_task *t;
 | |
| 
 | |
| 	spin_lock(&rpc_sched_lock);
 | |
| 	if (list_empty(&all_tasks)) {
 | |
| 		spin_unlock(&rpc_sched_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
 | |
| 		"-rpcwait -action- ---ops--\n");
 | |
| 	alltask_for_each(t, le, &all_tasks) {
 | |
| 		const char *rpc_waitq = "none";
 | |
| 
 | |
| 		if (RPC_IS_QUEUED(t))
 | |
| 			rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
 | |
| 
 | |
| 		printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
 | |
| 			t->tk_pid,
 | |
| 			(t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
 | |
| 			t->tk_flags, t->tk_status,
 | |
| 			t->tk_client,
 | |
| 			(t->tk_client ? t->tk_client->cl_prog : 0),
 | |
| 			t->tk_rqstp, t->tk_timeout,
 | |
| 			rpc_waitq,
 | |
| 			t->tk_action, t->tk_ops);
 | |
| 	}
 | |
| 	spin_unlock(&rpc_sched_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void
 | |
| rpc_destroy_mempool(void)
 | |
| {
 | |
| 	if (rpc_buffer_mempool)
 | |
| 		mempool_destroy(rpc_buffer_mempool);
 | |
| 	if (rpc_task_mempool)
 | |
| 		mempool_destroy(rpc_task_mempool);
 | |
| 	if (rpc_task_slabp)
 | |
| 		kmem_cache_destroy(rpc_task_slabp);
 | |
| 	if (rpc_buffer_slabp)
 | |
| 		kmem_cache_destroy(rpc_buffer_slabp);
 | |
| }
 | |
| 
 | |
| int
 | |
| rpc_init_mempool(void)
 | |
| {
 | |
| 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
 | |
| 					     sizeof(struct rpc_task),
 | |
| 					     0, SLAB_HWCACHE_ALIGN,
 | |
| 					     NULL, NULL);
 | |
| 	if (!rpc_task_slabp)
 | |
| 		goto err_nomem;
 | |
| 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
 | |
| 					     RPC_BUFFER_MAXSIZE,
 | |
| 					     0, SLAB_HWCACHE_ALIGN,
 | |
| 					     NULL, NULL);
 | |
| 	if (!rpc_buffer_slabp)
 | |
| 		goto err_nomem;
 | |
| 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
 | |
| 						    rpc_task_slabp);
 | |
| 	if (!rpc_task_mempool)
 | |
| 		goto err_nomem;
 | |
| 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
 | |
| 						      rpc_buffer_slabp);
 | |
| 	if (!rpc_buffer_mempool)
 | |
| 		goto err_nomem;
 | |
| 	return 0;
 | |
| err_nomem:
 | |
| 	rpc_destroy_mempool();
 | |
| 	return -ENOMEM;
 | |
| }
 |