mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 03:13:59 +00:00 
			
		
		
		
	 a93cb055a2
			
		
	
	
		a93cb055a2
		
	
	
	
	
		
			
			Now that ptep_establish has a definition in PAE i386 3-level paging code, the only paging model which is insane enough to have multi-word hardware PTEs which are not efficient to set atomically, we can remove the ghost of set_pte_atomic from other architectures which falesly duplicated it, and remove all knowledge of it from the generic pgtable code. set_pte_atomic is now a private pte operator which is specific to i386 Signed-off-by: Zachary Amsden <zach@vmware.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			254 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			254 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _ASM_GENERIC_PGTABLE_H
 | |
| #define _ASM_GENERIC_PGTABLE_H
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_ESTABLISH
 | |
| /*
 | |
|  * Establish a new mapping:
 | |
|  *  - flush the old one
 | |
|  *  - update the page tables
 | |
|  *  - inform the TLB about the new one
 | |
|  *
 | |
|  * We hold the mm semaphore for reading, and the pte lock.
 | |
|  *
 | |
|  * Note: the old pte is known to not be writable, so we don't need to
 | |
|  * worry about dirty bits etc getting lost.
 | |
|  */
 | |
| #define ptep_establish(__vma, __address, __ptep, __entry)		\
 | |
| do {				  					\
 | |
| 	set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry);	\
 | |
| 	flush_tlb_page(__vma, __address);				\
 | |
| } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 | |
| /*
 | |
|  * Largely same as above, but only sets the access flags (dirty,
 | |
|  * accessed, and writable). Furthermore, we know it always gets set
 | |
|  * to a "more permissive" setting, which allows most architectures
 | |
|  * to optimize this.
 | |
|  */
 | |
| #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
 | |
| do {				  					  \
 | |
| 	set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry);	  \
 | |
| 	flush_tlb_page(__vma, __address);				  \
 | |
| } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | |
| #define ptep_test_and_clear_young(__vma, __address, __ptep)		\
 | |
| ({									\
 | |
| 	pte_t __pte = *(__ptep);					\
 | |
| 	int r = 1;							\
 | |
| 	if (!pte_young(__pte))						\
 | |
| 		r = 0;							\
 | |
| 	else								\
 | |
| 		set_pte_at((__vma)->vm_mm, (__address),			\
 | |
| 			   (__ptep), pte_mkold(__pte));			\
 | |
| 	r;								\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 | |
| #define ptep_clear_flush_young(__vma, __address, __ptep)		\
 | |
| ({									\
 | |
| 	int __young;							\
 | |
| 	__young = ptep_test_and_clear_young(__vma, __address, __ptep);	\
 | |
| 	if (__young)							\
 | |
| 		flush_tlb_page(__vma, __address);			\
 | |
| 	__young;							\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
 | |
| #define ptep_test_and_clear_dirty(__vma, __address, __ptep)		\
 | |
| ({									\
 | |
| 	pte_t __pte = *__ptep;						\
 | |
| 	int r = 1;							\
 | |
| 	if (!pte_dirty(__pte))						\
 | |
| 		r = 0;							\
 | |
| 	else								\
 | |
| 		set_pte_at((__vma)->vm_mm, (__address), (__ptep),	\
 | |
| 			   pte_mkclean(__pte));				\
 | |
| 	r;								\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
 | |
| #define ptep_clear_flush_dirty(__vma, __address, __ptep)		\
 | |
| ({									\
 | |
| 	int __dirty;							\
 | |
| 	__dirty = ptep_test_and_clear_dirty(__vma, __address, __ptep);	\
 | |
| 	if (__dirty)							\
 | |
| 		flush_tlb_page(__vma, __address);			\
 | |
| 	__dirty;							\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 | |
| #define ptep_get_and_clear(__mm, __address, __ptep)			\
 | |
| ({									\
 | |
| 	pte_t __pte = *(__ptep);					\
 | |
| 	pte_clear((__mm), (__address), (__ptep));			\
 | |
| 	__pte;								\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 | |
| #define ptep_get_and_clear_full(__mm, __address, __ptep, __full)	\
 | |
| ({									\
 | |
| 	pte_t __pte;							\
 | |
| 	__pte = ptep_get_and_clear((__mm), (__address), (__ptep));	\
 | |
| 	__pte;								\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some architectures may be able to avoid expensive synchronization
 | |
|  * primitives when modifications are made to PTE's which are already
 | |
|  * not present, or in the process of an address space destruction.
 | |
|  */
 | |
| #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 | |
| #define pte_clear_not_present_full(__mm, __address, __ptep, __full)	\
 | |
| do {									\
 | |
| 	pte_clear((__mm), (__address), (__ptep));			\
 | |
| } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 | |
| #define ptep_clear_flush(__vma, __address, __ptep)			\
 | |
| ({									\
 | |
| 	pte_t __pte;							\
 | |
| 	__pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep);	\
 | |
| 	flush_tlb_page(__vma, __address);				\
 | |
| 	__pte;								\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 | |
| struct mm_struct;
 | |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 | |
| {
 | |
| 	pte_t old_pte = *ptep;
 | |
| 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTE_SAME
 | |
| #define pte_same(A,B)	(pte_val(A) == pte_val(B))
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
 | |
| #define page_test_and_clear_dirty(page) (0)
 | |
| #define pte_maybe_dirty(pte)		pte_dirty(pte)
 | |
| #else
 | |
| #define pte_maybe_dirty(pte)		(1)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
 | |
| #define page_test_and_clear_young(page) (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 | |
| #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_LAZY_MMU_PROT_UPDATE
 | |
| #define lazy_mmu_prot_update(pte)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_MOVE_PTE
 | |
| #define move_pte(pte, prot, old_addr, new_addr)	(pte)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * A facility to provide lazy MMU batching.  This allows PTE updates and
 | |
|  * page invalidations to be delayed until a call to leave lazy MMU mode
 | |
|  * is issued.  Some architectures may benefit from doing this, and it is
 | |
|  * beneficial for both shadow and direct mode hypervisors, which may batch
 | |
|  * the PTE updates which happen during this window.  Note that using this
 | |
|  * interface requires that read hazards be removed from the code.  A read
 | |
|  * hazard could result in the direct mode hypervisor case, since the actual
 | |
|  * write to the page tables may not yet have taken place, so reads though
 | |
|  * a raw PTE pointer after it has been modified are not guaranteed to be
 | |
|  * up to date.  This mode can only be entered and left under the protection of
 | |
|  * the page table locks for all page tables which may be modified.  In the UP
 | |
|  * case, this is required so that preemption is disabled, and in the SMP case,
 | |
|  * it must synchronize the delayed page table writes properly on other CPUs.
 | |
|  */
 | |
| #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 | |
| #define arch_enter_lazy_mmu_mode()	do {} while (0)
 | |
| #define arch_leave_lazy_mmu_mode()	do {} while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * When walking page tables, get the address of the next boundary,
 | |
|  * or the end address of the range if that comes earlier.  Although no
 | |
|  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 | |
|  */
 | |
| 
 | |
| #define pgd_addr_end(addr, end)						\
 | |
| ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
 | |
| 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | |
| })
 | |
| 
 | |
| #ifndef pud_addr_end
 | |
| #define pud_addr_end(addr, end)						\
 | |
| ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
 | |
| 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifndef pmd_addr_end
 | |
| #define pmd_addr_end(addr, end)						\
 | |
| ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
 | |
| 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * When walking page tables, we usually want to skip any p?d_none entries;
 | |
|  * and any p?d_bad entries - reporting the error before resetting to none.
 | |
|  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 | |
|  */
 | |
| void pgd_clear_bad(pgd_t *);
 | |
| void pud_clear_bad(pud_t *);
 | |
| void pmd_clear_bad(pmd_t *);
 | |
| 
 | |
| static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 | |
| {
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return 1;
 | |
| 	if (unlikely(pgd_bad(*pgd))) {
 | |
| 		pgd_clear_bad(pgd);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int pud_none_or_clear_bad(pud_t *pud)
 | |
| {
 | |
| 	if (pud_none(*pud))
 | |
| 		return 1;
 | |
| 	if (unlikely(pud_bad(*pud))) {
 | |
| 		pud_clear_bad(pud);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 | |
| {
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return 1;
 | |
| 	if (unlikely(pmd_bad(*pmd))) {
 | |
| 		pmd_clear_bad(pmd);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| #endif /* _ASM_GENERIC_PGTABLE_H */
 |