mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 05:14:38 +00:00 
			
		
		
		
	 8c65b4a604
			
		
	
	
		8c65b4a604
		
	
	
	
	
		
			
			Fix more include file problems that surfaced since I submitted the previous fix-missing-includes.patch. This should now allow not to include sched.h from module.h, which is done by a followup patch. Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			457 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			457 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _I386_PGTABLE_H
 | |
| #define _I386_PGTABLE_H
 | |
| 
 | |
| #include <linux/config.h>
 | |
| 
 | |
| /*
 | |
|  * The Linux memory management assumes a three-level page table setup. On
 | |
|  * the i386, we use that, but "fold" the mid level into the top-level page
 | |
|  * table, so that we physically have the same two-level page table as the
 | |
|  * i386 mmu expects.
 | |
|  *
 | |
|  * This file contains the functions and defines necessary to modify and use
 | |
|  * the i386 page table tree.
 | |
|  */
 | |
| #ifndef __ASSEMBLY__
 | |
| #include <asm/processor.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <linux/threads.h>
 | |
| 
 | |
| #ifndef _I386_BITOPS_H
 | |
| #include <asm/bitops.h>
 | |
| #endif
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| struct mm_struct;
 | |
| struct vm_area_struct;
 | |
| 
 | |
| /*
 | |
|  * ZERO_PAGE is a global shared page that is always zero: used
 | |
|  * for zero-mapped memory areas etc..
 | |
|  */
 | |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 | |
| extern unsigned long empty_zero_page[1024];
 | |
| extern pgd_t swapper_pg_dir[1024];
 | |
| extern kmem_cache_t *pgd_cache;
 | |
| extern kmem_cache_t *pmd_cache;
 | |
| extern spinlock_t pgd_lock;
 | |
| extern struct page *pgd_list;
 | |
| 
 | |
| void pmd_ctor(void *, kmem_cache_t *, unsigned long);
 | |
| void pgd_ctor(void *, kmem_cache_t *, unsigned long);
 | |
| void pgd_dtor(void *, kmem_cache_t *, unsigned long);
 | |
| void pgtable_cache_init(void);
 | |
| void paging_init(void);
 | |
| 
 | |
| /*
 | |
|  * The Linux x86 paging architecture is 'compile-time dual-mode', it
 | |
|  * implements both the traditional 2-level x86 page tables and the
 | |
|  * newer 3-level PAE-mode page tables.
 | |
|  */
 | |
| #ifdef CONFIG_X86_PAE
 | |
| # include <asm/pgtable-3level-defs.h>
 | |
| # define PMD_SIZE	(1UL << PMD_SHIFT)
 | |
| # define PMD_MASK	(~(PMD_SIZE-1))
 | |
| #else
 | |
| # include <asm/pgtable-2level-defs.h>
 | |
| #endif
 | |
| 
 | |
| #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
 | |
| #define PGDIR_MASK	(~(PGDIR_SIZE-1))
 | |
| 
 | |
| #define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
 | |
| #define FIRST_USER_ADDRESS	0
 | |
| 
 | |
| #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
 | |
| #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
 | |
| 
 | |
| #define TWOLEVEL_PGDIR_SHIFT	22
 | |
| #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
 | |
| #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
 | |
| 
 | |
| /* Just any arbitrary offset to the start of the vmalloc VM area: the
 | |
|  * current 8MB value just means that there will be a 8MB "hole" after the
 | |
|  * physical memory until the kernel virtual memory starts.  That means that
 | |
|  * any out-of-bounds memory accesses will hopefully be caught.
 | |
|  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 | |
|  * area for the same reason. ;)
 | |
|  */
 | |
| #define VMALLOC_OFFSET	(8*1024*1024)
 | |
| #define VMALLOC_START	(((unsigned long) high_memory + vmalloc_earlyreserve + \
 | |
| 			2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| # define VMALLOC_END	(PKMAP_BASE-2*PAGE_SIZE)
 | |
| #else
 | |
| # define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * _PAGE_PSE set in the page directory entry just means that
 | |
|  * the page directory entry points directly to a 4MB-aligned block of
 | |
|  * memory. 
 | |
|  */
 | |
| #define _PAGE_BIT_PRESENT	0
 | |
| #define _PAGE_BIT_RW		1
 | |
| #define _PAGE_BIT_USER		2
 | |
| #define _PAGE_BIT_PWT		3
 | |
| #define _PAGE_BIT_PCD		4
 | |
| #define _PAGE_BIT_ACCESSED	5
 | |
| #define _PAGE_BIT_DIRTY		6
 | |
| #define _PAGE_BIT_PSE		7	/* 4 MB (or 2MB) page, Pentium+, if present.. */
 | |
| #define _PAGE_BIT_GLOBAL	8	/* Global TLB entry PPro+ */
 | |
| #define _PAGE_BIT_UNUSED1	9	/* available for programmer */
 | |
| #define _PAGE_BIT_UNUSED2	10
 | |
| #define _PAGE_BIT_UNUSED3	11
 | |
| #define _PAGE_BIT_NX		63
 | |
| 
 | |
| #define _PAGE_PRESENT	0x001
 | |
| #define _PAGE_RW	0x002
 | |
| #define _PAGE_USER	0x004
 | |
| #define _PAGE_PWT	0x008
 | |
| #define _PAGE_PCD	0x010
 | |
| #define _PAGE_ACCESSED	0x020
 | |
| #define _PAGE_DIRTY	0x040
 | |
| #define _PAGE_PSE	0x080	/* 4 MB (or 2MB) page, Pentium+, if present.. */
 | |
| #define _PAGE_GLOBAL	0x100	/* Global TLB entry PPro+ */
 | |
| #define _PAGE_UNUSED1	0x200	/* available for programmer */
 | |
| #define _PAGE_UNUSED2	0x400
 | |
| #define _PAGE_UNUSED3	0x800
 | |
| 
 | |
| /* If _PAGE_PRESENT is clear, we use these: */
 | |
| #define _PAGE_FILE	0x040	/* nonlinear file mapping, saved PTE; unset:swap */
 | |
| #define _PAGE_PROTNONE	0x080	/* if the user mapped it with PROT_NONE;
 | |
| 				   pte_present gives true */
 | |
| #ifdef CONFIG_X86_PAE
 | |
| #define _PAGE_NX	(1ULL<<_PAGE_BIT_NX)
 | |
| #else
 | |
| #define _PAGE_NX	0
 | |
| #endif
 | |
| 
 | |
| #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
 | |
| #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
 | |
| #define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 | |
| 
 | |
| #define PAGE_NONE \
 | |
| 	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
 | |
| #define PAGE_SHARED \
 | |
| 	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
 | |
| 
 | |
| #define PAGE_SHARED_EXEC \
 | |
| 	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
 | |
| #define PAGE_COPY_NOEXEC \
 | |
| 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
 | |
| #define PAGE_COPY_EXEC \
 | |
| 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 | |
| #define PAGE_COPY \
 | |
| 	PAGE_COPY_NOEXEC
 | |
| #define PAGE_READONLY \
 | |
| 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
 | |
| #define PAGE_READONLY_EXEC \
 | |
| 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 | |
| 
 | |
| #define _PAGE_KERNEL \
 | |
| 	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
 | |
| #define _PAGE_KERNEL_EXEC \
 | |
| 	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
 | |
| 
 | |
| extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
 | |
| #define __PAGE_KERNEL_RO		(__PAGE_KERNEL & ~_PAGE_RW)
 | |
| #define __PAGE_KERNEL_NOCACHE		(__PAGE_KERNEL | _PAGE_PCD)
 | |
| #define __PAGE_KERNEL_LARGE		(__PAGE_KERNEL | _PAGE_PSE)
 | |
| #define __PAGE_KERNEL_LARGE_EXEC	(__PAGE_KERNEL_EXEC | _PAGE_PSE)
 | |
| 
 | |
| #define PAGE_KERNEL		__pgprot(__PAGE_KERNEL)
 | |
| #define PAGE_KERNEL_RO		__pgprot(__PAGE_KERNEL_RO)
 | |
| #define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
 | |
| #define PAGE_KERNEL_NOCACHE	__pgprot(__PAGE_KERNEL_NOCACHE)
 | |
| #define PAGE_KERNEL_LARGE	__pgprot(__PAGE_KERNEL_LARGE)
 | |
| #define PAGE_KERNEL_LARGE_EXEC	__pgprot(__PAGE_KERNEL_LARGE_EXEC)
 | |
| 
 | |
| /*
 | |
|  * The i386 can't do page protection for execute, and considers that
 | |
|  * the same are read. Also, write permissions imply read permissions.
 | |
|  * This is the closest we can get..
 | |
|  */
 | |
| #define __P000	PAGE_NONE
 | |
| #define __P001	PAGE_READONLY
 | |
| #define __P010	PAGE_COPY
 | |
| #define __P011	PAGE_COPY
 | |
| #define __P100	PAGE_READONLY_EXEC
 | |
| #define __P101	PAGE_READONLY_EXEC
 | |
| #define __P110	PAGE_COPY_EXEC
 | |
| #define __P111	PAGE_COPY_EXEC
 | |
| 
 | |
| #define __S000	PAGE_NONE
 | |
| #define __S001	PAGE_READONLY
 | |
| #define __S010	PAGE_SHARED
 | |
| #define __S011	PAGE_SHARED
 | |
| #define __S100	PAGE_READONLY_EXEC
 | |
| #define __S101	PAGE_READONLY_EXEC
 | |
| #define __S110	PAGE_SHARED_EXEC
 | |
| #define __S111	PAGE_SHARED_EXEC
 | |
| 
 | |
| /*
 | |
|  * Define this if things work differently on an i386 and an i486:
 | |
|  * it will (on an i486) warn about kernel memory accesses that are
 | |
|  * done without a 'access_ok(VERIFY_WRITE,..)'
 | |
|  */
 | |
| #undef TEST_ACCESS_OK
 | |
| 
 | |
| /* The boot page tables (all created as a single array) */
 | |
| extern unsigned long pg0[];
 | |
| 
 | |
| #define pte_present(x)	((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
 | |
| #define pte_clear(mm,addr,xp)	do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
 | |
| 
 | |
| /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
 | |
| #define pmd_none(x)	(!(unsigned long)pmd_val(x))
 | |
| #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
 | |
| #define pmd_clear(xp)	do { set_pmd(xp, __pmd(0)); } while (0)
 | |
| #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
 | |
| 
 | |
| 
 | |
| #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
 | |
| 
 | |
| /*
 | |
|  * The following only work if pte_present() is true.
 | |
|  * Undefined behaviour if not..
 | |
|  */
 | |
| #define __LARGE_PTE (_PAGE_PSE | _PAGE_PRESENT)
 | |
| static inline int pte_user(pte_t pte)		{ return (pte).pte_low & _PAGE_USER; }
 | |
| static inline int pte_read(pte_t pte)		{ return (pte).pte_low & _PAGE_USER; }
 | |
| static inline int pte_dirty(pte_t pte)		{ return (pte).pte_low & _PAGE_DIRTY; }
 | |
| static inline int pte_young(pte_t pte)		{ return (pte).pte_low & _PAGE_ACCESSED; }
 | |
| static inline int pte_write(pte_t pte)		{ return (pte).pte_low & _PAGE_RW; }
 | |
| static inline int pte_huge(pte_t pte)		{ return ((pte).pte_low & __LARGE_PTE) == __LARGE_PTE; }
 | |
| 
 | |
| /*
 | |
|  * The following only works if pte_present() is not true.
 | |
|  */
 | |
| static inline int pte_file(pte_t pte)		{ return (pte).pte_low & _PAGE_FILE; }
 | |
| 
 | |
| static inline pte_t pte_rdprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_USER; return pte; }
 | |
| static inline pte_t pte_exprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_USER; return pte; }
 | |
| static inline pte_t pte_mkclean(pte_t pte)	{ (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
 | |
| static inline pte_t pte_mkold(pte_t pte)	{ (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
 | |
| static inline pte_t pte_wrprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_RW; return pte; }
 | |
| static inline pte_t pte_mkread(pte_t pte)	{ (pte).pte_low |= _PAGE_USER; return pte; }
 | |
| static inline pte_t pte_mkexec(pte_t pte)	{ (pte).pte_low |= _PAGE_USER; return pte; }
 | |
| static inline pte_t pte_mkdirty(pte_t pte)	{ (pte).pte_low |= _PAGE_DIRTY; return pte; }
 | |
| static inline pte_t pte_mkyoung(pte_t pte)	{ (pte).pte_low |= _PAGE_ACCESSED; return pte; }
 | |
| static inline pte_t pte_mkwrite(pte_t pte)	{ (pte).pte_low |= _PAGE_RW; return pte; }
 | |
| static inline pte_t pte_mkhuge(pte_t pte)	{ (pte).pte_low |= __LARGE_PTE; return pte; }
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| # include <asm/pgtable-3level.h>
 | |
| #else
 | |
| # include <asm/pgtable-2level.h>
 | |
| #endif
 | |
| 
 | |
| static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	if (!pte_dirty(*ptep))
 | |
| 		return 0;
 | |
| 	return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low);
 | |
| }
 | |
| 
 | |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	if (!pte_young(*ptep))
 | |
| 		return 0;
 | |
| 	return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low);
 | |
| }
 | |
| 
 | |
| static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 	if (full) {
 | |
| 		pte = *ptep;
 | |
| 		*ptep = __pte(0);
 | |
| 	} else {
 | |
| 		pte = ptep_get_and_clear(mm, addr, ptep);
 | |
| 	}
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
 | |
|  *
 | |
|  *  dst - pointer to pgd range anwhere on a pgd page
 | |
|  *  src - ""
 | |
|  *  count - the number of pgds to copy.
 | |
|  *
 | |
|  * dst and src can be on the same page, but the range must not overlap,
 | |
|  * and must not cross a page boundary.
 | |
|  */
 | |
| static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
 | |
| {
 | |
|        memcpy(dst, src, count * sizeof(pgd_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Macro to mark a page protection value as "uncacheable".  On processors which do not support
 | |
|  * it, this is a no-op.
 | |
|  */
 | |
| #define pgprot_noncached(prot)	((boot_cpu_data.x86 > 3)					  \
 | |
| 				 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
 | |
| 
 | |
| /*
 | |
|  * Conversion functions: convert a page and protection to a page entry,
 | |
|  * and a page entry and page directory to the page they refer to.
 | |
|  */
 | |
| 
 | |
| #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
 | |
| 
 | |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 | |
| {
 | |
| 	pte.pte_low &= _PAGE_CHG_MASK;
 | |
| 	pte.pte_low |= pgprot_val(newprot);
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	/*
 | |
| 	 * Chop off the NX bit (if present), and add the NX portion of
 | |
| 	 * the newprot (if present):
 | |
| 	 */
 | |
| 	pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
 | |
| 	pte.pte_high |= (pgprot_val(newprot) >> 32) & \
 | |
| 					(__supported_pte_mask >> 32);
 | |
| #endif
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| #define pmd_large(pmd) \
 | |
| ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
 | |
| 
 | |
| /*
 | |
|  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
 | |
|  *
 | |
|  * this macro returns the index of the entry in the pgd page which would
 | |
|  * control the given virtual address
 | |
|  */
 | |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 | |
| #define pgd_index_k(addr) pgd_index(addr)
 | |
| 
 | |
| /*
 | |
|  * pgd_offset() returns a (pgd_t *)
 | |
|  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
 | |
|  */
 | |
| #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
 | |
| 
 | |
| /*
 | |
|  * a shortcut which implies the use of the kernel's pgd, instead
 | |
|  * of a process's
 | |
|  */
 | |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address)
 | |
| 
 | |
| /*
 | |
|  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
 | |
|  *
 | |
|  * this macro returns the index of the entry in the pmd page which would
 | |
|  * control the given virtual address
 | |
|  */
 | |
| #define pmd_index(address) \
 | |
| 		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 | |
| 
 | |
| /*
 | |
|  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
 | |
|  *
 | |
|  * this macro returns the index of the entry in the pte page which would
 | |
|  * control the given virtual address
 | |
|  */
 | |
| #define pte_index(address) \
 | |
| 		(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 | |
| #define pte_offset_kernel(dir, address) \
 | |
| 	((pte_t *) pmd_page_kernel(*(dir)) +  pte_index(address))
 | |
| 
 | |
| #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
 | |
| 
 | |
| #define pmd_page_kernel(pmd) \
 | |
| 		((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 | |
| 
 | |
| /*
 | |
|  * Helper function that returns the kernel pagetable entry controlling
 | |
|  * the virtual address 'address'. NULL means no pagetable entry present.
 | |
|  * NOTE: the return type is pte_t but if the pmd is PSE then we return it
 | |
|  * as a pte too.
 | |
|  */
 | |
| extern pte_t *lookup_address(unsigned long address);
 | |
| 
 | |
| /*
 | |
|  * Make a given kernel text page executable/non-executable.
 | |
|  * Returns the previous executability setting of that page (which
 | |
|  * is used to restore the previous state). Used by the SMP bootup code.
 | |
|  * NOTE: this is an __init function for security reasons.
 | |
|  */
 | |
| #ifdef CONFIG_X86_PAE
 | |
|  extern int set_kernel_exec(unsigned long vaddr, int enable);
 | |
| #else
 | |
|  static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
 | |
| #endif
 | |
| 
 | |
| extern void noexec_setup(const char *str);
 | |
| 
 | |
| #if defined(CONFIG_HIGHPTE)
 | |
| #define pte_offset_map(dir, address) \
 | |
| 	((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
 | |
| #define pte_offset_map_nested(dir, address) \
 | |
| 	((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
 | |
| #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
 | |
| #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
 | |
| #else
 | |
| #define pte_offset_map(dir, address) \
 | |
| 	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
 | |
| #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
 | |
| #define pte_unmap(pte) do { } while (0)
 | |
| #define pte_unmap_nested(pte) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The i386 doesn't have any external MMU info: the kernel page
 | |
|  * tables contain all the necessary information.
 | |
|  *
 | |
|  * Also, we only update the dirty/accessed state if we set
 | |
|  * the dirty bit by hand in the kernel, since the hardware
 | |
|  * will do the accessed bit for us, and we don't want to
 | |
|  * race with other CPU's that might be updating the dirty
 | |
|  * bit at the same time.
 | |
|  */
 | |
| #define update_mmu_cache(vma,address,pte) do { } while (0)
 | |
| #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 | |
| #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
 | |
| 	do {								  \
 | |
| 		if (__dirty) {						  \
 | |
| 			(__ptep)->pte_low = (__entry).pte_low;	  	  \
 | |
| 			flush_tlb_page(__vma, __address);		  \
 | |
| 		}							  \
 | |
| 	} while (0)
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| #ifdef CONFIG_FLATMEM
 | |
| #define kern_addr_valid(addr)	(1)
 | |
| #endif /* CONFIG_FLATMEM */
 | |
| 
 | |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
 | |
| 		remap_pfn_range(vma, vaddr, pfn, size, prot)
 | |
| 
 | |
| #define MK_IOSPACE_PFN(space, pfn)	(pfn)
 | |
| #define GET_IOSPACE(pfn)		0
 | |
| #define GET_PFN(pfn)			(pfn)
 | |
| 
 | |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
 | |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 | |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 | |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT
 | |
| #define __HAVE_ARCH_PTE_SAME
 | |
| #include <asm-generic/pgtable.h>
 | |
| 
 | |
| #endif /* _I386_PGTABLE_H */
 |