mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 09:36:25 +00:00 
			
		
		
		
	 4f41d5a4e6
			
		
	
	
		4f41d5a4e6
		
	
	
	
	
		
			
			ia64 translates normal loads and stores to special MMIO regions into I/O port
accesses.  Reserve these special MMIO regions in /proc/iomem.
Sample /proc/iomem:
    f8100000000-f81003fffff : PCI Bus 0000:80 I/O Ports 00000000-00000fff
    f8100400000-f81007fffff : PCI Bus 0000:8e I/O Ports 00001000-00001fff
    f8100800000-f8100ffffff : PCI Bus 0000:9c I/O Ports 00002000-00003fff
    f8101000000-f81017fffff : PCI Bus 0000:aa I/O Ports 00004000-00005fff
and corresponding /proc/ioports:
    00000000-00000fff : PCI Bus 0000:80
    00001000-00001fff : PCI Bus 0000:8e
    00002000-00003fff : PCI Bus 0000:9c
    00004000-00005fff : PCI Bus 0000:aa
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
		
	
			
		
			
				
	
	
		
			804 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			804 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * pci.c - Low-Level PCI Access in IA-64
 | |
|  *
 | |
|  * Derived from bios32.c of i386 tree.
 | |
|  *
 | |
|  * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
 | |
|  * Copyright (C) 2004 Silicon Graphics, Inc.
 | |
|  *
 | |
|  * Note: Above list of copyright holders is incomplete...
 | |
|  */
 | |
| #include <linux/config.h>
 | |
| 
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/smp_lock.h>
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| #include <asm/machvec.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/sal.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/hw_irq.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Low-level SAL-based PCI configuration access functions. Note that SAL
 | |
|  * calls are already serialized (via sal_lock), so we don't need another
 | |
|  * synchronization mechanism here.
 | |
|  */
 | |
| 
 | |
| #define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
 | |
| 	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
 | |
| 
 | |
| /* SAL 3.2 adds support for extended config space. */
 | |
| 
 | |
| #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
 | |
| 	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
 | |
| 
 | |
| static int
 | |
| pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
 | |
| 	      int reg, int len, u32 *value)
 | |
| {
 | |
| 	u64 addr, data = 0;
 | |
| 	int mode, result;
 | |
| 
 | |
| 	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((seg | reg) <= 255) {
 | |
| 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
 | |
| 		mode = 0;
 | |
| 	} else {
 | |
| 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
 | |
| 		mode = 1;
 | |
| 	}
 | |
| 	result = ia64_sal_pci_config_read(addr, mode, len, &data);
 | |
| 	if (result != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*value = (u32) data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
 | |
| 	       int reg, int len, u32 value)
 | |
| {
 | |
| 	u64 addr;
 | |
| 	int mode, result;
 | |
| 
 | |
| 	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((seg | reg) <= 255) {
 | |
| 		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
 | |
| 		mode = 0;
 | |
| 	} else {
 | |
| 		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
 | |
| 		mode = 1;
 | |
| 	}
 | |
| 	result = ia64_sal_pci_config_write(addr, mode, len, value);
 | |
| 	if (result != 0)
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pci_raw_ops pci_sal_ops = {
 | |
| 	.read =		pci_sal_read,
 | |
| 	.write =	pci_sal_write
 | |
| };
 | |
| 
 | |
| struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
 | |
| 
 | |
| static int
 | |
| pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
 | |
| {
 | |
| 	return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
 | |
| 				 devfn, where, size, value);
 | |
| }
 | |
| 
 | |
| static int
 | |
| pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
 | |
| {
 | |
| 	return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
 | |
| 				  devfn, where, size, value);
 | |
| }
 | |
| 
 | |
| struct pci_ops pci_root_ops = {
 | |
| 	.read = pci_read,
 | |
| 	.write = pci_write,
 | |
| };
 | |
| 
 | |
| /* Called by ACPI when it finds a new root bus.  */
 | |
| 
 | |
| static struct pci_controller * __devinit
 | |
| alloc_pci_controller (int seg)
 | |
| {
 | |
| 	struct pci_controller *controller;
 | |
| 
 | |
| 	controller = kmalloc(sizeof(*controller), GFP_KERNEL);
 | |
| 	if (!controller)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(controller, 0, sizeof(*controller));
 | |
| 	controller->segment = seg;
 | |
| 	controller->node = -1;
 | |
| 	return controller;
 | |
| }
 | |
| 
 | |
| struct pci_root_info {
 | |
| 	struct pci_controller *controller;
 | |
| 	char *name;
 | |
| };
 | |
| 
 | |
| static unsigned int
 | |
| new_space (u64 phys_base, int sparse)
 | |
| {
 | |
| 	u64 mmio_base;
 | |
| 	int i;
 | |
| 
 | |
| 	if (phys_base == 0)
 | |
| 		return 0;	/* legacy I/O port space */
 | |
| 
 | |
| 	mmio_base = (u64) ioremap(phys_base, 0);
 | |
| 	for (i = 0; i < num_io_spaces; i++)
 | |
| 		if (io_space[i].mmio_base == mmio_base &&
 | |
| 		    io_space[i].sparse == sparse)
 | |
| 			return i;
 | |
| 
 | |
| 	if (num_io_spaces == MAX_IO_SPACES) {
 | |
| 		printk(KERN_ERR "PCI: Too many IO port spaces "
 | |
| 			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
 | |
| 		return ~0;
 | |
| 	}
 | |
| 
 | |
| 	i = num_io_spaces++;
 | |
| 	io_space[i].mmio_base = mmio_base;
 | |
| 	io_space[i].sparse = sparse;
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static u64 __devinit
 | |
| add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
 | |
| {
 | |
| 	struct resource *resource;
 | |
| 	char *name;
 | |
| 	u64 base, min, max, base_port;
 | |
| 	unsigned int sparse = 0, space_nr, len;
 | |
| 
 | |
| 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
 | |
| 	if (!resource) {
 | |
| 		printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
 | |
| 			info->name);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	len = strlen(info->name) + 32;
 | |
| 	name = kzalloc(len, GFP_KERNEL);
 | |
| 	if (!name) {
 | |
| 		printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
 | |
| 			info->name);
 | |
| 		goto free_resource;
 | |
| 	}
 | |
| 
 | |
| 	min = addr->min_address_range;
 | |
| 	max = min + addr->address_length - 1;
 | |
| 	if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
 | |
| 		sparse = 1;
 | |
| 
 | |
| 	space_nr = new_space(addr->address_translation_offset, sparse);
 | |
| 	if (space_nr == ~0)
 | |
| 		goto free_name;
 | |
| 
 | |
| 	base = __pa(io_space[space_nr].mmio_base);
 | |
| 	base_port = IO_SPACE_BASE(space_nr);
 | |
| 	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
 | |
| 		base_port + min, base_port + max);
 | |
| 
 | |
| 	/*
 | |
| 	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
 | |
| 	 * mapping is done by the processor (not the bridge), ACPI may not
 | |
| 	 * mark it as sparse.
 | |
| 	 */
 | |
| 	if (space_nr == 0)
 | |
| 		sparse = 1;
 | |
| 
 | |
| 	resource->name  = name;
 | |
| 	resource->flags = IORESOURCE_MEM;
 | |
| 	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
 | |
| 	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
 | |
| 	insert_resource(&iomem_resource, resource);
 | |
| 
 | |
| 	return base_port;
 | |
| 
 | |
| free_name:
 | |
| 	kfree(name);
 | |
| free_resource:
 | |
| 	kfree(resource);
 | |
| out:
 | |
| 	return ~0;
 | |
| }
 | |
| 
 | |
| static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
 | |
| 	struct acpi_resource_address64 *addr)
 | |
| {
 | |
| 	acpi_status status;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're only interested in _CRS descriptors that are
 | |
| 	 *	- address space descriptors for memory or I/O space
 | |
| 	 *	- non-zero size
 | |
| 	 *	- producers, i.e., the address space is routed downstream,
 | |
| 	 *	  not consumed by the bridge itself
 | |
| 	 */
 | |
| 	status = acpi_resource_to_address64(resource, addr);
 | |
| 	if (ACPI_SUCCESS(status) &&
 | |
| 	    (addr->resource_type == ACPI_MEMORY_RANGE ||
 | |
| 	     addr->resource_type == ACPI_IO_RANGE) &&
 | |
| 	    addr->address_length &&
 | |
| 	    addr->producer_consumer == ACPI_PRODUCER)
 | |
| 		return AE_OK;
 | |
| 
 | |
| 	return AE_ERROR;
 | |
| }
 | |
| 
 | |
| static acpi_status __devinit
 | |
| count_window (struct acpi_resource *resource, void *data)
 | |
| {
 | |
| 	unsigned int *windows = (unsigned int *) data;
 | |
| 	struct acpi_resource_address64 addr;
 | |
| 	acpi_status status;
 | |
| 
 | |
| 	status = resource_to_window(resource, &addr);
 | |
| 	if (ACPI_SUCCESS(status))
 | |
| 		(*windows)++;
 | |
| 
 | |
| 	return AE_OK;
 | |
| }
 | |
| 
 | |
| static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
 | |
| {
 | |
| 	struct pci_root_info *info = data;
 | |
| 	struct pci_window *window;
 | |
| 	struct acpi_resource_address64 addr;
 | |
| 	acpi_status status;
 | |
| 	unsigned long flags, offset = 0;
 | |
| 	struct resource *root;
 | |
| 
 | |
| 	/* Return AE_OK for non-window resources to keep scanning for more */
 | |
| 	status = resource_to_window(res, &addr);
 | |
| 	if (!ACPI_SUCCESS(status))
 | |
| 		return AE_OK;
 | |
| 
 | |
| 	if (addr.resource_type == ACPI_MEMORY_RANGE) {
 | |
| 		flags = IORESOURCE_MEM;
 | |
| 		root = &iomem_resource;
 | |
| 		offset = addr.address_translation_offset;
 | |
| 	} else if (addr.resource_type == ACPI_IO_RANGE) {
 | |
| 		flags = IORESOURCE_IO;
 | |
| 		root = &ioport_resource;
 | |
| 		offset = add_io_space(info, &addr);
 | |
| 		if (offset == ~0)
 | |
| 			return AE_OK;
 | |
| 	} else
 | |
| 		return AE_OK;
 | |
| 
 | |
| 	window = &info->controller->window[info->controller->windows++];
 | |
| 	window->resource.name = info->name;
 | |
| 	window->resource.flags = flags;
 | |
| 	window->resource.start = addr.min_address_range + offset;
 | |
| 	window->resource.end = window->resource.start + addr.address_length - 1;
 | |
| 	window->resource.child = NULL;
 | |
| 	window->offset = offset;
 | |
| 
 | |
| 	if (insert_resource(root, &window->resource)) {
 | |
| 		printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
 | |
| 			window->resource.start, window->resource.end,
 | |
| 			root->name, info->name);
 | |
| 	}
 | |
| 
 | |
| 	return AE_OK;
 | |
| }
 | |
| 
 | |
| static void __devinit
 | |
| pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	j = 0;
 | |
| 	for (i = 0; i < ctrl->windows; i++) {
 | |
| 		struct resource *res = &ctrl->window[i].resource;
 | |
| 		/* HP's firmware has a hack to work around a Windows bug.
 | |
| 		 * Ignore these tiny memory ranges */
 | |
| 		if ((res->flags & IORESOURCE_MEM) &&
 | |
| 		    (res->end - res->start < 16))
 | |
| 			continue;
 | |
| 		if (j >= PCI_BUS_NUM_RESOURCES) {
 | |
| 			printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
 | |
| 					res->end, res->flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		bus->resource[j++] = res;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct pci_bus * __devinit
 | |
| pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
 | |
| {
 | |
| 	struct pci_root_info info;
 | |
| 	struct pci_controller *controller;
 | |
| 	unsigned int windows = 0;
 | |
| 	struct pci_bus *pbus;
 | |
| 	char *name;
 | |
| 	int pxm;
 | |
| 
 | |
| 	controller = alloc_pci_controller(domain);
 | |
| 	if (!controller)
 | |
| 		goto out1;
 | |
| 
 | |
| 	controller->acpi_handle = device->handle;
 | |
| 
 | |
| 	pxm = acpi_get_pxm(controller->acpi_handle);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	if (pxm >= 0)
 | |
| 		controller->node = pxm_to_nid_map[pxm];
 | |
| #endif
 | |
| 
 | |
| 	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
 | |
| 			&windows);
 | |
| 	controller->window = kmalloc_node(sizeof(*controller->window) * windows,
 | |
| 			GFP_KERNEL, controller->node);
 | |
| 	if (!controller->window)
 | |
| 		goto out2;
 | |
| 
 | |
| 	name = kmalloc(16, GFP_KERNEL);
 | |
| 	if (!name)
 | |
| 		goto out3;
 | |
| 
 | |
| 	sprintf(name, "PCI Bus %04x:%02x", domain, bus);
 | |
| 	info.controller = controller;
 | |
| 	info.name = name;
 | |
| 	acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
 | |
| 			&info);
 | |
| 
 | |
| 	pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
 | |
| 	if (pbus)
 | |
| 		pcibios_setup_root_windows(pbus, controller);
 | |
| 
 | |
| 	return pbus;
 | |
| 
 | |
| out3:
 | |
| 	kfree(controller->window);
 | |
| out2:
 | |
| 	kfree(controller);
 | |
| out1:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void pcibios_resource_to_bus(struct pci_dev *dev,
 | |
| 		struct pci_bus_region *region, struct resource *res)
 | |
| {
 | |
| 	struct pci_controller *controller = PCI_CONTROLLER(dev);
 | |
| 	unsigned long offset = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < controller->windows; i++) {
 | |
| 		struct pci_window *window = &controller->window[i];
 | |
| 		if (!(window->resource.flags & res->flags))
 | |
| 			continue;
 | |
| 		if (window->resource.start > res->start)
 | |
| 			continue;
 | |
| 		if (window->resource.end < res->end)
 | |
| 			continue;
 | |
| 		offset = window->offset;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	region->start = res->start - offset;
 | |
| 	region->end = res->end - offset;
 | |
| }
 | |
| EXPORT_SYMBOL(pcibios_resource_to_bus);
 | |
| 
 | |
| void pcibios_bus_to_resource(struct pci_dev *dev,
 | |
| 		struct resource *res, struct pci_bus_region *region)
 | |
| {
 | |
| 	struct pci_controller *controller = PCI_CONTROLLER(dev);
 | |
| 	unsigned long offset = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < controller->windows; i++) {
 | |
| 		struct pci_window *window = &controller->window[i];
 | |
| 		if (!(window->resource.flags & res->flags))
 | |
| 			continue;
 | |
| 		if (window->resource.start - window->offset > region->start)
 | |
| 			continue;
 | |
| 		if (window->resource.end - window->offset < region->end)
 | |
| 			continue;
 | |
| 		offset = window->offset;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	res->start = region->start + offset;
 | |
| 	res->end = region->end + offset;
 | |
| }
 | |
| EXPORT_SYMBOL(pcibios_bus_to_resource);
 | |
| 
 | |
| static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
 | |
| {
 | |
| 	unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
 | |
| 	struct resource *devr = &dev->resource[idx];
 | |
| 
 | |
| 	if (!dev->bus)
 | |
| 		return 0;
 | |
| 	for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
 | |
| 		struct resource *busr = dev->bus->resource[i];
 | |
| 
 | |
| 		if (!busr || ((busr->flags ^ devr->flags) & type_mask))
 | |
| 			continue;
 | |
| 		if ((devr->start) && (devr->start >= busr->start) &&
 | |
| 				(devr->end <= busr->end))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
 | |
| {
 | |
| 	struct pci_bus_region region;
 | |
| 	int i;
 | |
| 	int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \
 | |
| 		PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
 | |
| 
 | |
| 	for (i = 0; i < limit; i++) {
 | |
| 		if (!dev->resource[i].flags)
 | |
| 			continue;
 | |
| 		region.start = dev->resource[i].start;
 | |
| 		region.end = dev->resource[i].end;
 | |
| 		pcibios_bus_to_resource(dev, &dev->resource[i], ®ion);
 | |
| 		if ((is_valid_resource(dev, i)))
 | |
| 			pci_claim_resource(dev, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Called after each bus is probed, but before its children are examined.
 | |
|  */
 | |
| void __devinit
 | |
| pcibios_fixup_bus (struct pci_bus *b)
 | |
| {
 | |
| 	struct pci_dev *dev;
 | |
| 
 | |
| 	if (b->self) {
 | |
| 		pci_read_bridge_bases(b);
 | |
| 		pcibios_fixup_device_resources(b->self);
 | |
| 	}
 | |
| 	list_for_each_entry(dev, &b->devices, bus_list)
 | |
| 		pcibios_fixup_device_resources(dev);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| void __devinit
 | |
| pcibios_update_irq (struct pci_dev *dev, int irq)
 | |
| {
 | |
| 	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
 | |
| 
 | |
| 	/* ??? FIXME -- record old value for shutdown.  */
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| pcibios_enable_resources (struct pci_dev *dev, int mask)
 | |
| {
 | |
| 	u16 cmd, old_cmd;
 | |
| 	int idx;
 | |
| 	struct resource *r;
 | |
| 	unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
 | |
| 
 | |
| 	if (!dev)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
 | |
| 	old_cmd = cmd;
 | |
| 	for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
 | |
| 		/* Only set up the desired resources.  */
 | |
| 		if (!(mask & (1 << idx)))
 | |
| 			continue;
 | |
| 
 | |
| 		r = &dev->resource[idx];
 | |
| 		if (!(r->flags & type_mask))
 | |
| 			continue;
 | |
| 		if ((idx == PCI_ROM_RESOURCE) &&
 | |
| 				(!(r->flags & IORESOURCE_ROM_ENABLE)))
 | |
| 			continue;
 | |
| 		if (!r->start && r->end) {
 | |
| 			printk(KERN_ERR
 | |
| 			       "PCI: Device %s not available because of resource collisions\n",
 | |
| 			       pci_name(dev));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (r->flags & IORESOURCE_IO)
 | |
| 			cmd |= PCI_COMMAND_IO;
 | |
| 		if (r->flags & IORESOURCE_MEM)
 | |
| 			cmd |= PCI_COMMAND_MEMORY;
 | |
| 	}
 | |
| 	if (cmd != old_cmd) {
 | |
| 		printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
 | |
| 		pci_write_config_word(dev, PCI_COMMAND, cmd);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| pcibios_enable_device (struct pci_dev *dev, int mask)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = pcibios_enable_resources(dev, mask);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return acpi_pci_irq_enable(dev);
 | |
| }
 | |
| 
 | |
| void
 | |
| pcibios_disable_device (struct pci_dev *dev)
 | |
| {
 | |
| 	acpi_pci_irq_disable(dev);
 | |
| }
 | |
| 
 | |
| void
 | |
| pcibios_align_resource (void *data, struct resource *res,
 | |
| 		        unsigned long size, unsigned long align)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * PCI BIOS setup, always defaults to SAL interface
 | |
|  */
 | |
| char * __init
 | |
| pcibios_setup (char *str)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int
 | |
| pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
 | |
| 		     enum pci_mmap_state mmap_state, int write_combine)
 | |
| {
 | |
| 	/*
 | |
| 	 * I/O space cannot be accessed via normal processor loads and
 | |
| 	 * stores on this platform.
 | |
| 	 */
 | |
| 	if (mmap_state == pci_mmap_io)
 | |
| 		/*
 | |
| 		 * XXX we could relax this for I/O spaces for which ACPI
 | |
| 		 * indicates that the space is 1-to-1 mapped.  But at the
 | |
| 		 * moment, we don't support multiple PCI address spaces and
 | |
| 		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
 | |
| 		 */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Leave vm_pgoff as-is, the PCI space address is the physical
 | |
| 	 * address on this platform.
 | |
| 	 */
 | |
| 	vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
 | |
| 
 | |
| 	if (write_combine && efi_range_is_wc(vma->vm_start,
 | |
| 					     vma->vm_end - vma->vm_start))
 | |
| 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
 | |
| 	else
 | |
| 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 | |
| 
 | |
| 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
 | |
| 			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ia64_pci_get_legacy_mem - generic legacy mem routine
 | |
|  * @bus: bus to get legacy memory base address for
 | |
|  *
 | |
|  * Find the base of legacy memory for @bus.  This is typically the first
 | |
|  * megabyte of bus address space for @bus or is simply 0 on platforms whose
 | |
|  * chipsets support legacy I/O and memory routing.  Returns the base address
 | |
|  * or an error pointer if an error occurred.
 | |
|  *
 | |
|  * This is the ia64 generic version of this routine.  Other platforms
 | |
|  * are free to override it with a machine vector.
 | |
|  */
 | |
| char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
 | |
| {
 | |
| 	return (char *)__IA64_UNCACHED_OFFSET;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pci_mmap_legacy_page_range - map legacy memory space to userland
 | |
|  * @bus: bus whose legacy space we're mapping
 | |
|  * @vma: vma passed in by mmap
 | |
|  *
 | |
|  * Map legacy memory space for this device back to userspace using a machine
 | |
|  * vector to get the base address.
 | |
|  */
 | |
| int
 | |
| pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
 | |
| {
 | |
| 	char *addr;
 | |
| 
 | |
| 	addr = pci_get_legacy_mem(bus);
 | |
| 	if (IS_ERR(addr))
 | |
| 		return PTR_ERR(addr);
 | |
| 
 | |
| 	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
 | |
| 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 | |
| 	vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
 | |
| 
 | |
| 	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
 | |
| 			    vma->vm_end - vma->vm_start, vma->vm_page_prot))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ia64_pci_legacy_read - read from legacy I/O space
 | |
|  * @bus: bus to read
 | |
|  * @port: legacy port value
 | |
|  * @val: caller allocated storage for returned value
 | |
|  * @size: number of bytes to read
 | |
|  *
 | |
|  * Simply reads @size bytes from @port and puts the result in @val.
 | |
|  *
 | |
|  * Again, this (and the write routine) are generic versions that can be
 | |
|  * overridden by the platform.  This is necessary on platforms that don't
 | |
|  * support legacy I/O routing or that hard fail on legacy I/O timeouts.
 | |
|  */
 | |
| int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
 | |
| {
 | |
| 	int ret = size;
 | |
| 
 | |
| 	switch (size) {
 | |
| 	case 1:
 | |
| 		*val = inb(port);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		*val = inw(port);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		*val = inl(port);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ia64_pci_legacy_write - perform a legacy I/O write
 | |
|  * @bus: bus pointer
 | |
|  * @port: port to write
 | |
|  * @val: value to write
 | |
|  * @size: number of bytes to write from @val
 | |
|  *
 | |
|  * Simply writes @size bytes of @val to @port.
 | |
|  */
 | |
| int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (size) {
 | |
| 	case 1:
 | |
| 		outb(val, port);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		outw(val, port);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		outl(val, port);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pci_cacheline_size - determine cacheline size for PCI devices
 | |
|  * @dev: void
 | |
|  *
 | |
|  * We want to use the line-size of the outer-most cache.  We assume
 | |
|  * that this line-size is the same for all CPUs.
 | |
|  *
 | |
|  * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
 | |
|  *
 | |
|  * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
 | |
|  */
 | |
| static unsigned long
 | |
| pci_cacheline_size (void)
 | |
| {
 | |
| 	u64 levels, unique_caches;
 | |
| 	s64 status;
 | |
| 	pal_cache_config_info_t cci;
 | |
| 	static u8 cacheline_size;
 | |
| 
 | |
| 	if (cacheline_size)
 | |
| 		return cacheline_size;
 | |
| 
 | |
| 	status = ia64_pal_cache_summary(&levels, &unique_caches);
 | |
| 	if (status != 0) {
 | |
| 		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
 | |
| 		       __FUNCTION__, status);
 | |
| 		return SMP_CACHE_BYTES;
 | |
| 	}
 | |
| 
 | |
| 	status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
 | |
| 					    &cci);
 | |
| 	if (status != 0) {
 | |
| 		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
 | |
| 		       __FUNCTION__, status);
 | |
| 		return SMP_CACHE_BYTES;
 | |
| 	}
 | |
| 	cacheline_size = 1 << cci.pcci_line_size;
 | |
| 	return cacheline_size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
 | |
|  * @dev: the PCI device for which MWI is enabled
 | |
|  *
 | |
|  * For ia64, we can get the cacheline sizes from PAL.
 | |
|  *
 | |
|  * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
 | |
|  */
 | |
| int
 | |
| pcibios_prep_mwi (struct pci_dev *dev)
 | |
| {
 | |
| 	unsigned long desired_linesize, current_linesize;
 | |
| 	int rc = 0;
 | |
| 	u8 pci_linesize;
 | |
| 
 | |
| 	desired_linesize = pci_cacheline_size();
 | |
| 
 | |
| 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
 | |
| 	current_linesize = 4 * pci_linesize;
 | |
| 	if (desired_linesize != current_linesize) {
 | |
| 		printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
 | |
| 		       pci_name(dev), current_linesize);
 | |
| 		if (current_linesize > desired_linesize) {
 | |
| 			printk(" expected %lu bytes instead\n", desired_linesize);
 | |
| 			rc = -EINVAL;
 | |
| 		} else {
 | |
| 			printk(" correcting to %lu\n", desired_linesize);
 | |
| 			pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
 | |
| 		}
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int pci_vector_resources(int last, int nr_released)
 | |
| {
 | |
| 	int count = nr_released;
 | |
| 
 | |
| 	count += (IA64_LAST_DEVICE_VECTOR - last);
 | |
| 
 | |
| 	return count;
 | |
| }
 |