mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 16:38:31 +00:00 
			
		
		
		
	 f2fd43954a
			
		
	
	
		f2fd43954a
		
	
	
	
	
		
			
			Just re-arrange the code a bit to make it easier to follow what is going on. Basically un-negating the if-statement and swapping the code inside the if-statement with code outside. No functional changes. Originally-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1294348732-15030-7-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
			
				
	
	
		
			882 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			882 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
 | |
|  *
 | |
|  *  Pentium III FXSR, SSE support
 | |
|  *	Gareth Hughes <gareth@valinux.com>, May 2000
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Handle hardware traps and faults.
 | |
|  */
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/kgdb.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #ifdef CONFIG_EISA
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/eisa.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MCA
 | |
| #include <linux/mca.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_EDAC)
 | |
| #include <linux/edac.h>
 | |
| #endif
 | |
| 
 | |
| #include <asm/kmemcheck.h>
 | |
| #include <asm/stacktrace.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/atomic.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/i387.h>
 | |
| #include <asm/mce.h>
 | |
| 
 | |
| #include <asm/mach_traps.h>
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| #include <asm/x86_init.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/proto.h>
 | |
| #else
 | |
| #include <asm/processor-flags.h>
 | |
| #include <asm/setup.h>
 | |
| 
 | |
| asmlinkage int system_call(void);
 | |
| 
 | |
| /* Do we ignore FPU interrupts ? */
 | |
| char ignore_fpu_irq;
 | |
| 
 | |
| /*
 | |
|  * The IDT has to be page-aligned to simplify the Pentium
 | |
|  * F0 0F bug workaround.
 | |
|  */
 | |
| gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
 | |
| #endif
 | |
| 
 | |
| DECLARE_BITMAP(used_vectors, NR_VECTORS);
 | |
| EXPORT_SYMBOL_GPL(used_vectors);
 | |
| 
 | |
| static int ignore_nmis;
 | |
| 
 | |
| int unknown_nmi_panic;
 | |
| /*
 | |
|  * Prevent NMI reason port (0x61) being accessed simultaneously, can
 | |
|  * only be used in NMI handler.
 | |
|  */
 | |
| static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 | |
| 
 | |
| static inline void conditional_sti(struct pt_regs *regs)
 | |
| {
 | |
| 	if (regs->flags & X86_EFLAGS_IF)
 | |
| 		local_irq_enable();
 | |
| }
 | |
| 
 | |
| static inline void preempt_conditional_sti(struct pt_regs *regs)
 | |
| {
 | |
| 	inc_preempt_count();
 | |
| 	if (regs->flags & X86_EFLAGS_IF)
 | |
| 		local_irq_enable();
 | |
| }
 | |
| 
 | |
| static inline void conditional_cli(struct pt_regs *regs)
 | |
| {
 | |
| 	if (regs->flags & X86_EFLAGS_IF)
 | |
| 		local_irq_disable();
 | |
| }
 | |
| 
 | |
| static inline void preempt_conditional_cli(struct pt_regs *regs)
 | |
| {
 | |
| 	if (regs->flags & X86_EFLAGS_IF)
 | |
| 		local_irq_disable();
 | |
| 	dec_preempt_count();
 | |
| }
 | |
| 
 | |
| static void __kprobes
 | |
| do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 | |
| 	long error_code, siginfo_t *info)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (regs->flags & X86_VM_MASK) {
 | |
| 		/*
 | |
| 		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 | |
| 		 * On nmi (interrupt 2), do_trap should not be called.
 | |
| 		 */
 | |
| 		if (trapnr < 6)
 | |
| 			goto vm86_trap;
 | |
| 		goto trap_signal;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (!user_mode(regs))
 | |
| 		goto kernel_trap;
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| trap_signal:
 | |
| #endif
 | |
| 	/*
 | |
| 	 * We want error_code and trap_no set for userspace faults and
 | |
| 	 * kernelspace faults which result in die(), but not
 | |
| 	 * kernelspace faults which are fixed up.  die() gives the
 | |
| 	 * process no chance to handle the signal and notice the
 | |
| 	 * kernel fault information, so that won't result in polluting
 | |
| 	 * the information about previously queued, but not yet
 | |
| 	 * delivered, faults.  See also do_general_protection below.
 | |
| 	 */
 | |
| 	tsk->thread.error_code = error_code;
 | |
| 	tsk->thread.trap_no = trapnr;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 | |
| 	    printk_ratelimit()) {
 | |
| 		printk(KERN_INFO
 | |
| 		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
 | |
| 		       tsk->comm, tsk->pid, str,
 | |
| 		       regs->ip, regs->sp, error_code);
 | |
| 		print_vma_addr(" in ", regs->ip);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (info)
 | |
| 		force_sig_info(signr, info, tsk);
 | |
| 	else
 | |
| 		force_sig(signr, tsk);
 | |
| 	return;
 | |
| 
 | |
| kernel_trap:
 | |
| 	if (!fixup_exception(regs)) {
 | |
| 		tsk->thread.error_code = error_code;
 | |
| 		tsk->thread.trap_no = trapnr;
 | |
| 		die(str, regs, error_code);
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| vm86_trap:
 | |
| 	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
 | |
| 						error_code, trapnr))
 | |
| 		goto trap_signal;
 | |
| 	return;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define DO_ERROR(trapnr, signr, str, name)				\
 | |
| dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
 | |
| {									\
 | |
| 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
 | |
| 							== NOTIFY_STOP)	\
 | |
| 		return;							\
 | |
| 	conditional_sti(regs);						\
 | |
| 	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
 | |
| }
 | |
| 
 | |
| #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
 | |
| dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
 | |
| {									\
 | |
| 	siginfo_t info;							\
 | |
| 	info.si_signo = signr;						\
 | |
| 	info.si_errno = 0;						\
 | |
| 	info.si_code = sicode;						\
 | |
| 	info.si_addr = (void __user *)siaddr;				\
 | |
| 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
 | |
| 							== NOTIFY_STOP)	\
 | |
| 		return;							\
 | |
| 	conditional_sti(regs);						\
 | |
| 	do_trap(trapnr, signr, str, regs, error_code, &info);		\
 | |
| }
 | |
| 
 | |
| DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
 | |
| DO_ERROR(4, SIGSEGV, "overflow", overflow)
 | |
| DO_ERROR(5, SIGSEGV, "bounds", bounds)
 | |
| DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
 | |
| DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
 | |
| DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
 | |
| DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
 | |
| #ifdef CONFIG_X86_32
 | |
| DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
 | |
| #endif
 | |
| DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| /* Runs on IST stack */
 | |
| dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
 | |
| 			12, SIGBUS) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 	preempt_conditional_sti(regs);
 | |
| 	do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
 | |
| 	preempt_conditional_cli(regs);
 | |
| }
 | |
| 
 | |
| dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	static const char str[] = "double fault";
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	/* Return not checked because double check cannot be ignored */
 | |
| 	notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
 | |
| 
 | |
| 	tsk->thread.error_code = error_code;
 | |
| 	tsk->thread.trap_no = 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is always a kernel trap and never fixable (and thus must
 | |
| 	 * never return).
 | |
| 	 */
 | |
| 	for (;;)
 | |
| 		die(str, regs, error_code);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| dotraplinkage void __kprobes
 | |
| do_general_protection(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 
 | |
| 	conditional_sti(regs);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (regs->flags & X86_VM_MASK)
 | |
| 		goto gp_in_vm86;
 | |
| #endif
 | |
| 
 | |
| 	tsk = current;
 | |
| 	if (!user_mode(regs))
 | |
| 		goto gp_in_kernel;
 | |
| 
 | |
| 	tsk->thread.error_code = error_code;
 | |
| 	tsk->thread.trap_no = 13;
 | |
| 
 | |
| 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
 | |
| 			printk_ratelimit()) {
 | |
| 		printk(KERN_INFO
 | |
| 			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
 | |
| 			tsk->comm, task_pid_nr(tsk),
 | |
| 			regs->ip, regs->sp, error_code);
 | |
| 		print_vma_addr(" in ", regs->ip);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| 
 | |
| 	force_sig(SIGSEGV, tsk);
 | |
| 	return;
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| gp_in_vm86:
 | |
| 	local_irq_enable();
 | |
| 	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 | |
| 	return;
 | |
| #endif
 | |
| 
 | |
| gp_in_kernel:
 | |
| 	if (fixup_exception(regs))
 | |
| 		return;
 | |
| 
 | |
| 	tsk->thread.error_code = error_code;
 | |
| 	tsk->thread.trap_no = 13;
 | |
| 	if (notify_die(DIE_GPF, "general protection fault", regs,
 | |
| 				error_code, 13, SIGSEGV) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 	die("general protection fault", regs, error_code);
 | |
| }
 | |
| 
 | |
| static int __init setup_unknown_nmi_panic(char *str)
 | |
| {
 | |
| 	unknown_nmi_panic = 1;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
 | |
| 
 | |
| static notrace __kprobes void
 | |
| pci_serr_error(unsigned char reason, struct pt_regs *regs)
 | |
| {
 | |
| 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
 | |
| 		 reason, smp_processor_id());
 | |
| 
 | |
| 	/*
 | |
| 	 * On some machines, PCI SERR line is used to report memory
 | |
| 	 * errors. EDAC makes use of it.
 | |
| 	 */
 | |
| #if defined(CONFIG_EDAC)
 | |
| 	if (edac_handler_set()) {
 | |
| 		edac_atomic_assert_error();
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (panic_on_unrecovered_nmi)
 | |
| 		panic("NMI: Not continuing");
 | |
| 
 | |
| 	pr_emerg("Dazed and confused, but trying to continue\n");
 | |
| 
 | |
| 	/* Clear and disable the PCI SERR error line. */
 | |
| 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
 | |
| 	outb(reason, NMI_REASON_PORT);
 | |
| }
 | |
| 
 | |
| static notrace __kprobes void
 | |
| io_check_error(unsigned char reason, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	pr_emerg(
 | |
| 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
 | |
| 		 reason, smp_processor_id());
 | |
| 	show_registers(regs);
 | |
| 
 | |
| 	if (panic_on_io_nmi)
 | |
| 		panic("NMI IOCK error: Not continuing");
 | |
| 
 | |
| 	/* Re-enable the IOCK line, wait for a few seconds */
 | |
| 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
 | |
| 	outb(reason, NMI_REASON_PORT);
 | |
| 
 | |
| 	i = 20000;
 | |
| 	while (--i) {
 | |
| 		touch_nmi_watchdog();
 | |
| 		udelay(100);
 | |
| 	}
 | |
| 
 | |
| 	reason &= ~NMI_REASON_CLEAR_IOCHK;
 | |
| 	outb(reason, NMI_REASON_PORT);
 | |
| }
 | |
| 
 | |
| static notrace __kprobes void
 | |
| unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
 | |
| {
 | |
| 	if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) ==
 | |
| 			NOTIFY_STOP)
 | |
| 		return;
 | |
| #ifdef CONFIG_MCA
 | |
| 	/*
 | |
| 	 * Might actually be able to figure out what the guilty party
 | |
| 	 * is:
 | |
| 	 */
 | |
| 	if (MCA_bus) {
 | |
| 		mca_handle_nmi();
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
 | |
| 		 reason, smp_processor_id());
 | |
| 
 | |
| 	pr_emerg("Do you have a strange power saving mode enabled?\n");
 | |
| 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
 | |
| 		panic("NMI: Not continuing");
 | |
| 
 | |
| 	pr_emerg("Dazed and confused, but trying to continue\n");
 | |
| }
 | |
| 
 | |
| static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned char reason = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * CPU-specific NMI must be processed before non-CPU-specific
 | |
| 	 * NMI, otherwise we may lose it, because the CPU-specific
 | |
| 	 * NMI can not be detected/processed on other CPUs.
 | |
| 	 */
 | |
| 	if (notify_die(DIE_NMI, "nmi", regs, 0, 2, SIGINT) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 
 | |
| 	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
 | |
| 	raw_spin_lock(&nmi_reason_lock);
 | |
| 	reason = get_nmi_reason();
 | |
| 
 | |
| 	if (reason & NMI_REASON_MASK) {
 | |
| 		if (reason & NMI_REASON_SERR)
 | |
| 			pci_serr_error(reason, regs);
 | |
| 		else if (reason & NMI_REASON_IOCHK)
 | |
| 			io_check_error(reason, regs);
 | |
| #ifdef CONFIG_X86_32
 | |
| 		/*
 | |
| 		 * Reassert NMI in case it became active
 | |
| 		 * meanwhile as it's edge-triggered:
 | |
| 		 */
 | |
| 		reassert_nmi();
 | |
| #endif
 | |
| 		raw_spin_unlock(&nmi_reason_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	raw_spin_unlock(&nmi_reason_lock);
 | |
| 
 | |
| 	unknown_nmi_error(reason, regs);
 | |
| }
 | |
| 
 | |
| dotraplinkage notrace __kprobes void
 | |
| do_nmi(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	nmi_enter();
 | |
| 
 | |
| 	inc_irq_stat(__nmi_count);
 | |
| 
 | |
| 	if (!ignore_nmis)
 | |
| 		default_do_nmi(regs);
 | |
| 
 | |
| 	nmi_exit();
 | |
| }
 | |
| 
 | |
| void stop_nmi(void)
 | |
| {
 | |
| 	ignore_nmis++;
 | |
| }
 | |
| 
 | |
| void restart_nmi(void)
 | |
| {
 | |
| 	ignore_nmis--;
 | |
| }
 | |
| 
 | |
| /* May run on IST stack. */
 | |
| dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 | |
| 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
 | |
| 			== NOTIFY_STOP)
 | |
| 		return;
 | |
| #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 | |
| #ifdef CONFIG_KPROBES
 | |
| 	if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
 | |
| 			== NOTIFY_STOP)
 | |
| 		return;
 | |
| #else
 | |
| 	if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP)
 | |
| 			== NOTIFY_STOP)
 | |
| 		return;
 | |
| #endif
 | |
| 
 | |
| 	preempt_conditional_sti(regs);
 | |
| 	do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
 | |
| 	preempt_conditional_cli(regs);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| /*
 | |
|  * Help handler running on IST stack to switch back to user stack
 | |
|  * for scheduling or signal handling. The actual stack switch is done in
 | |
|  * entry.S
 | |
|  */
 | |
| asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
 | |
| {
 | |
| 	struct pt_regs *regs = eregs;
 | |
| 	/* Did already sync */
 | |
| 	if (eregs == (struct pt_regs *)eregs->sp)
 | |
| 		;
 | |
| 	/* Exception from user space */
 | |
| 	else if (user_mode(eregs))
 | |
| 		regs = task_pt_regs(current);
 | |
| 	/*
 | |
| 	 * Exception from kernel and interrupts are enabled. Move to
 | |
| 	 * kernel process stack.
 | |
| 	 */
 | |
| 	else if (eregs->flags & X86_EFLAGS_IF)
 | |
| 		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
 | |
| 	if (eregs != regs)
 | |
| 		*regs = *eregs;
 | |
| 	return regs;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Our handling of the processor debug registers is non-trivial.
 | |
|  * We do not clear them on entry and exit from the kernel. Therefore
 | |
|  * it is possible to get a watchpoint trap here from inside the kernel.
 | |
|  * However, the code in ./ptrace.c has ensured that the user can
 | |
|  * only set watchpoints on userspace addresses. Therefore the in-kernel
 | |
|  * watchpoint trap can only occur in code which is reading/writing
 | |
|  * from user space. Such code must not hold kernel locks (since it
 | |
|  * can equally take a page fault), therefore it is safe to call
 | |
|  * force_sig_info even though that claims and releases locks.
 | |
|  *
 | |
|  * Code in ./signal.c ensures that the debug control register
 | |
|  * is restored before we deliver any signal, and therefore that
 | |
|  * user code runs with the correct debug control register even though
 | |
|  * we clear it here.
 | |
|  *
 | |
|  * Being careful here means that we don't have to be as careful in a
 | |
|  * lot of more complicated places (task switching can be a bit lazy
 | |
|  * about restoring all the debug state, and ptrace doesn't have to
 | |
|  * find every occurrence of the TF bit that could be saved away even
 | |
|  * by user code)
 | |
|  *
 | |
|  * May run on IST stack.
 | |
|  */
 | |
| dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	int user_icebp = 0;
 | |
| 	unsigned long dr6;
 | |
| 	int si_code;
 | |
| 
 | |
| 	get_debugreg(dr6, 6);
 | |
| 
 | |
| 	/* Filter out all the reserved bits which are preset to 1 */
 | |
| 	dr6 &= ~DR6_RESERVED;
 | |
| 
 | |
| 	/*
 | |
| 	 * If dr6 has no reason to give us about the origin of this trap,
 | |
| 	 * then it's very likely the result of an icebp/int01 trap.
 | |
| 	 * User wants a sigtrap for that.
 | |
| 	 */
 | |
| 	if (!dr6 && user_mode(regs))
 | |
| 		user_icebp = 1;
 | |
| 
 | |
| 	/* Catch kmemcheck conditions first of all! */
 | |
| 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
 | |
| 		return;
 | |
| 
 | |
| 	/* DR6 may or may not be cleared by the CPU */
 | |
| 	set_debugreg(0, 6);
 | |
| 
 | |
| 	/*
 | |
| 	 * The processor cleared BTF, so don't mark that we need it set.
 | |
| 	 */
 | |
| 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
 | |
| 
 | |
| 	/* Store the virtualized DR6 value */
 | |
| 	tsk->thread.debugreg6 = dr6;
 | |
| 
 | |
| 	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
 | |
| 							SIGTRAP) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 
 | |
| 	/* It's safe to allow irq's after DR6 has been saved */
 | |
| 	preempt_conditional_sti(regs);
 | |
| 
 | |
| 	if (regs->flags & X86_VM_MASK) {
 | |
| 		handle_vm86_trap((struct kernel_vm86_regs *) regs,
 | |
| 				error_code, 1);
 | |
| 		preempt_conditional_cli(regs);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Single-stepping through system calls: ignore any exceptions in
 | |
| 	 * kernel space, but re-enable TF when returning to user mode.
 | |
| 	 *
 | |
| 	 * We already checked v86 mode above, so we can check for kernel mode
 | |
| 	 * by just checking the CPL of CS.
 | |
| 	 */
 | |
| 	if ((dr6 & DR_STEP) && !user_mode(regs)) {
 | |
| 		tsk->thread.debugreg6 &= ~DR_STEP;
 | |
| 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
 | |
| 		regs->flags &= ~X86_EFLAGS_TF;
 | |
| 	}
 | |
| 	si_code = get_si_code(tsk->thread.debugreg6);
 | |
| 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
 | |
| 		send_sigtrap(tsk, regs, error_code, si_code);
 | |
| 	preempt_conditional_cli(regs);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that we play around with the 'TS' bit in an attempt to get
 | |
|  * the correct behaviour even in the presence of the asynchronous
 | |
|  * IRQ13 behaviour
 | |
|  */
 | |
| void math_error(struct pt_regs *regs, int error_code, int trapnr)
 | |
| {
 | |
| 	struct task_struct *task = current;
 | |
| 	siginfo_t info;
 | |
| 	unsigned short err;
 | |
| 	char *str = (trapnr == 16) ? "fpu exception" : "simd exception";
 | |
| 
 | |
| 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 	conditional_sti(regs);
 | |
| 
 | |
| 	if (!user_mode_vm(regs))
 | |
| 	{
 | |
| 		if (!fixup_exception(regs)) {
 | |
| 			task->thread.error_code = error_code;
 | |
| 			task->thread.trap_no = trapnr;
 | |
| 			die(str, regs, error_code);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Save the info for the exception handler and clear the error.
 | |
| 	 */
 | |
| 	save_init_fpu(task);
 | |
| 	task->thread.trap_no = trapnr;
 | |
| 	task->thread.error_code = error_code;
 | |
| 	info.si_signo = SIGFPE;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_addr = (void __user *)regs->ip;
 | |
| 	if (trapnr == 16) {
 | |
| 		unsigned short cwd, swd;
 | |
| 		/*
 | |
| 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
 | |
| 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
 | |
| 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
 | |
| 		 * fault bit.  We should only be taking one exception at a time,
 | |
| 		 * so if this combination doesn't produce any single exception,
 | |
| 		 * then we have a bad program that isn't synchronizing its FPU usage
 | |
| 		 * and it will suffer the consequences since we won't be able to
 | |
| 		 * fully reproduce the context of the exception
 | |
| 		 */
 | |
| 		cwd = get_fpu_cwd(task);
 | |
| 		swd = get_fpu_swd(task);
 | |
| 
 | |
| 		err = swd & ~cwd;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The SIMD FPU exceptions are handled a little differently, as there
 | |
| 		 * is only a single status/control register.  Thus, to determine which
 | |
| 		 * unmasked exception was caught we must mask the exception mask bits
 | |
| 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
 | |
| 		 */
 | |
| 		unsigned short mxcsr = get_fpu_mxcsr(task);
 | |
| 		err = ~(mxcsr >> 7) & mxcsr;
 | |
| 	}
 | |
| 
 | |
| 	if (err & 0x001) {	/* Invalid op */
 | |
| 		/*
 | |
| 		 * swd & 0x240 == 0x040: Stack Underflow
 | |
| 		 * swd & 0x240 == 0x240: Stack Overflow
 | |
| 		 * User must clear the SF bit (0x40) if set
 | |
| 		 */
 | |
| 		info.si_code = FPE_FLTINV;
 | |
| 	} else if (err & 0x004) { /* Divide by Zero */
 | |
| 		info.si_code = FPE_FLTDIV;
 | |
| 	} else if (err & 0x008) { /* Overflow */
 | |
| 		info.si_code = FPE_FLTOVF;
 | |
| 	} else if (err & 0x012) { /* Denormal, Underflow */
 | |
| 		info.si_code = FPE_FLTUND;
 | |
| 	} else if (err & 0x020) { /* Precision */
 | |
| 		info.si_code = FPE_FLTRES;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If we're using IRQ 13, or supposedly even some trap 16
 | |
| 		 * implementations, it's possible we get a spurious trap...
 | |
| 		 */
 | |
| 		return;		/* Spurious trap, no error */
 | |
| 	}
 | |
| 	force_sig_info(SIGFPE, &info, task);
 | |
| }
 | |
| 
 | |
| dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| #ifdef CONFIG_X86_32
 | |
| 	ignore_fpu_irq = 1;
 | |
| #endif
 | |
| 
 | |
| 	math_error(regs, error_code, 16);
 | |
| }
 | |
| 
 | |
| dotraplinkage void
 | |
| do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	math_error(regs, error_code, 19);
 | |
| }
 | |
| 
 | |
| dotraplinkage void
 | |
| do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	conditional_sti(regs);
 | |
| #if 0
 | |
| 	/* No need to warn about this any longer. */
 | |
| 	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __math_state_restore assumes that cr0.TS is already clear and the
 | |
|  * fpu state is all ready for use.  Used during context switch.
 | |
|  */
 | |
| void __math_state_restore(void)
 | |
| {
 | |
| 	struct thread_info *thread = current_thread_info();
 | |
| 	struct task_struct *tsk = thread->task;
 | |
| 
 | |
| 	/*
 | |
| 	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
 | |
| 	 */
 | |
| 	if (unlikely(restore_fpu_checking(tsk))) {
 | |
| 		stts();
 | |
| 		force_sig(SIGSEGV, tsk);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	thread->status |= TS_USEDFPU;	/* So we fnsave on switch_to() */
 | |
| 	tsk->fpu_counter++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'math_state_restore()' saves the current math information in the
 | |
|  * old math state array, and gets the new ones from the current task
 | |
|  *
 | |
|  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
 | |
|  * Don't touch unless you *really* know how it works.
 | |
|  *
 | |
|  * Must be called with kernel preemption disabled (in this case,
 | |
|  * local interrupts are disabled at the call-site in entry.S).
 | |
|  */
 | |
| asmlinkage void math_state_restore(void)
 | |
| {
 | |
| 	struct thread_info *thread = current_thread_info();
 | |
| 	struct task_struct *tsk = thread->task;
 | |
| 
 | |
| 	if (!tsk_used_math(tsk)) {
 | |
| 		local_irq_enable();
 | |
| 		/*
 | |
| 		 * does a slab alloc which can sleep
 | |
| 		 */
 | |
| 		if (init_fpu(tsk)) {
 | |
| 			/*
 | |
| 			 * ran out of memory!
 | |
| 			 */
 | |
| 			do_group_exit(SIGKILL);
 | |
| 			return;
 | |
| 		}
 | |
| 		local_irq_disable();
 | |
| 	}
 | |
| 
 | |
| 	clts();				/* Allow maths ops (or we recurse) */
 | |
| 
 | |
| 	__math_state_restore();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(math_state_restore);
 | |
| 
 | |
| dotraplinkage void __kprobes
 | |
| do_device_not_available(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| #ifdef CONFIG_MATH_EMULATION
 | |
| 	if (read_cr0() & X86_CR0_EM) {
 | |
| 		struct math_emu_info info = { };
 | |
| 
 | |
| 		conditional_sti(regs);
 | |
| 
 | |
| 		info.regs = regs;
 | |
| 		math_emulate(&info);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	math_state_restore(); /* interrupts still off */
 | |
| #ifdef CONFIG_X86_32
 | |
| 	conditional_sti(regs);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	info.si_signo = SIGILL;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = ILL_BADSTK;
 | |
| 	info.si_addr = NULL;
 | |
| 	if (notify_die(DIE_TRAP, "iret exception",
 | |
| 			regs, error_code, 32, SIGILL) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 	do_trap(32, SIGILL, "iret exception", regs, error_code, &info);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Set of traps needed for early debugging. */
 | |
| void __init early_trap_init(void)
 | |
| {
 | |
| 	set_intr_gate_ist(1, &debug, DEBUG_STACK);
 | |
| 	/* int3 can be called from all */
 | |
| 	set_system_intr_gate_ist(3, &int3, DEBUG_STACK);
 | |
| 	set_intr_gate(14, &page_fault);
 | |
| 	load_idt(&idt_descr);
 | |
| }
 | |
| 
 | |
| void __init trap_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| #ifdef CONFIG_EISA
 | |
| 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
 | |
| 
 | |
| 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
 | |
| 		EISA_bus = 1;
 | |
| 	early_iounmap(p, 4);
 | |
| #endif
 | |
| 
 | |
| 	set_intr_gate(0, ÷_error);
 | |
| 	set_intr_gate_ist(2, &nmi, NMI_STACK);
 | |
| 	/* int4 can be called from all */
 | |
| 	set_system_intr_gate(4, &overflow);
 | |
| 	set_intr_gate(5, &bounds);
 | |
| 	set_intr_gate(6, &invalid_op);
 | |
| 	set_intr_gate(7, &device_not_available);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
 | |
| #else
 | |
| 	set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
 | |
| #endif
 | |
| 	set_intr_gate(9, &coprocessor_segment_overrun);
 | |
| 	set_intr_gate(10, &invalid_TSS);
 | |
| 	set_intr_gate(11, &segment_not_present);
 | |
| 	set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
 | |
| 	set_intr_gate(13, &general_protection);
 | |
| 	set_intr_gate(15, &spurious_interrupt_bug);
 | |
| 	set_intr_gate(16, &coprocessor_error);
 | |
| 	set_intr_gate(17, &alignment_check);
 | |
| #ifdef CONFIG_X86_MCE
 | |
| 	set_intr_gate_ist(18, &machine_check, MCE_STACK);
 | |
| #endif
 | |
| 	set_intr_gate(19, &simd_coprocessor_error);
 | |
| 
 | |
| 	/* Reserve all the builtin and the syscall vector: */
 | |
| 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
 | |
| 		set_bit(i, used_vectors);
 | |
| 
 | |
| #ifdef CONFIG_IA32_EMULATION
 | |
| 	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
 | |
| 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
 | |
| 	set_bit(SYSCALL_VECTOR, used_vectors);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Should be a barrier for any external CPU state:
 | |
| 	 */
 | |
| 	cpu_init();
 | |
| 
 | |
| 	x86_init.irqs.trap_init();
 | |
| }
 |