mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 00:01:35 +00:00 
			
		
		
		
	 6c3f6e6c57
			
		
	
	
		6c3f6e6c57
		
	
	
	
	
		
			
			Add support for Toshiba Illumination. This is a set of LEDs installed on some Toshiba laptops. It is controlled through ACPI, the commands has been found through reverse engineering. It has been tested on a Toshiba Qosmio G50-122. Signed-off-by: Pierre Ducroquet <pinaraf@pinaraf.info> Signed-off-by: Matthew Garrett <mjg@redhat.com>
		
			
				
	
	
		
			1132 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1132 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | ||
|  *  toshiba_acpi.c - Toshiba Laptop ACPI Extras
 | ||
|  *
 | ||
|  *
 | ||
|  *  Copyright (C) 2002-2004 John Belmonte
 | ||
|  *  Copyright (C) 2008 Philip Langdale
 | ||
|  *  Copyright (C) 2010 Pierre Ducroquet
 | ||
|  *
 | ||
|  *  This program is free software; you can redistribute it and/or modify
 | ||
|  *  it under the terms of the GNU General Public License as published by
 | ||
|  *  the Free Software Foundation; either version 2 of the License, or
 | ||
|  *  (at your option) any later version.
 | ||
|  *
 | ||
|  *  This program is distributed in the hope that it will be useful,
 | ||
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | ||
|  *  GNU General Public License for more details.
 | ||
|  *
 | ||
|  *  You should have received a copy of the GNU General Public License
 | ||
|  *  along with this program; if not, write to the Free Software
 | ||
|  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | ||
|  *
 | ||
|  *
 | ||
|  *  The devolpment page for this driver is located at
 | ||
|  *  http://memebeam.org/toys/ToshibaAcpiDriver.
 | ||
|  *
 | ||
|  *  Credits:
 | ||
|  *	Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
 | ||
|  *		engineering the Windows drivers
 | ||
|  *	Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
 | ||
|  *	Rob Miller - TV out and hotkeys help
 | ||
|  *
 | ||
|  *
 | ||
|  *  TODO
 | ||
|  *
 | ||
|  */
 | ||
| 
 | ||
| #define TOSHIBA_ACPI_VERSION	"0.19"
 | ||
| #define PROC_INTERFACE_VERSION	1
 | ||
| 
 | ||
| #include <linux/kernel.h>
 | ||
| #include <linux/module.h>
 | ||
| #include <linux/init.h>
 | ||
| #include <linux/types.h>
 | ||
| #include <linux/proc_fs.h>
 | ||
| #include <linux/seq_file.h>
 | ||
| #include <linux/backlight.h>
 | ||
| #include <linux/platform_device.h>
 | ||
| #include <linux/rfkill.h>
 | ||
| #include <linux/input.h>
 | ||
| #include <linux/leds.h>
 | ||
| #include <linux/slab.h>
 | ||
| 
 | ||
| #include <asm/uaccess.h>
 | ||
| 
 | ||
| #include <acpi/acpi_drivers.h>
 | ||
| 
 | ||
| MODULE_AUTHOR("John Belmonte");
 | ||
| MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
 | ||
| MODULE_LICENSE("GPL");
 | ||
| 
 | ||
| #define MY_LOGPREFIX "toshiba_acpi: "
 | ||
| #define MY_ERR KERN_ERR MY_LOGPREFIX
 | ||
| #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
 | ||
| #define MY_INFO KERN_INFO MY_LOGPREFIX
 | ||
| 
 | ||
| /* Toshiba ACPI method paths */
 | ||
| #define METHOD_LCD_BRIGHTNESS	"\\_SB_.PCI0.VGA_.LCD_._BCM"
 | ||
| #define TOSH_INTERFACE_1	"\\_SB_.VALD"
 | ||
| #define TOSH_INTERFACE_2	"\\_SB_.VALZ"
 | ||
| #define METHOD_VIDEO_OUT	"\\_SB_.VALX.DSSX"
 | ||
| #define GHCI_METHOD		".GHCI"
 | ||
| 
 | ||
| /* Toshiba HCI interface definitions
 | ||
|  *
 | ||
|  * HCI is Toshiba's "Hardware Control Interface" which is supposed to
 | ||
|  * be uniform across all their models.  Ideally we would just call
 | ||
|  * dedicated ACPI methods instead of using this primitive interface.
 | ||
|  * However the ACPI methods seem to be incomplete in some areas (for
 | ||
|  * example they allow setting, but not reading, the LCD brightness value),
 | ||
|  * so this is still useful.
 | ||
|  */
 | ||
| 
 | ||
| #define HCI_WORDS			6
 | ||
| 
 | ||
| /* operations */
 | ||
| #define HCI_SET				0xff00
 | ||
| #define HCI_GET				0xfe00
 | ||
| 
 | ||
| /* return codes */
 | ||
| #define HCI_SUCCESS			0x0000
 | ||
| #define HCI_FAILURE			0x1000
 | ||
| #define HCI_NOT_SUPPORTED		0x8000
 | ||
| #define HCI_EMPTY			0x8c00
 | ||
| 
 | ||
| /* registers */
 | ||
| #define HCI_FAN				0x0004
 | ||
| #define HCI_SYSTEM_EVENT		0x0016
 | ||
| #define HCI_VIDEO_OUT			0x001c
 | ||
| #define HCI_HOTKEY_EVENT		0x001e
 | ||
| #define HCI_LCD_BRIGHTNESS		0x002a
 | ||
| #define HCI_WIRELESS			0x0056
 | ||
| 
 | ||
| /* field definitions */
 | ||
| #define HCI_LCD_BRIGHTNESS_BITS		3
 | ||
| #define HCI_LCD_BRIGHTNESS_SHIFT	(16-HCI_LCD_BRIGHTNESS_BITS)
 | ||
| #define HCI_LCD_BRIGHTNESS_LEVELS	(1 << HCI_LCD_BRIGHTNESS_BITS)
 | ||
| #define HCI_VIDEO_OUT_LCD		0x1
 | ||
| #define HCI_VIDEO_OUT_CRT		0x2
 | ||
| #define HCI_VIDEO_OUT_TV		0x4
 | ||
| #define HCI_WIRELESS_KILL_SWITCH	0x01
 | ||
| #define HCI_WIRELESS_BT_PRESENT		0x0f
 | ||
| #define HCI_WIRELESS_BT_ATTACH		0x40
 | ||
| #define HCI_WIRELESS_BT_POWER		0x80
 | ||
| 
 | ||
| static const struct acpi_device_id toshiba_device_ids[] = {
 | ||
| 	{"TOS6200", 0},
 | ||
| 	{"TOS6208", 0},
 | ||
| 	{"TOS1900", 0},
 | ||
| 	{"", 0},
 | ||
| };
 | ||
| MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
 | ||
| 
 | ||
| struct key_entry {
 | ||
| 	char type;
 | ||
| 	u16 code;
 | ||
| 	u16 keycode;
 | ||
| };
 | ||
| 
 | ||
| enum {KE_KEY, KE_END};
 | ||
| 
 | ||
| static struct key_entry toshiba_acpi_keymap[]  = {
 | ||
| 	{KE_KEY, 0x101, KEY_MUTE},
 | ||
| 	{KE_KEY, 0x102, KEY_ZOOMOUT},
 | ||
| 	{KE_KEY, 0x103, KEY_ZOOMIN},
 | ||
| 	{KE_KEY, 0x13b, KEY_COFFEE},
 | ||
| 	{KE_KEY, 0x13c, KEY_BATTERY},
 | ||
| 	{KE_KEY, 0x13d, KEY_SLEEP},
 | ||
| 	{KE_KEY, 0x13e, KEY_SUSPEND},
 | ||
| 	{KE_KEY, 0x13f, KEY_SWITCHVIDEOMODE},
 | ||
| 	{KE_KEY, 0x140, KEY_BRIGHTNESSDOWN},
 | ||
| 	{KE_KEY, 0x141, KEY_BRIGHTNESSUP},
 | ||
| 	{KE_KEY, 0x142, KEY_WLAN},
 | ||
| 	{KE_KEY, 0x143, KEY_PROG1},
 | ||
| 	{KE_KEY, 0xb05, KEY_PROG2},
 | ||
| 	{KE_KEY, 0xb06, KEY_WWW},
 | ||
| 	{KE_KEY, 0xb07, KEY_MAIL},
 | ||
| 	{KE_KEY, 0xb30, KEY_STOP},
 | ||
| 	{KE_KEY, 0xb31, KEY_PREVIOUSSONG},
 | ||
| 	{KE_KEY, 0xb32, KEY_NEXTSONG},
 | ||
| 	{KE_KEY, 0xb33, KEY_PLAYPAUSE},
 | ||
| 	{KE_KEY, 0xb5a, KEY_MEDIA},
 | ||
| 	{KE_END, 0, 0},
 | ||
| };
 | ||
| 
 | ||
| /* utility
 | ||
|  */
 | ||
| 
 | ||
| static __inline__ void _set_bit(u32 * word, u32 mask, int value)
 | ||
| {
 | ||
| 	*word = (*word & ~mask) | (mask * value);
 | ||
| }
 | ||
| 
 | ||
| /* acpi interface wrappers
 | ||
|  */
 | ||
| 
 | ||
| static int is_valid_acpi_path(const char *methodName)
 | ||
| {
 | ||
| 	acpi_handle handle;
 | ||
| 	acpi_status status;
 | ||
| 
 | ||
| 	status = acpi_get_handle(NULL, (char *)methodName, &handle);
 | ||
| 	return !ACPI_FAILURE(status);
 | ||
| }
 | ||
| 
 | ||
| static int write_acpi_int(const char *methodName, int val)
 | ||
| {
 | ||
| 	struct acpi_object_list params;
 | ||
| 	union acpi_object in_objs[1];
 | ||
| 	acpi_status status;
 | ||
| 
 | ||
| 	params.count = ARRAY_SIZE(in_objs);
 | ||
| 	params.pointer = in_objs;
 | ||
| 	in_objs[0].type = ACPI_TYPE_INTEGER;
 | ||
| 	in_objs[0].integer.value = val;
 | ||
| 
 | ||
| 	status = acpi_evaluate_object(NULL, (char *)methodName, ¶ms, NULL);
 | ||
| 	return (status == AE_OK);
 | ||
| }
 | ||
| 
 | ||
| #if 0
 | ||
| static int read_acpi_int(const char *methodName, int *pVal)
 | ||
| {
 | ||
| 	struct acpi_buffer results;
 | ||
| 	union acpi_object out_objs[1];
 | ||
| 	acpi_status status;
 | ||
| 
 | ||
| 	results.length = sizeof(out_objs);
 | ||
| 	results.pointer = out_objs;
 | ||
| 
 | ||
| 	status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
 | ||
| 	*pVal = out_objs[0].integer.value;
 | ||
| 
 | ||
| 	return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| static const char *method_hci /*= 0*/ ;
 | ||
| 
 | ||
| /* Perform a raw HCI call.  Here we don't care about input or output buffer
 | ||
|  * format.
 | ||
|  */
 | ||
| static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
 | ||
| {
 | ||
| 	struct acpi_object_list params;
 | ||
| 	union acpi_object in_objs[HCI_WORDS];
 | ||
| 	struct acpi_buffer results;
 | ||
| 	union acpi_object out_objs[HCI_WORDS + 1];
 | ||
| 	acpi_status status;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	params.count = HCI_WORDS;
 | ||
| 	params.pointer = in_objs;
 | ||
| 	for (i = 0; i < HCI_WORDS; ++i) {
 | ||
| 		in_objs[i].type = ACPI_TYPE_INTEGER;
 | ||
| 		in_objs[i].integer.value = in[i];
 | ||
| 	}
 | ||
| 
 | ||
| 	results.length = sizeof(out_objs);
 | ||
| 	results.pointer = out_objs;
 | ||
| 
 | ||
| 	status = acpi_evaluate_object(NULL, (char *)method_hci, ¶ms,
 | ||
| 				      &results);
 | ||
| 	if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
 | ||
| 		for (i = 0; i < out_objs->package.count; ++i) {
 | ||
| 			out[i] = out_objs->package.elements[i].integer.value;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return status;
 | ||
| }
 | ||
| 
 | ||
| /* common hci tasks (get or set one or two value)
 | ||
|  *
 | ||
|  * In addition to the ACPI status, the HCI system returns a result which
 | ||
|  * may be useful (such as "not supported").
 | ||
|  */
 | ||
| 
 | ||
| static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
 | ||
| {
 | ||
| 	u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
 | ||
| 	u32 out[HCI_WORDS];
 | ||
| 	acpi_status status = hci_raw(in, out);
 | ||
| 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
 | ||
| 	return status;
 | ||
| }
 | ||
| 
 | ||
| static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
 | ||
| {
 | ||
| 	u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
 | ||
| 	u32 out[HCI_WORDS];
 | ||
| 	acpi_status status = hci_raw(in, out);
 | ||
| 	*out1 = out[2];
 | ||
| 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
 | ||
| 	return status;
 | ||
| }
 | ||
| 
 | ||
| static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
 | ||
| {
 | ||
| 	u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
 | ||
| 	u32 out[HCI_WORDS];
 | ||
| 	acpi_status status = hci_raw(in, out);
 | ||
| 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
 | ||
| 	return status;
 | ||
| }
 | ||
| 
 | ||
| static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
 | ||
| {
 | ||
| 	u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
 | ||
| 	u32 out[HCI_WORDS];
 | ||
| 	acpi_status status = hci_raw(in, out);
 | ||
| 	*out1 = out[2];
 | ||
| 	*out2 = out[3];
 | ||
| 	*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
 | ||
| 	return status;
 | ||
| }
 | ||
| 
 | ||
| struct toshiba_acpi_dev {
 | ||
| 	struct platform_device *p_dev;
 | ||
| 	struct rfkill *bt_rfk;
 | ||
| 	struct input_dev *hotkey_dev;
 | ||
| 	int illumination_installed;
 | ||
| 	acpi_handle handle;
 | ||
| 
 | ||
| 	const char *bt_name;
 | ||
| 
 | ||
| 	struct mutex mutex;
 | ||
| };
 | ||
| 
 | ||
| /* Illumination support */
 | ||
| static int toshiba_illumination_available(void)
 | ||
| {
 | ||
| 	u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 };
 | ||
| 	u32 out[HCI_WORDS];
 | ||
| 	acpi_status status;
 | ||
| 
 | ||
| 	in[0] = 0xf100;
 | ||
| 	status = hci_raw(in, out);
 | ||
| 	if (ACPI_FAILURE(status)) {
 | ||
| 		printk(MY_INFO "Illumination device not available\n");
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 	in[0] = 0xf400;
 | ||
| 	status = hci_raw(in, out);
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| static void toshiba_illumination_set(struct led_classdev *cdev,
 | ||
| 				     enum led_brightness brightness)
 | ||
| {
 | ||
| 	u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 };
 | ||
| 	u32 out[HCI_WORDS];
 | ||
| 	acpi_status status;
 | ||
| 
 | ||
| 	/* First request : initialize communication. */
 | ||
| 	in[0] = 0xf100;
 | ||
| 	status = hci_raw(in, out);
 | ||
| 	if (ACPI_FAILURE(status)) {
 | ||
| 		printk(MY_INFO "Illumination device not available\n");
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (brightness) {
 | ||
| 		/* Switch the illumination on */
 | ||
| 		in[0] = 0xf400;
 | ||
| 		in[1] = 0x14e;
 | ||
| 		in[2] = 1;
 | ||
| 		status = hci_raw(in, out);
 | ||
| 		if (ACPI_FAILURE(status)) {
 | ||
| 			printk(MY_INFO "ACPI call for illumination failed.\n");
 | ||
| 			return;
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		/* Switch the illumination off */
 | ||
| 		in[0] = 0xf400;
 | ||
| 		in[1] = 0x14e;
 | ||
| 		in[2] = 0;
 | ||
| 		status = hci_raw(in, out);
 | ||
| 		if (ACPI_FAILURE(status)) {
 | ||
| 			printk(MY_INFO "ACPI call for illumination failed.\n");
 | ||
| 			return;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Last request : close communication. */
 | ||
| 	in[0] = 0xf200;
 | ||
| 	in[1] = 0;
 | ||
| 	in[2] = 0;
 | ||
| 	hci_raw(in, out);
 | ||
| }
 | ||
| 
 | ||
| static enum led_brightness toshiba_illumination_get(struct led_classdev *cdev)
 | ||
| {
 | ||
| 	u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 };
 | ||
| 	u32 out[HCI_WORDS];
 | ||
| 	acpi_status status;
 | ||
| 	enum led_brightness result;
 | ||
| 
 | ||
| 	/* First request : initialize communication. */
 | ||
| 	in[0] = 0xf100;
 | ||
| 	status = hci_raw(in, out);
 | ||
| 	if (ACPI_FAILURE(status)) {
 | ||
| 		printk(MY_INFO "Illumination device not available\n");
 | ||
| 		return LED_OFF;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Check the illumination */
 | ||
| 	in[0] = 0xf300;
 | ||
| 	in[1] = 0x14e;
 | ||
| 	status = hci_raw(in, out);
 | ||
| 	if (ACPI_FAILURE(status)) {
 | ||
| 		printk(MY_INFO "ACPI call for illumination failed.\n");
 | ||
| 		return LED_OFF;
 | ||
| 	}
 | ||
| 
 | ||
| 	result = out[2] ? LED_FULL : LED_OFF;
 | ||
| 
 | ||
| 	/* Last request : close communication. */
 | ||
| 	in[0] = 0xf200;
 | ||
| 	in[1] = 0;
 | ||
| 	in[2] = 0;
 | ||
| 	hci_raw(in, out);
 | ||
| 
 | ||
| 	return result;
 | ||
| }
 | ||
| 
 | ||
| static struct led_classdev toshiba_led = {
 | ||
| 	.name           = "toshiba::illumination",
 | ||
| 	.max_brightness = 1,
 | ||
| 	.brightness_set = toshiba_illumination_set,
 | ||
| 	.brightness_get = toshiba_illumination_get,
 | ||
| };
 | ||
| 
 | ||
| static struct toshiba_acpi_dev toshiba_acpi = {
 | ||
| 	.bt_name = "Toshiba Bluetooth",
 | ||
| };
 | ||
| 
 | ||
| /* Bluetooth rfkill handlers */
 | ||
| 
 | ||
| static u32 hci_get_bt_present(bool *present)
 | ||
| {
 | ||
| 	u32 hci_result;
 | ||
| 	u32 value, value2;
 | ||
| 
 | ||
| 	value = 0;
 | ||
| 	value2 = 0;
 | ||
| 	hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
 | ||
| 	if (hci_result == HCI_SUCCESS)
 | ||
| 		*present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
 | ||
| 
 | ||
| 	return hci_result;
 | ||
| }
 | ||
| 
 | ||
| static u32 hci_get_radio_state(bool *radio_state)
 | ||
| {
 | ||
| 	u32 hci_result;
 | ||
| 	u32 value, value2;
 | ||
| 
 | ||
| 	value = 0;
 | ||
| 	value2 = 0x0001;
 | ||
| 	hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
 | ||
| 
 | ||
| 	*radio_state = value & HCI_WIRELESS_KILL_SWITCH;
 | ||
| 	return hci_result;
 | ||
| }
 | ||
| 
 | ||
| static int bt_rfkill_set_block(void *data, bool blocked)
 | ||
| {
 | ||
| 	struct toshiba_acpi_dev *dev = data;
 | ||
| 	u32 result1, result2;
 | ||
| 	u32 value;
 | ||
| 	int err;
 | ||
| 	bool radio_state;
 | ||
| 
 | ||
| 	value = (blocked == false);
 | ||
| 
 | ||
| 	mutex_lock(&dev->mutex);
 | ||
| 	if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) {
 | ||
| 		err = -EBUSY;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (!radio_state) {
 | ||
| 		err = 0;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
 | ||
| 	hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
 | ||
| 
 | ||
| 	if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
 | ||
| 		err = -EBUSY;
 | ||
| 	else
 | ||
| 		err = 0;
 | ||
|  out:
 | ||
| 	mutex_unlock(&dev->mutex);
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| static void bt_rfkill_poll(struct rfkill *rfkill, void *data)
 | ||
| {
 | ||
| 	bool new_rfk_state;
 | ||
| 	bool value;
 | ||
| 	u32 hci_result;
 | ||
| 	struct toshiba_acpi_dev *dev = data;
 | ||
| 
 | ||
| 	mutex_lock(&dev->mutex);
 | ||
| 
 | ||
| 	hci_result = hci_get_radio_state(&value);
 | ||
| 	if (hci_result != HCI_SUCCESS) {
 | ||
| 		/* Can't do anything useful */
 | ||
| 		mutex_unlock(&dev->mutex);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	new_rfk_state = value;
 | ||
| 
 | ||
| 	mutex_unlock(&dev->mutex);
 | ||
| 
 | ||
| 	if (rfkill_set_hw_state(rfkill, !new_rfk_state))
 | ||
| 		bt_rfkill_set_block(data, true);
 | ||
| }
 | ||
| 
 | ||
| static const struct rfkill_ops toshiba_rfk_ops = {
 | ||
| 	.set_block = bt_rfkill_set_block,
 | ||
| 	.poll = bt_rfkill_poll,
 | ||
| };
 | ||
| 
 | ||
| static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
 | ||
| static struct backlight_device *toshiba_backlight_device;
 | ||
| static int force_fan;
 | ||
| static int last_key_event;
 | ||
| static int key_event_valid;
 | ||
| 
 | ||
| static int get_lcd(struct backlight_device *bd)
 | ||
| {
 | ||
| 	u32 hci_result;
 | ||
| 	u32 value;
 | ||
| 
 | ||
| 	hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
 | ||
| 	if (hci_result == HCI_SUCCESS) {
 | ||
| 		return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
 | ||
| 	} else
 | ||
| 		return -EFAULT;
 | ||
| }
 | ||
| 
 | ||
| static int lcd_proc_show(struct seq_file *m, void *v)
 | ||
| {
 | ||
| 	int value = get_lcd(NULL);
 | ||
| 
 | ||
| 	if (value >= 0) {
 | ||
| 		seq_printf(m, "brightness:              %d\n", value);
 | ||
| 		seq_printf(m, "brightness_levels:       %d\n",
 | ||
| 			     HCI_LCD_BRIGHTNESS_LEVELS);
 | ||
| 	} else {
 | ||
| 		printk(MY_ERR "Error reading LCD brightness\n");
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int lcd_proc_open(struct inode *inode, struct file *file)
 | ||
| {
 | ||
| 	return single_open(file, lcd_proc_show, NULL);
 | ||
| }
 | ||
| 
 | ||
| static int set_lcd(int value)
 | ||
| {
 | ||
| 	u32 hci_result;
 | ||
| 
 | ||
| 	value = value << HCI_LCD_BRIGHTNESS_SHIFT;
 | ||
| 	hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
 | ||
| 	if (hci_result != HCI_SUCCESS)
 | ||
| 		return -EFAULT;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int set_lcd_status(struct backlight_device *bd)
 | ||
| {
 | ||
| 	return set_lcd(bd->props.brightness);
 | ||
| }
 | ||
| 
 | ||
| static ssize_t lcd_proc_write(struct file *file, const char __user *buf,
 | ||
| 			      size_t count, loff_t *pos)
 | ||
| {
 | ||
| 	char cmd[42];
 | ||
| 	size_t len;
 | ||
| 	int value;
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	len = min(count, sizeof(cmd) - 1);
 | ||
| 	if (copy_from_user(cmd, buf, len))
 | ||
| 		return -EFAULT;
 | ||
| 	cmd[len] = '\0';
 | ||
| 
 | ||
| 	if (sscanf(cmd, " brightness : %i", &value) == 1 &&
 | ||
| 	    value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
 | ||
| 		ret = set_lcd(value);
 | ||
| 		if (ret == 0)
 | ||
| 			ret = count;
 | ||
| 	} else {
 | ||
| 		ret = -EINVAL;
 | ||
| 	}
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| static const struct file_operations lcd_proc_fops = {
 | ||
| 	.owner		= THIS_MODULE,
 | ||
| 	.open		= lcd_proc_open,
 | ||
| 	.read		= seq_read,
 | ||
| 	.llseek		= seq_lseek,
 | ||
| 	.release	= single_release,
 | ||
| 	.write		= lcd_proc_write,
 | ||
| };
 | ||
| 
 | ||
| static int video_proc_show(struct seq_file *m, void *v)
 | ||
| {
 | ||
| 	u32 hci_result;
 | ||
| 	u32 value;
 | ||
| 
 | ||
| 	hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
 | ||
| 	if (hci_result == HCI_SUCCESS) {
 | ||
| 		int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
 | ||
| 		int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
 | ||
| 		int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
 | ||
| 		seq_printf(m, "lcd_out:                 %d\n", is_lcd);
 | ||
| 		seq_printf(m, "crt_out:                 %d\n", is_crt);
 | ||
| 		seq_printf(m, "tv_out:                  %d\n", is_tv);
 | ||
| 	} else {
 | ||
| 		printk(MY_ERR "Error reading video out status\n");
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int video_proc_open(struct inode *inode, struct file *file)
 | ||
| {
 | ||
| 	return single_open(file, video_proc_show, NULL);
 | ||
| }
 | ||
| 
 | ||
| static ssize_t video_proc_write(struct file *file, const char __user *buf,
 | ||
| 				size_t count, loff_t *pos)
 | ||
| {
 | ||
| 	char *cmd, *buffer;
 | ||
| 	int value;
 | ||
| 	int remain = count;
 | ||
| 	int lcd_out = -1;
 | ||
| 	int crt_out = -1;
 | ||
| 	int tv_out = -1;
 | ||
| 	u32 hci_result;
 | ||
| 	u32 video_out;
 | ||
| 
 | ||
| 	cmd = kmalloc(count + 1, GFP_KERNEL);
 | ||
| 	if (!cmd)
 | ||
| 		return -ENOMEM;
 | ||
| 	if (copy_from_user(cmd, buf, count)) {
 | ||
| 		kfree(cmd);
 | ||
| 		return -EFAULT;
 | ||
| 	}
 | ||
| 	cmd[count] = '\0';
 | ||
| 
 | ||
| 	buffer = cmd;
 | ||
| 
 | ||
| 	/* scan expression.  Multiple expressions may be delimited with ;
 | ||
| 	 *
 | ||
| 	 *  NOTE: to keep scanning simple, invalid fields are ignored
 | ||
| 	 */
 | ||
| 	while (remain) {
 | ||
| 		if (sscanf(buffer, " lcd_out : %i", &value) == 1)
 | ||
| 			lcd_out = value & 1;
 | ||
| 		else if (sscanf(buffer, " crt_out : %i", &value) == 1)
 | ||
| 			crt_out = value & 1;
 | ||
| 		else if (sscanf(buffer, " tv_out : %i", &value) == 1)
 | ||
| 			tv_out = value & 1;
 | ||
| 		/* advance to one character past the next ; */
 | ||
| 		do {
 | ||
| 			++buffer;
 | ||
| 			--remain;
 | ||
| 		}
 | ||
| 		while (remain && *(buffer - 1) != ';');
 | ||
| 	}
 | ||
| 
 | ||
| 	kfree(cmd);
 | ||
| 
 | ||
| 	hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
 | ||
| 	if (hci_result == HCI_SUCCESS) {
 | ||
| 		unsigned int new_video_out = video_out;
 | ||
| 		if (lcd_out != -1)
 | ||
| 			_set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
 | ||
| 		if (crt_out != -1)
 | ||
| 			_set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
 | ||
| 		if (tv_out != -1)
 | ||
| 			_set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
 | ||
| 		/* To avoid unnecessary video disruption, only write the new
 | ||
| 		 * video setting if something changed. */
 | ||
| 		if (new_video_out != video_out)
 | ||
| 			write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
 | ||
| 	} else {
 | ||
| 		return -EFAULT;
 | ||
| 	}
 | ||
| 
 | ||
| 	return count;
 | ||
| }
 | ||
| 
 | ||
| static const struct file_operations video_proc_fops = {
 | ||
| 	.owner		= THIS_MODULE,
 | ||
| 	.open		= video_proc_open,
 | ||
| 	.read		= seq_read,
 | ||
| 	.llseek		= seq_lseek,
 | ||
| 	.release	= single_release,
 | ||
| 	.write		= video_proc_write,
 | ||
| };
 | ||
| 
 | ||
| static int fan_proc_show(struct seq_file *m, void *v)
 | ||
| {
 | ||
| 	u32 hci_result;
 | ||
| 	u32 value;
 | ||
| 
 | ||
| 	hci_read1(HCI_FAN, &value, &hci_result);
 | ||
| 	if (hci_result == HCI_SUCCESS) {
 | ||
| 		seq_printf(m, "running:                 %d\n", (value > 0));
 | ||
| 		seq_printf(m, "force_on:                %d\n", force_fan);
 | ||
| 	} else {
 | ||
| 		printk(MY_ERR "Error reading fan status\n");
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int fan_proc_open(struct inode *inode, struct file *file)
 | ||
| {
 | ||
| 	return single_open(file, fan_proc_show, NULL);
 | ||
| }
 | ||
| 
 | ||
| static ssize_t fan_proc_write(struct file *file, const char __user *buf,
 | ||
| 			      size_t count, loff_t *pos)
 | ||
| {
 | ||
| 	char cmd[42];
 | ||
| 	size_t len;
 | ||
| 	int value;
 | ||
| 	u32 hci_result;
 | ||
| 
 | ||
| 	len = min(count, sizeof(cmd) - 1);
 | ||
| 	if (copy_from_user(cmd, buf, len))
 | ||
| 		return -EFAULT;
 | ||
| 	cmd[len] = '\0';
 | ||
| 
 | ||
| 	if (sscanf(cmd, " force_on : %i", &value) == 1 &&
 | ||
| 	    value >= 0 && value <= 1) {
 | ||
| 		hci_write1(HCI_FAN, value, &hci_result);
 | ||
| 		if (hci_result != HCI_SUCCESS)
 | ||
| 			return -EFAULT;
 | ||
| 		else
 | ||
| 			force_fan = value;
 | ||
| 	} else {
 | ||
| 		return -EINVAL;
 | ||
| 	}
 | ||
| 
 | ||
| 	return count;
 | ||
| }
 | ||
| 
 | ||
| static const struct file_operations fan_proc_fops = {
 | ||
| 	.owner		= THIS_MODULE,
 | ||
| 	.open		= fan_proc_open,
 | ||
| 	.read		= seq_read,
 | ||
| 	.llseek		= seq_lseek,
 | ||
| 	.release	= single_release,
 | ||
| 	.write		= fan_proc_write,
 | ||
| };
 | ||
| 
 | ||
| static int keys_proc_show(struct seq_file *m, void *v)
 | ||
| {
 | ||
| 	u32 hci_result;
 | ||
| 	u32 value;
 | ||
| 
 | ||
| 	if (!key_event_valid) {
 | ||
| 		hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
 | ||
| 		if (hci_result == HCI_SUCCESS) {
 | ||
| 			key_event_valid = 1;
 | ||
| 			last_key_event = value;
 | ||
| 		} else if (hci_result == HCI_EMPTY) {
 | ||
| 			/* better luck next time */
 | ||
| 		} else if (hci_result == HCI_NOT_SUPPORTED) {
 | ||
| 			/* This is a workaround for an unresolved issue on
 | ||
| 			 * some machines where system events sporadically
 | ||
| 			 * become disabled. */
 | ||
| 			hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
 | ||
| 			printk(MY_NOTICE "Re-enabled hotkeys\n");
 | ||
| 		} else {
 | ||
| 			printk(MY_ERR "Error reading hotkey status\n");
 | ||
| 			goto end;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	seq_printf(m, "hotkey_ready:            %d\n", key_event_valid);
 | ||
| 	seq_printf(m, "hotkey:                  0x%04x\n", last_key_event);
 | ||
| end:
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int keys_proc_open(struct inode *inode, struct file *file)
 | ||
| {
 | ||
| 	return single_open(file, keys_proc_show, NULL);
 | ||
| }
 | ||
| 
 | ||
| static ssize_t keys_proc_write(struct file *file, const char __user *buf,
 | ||
| 			       size_t count, loff_t *pos)
 | ||
| {
 | ||
| 	char cmd[42];
 | ||
| 	size_t len;
 | ||
| 	int value;
 | ||
| 
 | ||
| 	len = min(count, sizeof(cmd) - 1);
 | ||
| 	if (copy_from_user(cmd, buf, len))
 | ||
| 		return -EFAULT;
 | ||
| 	cmd[len] = '\0';
 | ||
| 
 | ||
| 	if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) {
 | ||
| 		key_event_valid = 0;
 | ||
| 	} else {
 | ||
| 		return -EINVAL;
 | ||
| 	}
 | ||
| 
 | ||
| 	return count;
 | ||
| }
 | ||
| 
 | ||
| static const struct file_operations keys_proc_fops = {
 | ||
| 	.owner		= THIS_MODULE,
 | ||
| 	.open		= keys_proc_open,
 | ||
| 	.read		= seq_read,
 | ||
| 	.llseek		= seq_lseek,
 | ||
| 	.release	= single_release,
 | ||
| 	.write		= keys_proc_write,
 | ||
| };
 | ||
| 
 | ||
| static int version_proc_show(struct seq_file *m, void *v)
 | ||
| {
 | ||
| 	seq_printf(m, "driver:                  %s\n", TOSHIBA_ACPI_VERSION);
 | ||
| 	seq_printf(m, "proc_interface:          %d\n", PROC_INTERFACE_VERSION);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int version_proc_open(struct inode *inode, struct file *file)
 | ||
| {
 | ||
| 	return single_open(file, version_proc_show, PDE(inode)->data);
 | ||
| }
 | ||
| 
 | ||
| static const struct file_operations version_proc_fops = {
 | ||
| 	.owner		= THIS_MODULE,
 | ||
| 	.open		= version_proc_open,
 | ||
| 	.read		= seq_read,
 | ||
| 	.llseek		= seq_lseek,
 | ||
| 	.release	= single_release,
 | ||
| };
 | ||
| 
 | ||
| /* proc and module init
 | ||
|  */
 | ||
| 
 | ||
| #define PROC_TOSHIBA		"toshiba"
 | ||
| 
 | ||
| static void __init create_toshiba_proc_entries(void)
 | ||
| {
 | ||
| 	proc_create("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_fops);
 | ||
| 	proc_create("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_fops);
 | ||
| 	proc_create("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_fops);
 | ||
| 	proc_create("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_fops);
 | ||
| 	proc_create("version", S_IRUGO, toshiba_proc_dir, &version_proc_fops);
 | ||
| }
 | ||
| 
 | ||
| static void remove_toshiba_proc_entries(void)
 | ||
| {
 | ||
| 	remove_proc_entry("lcd", toshiba_proc_dir);
 | ||
| 	remove_proc_entry("video", toshiba_proc_dir);
 | ||
| 	remove_proc_entry("fan", toshiba_proc_dir);
 | ||
| 	remove_proc_entry("keys", toshiba_proc_dir);
 | ||
| 	remove_proc_entry("version", toshiba_proc_dir);
 | ||
| }
 | ||
| 
 | ||
| static struct backlight_ops toshiba_backlight_data = {
 | ||
|         .get_brightness = get_lcd,
 | ||
|         .update_status  = set_lcd_status,
 | ||
| };
 | ||
| 
 | ||
| static struct key_entry *toshiba_acpi_get_entry_by_scancode(unsigned int code)
 | ||
| {
 | ||
| 	struct key_entry *key;
 | ||
| 
 | ||
| 	for (key = toshiba_acpi_keymap; key->type != KE_END; key++)
 | ||
| 		if (code == key->code)
 | ||
| 			return key;
 | ||
| 
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| static struct key_entry *toshiba_acpi_get_entry_by_keycode(unsigned int code)
 | ||
| {
 | ||
| 	struct key_entry *key;
 | ||
| 
 | ||
| 	for (key = toshiba_acpi_keymap; key->type != KE_END; key++)
 | ||
| 		if (code == key->keycode && key->type == KE_KEY)
 | ||
| 			return key;
 | ||
| 
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| static int toshiba_acpi_getkeycode(struct input_dev *dev,
 | ||
| 				   unsigned int scancode, unsigned int *keycode)
 | ||
| {
 | ||
| 	struct key_entry *key = toshiba_acpi_get_entry_by_scancode(scancode);
 | ||
| 
 | ||
| 	if (key && key->type == KE_KEY) {
 | ||
| 		*keycode = key->keycode;
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	return -EINVAL;
 | ||
| }
 | ||
| 
 | ||
| static int toshiba_acpi_setkeycode(struct input_dev *dev,
 | ||
| 				   unsigned int scancode, unsigned int keycode)
 | ||
| {
 | ||
| 	struct key_entry *key;
 | ||
| 	unsigned int old_keycode;
 | ||
| 
 | ||
| 	key = toshiba_acpi_get_entry_by_scancode(scancode);
 | ||
| 	if (key && key->type == KE_KEY) {
 | ||
| 		old_keycode = key->keycode;
 | ||
| 		key->keycode = keycode;
 | ||
| 		set_bit(keycode, dev->keybit);
 | ||
| 		if (!toshiba_acpi_get_entry_by_keycode(old_keycode))
 | ||
| 			clear_bit(old_keycode, dev->keybit);
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| 
 | ||
| 	return -EINVAL;
 | ||
| }
 | ||
| 
 | ||
| static void toshiba_acpi_notify(acpi_handle handle, u32 event, void *context)
 | ||
| {
 | ||
| 	u32 hci_result, value;
 | ||
| 	struct key_entry *key;
 | ||
| 
 | ||
| 	if (event != 0x80)
 | ||
| 		return;
 | ||
| 	do {
 | ||
| 		hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
 | ||
| 		if (hci_result == HCI_SUCCESS) {
 | ||
| 			if (value == 0x100)
 | ||
| 				continue;
 | ||
| 			/* act on key press; ignore key release */
 | ||
| 			if (value & 0x80)
 | ||
| 				continue;
 | ||
| 
 | ||
| 			key = toshiba_acpi_get_entry_by_scancode
 | ||
| 				(value);
 | ||
| 			if (!key) {
 | ||
| 				printk(MY_INFO "Unknown key %x\n",
 | ||
| 				       value);
 | ||
| 				continue;
 | ||
| 			}
 | ||
| 			input_report_key(toshiba_acpi.hotkey_dev,
 | ||
| 					 key->keycode, 1);
 | ||
| 			input_sync(toshiba_acpi.hotkey_dev);
 | ||
| 			input_report_key(toshiba_acpi.hotkey_dev,
 | ||
| 					 key->keycode, 0);
 | ||
| 			input_sync(toshiba_acpi.hotkey_dev);
 | ||
| 		} else if (hci_result == HCI_NOT_SUPPORTED) {
 | ||
| 			/* This is a workaround for an unresolved issue on
 | ||
| 			 * some machines where system events sporadically
 | ||
| 			 * become disabled. */
 | ||
| 			hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
 | ||
| 			printk(MY_NOTICE "Re-enabled hotkeys\n");
 | ||
| 		}
 | ||
| 	} while (hci_result != HCI_EMPTY);
 | ||
| }
 | ||
| 
 | ||
| static int toshiba_acpi_setup_keyboard(char *device)
 | ||
| {
 | ||
| 	acpi_status status;
 | ||
| 	acpi_handle handle;
 | ||
| 	int result;
 | ||
| 	const struct key_entry *key;
 | ||
| 
 | ||
| 	status = acpi_get_handle(NULL, device, &handle);
 | ||
| 	if (ACPI_FAILURE(status)) {
 | ||
| 		printk(MY_INFO "Unable to get notification device\n");
 | ||
| 		return -ENODEV;
 | ||
| 	}
 | ||
| 
 | ||
| 	toshiba_acpi.handle = handle;
 | ||
| 
 | ||
| 	status = acpi_evaluate_object(handle, "ENAB", NULL, NULL);
 | ||
| 	if (ACPI_FAILURE(status)) {
 | ||
| 		printk(MY_INFO "Unable to enable hotkeys\n");
 | ||
| 		return -ENODEV;
 | ||
| 	}
 | ||
| 
 | ||
| 	status = acpi_install_notify_handler(handle, ACPI_DEVICE_NOTIFY,
 | ||
| 					      toshiba_acpi_notify, NULL);
 | ||
| 	if (ACPI_FAILURE(status)) {
 | ||
| 		printk(MY_INFO "Unable to install hotkey notification\n");
 | ||
| 		return -ENODEV;
 | ||
| 	}
 | ||
| 
 | ||
| 	toshiba_acpi.hotkey_dev = input_allocate_device();
 | ||
| 	if (!toshiba_acpi.hotkey_dev) {
 | ||
| 		printk(MY_INFO "Unable to register input device\n");
 | ||
| 		return -ENOMEM;
 | ||
| 	}
 | ||
| 
 | ||
| 	toshiba_acpi.hotkey_dev->name = "Toshiba input device";
 | ||
| 	toshiba_acpi.hotkey_dev->phys = device;
 | ||
| 	toshiba_acpi.hotkey_dev->id.bustype = BUS_HOST;
 | ||
| 	toshiba_acpi.hotkey_dev->getkeycode = toshiba_acpi_getkeycode;
 | ||
| 	toshiba_acpi.hotkey_dev->setkeycode = toshiba_acpi_setkeycode;
 | ||
| 
 | ||
| 	for (key = toshiba_acpi_keymap; key->type != KE_END; key++) {
 | ||
| 		set_bit(EV_KEY, toshiba_acpi.hotkey_dev->evbit);
 | ||
| 		set_bit(key->keycode, toshiba_acpi.hotkey_dev->keybit);
 | ||
| 	}
 | ||
| 
 | ||
| 	result = input_register_device(toshiba_acpi.hotkey_dev);
 | ||
| 	if (result) {
 | ||
| 		printk(MY_INFO "Unable to register input device\n");
 | ||
| 		return result;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static void toshiba_acpi_exit(void)
 | ||
| {
 | ||
| 	if (toshiba_acpi.hotkey_dev)
 | ||
| 		input_unregister_device(toshiba_acpi.hotkey_dev);
 | ||
| 
 | ||
| 	if (toshiba_acpi.bt_rfk) {
 | ||
| 		rfkill_unregister(toshiba_acpi.bt_rfk);
 | ||
| 		rfkill_destroy(toshiba_acpi.bt_rfk);
 | ||
| 	}
 | ||
| 
 | ||
| 	if (toshiba_backlight_device)
 | ||
| 		backlight_device_unregister(toshiba_backlight_device);
 | ||
| 
 | ||
| 	remove_toshiba_proc_entries();
 | ||
| 
 | ||
| 	if (toshiba_proc_dir)
 | ||
| 		remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
 | ||
| 
 | ||
| 	acpi_remove_notify_handler(toshiba_acpi.handle, ACPI_DEVICE_NOTIFY,
 | ||
| 				   toshiba_acpi_notify);
 | ||
| 
 | ||
| 	if (toshiba_acpi.illumination_installed)
 | ||
| 		led_classdev_unregister(&toshiba_led);
 | ||
| 
 | ||
| 	platform_device_unregister(toshiba_acpi.p_dev);
 | ||
| 
 | ||
| 	return;
 | ||
| }
 | ||
| 
 | ||
| static int __init toshiba_acpi_init(void)
 | ||
| {
 | ||
| 	u32 hci_result;
 | ||
| 	bool bt_present;
 | ||
| 	int ret = 0;
 | ||
| 	struct backlight_properties props;
 | ||
| 
 | ||
| 	if (acpi_disabled)
 | ||
| 		return -ENODEV;
 | ||
| 
 | ||
| 	/* simple device detection: look for HCI method */
 | ||
| 	if (is_valid_acpi_path(TOSH_INTERFACE_1 GHCI_METHOD)) {
 | ||
| 		method_hci = TOSH_INTERFACE_1 GHCI_METHOD;
 | ||
| 		if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_1))
 | ||
| 			printk(MY_INFO "Unable to activate hotkeys\n");
 | ||
| 	} else if (is_valid_acpi_path(TOSH_INTERFACE_2 GHCI_METHOD)) {
 | ||
| 		method_hci = TOSH_INTERFACE_2 GHCI_METHOD;
 | ||
| 		if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_2))
 | ||
| 			printk(MY_INFO "Unable to activate hotkeys\n");
 | ||
| 	} else
 | ||
| 		return -ENODEV;
 | ||
| 
 | ||
| 	printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
 | ||
| 	       TOSHIBA_ACPI_VERSION);
 | ||
| 	printk(MY_INFO "    HCI method: %s\n", method_hci);
 | ||
| 
 | ||
| 	mutex_init(&toshiba_acpi.mutex);
 | ||
| 
 | ||
| 	toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
 | ||
| 							      -1, NULL, 0);
 | ||
| 	if (IS_ERR(toshiba_acpi.p_dev)) {
 | ||
| 		ret = PTR_ERR(toshiba_acpi.p_dev);
 | ||
| 		printk(MY_ERR "unable to register platform device\n");
 | ||
| 		toshiba_acpi.p_dev = NULL;
 | ||
| 		toshiba_acpi_exit();
 | ||
| 		return ret;
 | ||
| 	}
 | ||
| 
 | ||
| 	force_fan = 0;
 | ||
| 	key_event_valid = 0;
 | ||
| 
 | ||
| 	/* enable event fifo */
 | ||
| 	hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
 | ||
| 
 | ||
| 	toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
 | ||
| 	if (!toshiba_proc_dir) {
 | ||
| 		toshiba_acpi_exit();
 | ||
| 		return -ENODEV;
 | ||
| 	} else {
 | ||
| 		create_toshiba_proc_entries();
 | ||
| 	}
 | ||
| 
 | ||
| 	props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
 | ||
| 	toshiba_backlight_device = backlight_device_register("toshiba",
 | ||
| 							     &toshiba_acpi.p_dev->dev,
 | ||
| 							     NULL,
 | ||
| 							     &toshiba_backlight_data,
 | ||
| 							     &props);
 | ||
|         if (IS_ERR(toshiba_backlight_device)) {
 | ||
| 		ret = PTR_ERR(toshiba_backlight_device);
 | ||
| 
 | ||
| 		printk(KERN_ERR "Could not register toshiba backlight device\n");
 | ||
| 		toshiba_backlight_device = NULL;
 | ||
| 		toshiba_acpi_exit();
 | ||
| 		return ret;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Register rfkill switch for Bluetooth */
 | ||
| 	if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
 | ||
| 		toshiba_acpi.bt_rfk = rfkill_alloc(toshiba_acpi.bt_name,
 | ||
| 						   &toshiba_acpi.p_dev->dev,
 | ||
| 						   RFKILL_TYPE_BLUETOOTH,
 | ||
| 						   &toshiba_rfk_ops,
 | ||
| 						   &toshiba_acpi);
 | ||
| 		if (!toshiba_acpi.bt_rfk) {
 | ||
| 			printk(MY_ERR "unable to allocate rfkill device\n");
 | ||
| 			toshiba_acpi_exit();
 | ||
| 			return -ENOMEM;
 | ||
| 		}
 | ||
| 
 | ||
| 		ret = rfkill_register(toshiba_acpi.bt_rfk);
 | ||
| 		if (ret) {
 | ||
| 			printk(MY_ERR "unable to register rfkill device\n");
 | ||
| 			rfkill_destroy(toshiba_acpi.bt_rfk);
 | ||
| 			toshiba_acpi_exit();
 | ||
| 			return ret;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	toshiba_acpi.illumination_installed = 0;
 | ||
| 	if (toshiba_illumination_available()) {
 | ||
| 		if (!led_classdev_register(&(toshiba_acpi.p_dev->dev),
 | ||
| 					   &toshiba_led))
 | ||
| 			toshiba_acpi.illumination_installed = 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| module_init(toshiba_acpi_init);
 | ||
| module_exit(toshiba_acpi_exit);
 |