mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-30 18:47:25 +00:00 
			
		
		
		
	 3749c51ac6
			
		
	
	
		3749c51ac6
		
	
	
	
	
		
			
			Move the max_bus_speed and cur_bus_speed into the pci_bus. Expose the values through the PCI slot driver instead of the hotplug slot driver. Update all the hotplug drivers to use the pci_bus instead of their own data structures. Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
		
			
				
	
	
		
			3012 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3012 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Compaq Hot Plug Controller Driver
 | |
|  *
 | |
|  * Copyright (C) 1995,2001 Compaq Computer Corporation
 | |
|  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
 | |
|  * Copyright (C) 2001 IBM Corp.
 | |
|  *
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or (at
 | |
|  * your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  * NON INFRINGEMENT.  See the GNU General Public License for more
 | |
|  * details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  *
 | |
|  * Send feedback to <greg@kroah.com>
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pci_hotplug.h>
 | |
| #include <linux/kthread.h>
 | |
| #include "cpqphp.h"
 | |
| 
 | |
| static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
 | |
| 			u8 behind_bridge, struct resource_lists *resources);
 | |
| static int configure_new_function(struct controller* ctrl, struct pci_func *func,
 | |
| 			u8 behind_bridge, struct resource_lists *resources);
 | |
| static void interrupt_event_handler(struct controller *ctrl);
 | |
| 
 | |
| 
 | |
| static struct task_struct *cpqhp_event_thread;
 | |
| static unsigned long pushbutton_pending;	/* = 0 */
 | |
| 
 | |
| /* delay is in jiffies to wait for */
 | |
| static void long_delay(int delay)
 | |
| {
 | |
| 	/*
 | |
| 	 * XXX(hch): if someone is bored please convert all callers
 | |
| 	 * to call msleep_interruptible directly.  They really want
 | |
| 	 * to specify timeouts in natural units and spend a lot of
 | |
| 	 * effort converting them to jiffies..
 | |
| 	 */
 | |
| 	msleep_interruptible(jiffies_to_msecs(delay));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* FIXME: The following line needs to be somewhere else... */
 | |
| #define WRONG_BUS_FREQUENCY 0x07
 | |
| static u8 handle_switch_change(u8 change, struct controller * ctrl)
 | |
| {
 | |
| 	int hp_slot;
 | |
| 	u8 rc = 0;
 | |
| 	u16 temp_word;
 | |
| 	struct pci_func *func;
 | |
| 	struct event_info *taskInfo;
 | |
| 
 | |
| 	if (!change)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Switch Change */
 | |
| 	dbg("cpqsbd:  Switch interrupt received.\n");
 | |
| 
 | |
| 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 | |
| 		if (change & (0x1L << hp_slot)) {
 | |
| 			/*
 | |
| 			 * this one changed.
 | |
| 			 */
 | |
| 			func = cpqhp_slot_find(ctrl->bus,
 | |
| 				(hp_slot + ctrl->slot_device_offset), 0);
 | |
| 
 | |
| 			/* this is the structure that tells the worker thread
 | |
| 			 * what to do
 | |
| 			 */
 | |
| 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 | |
| 			ctrl->next_event = (ctrl->next_event + 1) % 10;
 | |
| 			taskInfo->hp_slot = hp_slot;
 | |
| 
 | |
| 			rc++;
 | |
| 
 | |
| 			temp_word = ctrl->ctrl_int_comp >> 16;
 | |
| 			func->presence_save = (temp_word >> hp_slot) & 0x01;
 | |
| 			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 | |
| 
 | |
| 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
 | |
| 				/*
 | |
| 				 * Switch opened
 | |
| 				 */
 | |
| 
 | |
| 				func->switch_save = 0;
 | |
| 
 | |
| 				taskInfo->event_type = INT_SWITCH_OPEN;
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * Switch closed
 | |
| 				 */
 | |
| 
 | |
| 				func->switch_save = 0x10;
 | |
| 
 | |
| 				taskInfo->event_type = INT_SWITCH_CLOSE;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpqhp_find_slot - find the struct slot of given device
 | |
|  * @ctrl: scan lots of this controller
 | |
|  * @device: the device id to find
 | |
|  */
 | |
| static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
 | |
| {
 | |
| 	struct slot *slot = ctrl->slot;
 | |
| 
 | |
| 	while (slot && (slot->device != device))
 | |
| 		slot = slot->next;
 | |
| 
 | |
| 	return slot;
 | |
| }
 | |
| 
 | |
| 
 | |
| static u8 handle_presence_change(u16 change, struct controller * ctrl)
 | |
| {
 | |
| 	int hp_slot;
 | |
| 	u8 rc = 0;
 | |
| 	u8 temp_byte;
 | |
| 	u16 temp_word;
 | |
| 	struct pci_func *func;
 | |
| 	struct event_info *taskInfo;
 | |
| 	struct slot *p_slot;
 | |
| 
 | |
| 	if (!change)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Presence Change
 | |
| 	 */
 | |
| 	dbg("cpqsbd:  Presence/Notify input change.\n");
 | |
| 	dbg("         Changed bits are 0x%4.4x\n", change );
 | |
| 
 | |
| 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 | |
| 		if (change & (0x0101 << hp_slot)) {
 | |
| 			/*
 | |
| 			 * this one changed.
 | |
| 			 */
 | |
| 			func = cpqhp_slot_find(ctrl->bus,
 | |
| 				(hp_slot + ctrl->slot_device_offset), 0);
 | |
| 
 | |
| 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 | |
| 			ctrl->next_event = (ctrl->next_event + 1) % 10;
 | |
| 			taskInfo->hp_slot = hp_slot;
 | |
| 
 | |
| 			rc++;
 | |
| 
 | |
| 			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
 | |
| 			if (!p_slot)
 | |
| 				return 0;
 | |
| 
 | |
| 			/* If the switch closed, must be a button
 | |
| 			 * If not in button mode, nevermind
 | |
| 			 */
 | |
| 			if (func->switch_save && (ctrl->push_button == 1)) {
 | |
| 				temp_word = ctrl->ctrl_int_comp >> 16;
 | |
| 				temp_byte = (temp_word >> hp_slot) & 0x01;
 | |
| 				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
 | |
| 
 | |
| 				if (temp_byte != func->presence_save) {
 | |
| 					/*
 | |
| 					 * button Pressed (doesn't do anything)
 | |
| 					 */
 | |
| 					dbg("hp_slot %d button pressed\n", hp_slot);
 | |
| 					taskInfo->event_type = INT_BUTTON_PRESS;
 | |
| 				} else {
 | |
| 					/*
 | |
| 					 * button Released - TAKE ACTION!!!!
 | |
| 					 */
 | |
| 					dbg("hp_slot %d button released\n", hp_slot);
 | |
| 					taskInfo->event_type = INT_BUTTON_RELEASE;
 | |
| 
 | |
| 					/* Cancel if we are still blinking */
 | |
| 					if ((p_slot->state == BLINKINGON_STATE)
 | |
| 					    || (p_slot->state == BLINKINGOFF_STATE)) {
 | |
| 						taskInfo->event_type = INT_BUTTON_CANCEL;
 | |
| 						dbg("hp_slot %d button cancel\n", hp_slot);
 | |
| 					} else if ((p_slot->state == POWERON_STATE)
 | |
| 						   || (p_slot->state == POWEROFF_STATE)) {
 | |
| 						/* info(msg_button_ignore, p_slot->number); */
 | |
| 						taskInfo->event_type = INT_BUTTON_IGNORE;
 | |
| 						dbg("hp_slot %d button ignore\n", hp_slot);
 | |
| 					}
 | |
| 				}
 | |
| 			} else {
 | |
| 				/* Switch is open, assume a presence change
 | |
| 				 * Save the presence state
 | |
| 				 */
 | |
| 				temp_word = ctrl->ctrl_int_comp >> 16;
 | |
| 				func->presence_save = (temp_word >> hp_slot) & 0x01;
 | |
| 				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 | |
| 
 | |
| 				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
 | |
| 				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
 | |
| 					/* Present */
 | |
| 					taskInfo->event_type = INT_PRESENCE_ON;
 | |
| 				} else {
 | |
| 					/* Not Present */
 | |
| 					taskInfo->event_type = INT_PRESENCE_OFF;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| static u8 handle_power_fault(u8 change, struct controller * ctrl)
 | |
| {
 | |
| 	int hp_slot;
 | |
| 	u8 rc = 0;
 | |
| 	struct pci_func *func;
 | |
| 	struct event_info *taskInfo;
 | |
| 
 | |
| 	if (!change)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * power fault
 | |
| 	 */
 | |
| 
 | |
| 	info("power fault interrupt\n");
 | |
| 
 | |
| 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 | |
| 		if (change & (0x01 << hp_slot)) {
 | |
| 			/*
 | |
| 			 * this one changed.
 | |
| 			 */
 | |
| 			func = cpqhp_slot_find(ctrl->bus,
 | |
| 				(hp_slot + ctrl->slot_device_offset), 0);
 | |
| 
 | |
| 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 | |
| 			ctrl->next_event = (ctrl->next_event + 1) % 10;
 | |
| 			taskInfo->hp_slot = hp_slot;
 | |
| 
 | |
| 			rc++;
 | |
| 
 | |
| 			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
 | |
| 				/*
 | |
| 				 * power fault Cleared
 | |
| 				 */
 | |
| 				func->status = 0x00;
 | |
| 
 | |
| 				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * power fault
 | |
| 				 */
 | |
| 				taskInfo->event_type = INT_POWER_FAULT;
 | |
| 
 | |
| 				if (ctrl->rev < 4) {
 | |
| 					amber_LED_on (ctrl, hp_slot);
 | |
| 					green_LED_off (ctrl, hp_slot);
 | |
| 					set_SOGO (ctrl);
 | |
| 
 | |
| 					/* this is a fatal condition, we want
 | |
| 					 * to crash the machine to protect from
 | |
| 					 * data corruption. simulated_NMI
 | |
| 					 * shouldn't ever return */
 | |
| 					/* FIXME
 | |
| 					simulated_NMI(hp_slot, ctrl); */
 | |
| 
 | |
| 					/* The following code causes a software
 | |
| 					 * crash just in case simulated_NMI did
 | |
| 					 * return */
 | |
| 					/*FIXME
 | |
| 					panic(msg_power_fault); */
 | |
| 				} else {
 | |
| 					/* set power fault status for this board */
 | |
| 					func->status = 0xFF;
 | |
| 					info("power fault bit %x set\n", hp_slot);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * sort_by_size - sort nodes on the list by their length, smallest first.
 | |
|  * @head: list to sort
 | |
|  */
 | |
| static int sort_by_size(struct pci_resource **head)
 | |
| {
 | |
| 	struct pci_resource *current_res;
 | |
| 	struct pci_resource *next_res;
 | |
| 	int out_of_order = 1;
 | |
| 
 | |
| 	if (!(*head))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!((*head)->next))
 | |
| 		return 0;
 | |
| 
 | |
| 	while (out_of_order) {
 | |
| 		out_of_order = 0;
 | |
| 
 | |
| 		/* Special case for swapping list head */
 | |
| 		if (((*head)->next) &&
 | |
| 		    ((*head)->length > (*head)->next->length)) {
 | |
| 			out_of_order++;
 | |
| 			current_res = *head;
 | |
| 			*head = (*head)->next;
 | |
| 			current_res->next = (*head)->next;
 | |
| 			(*head)->next = current_res;
 | |
| 		}
 | |
| 
 | |
| 		current_res = *head;
 | |
| 
 | |
| 		while (current_res->next && current_res->next->next) {
 | |
| 			if (current_res->next->length > current_res->next->next->length) {
 | |
| 				out_of_order++;
 | |
| 				next_res = current_res->next;
 | |
| 				current_res->next = current_res->next->next;
 | |
| 				current_res = current_res->next;
 | |
| 				next_res->next = current_res->next;
 | |
| 				current_res->next = next_res;
 | |
| 			} else
 | |
| 				current_res = current_res->next;
 | |
| 		}
 | |
| 	}  /* End of out_of_order loop */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * sort_by_max_size - sort nodes on the list by their length, largest first.
 | |
|  * @head: list to sort
 | |
|  */
 | |
| static int sort_by_max_size(struct pci_resource **head)
 | |
| {
 | |
| 	struct pci_resource *current_res;
 | |
| 	struct pci_resource *next_res;
 | |
| 	int out_of_order = 1;
 | |
| 
 | |
| 	if (!(*head))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!((*head)->next))
 | |
| 		return 0;
 | |
| 
 | |
| 	while (out_of_order) {
 | |
| 		out_of_order = 0;
 | |
| 
 | |
| 		/* Special case for swapping list head */
 | |
| 		if (((*head)->next) &&
 | |
| 		    ((*head)->length < (*head)->next->length)) {
 | |
| 			out_of_order++;
 | |
| 			current_res = *head;
 | |
| 			*head = (*head)->next;
 | |
| 			current_res->next = (*head)->next;
 | |
| 			(*head)->next = current_res;
 | |
| 		}
 | |
| 
 | |
| 		current_res = *head;
 | |
| 
 | |
| 		while (current_res->next && current_res->next->next) {
 | |
| 			if (current_res->next->length < current_res->next->next->length) {
 | |
| 				out_of_order++;
 | |
| 				next_res = current_res->next;
 | |
| 				current_res->next = current_res->next->next;
 | |
| 				current_res = current_res->next;
 | |
| 				next_res->next = current_res->next;
 | |
| 				current_res->next = next_res;
 | |
| 			} else
 | |
| 				current_res = current_res->next;
 | |
| 		}
 | |
| 	}  /* End of out_of_order loop */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * do_pre_bridge_resource_split - find node of resources that are unused
 | |
|  * @head: new list head
 | |
|  * @orig_head: original list head
 | |
|  * @alignment: max node size (?)
 | |
|  */
 | |
| static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
 | |
| 				struct pci_resource **orig_head, u32 alignment)
 | |
| {
 | |
| 	struct pci_resource *prevnode = NULL;
 | |
| 	struct pci_resource *node;
 | |
| 	struct pci_resource *split_node;
 | |
| 	u32 rc;
 | |
| 	u32 temp_dword;
 | |
| 	dbg("do_pre_bridge_resource_split\n");
 | |
| 
 | |
| 	if (!(*head) || !(*orig_head))
 | |
| 		return NULL;
 | |
| 
 | |
| 	rc = cpqhp_resource_sort_and_combine(head);
 | |
| 
 | |
| 	if (rc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if ((*head)->base != (*orig_head)->base)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if ((*head)->length == (*orig_head)->length)
 | |
| 		return NULL;
 | |
| 
 | |
| 
 | |
| 	/* If we got here, there the bridge requires some of the resource, but
 | |
| 	 * we may be able to split some off of the front
 | |
| 	 */
 | |
| 
 | |
| 	node = *head;
 | |
| 
 | |
| 	if (node->length & (alignment -1)) {
 | |
| 		/* this one isn't an aligned length, so we'll make a new entry
 | |
| 		 * and split it up.
 | |
| 		 */
 | |
| 		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 | |
| 
 | |
| 		if (!split_node)
 | |
| 			return NULL;
 | |
| 
 | |
| 		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
 | |
| 
 | |
| 		split_node->base = node->base;
 | |
| 		split_node->length = temp_dword;
 | |
| 
 | |
| 		node->length -= temp_dword;
 | |
| 		node->base += split_node->length;
 | |
| 
 | |
| 		/* Put it in the list */
 | |
| 		*head = split_node;
 | |
| 		split_node->next = node;
 | |
| 	}
 | |
| 
 | |
| 	if (node->length < alignment)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Now unlink it */
 | |
| 	if (*head == node) {
 | |
| 		*head = node->next;
 | |
| 	} else {
 | |
| 		prevnode = *head;
 | |
| 		while (prevnode->next != node)
 | |
| 			prevnode = prevnode->next;
 | |
| 
 | |
| 		prevnode->next = node->next;
 | |
| 	}
 | |
| 	node->next = NULL;
 | |
| 
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * do_bridge_resource_split - find one node of resources that aren't in use
 | |
|  * @head: list head
 | |
|  * @alignment: max node size (?)
 | |
|  */
 | |
| static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
 | |
| {
 | |
| 	struct pci_resource *prevnode = NULL;
 | |
| 	struct pci_resource *node;
 | |
| 	u32 rc;
 | |
| 	u32 temp_dword;
 | |
| 
 | |
| 	rc = cpqhp_resource_sort_and_combine(head);
 | |
| 
 | |
| 	if (rc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	node = *head;
 | |
| 
 | |
| 	while (node->next) {
 | |
| 		prevnode = node;
 | |
| 		node = node->next;
 | |
| 		kfree(prevnode);
 | |
| 	}
 | |
| 
 | |
| 	if (node->length < alignment)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (node->base & (alignment - 1)) {
 | |
| 		/* Short circuit if adjusted size is too small */
 | |
| 		temp_dword = (node->base | (alignment-1)) + 1;
 | |
| 		if ((node->length - (temp_dword - node->base)) < alignment)
 | |
| 			goto error;
 | |
| 
 | |
| 		node->length -= (temp_dword - node->base);
 | |
| 		node->base = temp_dword;
 | |
| 	}
 | |
| 
 | |
| 	if (node->length & (alignment - 1))
 | |
| 		/* There's stuff in use after this node */
 | |
| 		goto error;
 | |
| 
 | |
| 	return node;
 | |
| error:
 | |
| 	kfree(node);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * get_io_resource - find first node of given size not in ISA aliasing window.
 | |
|  * @head: list to search
 | |
|  * @size: size of node to find, must be a power of two.
 | |
|  *
 | |
|  * Description: This function sorts the resource list by size and then returns
 | |
|  * returns the first node of "size" length that is not in the ISA aliasing
 | |
|  * window.  If it finds a node larger than "size" it will split it up.
 | |
|  */
 | |
| static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
 | |
| {
 | |
| 	struct pci_resource *prevnode;
 | |
| 	struct pci_resource *node;
 | |
| 	struct pci_resource *split_node;
 | |
| 	u32 temp_dword;
 | |
| 
 | |
| 	if (!(*head))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (cpqhp_resource_sort_and_combine(head))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (sort_by_size(head))
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (node = *head; node; node = node->next) {
 | |
| 		if (node->length < size)
 | |
| 			continue;
 | |
| 
 | |
| 		if (node->base & (size - 1)) {
 | |
| 			/* this one isn't base aligned properly
 | |
| 			 * so we'll make a new entry and split it up
 | |
| 			 */
 | |
| 			temp_dword = (node->base | (size-1)) + 1;
 | |
| 
 | |
| 			/* Short circuit if adjusted size is too small */
 | |
| 			if ((node->length - (temp_dword - node->base)) < size)
 | |
| 				continue;
 | |
| 
 | |
| 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 | |
| 
 | |
| 			if (!split_node)
 | |
| 				return NULL;
 | |
| 
 | |
| 			split_node->base = node->base;
 | |
| 			split_node->length = temp_dword - node->base;
 | |
| 			node->base = temp_dword;
 | |
| 			node->length -= split_node->length;
 | |
| 
 | |
| 			/* Put it in the list */
 | |
| 			split_node->next = node->next;
 | |
| 			node->next = split_node;
 | |
| 		} /* End of non-aligned base */
 | |
| 
 | |
| 		/* Don't need to check if too small since we already did */
 | |
| 		if (node->length > size) {
 | |
| 			/* this one is longer than we need
 | |
| 			 * so we'll make a new entry and split it up
 | |
| 			 */
 | |
| 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 | |
| 
 | |
| 			if (!split_node)
 | |
| 				return NULL;
 | |
| 
 | |
| 			split_node->base = node->base + size;
 | |
| 			split_node->length = node->length - size;
 | |
| 			node->length = size;
 | |
| 
 | |
| 			/* Put it in the list */
 | |
| 			split_node->next = node->next;
 | |
| 			node->next = split_node;
 | |
| 		}  /* End of too big on top end */
 | |
| 
 | |
| 		/* For IO make sure it's not in the ISA aliasing space */
 | |
| 		if (node->base & 0x300L)
 | |
| 			continue;
 | |
| 
 | |
| 		/* If we got here, then it is the right size
 | |
| 		 * Now take it out of the list and break
 | |
| 		 */
 | |
| 		if (*head == node) {
 | |
| 			*head = node->next;
 | |
| 		} else {
 | |
| 			prevnode = *head;
 | |
| 			while (prevnode->next != node)
 | |
| 				prevnode = prevnode->next;
 | |
| 
 | |
| 			prevnode->next = node->next;
 | |
| 		}
 | |
| 		node->next = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * get_max_resource - get largest node which has at least the given size.
 | |
|  * @head: the list to search the node in
 | |
|  * @size: the minimum size of the node to find
 | |
|  *
 | |
|  * Description: Gets the largest node that is at least "size" big from the
 | |
|  * list pointed to by head.  It aligns the node on top and bottom
 | |
|  * to "size" alignment before returning it.
 | |
|  */
 | |
| static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
 | |
| {
 | |
| 	struct pci_resource *max;
 | |
| 	struct pci_resource *temp;
 | |
| 	struct pci_resource *split_node;
 | |
| 	u32 temp_dword;
 | |
| 
 | |
| 	if (cpqhp_resource_sort_and_combine(head))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (sort_by_max_size(head))
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (max = *head; max; max = max->next) {
 | |
| 		/* If not big enough we could probably just bail,
 | |
| 		 * instead we'll continue to the next.
 | |
| 		 */
 | |
| 		if (max->length < size)
 | |
| 			continue;
 | |
| 
 | |
| 		if (max->base & (size - 1)) {
 | |
| 			/* this one isn't base aligned properly
 | |
| 			 * so we'll make a new entry and split it up
 | |
| 			 */
 | |
| 			temp_dword = (max->base | (size-1)) + 1;
 | |
| 
 | |
| 			/* Short circuit if adjusted size is too small */
 | |
| 			if ((max->length - (temp_dword - max->base)) < size)
 | |
| 				continue;
 | |
| 
 | |
| 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 | |
| 
 | |
| 			if (!split_node)
 | |
| 				return NULL;
 | |
| 
 | |
| 			split_node->base = max->base;
 | |
| 			split_node->length = temp_dword - max->base;
 | |
| 			max->base = temp_dword;
 | |
| 			max->length -= split_node->length;
 | |
| 
 | |
| 			split_node->next = max->next;
 | |
| 			max->next = split_node;
 | |
| 		}
 | |
| 
 | |
| 		if ((max->base + max->length) & (size - 1)) {
 | |
| 			/* this one isn't end aligned properly at the top
 | |
| 			 * so we'll make a new entry and split it up
 | |
| 			 */
 | |
| 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 | |
| 
 | |
| 			if (!split_node)
 | |
| 				return NULL;
 | |
| 			temp_dword = ((max->base + max->length) & ~(size - 1));
 | |
| 			split_node->base = temp_dword;
 | |
| 			split_node->length = max->length + max->base
 | |
| 					     - split_node->base;
 | |
| 			max->length -= split_node->length;
 | |
| 
 | |
| 			split_node->next = max->next;
 | |
| 			max->next = split_node;
 | |
| 		}
 | |
| 
 | |
| 		/* Make sure it didn't shrink too much when we aligned it */
 | |
| 		if (max->length < size)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Now take it out of the list */
 | |
| 		temp = *head;
 | |
| 		if (temp == max) {
 | |
| 			*head = max->next;
 | |
| 		} else {
 | |
| 			while (temp && temp->next != max) {
 | |
| 				temp = temp->next;
 | |
| 			}
 | |
| 
 | |
| 			temp->next = max->next;
 | |
| 		}
 | |
| 
 | |
| 		max->next = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return max;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * get_resource - find resource of given size and split up larger ones.
 | |
|  * @head: the list to search for resources
 | |
|  * @size: the size limit to use
 | |
|  *
 | |
|  * Description: This function sorts the resource list by size and then
 | |
|  * returns the first node of "size" length.  If it finds a node
 | |
|  * larger than "size" it will split it up.
 | |
|  *
 | |
|  * size must be a power of two.
 | |
|  */
 | |
| static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
 | |
| {
 | |
| 	struct pci_resource *prevnode;
 | |
| 	struct pci_resource *node;
 | |
| 	struct pci_resource *split_node;
 | |
| 	u32 temp_dword;
 | |
| 
 | |
| 	if (cpqhp_resource_sort_and_combine(head))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (sort_by_size(head))
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (node = *head; node; node = node->next) {
 | |
| 		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
 | |
| 		    __func__, size, node, node->base, node->length);
 | |
| 		if (node->length < size)
 | |
| 			continue;
 | |
| 
 | |
| 		if (node->base & (size - 1)) {
 | |
| 			dbg("%s: not aligned\n", __func__);
 | |
| 			/* this one isn't base aligned properly
 | |
| 			 * so we'll make a new entry and split it up
 | |
| 			 */
 | |
| 			temp_dword = (node->base | (size-1)) + 1;
 | |
| 
 | |
| 			/* Short circuit if adjusted size is too small */
 | |
| 			if ((node->length - (temp_dword - node->base)) < size)
 | |
| 				continue;
 | |
| 
 | |
| 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 | |
| 
 | |
| 			if (!split_node)
 | |
| 				return NULL;
 | |
| 
 | |
| 			split_node->base = node->base;
 | |
| 			split_node->length = temp_dword - node->base;
 | |
| 			node->base = temp_dword;
 | |
| 			node->length -= split_node->length;
 | |
| 
 | |
| 			split_node->next = node->next;
 | |
| 			node->next = split_node;
 | |
| 		} /* End of non-aligned base */
 | |
| 
 | |
| 		/* Don't need to check if too small since we already did */
 | |
| 		if (node->length > size) {
 | |
| 			dbg("%s: too big\n", __func__);
 | |
| 			/* this one is longer than we need
 | |
| 			 * so we'll make a new entry and split it up
 | |
| 			 */
 | |
| 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 | |
| 
 | |
| 			if (!split_node)
 | |
| 				return NULL;
 | |
| 
 | |
| 			split_node->base = node->base + size;
 | |
| 			split_node->length = node->length - size;
 | |
| 			node->length = size;
 | |
| 
 | |
| 			/* Put it in the list */
 | |
| 			split_node->next = node->next;
 | |
| 			node->next = split_node;
 | |
| 		}  /* End of too big on top end */
 | |
| 
 | |
| 		dbg("%s: got one!!!\n", __func__);
 | |
| 		/* If we got here, then it is the right size
 | |
| 		 * Now take it out of the list */
 | |
| 		if (*head == node) {
 | |
| 			*head = node->next;
 | |
| 		} else {
 | |
| 			prevnode = *head;
 | |
| 			while (prevnode->next != node)
 | |
| 				prevnode = prevnode->next;
 | |
| 
 | |
| 			prevnode->next = node->next;
 | |
| 		}
 | |
| 		node->next = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
 | |
|  * @head: the list to sort and clean up
 | |
|  *
 | |
|  * Description: Sorts all of the nodes in the list in ascending order by
 | |
|  * their base addresses.  Also does garbage collection by
 | |
|  * combining adjacent nodes.
 | |
|  *
 | |
|  * Returns %0 if success.
 | |
|  */
 | |
| int cpqhp_resource_sort_and_combine(struct pci_resource **head)
 | |
| {
 | |
| 	struct pci_resource *node1;
 | |
| 	struct pci_resource *node2;
 | |
| 	int out_of_order = 1;
 | |
| 
 | |
| 	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
 | |
| 
 | |
| 	if (!(*head))
 | |
| 		return 1;
 | |
| 
 | |
| 	dbg("*head->next = %p\n",(*head)->next);
 | |
| 
 | |
| 	if (!(*head)->next)
 | |
| 		return 0;	/* only one item on the list, already sorted! */
 | |
| 
 | |
| 	dbg("*head->base = 0x%x\n",(*head)->base);
 | |
| 	dbg("*head->next->base = 0x%x\n",(*head)->next->base);
 | |
| 	while (out_of_order) {
 | |
| 		out_of_order = 0;
 | |
| 
 | |
| 		/* Special case for swapping list head */
 | |
| 		if (((*head)->next) &&
 | |
| 		    ((*head)->base > (*head)->next->base)) {
 | |
| 			node1 = *head;
 | |
| 			(*head) = (*head)->next;
 | |
| 			node1->next = (*head)->next;
 | |
| 			(*head)->next = node1;
 | |
| 			out_of_order++;
 | |
| 		}
 | |
| 
 | |
| 		node1 = (*head);
 | |
| 
 | |
| 		while (node1->next && node1->next->next) {
 | |
| 			if (node1->next->base > node1->next->next->base) {
 | |
| 				out_of_order++;
 | |
| 				node2 = node1->next;
 | |
| 				node1->next = node1->next->next;
 | |
| 				node1 = node1->next;
 | |
| 				node2->next = node1->next;
 | |
| 				node1->next = node2;
 | |
| 			} else
 | |
| 				node1 = node1->next;
 | |
| 		}
 | |
| 	}  /* End of out_of_order loop */
 | |
| 
 | |
| 	node1 = *head;
 | |
| 
 | |
| 	while (node1 && node1->next) {
 | |
| 		if ((node1->base + node1->length) == node1->next->base) {
 | |
| 			/* Combine */
 | |
| 			dbg("8..\n");
 | |
| 			node1->length += node1->next->length;
 | |
| 			node2 = node1->next;
 | |
| 			node1->next = node1->next->next;
 | |
| 			kfree(node2);
 | |
| 		} else
 | |
| 			node1 = node1->next;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
 | |
| {
 | |
| 	struct controller *ctrl = data;
 | |
| 	u8 schedule_flag = 0;
 | |
| 	u8 reset;
 | |
| 	u16 misc;
 | |
| 	u32 Diff;
 | |
| 	u32 temp_dword;
 | |
| 
 | |
| 
 | |
| 	misc = readw(ctrl->hpc_reg + MISC);
 | |
| 	/*
 | |
| 	 * Check to see if it was our interrupt
 | |
| 	 */
 | |
| 	if (!(misc & 0x000C)) {
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	if (misc & 0x0004) {
 | |
| 		/*
 | |
| 		 * Serial Output interrupt Pending
 | |
| 		 */
 | |
| 
 | |
| 		/* Clear the interrupt */
 | |
| 		misc |= 0x0004;
 | |
| 		writew(misc, ctrl->hpc_reg + MISC);
 | |
| 
 | |
| 		/* Read to clear posted writes */
 | |
| 		misc = readw(ctrl->hpc_reg + MISC);
 | |
| 
 | |
| 		dbg ("%s - waking up\n", __func__);
 | |
| 		wake_up_interruptible(&ctrl->queue);
 | |
| 	}
 | |
| 
 | |
| 	if (misc & 0x0008) {
 | |
| 		/* General-interrupt-input interrupt Pending */
 | |
| 		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
 | |
| 
 | |
| 		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 | |
| 
 | |
| 		/* Clear the interrupt */
 | |
| 		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
 | |
| 
 | |
| 		/* Read it back to clear any posted writes */
 | |
| 		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 | |
| 
 | |
| 		if (!Diff)
 | |
| 			/* Clear all interrupts */
 | |
| 			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
 | |
| 
 | |
| 		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
 | |
| 		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
 | |
| 		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
 | |
| 	}
 | |
| 
 | |
| 	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 | |
| 	if (reset & 0x40) {
 | |
| 		/* Bus reset has completed */
 | |
| 		reset &= 0xCF;
 | |
| 		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
 | |
| 		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 | |
| 		wake_up_interruptible(&ctrl->queue);
 | |
| 	}
 | |
| 
 | |
| 	if (schedule_flag) {
 | |
| 		wake_up_process(cpqhp_event_thread);
 | |
| 		dbg("Waking even thread");
 | |
| 	}
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
 | |
|  * @busnumber: bus where new node is to be located
 | |
|  *
 | |
|  * Returns pointer to the new node or %NULL if unsuccessful.
 | |
|  */
 | |
| struct pci_func *cpqhp_slot_create(u8 busnumber)
 | |
| {
 | |
| 	struct pci_func *new_slot;
 | |
| 	struct pci_func *next;
 | |
| 
 | |
| 	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
 | |
| 	if (new_slot == NULL)
 | |
| 		return new_slot;
 | |
| 
 | |
| 	new_slot->next = NULL;
 | |
| 	new_slot->configured = 1;
 | |
| 
 | |
| 	if (cpqhp_slot_list[busnumber] == NULL) {
 | |
| 		cpqhp_slot_list[busnumber] = new_slot;
 | |
| 	} else {
 | |
| 		next = cpqhp_slot_list[busnumber];
 | |
| 		while (next->next != NULL)
 | |
| 			next = next->next;
 | |
| 		next->next = new_slot;
 | |
| 	}
 | |
| 	return new_slot;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * slot_remove - Removes a node from the linked list of slots.
 | |
|  * @old_slot: slot to remove
 | |
|  *
 | |
|  * Returns %0 if successful, !0 otherwise.
 | |
|  */
 | |
| static int slot_remove(struct pci_func * old_slot)
 | |
| {
 | |
| 	struct pci_func *next;
 | |
| 
 | |
| 	if (old_slot == NULL)
 | |
| 		return 1;
 | |
| 
 | |
| 	next = cpqhp_slot_list[old_slot->bus];
 | |
| 	if (next == NULL)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (next == old_slot) {
 | |
| 		cpqhp_slot_list[old_slot->bus] = old_slot->next;
 | |
| 		cpqhp_destroy_board_resources(old_slot);
 | |
| 		kfree(old_slot);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	while ((next->next != old_slot) && (next->next != NULL))
 | |
| 		next = next->next;
 | |
| 
 | |
| 	if (next->next == old_slot) {
 | |
| 		next->next = old_slot->next;
 | |
| 		cpqhp_destroy_board_resources(old_slot);
 | |
| 		kfree(old_slot);
 | |
| 		return 0;
 | |
| 	} else
 | |
| 		return 2;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * bridge_slot_remove - Removes a node from the linked list of slots.
 | |
|  * @bridge: bridge to remove
 | |
|  *
 | |
|  * Returns %0 if successful, !0 otherwise.
 | |
|  */
 | |
| static int bridge_slot_remove(struct pci_func *bridge)
 | |
| {
 | |
| 	u8 subordinateBus, secondaryBus;
 | |
| 	u8 tempBus;
 | |
| 	struct pci_func *next;
 | |
| 
 | |
| 	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
 | |
| 	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
 | |
| 
 | |
| 	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
 | |
| 		next = cpqhp_slot_list[tempBus];
 | |
| 
 | |
| 		while (!slot_remove(next))
 | |
| 			next = cpqhp_slot_list[tempBus];
 | |
| 	}
 | |
| 
 | |
| 	next = cpqhp_slot_list[bridge->bus];
 | |
| 
 | |
| 	if (next == NULL)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (next == bridge) {
 | |
| 		cpqhp_slot_list[bridge->bus] = bridge->next;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	while ((next->next != bridge) && (next->next != NULL))
 | |
| 		next = next->next;
 | |
| 
 | |
| 	if (next->next != bridge)
 | |
| 		return 2;
 | |
| 	next->next = bridge->next;
 | |
| out:
 | |
| 	kfree(bridge);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
 | |
|  * @bus: bus to find
 | |
|  * @device: device to find
 | |
|  * @index: is %0 for first function found, %1 for the second...
 | |
|  *
 | |
|  * Returns pointer to the node if successful, %NULL otherwise.
 | |
|  */
 | |
| struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
 | |
| {
 | |
| 	int found = -1;
 | |
| 	struct pci_func *func;
 | |
| 
 | |
| 	func = cpqhp_slot_list[bus];
 | |
| 
 | |
| 	if ((func == NULL) || ((func->device == device) && (index == 0)))
 | |
| 		return func;
 | |
| 
 | |
| 	if (func->device == device)
 | |
| 		found++;
 | |
| 
 | |
| 	while (func->next != NULL) {
 | |
| 		func = func->next;
 | |
| 
 | |
| 		if (func->device == device)
 | |
| 			found++;
 | |
| 
 | |
| 		if (found == index)
 | |
| 			return func;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* DJZ: I don't think is_bridge will work as is.
 | |
|  * FIXME */
 | |
| static int is_bridge(struct pci_func * func)
 | |
| {
 | |
| 	/* Check the header type */
 | |
| 	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
 | |
|  * @ctrl: controller to change frequency/mode for.
 | |
|  * @adapter_speed: the speed of the adapter we want to match.
 | |
|  * @hp_slot: the slot number where the adapter is installed.
 | |
|  *
 | |
|  * Returns %0 if we successfully change frequency and/or mode to match the
 | |
|  * adapter speed.
 | |
|  */
 | |
| static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
 | |
| {
 | |
| 	struct slot *slot;
 | |
| 	struct pci_bus *bus = ctrl->pci_bus;
 | |
| 	u8 reg;
 | |
| 	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
 | |
| 	u16 reg16;
 | |
| 	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
 | |
| 
 | |
| 	if (bus->cur_bus_speed == adapter_speed)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* We don't allow freq/mode changes if we find another adapter running
 | |
| 	 * in another slot on this controller
 | |
| 	 */
 | |
| 	for(slot = ctrl->slot; slot; slot = slot->next) {
 | |
| 		if (slot->device == (hp_slot + ctrl->slot_device_offset))
 | |
| 			continue;
 | |
| 		if (!slot->hotplug_slot || !slot->hotplug_slot->info)
 | |
| 			continue;
 | |
| 		if (slot->hotplug_slot->info->adapter_status == 0)
 | |
| 			continue;
 | |
| 		/* If another adapter is running on the same segment but at a
 | |
| 		 * lower speed/mode, we allow the new adapter to function at
 | |
| 		 * this rate if supported
 | |
| 		 */
 | |
| 		if (bus->cur_bus_speed < adapter_speed)
 | |
| 			return 0;
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* If the controller doesn't support freq/mode changes and the
 | |
| 	 * controller is running at a higher mode, we bail
 | |
| 	 */
 | |
| 	if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* But we allow the adapter to run at a lower rate if possible */
 | |
| 	if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* We try to set the max speed supported by both the adapter and
 | |
| 	 * controller
 | |
| 	 */
 | |
| 	if (bus->max_bus_speed < adapter_speed) {
 | |
| 		if (bus->cur_bus_speed == bus->max_bus_speed)
 | |
| 			return 0;
 | |
| 		adapter_speed = bus->max_bus_speed;
 | |
| 	}
 | |
| 
 | |
| 	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
 | |
| 	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
 | |
| 
 | |
| 	set_SOGO(ctrl);
 | |
| 	wait_for_ctrl_irq(ctrl);
 | |
| 
 | |
| 	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
 | |
| 		reg = 0xF5;
 | |
| 	else
 | |
| 		reg = 0xF4;
 | |
| 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
 | |
| 
 | |
| 	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
 | |
| 	reg16 &= ~0x000F;
 | |
| 	switch(adapter_speed) {
 | |
| 		case(PCI_SPEED_133MHz_PCIX):
 | |
| 			reg = 0x75;
 | |
| 			reg16 |= 0xB;
 | |
| 			break;
 | |
| 		case(PCI_SPEED_100MHz_PCIX):
 | |
| 			reg = 0x74;
 | |
| 			reg16 |= 0xA;
 | |
| 			break;
 | |
| 		case(PCI_SPEED_66MHz_PCIX):
 | |
| 			reg = 0x73;
 | |
| 			reg16 |= 0x9;
 | |
| 			break;
 | |
| 		case(PCI_SPEED_66MHz):
 | |
| 			reg = 0x73;
 | |
| 			reg16 |= 0x1;
 | |
| 			break;
 | |
| 		default: /* 33MHz PCI 2.2 */
 | |
| 			reg = 0x71;
 | |
| 			break;
 | |
| 
 | |
| 	}
 | |
| 	reg16 |= 0xB << 12;
 | |
| 	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
 | |
| 
 | |
| 	mdelay(5);
 | |
| 
 | |
| 	/* Reenable interrupts */
 | |
| 	writel(0, ctrl->hpc_reg + INT_MASK);
 | |
| 
 | |
| 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
 | |
| 
 | |
| 	/* Restart state machine */
 | |
| 	reg = ~0xF;
 | |
| 	pci_read_config_byte(ctrl->pci_dev, 0x43, ®);
 | |
| 	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
 | |
| 
 | |
| 	/* Only if mode change...*/
 | |
| 	if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
 | |
| 		((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 
 | |
| 			set_SOGO(ctrl);
 | |
| 
 | |
| 	wait_for_ctrl_irq(ctrl);
 | |
| 	mdelay(1100);
 | |
| 
 | |
| 	/* Restore LED/Slot state */
 | |
| 	writel(leds, ctrl->hpc_reg + LED_CONTROL);
 | |
| 	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
 | |
| 
 | |
| 	set_SOGO(ctrl);
 | |
| 	wait_for_ctrl_irq(ctrl);
 | |
| 
 | |
| 	bus->cur_bus_speed = adapter_speed;
 | |
| 	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
 | |
| 
 | |
| 	info("Successfully changed frequency/mode for adapter in slot %d\n",
 | |
| 			slot->number);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* the following routines constitute the bulk of the
 | |
|  * hotplug controller logic
 | |
|  */
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * board_replaced - Called after a board has been replaced in the system.
 | |
|  * @func: PCI device/function information
 | |
|  * @ctrl: hotplug controller
 | |
|  *
 | |
|  * This is only used if we don't have resources for hot add.
 | |
|  * Turns power on for the board.
 | |
|  * Checks to see if board is the same.
 | |
|  * If board is same, reconfigures it.
 | |
|  * If board isn't same, turns it back off.
 | |
|  */
 | |
| static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
 | |
| {
 | |
| 	struct pci_bus *bus = ctrl->pci_bus;
 | |
| 	u8 hp_slot;
 | |
| 	u8 temp_byte;
 | |
| 	u8 adapter_speed;
 | |
| 	u32 rc = 0;
 | |
| 
 | |
| 	hp_slot = func->device - ctrl->slot_device_offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * The switch is open.
 | |
| 	 */
 | |
| 	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
 | |
| 		rc = INTERLOCK_OPEN;
 | |
| 	/*
 | |
| 	 * The board is already on
 | |
| 	 */
 | |
| 	else if (is_slot_enabled (ctrl, hp_slot))
 | |
| 		rc = CARD_FUNCTIONING;
 | |
| 	else {
 | |
| 		mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 		/* turn on board without attaching to the bus */
 | |
| 		enable_slot_power (ctrl, hp_slot);
 | |
| 
 | |
| 		set_SOGO(ctrl);
 | |
| 
 | |
| 		/* Wait for SOBS to be unset */
 | |
| 		wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 		/* Change bits in slot power register to force another shift out
 | |
| 		 * NOTE: this is to work around the timer bug */
 | |
| 		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
 | |
| 		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
 | |
| 		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
 | |
| 
 | |
| 		set_SOGO(ctrl);
 | |
| 
 | |
| 		/* Wait for SOBS to be unset */
 | |
| 		wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 		adapter_speed = get_adapter_speed(ctrl, hp_slot);
 | |
| 		if (bus->cur_bus_speed != adapter_speed)
 | |
| 			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
 | |
| 				rc = WRONG_BUS_FREQUENCY;
 | |
| 
 | |
| 		/* turn off board without attaching to the bus */
 | |
| 		disable_slot_power (ctrl, hp_slot);
 | |
| 
 | |
| 		set_SOGO(ctrl);
 | |
| 
 | |
| 		/* Wait for SOBS to be unset */
 | |
| 		wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 		mutex_unlock(&ctrl->crit_sect);
 | |
| 
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 		slot_enable (ctrl, hp_slot);
 | |
| 		green_LED_blink (ctrl, hp_slot);
 | |
| 
 | |
| 		amber_LED_off (ctrl, hp_slot);
 | |
| 
 | |
| 		set_SOGO(ctrl);
 | |
| 
 | |
| 		/* Wait for SOBS to be unset */
 | |
| 		wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 		mutex_unlock(&ctrl->crit_sect);
 | |
| 
 | |
| 		/* Wait for ~1 second because of hot plug spec */
 | |
| 		long_delay(1*HZ);
 | |
| 
 | |
| 		/* Check for a power fault */
 | |
| 		if (func->status == 0xFF) {
 | |
| 			/* power fault occurred, but it was benign */
 | |
| 			rc = POWER_FAILURE;
 | |
| 			func->status = 0;
 | |
| 		} else
 | |
| 			rc = cpqhp_valid_replace(ctrl, func);
 | |
| 
 | |
| 		if (!rc) {
 | |
| 			/* It must be the same board */
 | |
| 
 | |
| 			rc = cpqhp_configure_board(ctrl, func);
 | |
| 
 | |
| 			/* If configuration fails, turn it off
 | |
| 			 * Get slot won't work for devices behind
 | |
| 			 * bridges, but in this case it will always be
 | |
| 			 * called for the "base" bus/dev/func of an
 | |
| 			 * adapter.
 | |
| 			 */
 | |
| 
 | |
| 			mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 			amber_LED_on (ctrl, hp_slot);
 | |
| 			green_LED_off (ctrl, hp_slot);
 | |
| 			slot_disable (ctrl, hp_slot);
 | |
| 
 | |
| 			set_SOGO(ctrl);
 | |
| 
 | |
| 			/* Wait for SOBS to be unset */
 | |
| 			wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 			mutex_unlock(&ctrl->crit_sect);
 | |
| 
 | |
| 			if (rc)
 | |
| 				return rc;
 | |
| 			else
 | |
| 				return 1;
 | |
| 
 | |
| 		} else {
 | |
| 			/* Something is wrong
 | |
| 
 | |
| 			 * Get slot won't work for devices behind bridges, but
 | |
| 			 * in this case it will always be called for the "base"
 | |
| 			 * bus/dev/func of an adapter.
 | |
| 			 */
 | |
| 
 | |
| 			mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 			amber_LED_on (ctrl, hp_slot);
 | |
| 			green_LED_off (ctrl, hp_slot);
 | |
| 			slot_disable (ctrl, hp_slot);
 | |
| 
 | |
| 			set_SOGO(ctrl);
 | |
| 
 | |
| 			/* Wait for SOBS to be unset */
 | |
| 			wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 			mutex_unlock(&ctrl->crit_sect);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	return rc;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * board_added - Called after a board has been added to the system.
 | |
|  * @func: PCI device/function info
 | |
|  * @ctrl: hotplug controller
 | |
|  *
 | |
|  * Turns power on for the board.
 | |
|  * Configures board.
 | |
|  */
 | |
| static u32 board_added(struct pci_func *func, struct controller *ctrl)
 | |
| {
 | |
| 	u8 hp_slot;
 | |
| 	u8 temp_byte;
 | |
| 	u8 adapter_speed;
 | |
| 	int index;
 | |
| 	u32 temp_register = 0xFFFFFFFF;
 | |
| 	u32 rc = 0;
 | |
| 	struct pci_func *new_slot = NULL;
 | |
| 	struct pci_bus *bus = ctrl->pci_bus;
 | |
| 	struct slot *p_slot;
 | |
| 	struct resource_lists res_lists;
 | |
| 
 | |
| 	hp_slot = func->device - ctrl->slot_device_offset;
 | |
| 	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
 | |
| 	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
 | |
| 
 | |
| 	mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 	/* turn on board without attaching to the bus */
 | |
| 	enable_slot_power(ctrl, hp_slot);
 | |
| 
 | |
| 	set_SOGO(ctrl);
 | |
| 
 | |
| 	/* Wait for SOBS to be unset */
 | |
| 	wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 	/* Change bits in slot power register to force another shift out
 | |
| 	 * NOTE: this is to work around the timer bug
 | |
| 	 */
 | |
| 	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
 | |
| 	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
 | |
| 	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
 | |
| 
 | |
| 	set_SOGO(ctrl);
 | |
| 
 | |
| 	/* Wait for SOBS to be unset */
 | |
| 	wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 	adapter_speed = get_adapter_speed(ctrl, hp_slot);
 | |
| 	if (bus->cur_bus_speed != adapter_speed)
 | |
| 		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
 | |
| 			rc = WRONG_BUS_FREQUENCY;
 | |
| 
 | |
| 	/* turn off board without attaching to the bus */
 | |
| 	disable_slot_power (ctrl, hp_slot);
 | |
| 
 | |
| 	set_SOGO(ctrl);
 | |
| 
 | |
| 	/* Wait for SOBS to be unset */
 | |
| 	wait_for_ctrl_irq(ctrl);
 | |
| 
 | |
| 	mutex_unlock(&ctrl->crit_sect);
 | |
| 
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
 | |
| 
 | |
| 	/* turn on board and blink green LED */
 | |
| 
 | |
| 	dbg("%s: before down\n", __func__);
 | |
| 	mutex_lock(&ctrl->crit_sect);
 | |
| 	dbg("%s: after down\n", __func__);
 | |
| 
 | |
| 	dbg("%s: before slot_enable\n", __func__);
 | |
| 	slot_enable (ctrl, hp_slot);
 | |
| 
 | |
| 	dbg("%s: before green_LED_blink\n", __func__);
 | |
| 	green_LED_blink (ctrl, hp_slot);
 | |
| 
 | |
| 	dbg("%s: before amber_LED_blink\n", __func__);
 | |
| 	amber_LED_off (ctrl, hp_slot);
 | |
| 
 | |
| 	dbg("%s: before set_SOGO\n", __func__);
 | |
| 	set_SOGO(ctrl);
 | |
| 
 | |
| 	/* Wait for SOBS to be unset */
 | |
| 	dbg("%s: before wait_for_ctrl_irq\n", __func__);
 | |
| 	wait_for_ctrl_irq (ctrl);
 | |
| 	dbg("%s: after wait_for_ctrl_irq\n", __func__);
 | |
| 
 | |
| 	dbg("%s: before up\n", __func__);
 | |
| 	mutex_unlock(&ctrl->crit_sect);
 | |
| 	dbg("%s: after up\n", __func__);
 | |
| 
 | |
| 	/* Wait for ~1 second because of hot plug spec */
 | |
| 	dbg("%s: before long_delay\n", __func__);
 | |
| 	long_delay(1*HZ);
 | |
| 	dbg("%s: after long_delay\n", __func__);
 | |
| 
 | |
| 	dbg("%s: func status = %x\n", __func__, func->status);
 | |
| 	/* Check for a power fault */
 | |
| 	if (func->status == 0xFF) {
 | |
| 		/* power fault occurred, but it was benign */
 | |
| 		temp_register = 0xFFFFFFFF;
 | |
| 		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
 | |
| 		rc = POWER_FAILURE;
 | |
| 		func->status = 0;
 | |
| 	} else {
 | |
| 		/* Get vendor/device ID u32 */
 | |
| 		ctrl->pci_bus->number = func->bus;
 | |
| 		rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
 | |
| 		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
 | |
| 		dbg("%s: temp_register is %x\n", __func__, temp_register);
 | |
| 
 | |
| 		if (rc != 0) {
 | |
| 			/* Something's wrong here */
 | |
| 			temp_register = 0xFFFFFFFF;
 | |
| 			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
 | |
| 		}
 | |
| 		/* Preset return code.  It will be changed later if things go okay. */
 | |
| 		rc = NO_ADAPTER_PRESENT;
 | |
| 	}
 | |
| 
 | |
| 	/* All F's is an empty slot or an invalid board */
 | |
| 	if (temp_register != 0xFFFFFFFF) {
 | |
| 		res_lists.io_head = ctrl->io_head;
 | |
| 		res_lists.mem_head = ctrl->mem_head;
 | |
| 		res_lists.p_mem_head = ctrl->p_mem_head;
 | |
| 		res_lists.bus_head = ctrl->bus_head;
 | |
| 		res_lists.irqs = NULL;
 | |
| 
 | |
| 		rc = configure_new_device(ctrl, func, 0, &res_lists);
 | |
| 
 | |
| 		dbg("%s: back from configure_new_device\n", __func__);
 | |
| 		ctrl->io_head = res_lists.io_head;
 | |
| 		ctrl->mem_head = res_lists.mem_head;
 | |
| 		ctrl->p_mem_head = res_lists.p_mem_head;
 | |
| 		ctrl->bus_head = res_lists.bus_head;
 | |
| 
 | |
| 		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
 | |
| 		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
 | |
| 		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
 | |
| 		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
 | |
| 
 | |
| 		if (rc) {
 | |
| 			mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 			amber_LED_on (ctrl, hp_slot);
 | |
| 			green_LED_off (ctrl, hp_slot);
 | |
| 			slot_disable (ctrl, hp_slot);
 | |
| 
 | |
| 			set_SOGO(ctrl);
 | |
| 
 | |
| 			/* Wait for SOBS to be unset */
 | |
| 			wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 			mutex_unlock(&ctrl->crit_sect);
 | |
| 			return rc;
 | |
| 		} else {
 | |
| 			cpqhp_save_slot_config(ctrl, func);
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		func->status = 0;
 | |
| 		func->switch_save = 0x10;
 | |
| 		func->is_a_board = 0x01;
 | |
| 
 | |
| 		/* next, we will instantiate the linux pci_dev structures (with
 | |
| 		 * appropriate driver notification, if already present) */
 | |
| 		dbg("%s: configure linux pci_dev structure\n", __func__);
 | |
| 		index = 0;
 | |
| 		do {
 | |
| 			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
 | |
| 			if (new_slot && !new_slot->pci_dev)
 | |
| 				cpqhp_configure_device(ctrl, new_slot);
 | |
| 		} while (new_slot);
 | |
| 
 | |
| 		mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 		green_LED_on (ctrl, hp_slot);
 | |
| 
 | |
| 		set_SOGO(ctrl);
 | |
| 
 | |
| 		/* Wait for SOBS to be unset */
 | |
| 		wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 		mutex_unlock(&ctrl->crit_sect);
 | |
| 	} else {
 | |
| 		mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 		amber_LED_on (ctrl, hp_slot);
 | |
| 		green_LED_off (ctrl, hp_slot);
 | |
| 		slot_disable (ctrl, hp_slot);
 | |
| 
 | |
| 		set_SOGO(ctrl);
 | |
| 
 | |
| 		/* Wait for SOBS to be unset */
 | |
| 		wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 		mutex_unlock(&ctrl->crit_sect);
 | |
| 
 | |
| 		return rc;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * remove_board - Turns off slot and LEDs
 | |
|  * @func: PCI device/function info
 | |
|  * @replace_flag: whether replacing or adding a new device
 | |
|  * @ctrl: target controller
 | |
|  */
 | |
| static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
 | |
| {
 | |
| 	int index;
 | |
| 	u8 skip = 0;
 | |
| 	u8 device;
 | |
| 	u8 hp_slot;
 | |
| 	u8 temp_byte;
 | |
| 	u32 rc;
 | |
| 	struct resource_lists res_lists;
 | |
| 	struct pci_func *temp_func;
 | |
| 
 | |
| 	if (cpqhp_unconfigure_device(func))
 | |
| 		return 1;
 | |
| 
 | |
| 	device = func->device;
 | |
| 
 | |
| 	hp_slot = func->device - ctrl->slot_device_offset;
 | |
| 	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
 | |
| 
 | |
| 	/* When we get here, it is safe to change base address registers.
 | |
| 	 * We will attempt to save the base address register lengths */
 | |
| 	if (replace_flag || !ctrl->add_support)
 | |
| 		rc = cpqhp_save_base_addr_length(ctrl, func);
 | |
| 	else if (!func->bus_head && !func->mem_head &&
 | |
| 		 !func->p_mem_head && !func->io_head) {
 | |
| 		/* Here we check to see if we've saved any of the board's
 | |
| 		 * resources already.  If so, we'll skip the attempt to
 | |
| 		 * determine what's being used. */
 | |
| 		index = 0;
 | |
| 		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
 | |
| 		while (temp_func) {
 | |
| 			if (temp_func->bus_head || temp_func->mem_head
 | |
| 			    || temp_func->p_mem_head || temp_func->io_head) {
 | |
| 				skip = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
 | |
| 		}
 | |
| 
 | |
| 		if (!skip)
 | |
| 			rc = cpqhp_save_used_resources(ctrl, func);
 | |
| 	}
 | |
| 	/* Change status to shutdown */
 | |
| 	if (func->is_a_board)
 | |
| 		func->status = 0x01;
 | |
| 	func->configured = 0;
 | |
| 
 | |
| 	mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 	green_LED_off (ctrl, hp_slot);
 | |
| 	slot_disable (ctrl, hp_slot);
 | |
| 
 | |
| 	set_SOGO(ctrl);
 | |
| 
 | |
| 	/* turn off SERR for slot */
 | |
| 	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
 | |
| 	temp_byte &= ~(0x01 << hp_slot);
 | |
| 	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
 | |
| 
 | |
| 	/* Wait for SOBS to be unset */
 | |
| 	wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 	mutex_unlock(&ctrl->crit_sect);
 | |
| 
 | |
| 	if (!replace_flag && ctrl->add_support) {
 | |
| 		while (func) {
 | |
| 			res_lists.io_head = ctrl->io_head;
 | |
| 			res_lists.mem_head = ctrl->mem_head;
 | |
| 			res_lists.p_mem_head = ctrl->p_mem_head;
 | |
| 			res_lists.bus_head = ctrl->bus_head;
 | |
| 
 | |
| 			cpqhp_return_board_resources(func, &res_lists);
 | |
| 
 | |
| 			ctrl->io_head = res_lists.io_head;
 | |
| 			ctrl->mem_head = res_lists.mem_head;
 | |
| 			ctrl->p_mem_head = res_lists.p_mem_head;
 | |
| 			ctrl->bus_head = res_lists.bus_head;
 | |
| 
 | |
| 			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
 | |
| 			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
 | |
| 			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
 | |
| 			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
 | |
| 
 | |
| 			if (is_bridge(func)) {
 | |
| 				bridge_slot_remove(func);
 | |
| 			} else
 | |
| 				slot_remove(func);
 | |
| 
 | |
| 			func = cpqhp_slot_find(ctrl->bus, device, 0);
 | |
| 		}
 | |
| 
 | |
| 		/* Setup slot structure with entry for empty slot */
 | |
| 		func = cpqhp_slot_create(ctrl->bus);
 | |
| 
 | |
| 		if (func == NULL)
 | |
| 			return 1;
 | |
| 
 | |
| 		func->bus = ctrl->bus;
 | |
| 		func->device = device;
 | |
| 		func->function = 0;
 | |
| 		func->configured = 0;
 | |
| 		func->switch_save = 0x10;
 | |
| 		func->is_a_board = 0;
 | |
| 		func->p_task_event = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pushbutton_helper_thread(unsigned long data)
 | |
| {
 | |
| 	pushbutton_pending = data;
 | |
| 	wake_up_process(cpqhp_event_thread);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* this is the main worker thread */
 | |
| static int event_thread(void* data)
 | |
| {
 | |
| 	struct controller *ctrl;
 | |
| 
 | |
| 	while (1) {
 | |
| 		dbg("!!!!event_thread sleeping\n");
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		schedule();
 | |
| 
 | |
| 		if (kthread_should_stop())
 | |
| 			break;
 | |
| 		/* Do stuff here */
 | |
| 		if (pushbutton_pending)
 | |
| 			cpqhp_pushbutton_thread(pushbutton_pending);
 | |
| 		else
 | |
| 			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
 | |
| 				interrupt_event_handler(ctrl);
 | |
| 	}
 | |
| 	dbg("event_thread signals exit\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cpqhp_event_start_thread(void)
 | |
| {
 | |
| 	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
 | |
| 	if (IS_ERR(cpqhp_event_thread)) {
 | |
| 		err ("Can't start up our event thread\n");
 | |
| 		return PTR_ERR(cpqhp_event_thread);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void cpqhp_event_stop_thread(void)
 | |
| {
 | |
| 	kthread_stop(cpqhp_event_thread);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int update_slot_info(struct controller *ctrl, struct slot *slot)
 | |
| {
 | |
| 	struct hotplug_slot_info *info;
 | |
| 	int result;
 | |
| 
 | |
| 	info = kmalloc(sizeof(*info), GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	info->power_status = get_slot_enabled(ctrl, slot);
 | |
| 	info->attention_status = cpq_get_attention_status(ctrl, slot);
 | |
| 	info->latch_status = cpq_get_latch_status(ctrl, slot);
 | |
| 	info->adapter_status = get_presence_status(ctrl, slot);
 | |
| 	result = pci_hp_change_slot_info(slot->hotplug_slot, info);
 | |
| 	kfree (info);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static void interrupt_event_handler(struct controller *ctrl)
 | |
| {
 | |
| 	int loop = 0;
 | |
| 	int change = 1;
 | |
| 	struct pci_func *func;
 | |
| 	u8 hp_slot;
 | |
| 	struct slot *p_slot;
 | |
| 
 | |
| 	while (change) {
 | |
| 		change = 0;
 | |
| 
 | |
| 		for (loop = 0; loop < 10; loop++) {
 | |
| 			/* dbg("loop %d\n", loop); */
 | |
| 			if (ctrl->event_queue[loop].event_type != 0) {
 | |
| 				hp_slot = ctrl->event_queue[loop].hp_slot;
 | |
| 
 | |
| 				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
 | |
| 				if (!func)
 | |
| 					return;
 | |
| 
 | |
| 				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
 | |
| 				if (!p_slot)
 | |
| 					return;
 | |
| 
 | |
| 				dbg("hp_slot %d, func %p, p_slot %p\n",
 | |
| 				    hp_slot, func, p_slot);
 | |
| 
 | |
| 				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
 | |
| 					dbg("button pressed\n");
 | |
| 				} else if (ctrl->event_queue[loop].event_type == 
 | |
| 					   INT_BUTTON_CANCEL) {
 | |
| 					dbg("button cancel\n");
 | |
| 					del_timer(&p_slot->task_event);
 | |
| 
 | |
| 					mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 					if (p_slot->state == BLINKINGOFF_STATE) {
 | |
| 						/* slot is on */
 | |
| 						dbg("turn on green LED\n");
 | |
| 						green_LED_on (ctrl, hp_slot);
 | |
| 					} else if (p_slot->state == BLINKINGON_STATE) {
 | |
| 						/* slot is off */
 | |
| 						dbg("turn off green LED\n");
 | |
| 						green_LED_off (ctrl, hp_slot);
 | |
| 					}
 | |
| 
 | |
| 					info(msg_button_cancel, p_slot->number);
 | |
| 
 | |
| 					p_slot->state = STATIC_STATE;
 | |
| 
 | |
| 					amber_LED_off (ctrl, hp_slot);
 | |
| 
 | |
| 					set_SOGO(ctrl);
 | |
| 
 | |
| 					/* Wait for SOBS to be unset */
 | |
| 					wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 					mutex_unlock(&ctrl->crit_sect);
 | |
| 				}
 | |
| 				/*** button Released (No action on press...) */
 | |
| 				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
 | |
| 					dbg("button release\n");
 | |
| 
 | |
| 					if (is_slot_enabled (ctrl, hp_slot)) {
 | |
| 						dbg("slot is on\n");
 | |
| 						p_slot->state = BLINKINGOFF_STATE;
 | |
| 						info(msg_button_off, p_slot->number);
 | |
| 					} else {
 | |
| 						dbg("slot is off\n");
 | |
| 						p_slot->state = BLINKINGON_STATE;
 | |
| 						info(msg_button_on, p_slot->number);
 | |
| 					}
 | |
| 					mutex_lock(&ctrl->crit_sect);
 | |
| 
 | |
| 					dbg("blink green LED and turn off amber\n");
 | |
| 
 | |
| 					amber_LED_off (ctrl, hp_slot);
 | |
| 					green_LED_blink (ctrl, hp_slot);
 | |
| 
 | |
| 					set_SOGO(ctrl);
 | |
| 
 | |
| 					/* Wait for SOBS to be unset */
 | |
| 					wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 					mutex_unlock(&ctrl->crit_sect);
 | |
| 					init_timer(&p_slot->task_event);
 | |
| 					p_slot->hp_slot = hp_slot;
 | |
| 					p_slot->ctrl = ctrl;
 | |
| /*					p_slot->physical_slot = physical_slot; */
 | |
| 					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
 | |
| 					p_slot->task_event.function = pushbutton_helper_thread;
 | |
| 					p_slot->task_event.data = (u32) p_slot;
 | |
| 
 | |
| 					dbg("add_timer p_slot = %p\n", p_slot);
 | |
| 					add_timer(&p_slot->task_event);
 | |
| 				}
 | |
| 				/***********POWER FAULT */
 | |
| 				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
 | |
| 					dbg("power fault\n");
 | |
| 				} else {
 | |
| 					/* refresh notification */
 | |
| 					if (p_slot)
 | |
| 						update_slot_info(ctrl, p_slot);
 | |
| 				}
 | |
| 
 | |
| 				ctrl->event_queue[loop].event_type = 0;
 | |
| 
 | |
| 				change = 1;
 | |
| 			}
 | |
| 		}		/* End of FOR loop */
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * cpqhp_pushbutton_thread - handle pushbutton events
 | |
|  * @slot: target slot (struct)
 | |
|  *
 | |
|  * Scheduled procedure to handle blocking stuff for the pushbuttons.
 | |
|  * Handles all pending events and exits.
 | |
|  */
 | |
| void cpqhp_pushbutton_thread(unsigned long slot)
 | |
| {
 | |
| 	u8 hp_slot;
 | |
| 	u8 device;
 | |
| 	struct pci_func *func;
 | |
| 	struct slot *p_slot = (struct slot *) slot;
 | |
| 	struct controller *ctrl = (struct controller *) p_slot->ctrl;
 | |
| 
 | |
| 	pushbutton_pending = 0;
 | |
| 	hp_slot = p_slot->hp_slot;
 | |
| 
 | |
| 	device = p_slot->device;
 | |
| 
 | |
| 	if (is_slot_enabled(ctrl, hp_slot)) {
 | |
| 		p_slot->state = POWEROFF_STATE;
 | |
| 		/* power Down board */
 | |
| 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
 | |
| 		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
 | |
| 		if (!func) {
 | |
| 			dbg("Error! func NULL in %s\n", __func__);
 | |
| 			return ;
 | |
| 		}
 | |
| 
 | |
| 		if (cpqhp_process_SS(ctrl, func) != 0) {
 | |
| 			amber_LED_on(ctrl, hp_slot);
 | |
| 			green_LED_on(ctrl, hp_slot);
 | |
| 
 | |
| 			set_SOGO(ctrl);
 | |
| 
 | |
| 			/* Wait for SOBS to be unset */
 | |
| 			wait_for_ctrl_irq(ctrl);
 | |
| 		}
 | |
| 
 | |
| 		p_slot->state = STATIC_STATE;
 | |
| 	} else {
 | |
| 		p_slot->state = POWERON_STATE;
 | |
| 		/* slot is off */
 | |
| 
 | |
| 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
 | |
| 		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
 | |
| 		if (!func) {
 | |
| 			dbg("Error! func NULL in %s\n", __func__);
 | |
| 			return ;
 | |
| 		}
 | |
| 
 | |
| 		if (ctrl != NULL) {
 | |
| 			if (cpqhp_process_SI(ctrl, func) != 0) {
 | |
| 				amber_LED_on(ctrl, hp_slot);
 | |
| 				green_LED_off(ctrl, hp_slot);
 | |
| 
 | |
| 				set_SOGO(ctrl);
 | |
| 
 | |
| 				/* Wait for SOBS to be unset */
 | |
| 				wait_for_ctrl_irq (ctrl);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		p_slot->state = STATIC_STATE;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
 | |
| {
 | |
| 	u8 device, hp_slot;
 | |
| 	u16 temp_word;
 | |
| 	u32 tempdword;
 | |
| 	int rc;
 | |
| 	struct slot* p_slot;
 | |
| 	int physical_slot = 0;
 | |
| 
 | |
| 	tempdword = 0;
 | |
| 
 | |
| 	device = func->device;
 | |
| 	hp_slot = device - ctrl->slot_device_offset;
 | |
| 	p_slot = cpqhp_find_slot(ctrl, device);
 | |
| 	if (p_slot)
 | |
| 		physical_slot = p_slot->number;
 | |
| 
 | |
| 	/* Check to see if the interlock is closed */
 | |
| 	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 | |
| 
 | |
| 	if (tempdword & (0x01 << hp_slot)) {
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (func->is_a_board) {
 | |
| 		rc = board_replaced(func, ctrl);
 | |
| 	} else {
 | |
| 		/* add board */
 | |
| 		slot_remove(func);
 | |
| 
 | |
| 		func = cpqhp_slot_create(ctrl->bus);
 | |
| 		if (func == NULL)
 | |
| 			return 1;
 | |
| 
 | |
| 		func->bus = ctrl->bus;
 | |
| 		func->device = device;
 | |
| 		func->function = 0;
 | |
| 		func->configured = 0;
 | |
| 		func->is_a_board = 1;
 | |
| 
 | |
| 		/* We have to save the presence info for these slots */
 | |
| 		temp_word = ctrl->ctrl_int_comp >> 16;
 | |
| 		func->presence_save = (temp_word >> hp_slot) & 0x01;
 | |
| 		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 | |
| 
 | |
| 		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
 | |
| 			func->switch_save = 0;
 | |
| 		} else {
 | |
| 			func->switch_save = 0x10;
 | |
| 		}
 | |
| 
 | |
| 		rc = board_added(func, ctrl);
 | |
| 		if (rc) {
 | |
| 			if (is_bridge(func)) {
 | |
| 				bridge_slot_remove(func);
 | |
| 			} else
 | |
| 				slot_remove(func);
 | |
| 
 | |
| 			/* Setup slot structure with entry for empty slot */
 | |
| 			func = cpqhp_slot_create(ctrl->bus);
 | |
| 
 | |
| 			if (func == NULL)
 | |
| 				return 1;
 | |
| 
 | |
| 			func->bus = ctrl->bus;
 | |
| 			func->device = device;
 | |
| 			func->function = 0;
 | |
| 			func->configured = 0;
 | |
| 			func->is_a_board = 0;
 | |
| 
 | |
| 			/* We have to save the presence info for these slots */
 | |
| 			temp_word = ctrl->ctrl_int_comp >> 16;
 | |
| 			func->presence_save = (temp_word >> hp_slot) & 0x01;
 | |
| 			func->presence_save |=
 | |
| 			(temp_word >> (hp_slot + 7)) & 0x02;
 | |
| 
 | |
| 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
 | |
| 				func->switch_save = 0;
 | |
| 			} else {
 | |
| 				func->switch_save = 0x10;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rc) {
 | |
| 		dbg("%s: rc = %d\n", __func__, rc);
 | |
| 	}
 | |
| 
 | |
| 	if (p_slot)
 | |
| 		update_slot_info(ctrl, p_slot);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
 | |
| {
 | |
| 	u8 device, class_code, header_type, BCR;
 | |
| 	u8 index = 0;
 | |
| 	u8 replace_flag;
 | |
| 	u32 rc = 0;
 | |
| 	unsigned int devfn;
 | |
| 	struct slot* p_slot;
 | |
| 	struct pci_bus *pci_bus = ctrl->pci_bus;
 | |
| 	int physical_slot=0;
 | |
| 
 | |
| 	device = func->device;
 | |
| 	func = cpqhp_slot_find(ctrl->bus, device, index++);
 | |
| 	p_slot = cpqhp_find_slot(ctrl, device);
 | |
| 	if (p_slot) {
 | |
| 		physical_slot = p_slot->number;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure there are no video controllers here */
 | |
| 	while (func && !rc) {
 | |
| 		pci_bus->number = func->bus;
 | |
| 		devfn = PCI_DEVFN(func->device, func->function);
 | |
| 
 | |
| 		/* Check the Class Code */
 | |
| 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
 | |
| 			/* Display/Video adapter (not supported) */
 | |
| 			rc = REMOVE_NOT_SUPPORTED;
 | |
| 		} else {
 | |
| 			/* See if it's a bridge */
 | |
| 			rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
 | |
| 			if (rc)
 | |
| 				return rc;
 | |
| 
 | |
| 			/* If it's a bridge, check the VGA Enable bit */
 | |
| 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 | |
| 				rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
 | |
| 				if (rc)
 | |
| 					return rc;
 | |
| 
 | |
| 				/* If the VGA Enable bit is set, remove isn't
 | |
| 				 * supported */
 | |
| 				if (BCR & PCI_BRIDGE_CTL_VGA)
 | |
| 					rc = REMOVE_NOT_SUPPORTED;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		func = cpqhp_slot_find(ctrl->bus, device, index++);
 | |
| 	}
 | |
| 
 | |
| 	func = cpqhp_slot_find(ctrl->bus, device, 0);
 | |
| 	if ((func != NULL) && !rc) {
 | |
| 		/* FIXME: Replace flag should be passed into process_SS */
 | |
| 		replace_flag = !(ctrl->add_support);
 | |
| 		rc = remove_board(func, replace_flag, ctrl);
 | |
| 	} else if (!rc) {
 | |
| 		rc = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (p_slot)
 | |
| 		update_slot_info(ctrl, p_slot);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * switch_leds - switch the leds, go from one site to the other.
 | |
|  * @ctrl: controller to use
 | |
|  * @num_of_slots: number of slots to use
 | |
|  * @work_LED: LED control value
 | |
|  * @direction: 1 to start from the left side, 0 to start right.
 | |
|  */
 | |
| static void switch_leds(struct controller *ctrl, const int num_of_slots,
 | |
| 			u32 *work_LED, const int direction)
 | |
| {
 | |
| 	int loop;
 | |
| 
 | |
| 	for (loop = 0; loop < num_of_slots; loop++) {
 | |
| 		if (direction)
 | |
| 			*work_LED = *work_LED >> 1;
 | |
| 		else
 | |
| 			*work_LED = *work_LED << 1;
 | |
| 		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
 | |
| 
 | |
| 		set_SOGO(ctrl);
 | |
| 
 | |
| 		/* Wait for SOGO interrupt */
 | |
| 		wait_for_ctrl_irq(ctrl);
 | |
| 
 | |
| 		/* Get ready for next iteration */
 | |
| 		long_delay((2*HZ)/10);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpqhp_hardware_test - runs hardware tests
 | |
|  * @ctrl: target controller
 | |
|  * @test_num: the number written to the "test" file in sysfs.
 | |
|  *
 | |
|  * For hot plug ctrl folks to play with.
 | |
|  */
 | |
| int cpqhp_hardware_test(struct controller *ctrl, int test_num)
 | |
| {
 | |
| 	u32 save_LED;
 | |
| 	u32 work_LED;
 | |
| 	int loop;
 | |
| 	int num_of_slots;
 | |
| 
 | |
| 	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
 | |
| 
 | |
| 	switch (test_num) {
 | |
| 	case 1:
 | |
| 		/* Do stuff here! */
 | |
| 
 | |
| 		/* Do that funky LED thing */
 | |
| 		/* so we can restore them later */
 | |
| 		save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
 | |
| 		work_LED = 0x01010101;
 | |
| 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
 | |
| 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
 | |
| 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
 | |
| 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
 | |
| 
 | |
| 		work_LED = 0x01010000;
 | |
| 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
 | |
| 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
 | |
| 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
 | |
| 		work_LED = 0x00000101;
 | |
| 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
 | |
| 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
 | |
| 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
 | |
| 
 | |
| 		work_LED = 0x01010000;
 | |
| 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
 | |
| 		for (loop = 0; loop < num_of_slots; loop++) {
 | |
| 			set_SOGO(ctrl);
 | |
| 
 | |
| 			/* Wait for SOGO interrupt */
 | |
| 			wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 			/* Get ready for next iteration */
 | |
| 			long_delay((3*HZ)/10);
 | |
| 			work_LED = work_LED >> 16;
 | |
| 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
 | |
| 
 | |
| 			set_SOGO(ctrl);
 | |
| 
 | |
| 			/* Wait for SOGO interrupt */
 | |
| 			wait_for_ctrl_irq (ctrl);
 | |
| 
 | |
| 			/* Get ready for next iteration */
 | |
| 			long_delay((3*HZ)/10);
 | |
| 			work_LED = work_LED << 16;
 | |
| 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
 | |
| 			work_LED = work_LED << 1;
 | |
| 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
 | |
| 		}
 | |
| 
 | |
| 		/* put it back the way it was */
 | |
| 		writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
 | |
| 
 | |
| 		set_SOGO(ctrl);
 | |
| 
 | |
| 		/* Wait for SOBS to be unset */
 | |
| 		wait_for_ctrl_irq (ctrl);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		/* Do other stuff here! */
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		/* and more... */
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * configure_new_device - Configures the PCI header information of one board.
 | |
|  * @ctrl: pointer to controller structure
 | |
|  * @func: pointer to function structure
 | |
|  * @behind_bridge: 1 if this is a recursive call, 0 if not
 | |
|  * @resources: pointer to set of resource lists
 | |
|  *
 | |
|  * Returns 0 if success.
 | |
|  */
 | |
| static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
 | |
| 				 u8 behind_bridge, struct resource_lists * resources)
 | |
| {
 | |
| 	u8 temp_byte, function, max_functions, stop_it;
 | |
| 	int rc;
 | |
| 	u32 ID;
 | |
| 	struct pci_func *new_slot;
 | |
| 	int index;
 | |
| 
 | |
| 	new_slot = func;
 | |
| 
 | |
| 	dbg("%s\n", __func__);
 | |
| 	/* Check for Multi-function device */
 | |
| 	ctrl->pci_bus->number = func->bus;
 | |
| 	rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
 | |
| 	if (rc) {
 | |
| 		dbg("%s: rc = %d\n", __func__, rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	if (temp_byte & 0x80)	/* Multi-function device */
 | |
| 		max_functions = 8;
 | |
| 	else
 | |
| 		max_functions = 1;
 | |
| 
 | |
| 	function = 0;
 | |
| 
 | |
| 	do {
 | |
| 		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
 | |
| 
 | |
| 		if (rc) {
 | |
| 			dbg("configure_new_function failed %d\n",rc);
 | |
| 			index = 0;
 | |
| 
 | |
| 			while (new_slot) {
 | |
| 				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
 | |
| 
 | |
| 				if (new_slot)
 | |
| 					cpqhp_return_board_resources(new_slot, resources);
 | |
| 			}
 | |
| 
 | |
| 			return rc;
 | |
| 		}
 | |
| 
 | |
| 		function++;
 | |
| 
 | |
| 		stop_it = 0;
 | |
| 
 | |
| 		/* The following loop skips to the next present function
 | |
| 		 * and creates a board structure */
 | |
| 
 | |
| 		while ((function < max_functions) && (!stop_it)) {
 | |
| 			pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
 | |
| 
 | |
| 			if (ID == 0xFFFFFFFF) {
 | |
| 				function++;
 | |
| 			} else {
 | |
| 				/* Setup slot structure. */
 | |
| 				new_slot = cpqhp_slot_create(func->bus);
 | |
| 
 | |
| 				if (new_slot == NULL)
 | |
| 					return 1;
 | |
| 
 | |
| 				new_slot->bus = func->bus;
 | |
| 				new_slot->device = func->device;
 | |
| 				new_slot->function = function;
 | |
| 				new_slot->is_a_board = 1;
 | |
| 				new_slot->status = 0;
 | |
| 
 | |
| 				stop_it++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	} while (function < max_functions);
 | |
| 	dbg("returning from configure_new_device\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Configuration logic that involves the hotplug data structures and
 | |
|  * their bookkeeping
 | |
|  */
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * configure_new_function - Configures the PCI header information of one device
 | |
|  * @ctrl: pointer to controller structure
 | |
|  * @func: pointer to function structure
 | |
|  * @behind_bridge: 1 if this is a recursive call, 0 if not
 | |
|  * @resources: pointer to set of resource lists
 | |
|  *
 | |
|  * Calls itself recursively for bridged devices.
 | |
|  * Returns 0 if success.
 | |
|  */
 | |
| static int configure_new_function(struct controller *ctrl, struct pci_func *func,
 | |
| 				   u8 behind_bridge,
 | |
| 				   struct resource_lists *resources)
 | |
| {
 | |
| 	int cloop;
 | |
| 	u8 IRQ = 0;
 | |
| 	u8 temp_byte;
 | |
| 	u8 device;
 | |
| 	u8 class_code;
 | |
| 	u16 command;
 | |
| 	u16 temp_word;
 | |
| 	u32 temp_dword;
 | |
| 	u32 rc;
 | |
| 	u32 temp_register;
 | |
| 	u32 base;
 | |
| 	u32 ID;
 | |
| 	unsigned int devfn;
 | |
| 	struct pci_resource *mem_node;
 | |
| 	struct pci_resource *p_mem_node;
 | |
| 	struct pci_resource *io_node;
 | |
| 	struct pci_resource *bus_node;
 | |
| 	struct pci_resource *hold_mem_node;
 | |
| 	struct pci_resource *hold_p_mem_node;
 | |
| 	struct pci_resource *hold_IO_node;
 | |
| 	struct pci_resource *hold_bus_node;
 | |
| 	struct irq_mapping irqs;
 | |
| 	struct pci_func *new_slot;
 | |
| 	struct pci_bus *pci_bus;
 | |
| 	struct resource_lists temp_resources;
 | |
| 
 | |
| 	pci_bus = ctrl->pci_bus;
 | |
| 	pci_bus->number = func->bus;
 | |
| 	devfn = PCI_DEVFN(func->device, func->function);
 | |
| 
 | |
| 	/* Check for Bridge */
 | |
| 	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
 | |
| 		/* set Primary bus */
 | |
| 		dbg("set Primary bus = %d\n", func->bus);
 | |
| 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		/* find range of busses to use */
 | |
| 		dbg("find ranges of buses to use\n");
 | |
| 		bus_node = get_max_resource(&(resources->bus_head), 1);
 | |
| 
 | |
| 		/* If we don't have any busses to allocate, we can't continue */
 | |
| 		if (!bus_node)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/* set Secondary bus */
 | |
| 		temp_byte = bus_node->base;
 | |
| 		dbg("set Secondary bus = %d\n", bus_node->base);
 | |
| 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		/* set subordinate bus */
 | |
| 		temp_byte = bus_node->base + bus_node->length - 1;
 | |
| 		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
 | |
| 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		/* set subordinate Latency Timer and base Latency Timer */
 | |
| 		temp_byte = 0x40;
 | |
| 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		/* set Cache Line size */
 | |
| 		temp_byte = 0x08;
 | |
| 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		/* Setup the IO, memory, and prefetchable windows */
 | |
| 		io_node = get_max_resource(&(resources->io_head), 0x1000);
 | |
| 		if (!io_node)
 | |
| 			return -ENOMEM;
 | |
| 		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
 | |
| 		if (!mem_node)
 | |
| 			return -ENOMEM;
 | |
| 		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
 | |
| 		if (!p_mem_node)
 | |
| 			return -ENOMEM;
 | |
| 		dbg("Setup the IO, memory, and prefetchable windows\n");
 | |
| 		dbg("io_node\n");
 | |
| 		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
 | |
| 					io_node->length, io_node->next);
 | |
| 		dbg("mem_node\n");
 | |
| 		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
 | |
| 					mem_node->length, mem_node->next);
 | |
| 		dbg("p_mem_node\n");
 | |
| 		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
 | |
| 					p_mem_node->length, p_mem_node->next);
 | |
| 
 | |
| 		/* set up the IRQ info */
 | |
| 		if (!resources->irqs) {
 | |
| 			irqs.barber_pole = 0;
 | |
| 			irqs.interrupt[0] = 0;
 | |
| 			irqs.interrupt[1] = 0;
 | |
| 			irqs.interrupt[2] = 0;
 | |
| 			irqs.interrupt[3] = 0;
 | |
| 			irqs.valid_INT = 0;
 | |
| 		} else {
 | |
| 			irqs.barber_pole = resources->irqs->barber_pole;
 | |
| 			irqs.interrupt[0] = resources->irqs->interrupt[0];
 | |
| 			irqs.interrupt[1] = resources->irqs->interrupt[1];
 | |
| 			irqs.interrupt[2] = resources->irqs->interrupt[2];
 | |
| 			irqs.interrupt[3] = resources->irqs->interrupt[3];
 | |
| 			irqs.valid_INT = resources->irqs->valid_INT;
 | |
| 		}
 | |
| 
 | |
| 		/* set up resource lists that are now aligned on top and bottom
 | |
| 		 * for anything behind the bridge. */
 | |
| 		temp_resources.bus_head = bus_node;
 | |
| 		temp_resources.io_head = io_node;
 | |
| 		temp_resources.mem_head = mem_node;
 | |
| 		temp_resources.p_mem_head = p_mem_node;
 | |
| 		temp_resources.irqs = &irqs;
 | |
| 
 | |
| 		/* Make copies of the nodes we are going to pass down so that
 | |
| 		 * if there is a problem,we can just use these to free resources
 | |
| 		 */
 | |
| 		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
 | |
| 		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
 | |
| 		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
 | |
| 		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
 | |
| 
 | |
| 		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
 | |
| 			kfree(hold_bus_node);
 | |
| 			kfree(hold_IO_node);
 | |
| 			kfree(hold_mem_node);
 | |
| 			kfree(hold_p_mem_node);
 | |
| 
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
 | |
| 
 | |
| 		bus_node->base += 1;
 | |
| 		bus_node->length -= 1;
 | |
| 		bus_node->next = NULL;
 | |
| 
 | |
| 		/* If we have IO resources copy them and fill in the bridge's
 | |
| 		 * IO range registers */
 | |
| 		if (io_node) {
 | |
| 			memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
 | |
| 			io_node->next = NULL;
 | |
| 
 | |
| 			/* set IO base and Limit registers */
 | |
| 			temp_byte = io_node->base >> 8;
 | |
| 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
 | |
| 
 | |
| 			temp_byte = (io_node->base + io_node->length - 1) >> 8;
 | |
| 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
 | |
| 		} else {
 | |
| 			kfree(hold_IO_node);
 | |
| 			hold_IO_node = NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* If we have memory resources copy them and fill in the
 | |
| 		 * bridge's memory range registers.  Otherwise, fill in the
 | |
| 		 * range registers with values that disable them. */
 | |
| 		if (mem_node) {
 | |
| 			memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
 | |
| 			mem_node->next = NULL;
 | |
| 
 | |
| 			/* set Mem base and Limit registers */
 | |
| 			temp_word = mem_node->base >> 16;
 | |
| 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
 | |
| 
 | |
| 			temp_word = (mem_node->base + mem_node->length - 1) >> 16;
 | |
| 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
 | |
| 		} else {
 | |
| 			temp_word = 0xFFFF;
 | |
| 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
 | |
| 
 | |
| 			temp_word = 0x0000;
 | |
| 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
 | |
| 
 | |
| 			kfree(hold_mem_node);
 | |
| 			hold_mem_node = NULL;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
 | |
| 		p_mem_node->next = NULL;
 | |
| 
 | |
| 		/* set Pre Mem base and Limit registers */
 | |
| 		temp_word = p_mem_node->base >> 16;
 | |
| 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
 | |
| 
 | |
| 		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
 | |
| 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
 | |
| 
 | |
| 		/* Adjust this to compensate for extra adjustment in first loop
 | |
| 		 */
 | |
| 		irqs.barber_pole--;
 | |
| 
 | |
| 		rc = 0;
 | |
| 
 | |
| 		/* Here we actually find the devices and configure them */
 | |
| 		for (device = 0; (device <= 0x1F) && !rc; device++) {
 | |
| 			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
 | |
| 
 | |
| 			ID = 0xFFFFFFFF;
 | |
| 			pci_bus->number = hold_bus_node->base;
 | |
| 			pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
 | |
| 			pci_bus->number = func->bus;
 | |
| 
 | |
| 			if (ID != 0xFFFFFFFF) {	  /*  device present */
 | |
| 				/* Setup slot structure. */
 | |
| 				new_slot = cpqhp_slot_create(hold_bus_node->base);
 | |
| 
 | |
| 				if (new_slot == NULL) {
 | |
| 					rc = -ENOMEM;
 | |
| 					continue;
 | |
| 				}
 | |
| 
 | |
| 				new_slot->bus = hold_bus_node->base;
 | |
| 				new_slot->device = device;
 | |
| 				new_slot->function = 0;
 | |
| 				new_slot->is_a_board = 1;
 | |
| 				new_slot->status = 0;
 | |
| 
 | |
| 				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
 | |
| 				dbg("configure_new_device rc=0x%x\n",rc);
 | |
| 			}	/* End of IF (device in slot?) */
 | |
| 		}		/* End of FOR loop */
 | |
| 
 | |
| 		if (rc)
 | |
| 			goto free_and_out;
 | |
| 		/* save the interrupt routing information */
 | |
| 		if (resources->irqs) {
 | |
| 			resources->irqs->interrupt[0] = irqs.interrupt[0];
 | |
| 			resources->irqs->interrupt[1] = irqs.interrupt[1];
 | |
| 			resources->irqs->interrupt[2] = irqs.interrupt[2];
 | |
| 			resources->irqs->interrupt[3] = irqs.interrupt[3];
 | |
| 			resources->irqs->valid_INT = irqs.valid_INT;
 | |
| 		} else if (!behind_bridge) {
 | |
| 			/* We need to hook up the interrupts here */
 | |
| 			for (cloop = 0; cloop < 4; cloop++) {
 | |
| 				if (irqs.valid_INT & (0x01 << cloop)) {
 | |
| 					rc = cpqhp_set_irq(func->bus, func->device,
 | |
| 							   cloop + 1, irqs.interrupt[cloop]);
 | |
| 					if (rc)
 | |
| 						goto free_and_out;
 | |
| 				}
 | |
| 			}	/* end of for loop */
 | |
| 		}
 | |
| 		/* Return unused bus resources
 | |
| 		 * First use the temporary node to store information for
 | |
| 		 * the board */
 | |
| 		if (hold_bus_node && bus_node && temp_resources.bus_head) {
 | |
| 			hold_bus_node->length = bus_node->base - hold_bus_node->base;
 | |
| 
 | |
| 			hold_bus_node->next = func->bus_head;
 | |
| 			func->bus_head = hold_bus_node;
 | |
| 
 | |
| 			temp_byte = temp_resources.bus_head->base - 1;
 | |
| 
 | |
| 			/* set subordinate bus */
 | |
| 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
 | |
| 
 | |
| 			if (temp_resources.bus_head->length == 0) {
 | |
| 				kfree(temp_resources.bus_head);
 | |
| 				temp_resources.bus_head = NULL;
 | |
| 			} else {
 | |
| 				return_resource(&(resources->bus_head), temp_resources.bus_head);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* If we have IO space available and there is some left,
 | |
| 		 * return the unused portion */
 | |
| 		if (hold_IO_node && temp_resources.io_head) {
 | |
| 			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
 | |
| 							       &hold_IO_node, 0x1000);
 | |
| 
 | |
| 			/* Check if we were able to split something off */
 | |
| 			if (io_node) {
 | |
| 				hold_IO_node->base = io_node->base + io_node->length;
 | |
| 
 | |
| 				temp_byte = (hold_IO_node->base) >> 8;
 | |
| 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
 | |
| 
 | |
| 				return_resource(&(resources->io_head), io_node);
 | |
| 			}
 | |
| 
 | |
| 			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
 | |
| 
 | |
| 			/* Check if we were able to split something off */
 | |
| 			if (io_node) {
 | |
| 				/* First use the temporary node to store
 | |
| 				 * information for the board */
 | |
| 				hold_IO_node->length = io_node->base - hold_IO_node->base;
 | |
| 
 | |
| 				/* If we used any, add it to the board's list */
 | |
| 				if (hold_IO_node->length) {
 | |
| 					hold_IO_node->next = func->io_head;
 | |
| 					func->io_head = hold_IO_node;
 | |
| 
 | |
| 					temp_byte = (io_node->base - 1) >> 8;
 | |
| 					rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
 | |
| 
 | |
| 					return_resource(&(resources->io_head), io_node);
 | |
| 				} else {
 | |
| 					/* it doesn't need any IO */
 | |
| 					temp_word = 0x0000;
 | |
| 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
 | |
| 
 | |
| 					return_resource(&(resources->io_head), io_node);
 | |
| 					kfree(hold_IO_node);
 | |
| 				}
 | |
| 			} else {
 | |
| 				/* it used most of the range */
 | |
| 				hold_IO_node->next = func->io_head;
 | |
| 				func->io_head = hold_IO_node;
 | |
| 			}
 | |
| 		} else if (hold_IO_node) {
 | |
| 			/* it used the whole range */
 | |
| 			hold_IO_node->next = func->io_head;
 | |
| 			func->io_head = hold_IO_node;
 | |
| 		}
 | |
| 		/* If we have memory space available and there is some left,
 | |
| 		 * return the unused portion */
 | |
| 		if (hold_mem_node && temp_resources.mem_head) {
 | |
| 			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
 | |
| 								&hold_mem_node, 0x100000);
 | |
| 
 | |
| 			/* Check if we were able to split something off */
 | |
| 			if (mem_node) {
 | |
| 				hold_mem_node->base = mem_node->base + mem_node->length;
 | |
| 
 | |
| 				temp_word = (hold_mem_node->base) >> 16;
 | |
| 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
 | |
| 
 | |
| 				return_resource(&(resources->mem_head), mem_node);
 | |
| 			}
 | |
| 
 | |
| 			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
 | |
| 
 | |
| 			/* Check if we were able to split something off */
 | |
| 			if (mem_node) {
 | |
| 				/* First use the temporary node to store
 | |
| 				 * information for the board */
 | |
| 				hold_mem_node->length = mem_node->base - hold_mem_node->base;
 | |
| 
 | |
| 				if (hold_mem_node->length) {
 | |
| 					hold_mem_node->next = func->mem_head;
 | |
| 					func->mem_head = hold_mem_node;
 | |
| 
 | |
| 					/* configure end address */
 | |
| 					temp_word = (mem_node->base - 1) >> 16;
 | |
| 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
 | |
| 
 | |
| 					/* Return unused resources to the pool */
 | |
| 					return_resource(&(resources->mem_head), mem_node);
 | |
| 				} else {
 | |
| 					/* it doesn't need any Mem */
 | |
| 					temp_word = 0x0000;
 | |
| 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
 | |
| 
 | |
| 					return_resource(&(resources->mem_head), mem_node);
 | |
| 					kfree(hold_mem_node);
 | |
| 				}
 | |
| 			} else {
 | |
| 				/* it used most of the range */
 | |
| 				hold_mem_node->next = func->mem_head;
 | |
| 				func->mem_head = hold_mem_node;
 | |
| 			}
 | |
| 		} else if (hold_mem_node) {
 | |
| 			/* it used the whole range */
 | |
| 			hold_mem_node->next = func->mem_head;
 | |
| 			func->mem_head = hold_mem_node;
 | |
| 		}
 | |
| 		/* If we have prefetchable memory space available and there
 | |
| 		 * is some left at the end, return the unused portion */
 | |
| 		if (hold_p_mem_node && temp_resources.p_mem_head) {
 | |
| 			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
 | |
| 								  &hold_p_mem_node, 0x100000);
 | |
| 
 | |
| 			/* Check if we were able to split something off */
 | |
| 			if (p_mem_node) {
 | |
| 				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
 | |
| 
 | |
| 				temp_word = (hold_p_mem_node->base) >> 16;
 | |
| 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
 | |
| 
 | |
| 				return_resource(&(resources->p_mem_head), p_mem_node);
 | |
| 			}
 | |
| 
 | |
| 			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
 | |
| 
 | |
| 			/* Check if we were able to split something off */
 | |
| 			if (p_mem_node) {
 | |
| 				/* First use the temporary node to store
 | |
| 				 * information for the board */
 | |
| 				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
 | |
| 
 | |
| 				/* If we used any, add it to the board's list */
 | |
| 				if (hold_p_mem_node->length) {
 | |
| 					hold_p_mem_node->next = func->p_mem_head;
 | |
| 					func->p_mem_head = hold_p_mem_node;
 | |
| 
 | |
| 					temp_word = (p_mem_node->base - 1) >> 16;
 | |
| 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
 | |
| 
 | |
| 					return_resource(&(resources->p_mem_head), p_mem_node);
 | |
| 				} else {
 | |
| 					/* it doesn't need any PMem */
 | |
| 					temp_word = 0x0000;
 | |
| 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
 | |
| 
 | |
| 					return_resource(&(resources->p_mem_head), p_mem_node);
 | |
| 					kfree(hold_p_mem_node);
 | |
| 				}
 | |
| 			} else {
 | |
| 				/* it used the most of the range */
 | |
| 				hold_p_mem_node->next = func->p_mem_head;
 | |
| 				func->p_mem_head = hold_p_mem_node;
 | |
| 			}
 | |
| 		} else if (hold_p_mem_node) {
 | |
| 			/* it used the whole range */
 | |
| 			hold_p_mem_node->next = func->p_mem_head;
 | |
| 			func->p_mem_head = hold_p_mem_node;
 | |
| 		}
 | |
| 		/* We should be configuring an IRQ and the bridge's base address
 | |
| 		 * registers if it needs them.  Although we have never seen such
 | |
| 		 * a device */
 | |
| 
 | |
| 		/* enable card */
 | |
| 		command = 0x0157;	/* = PCI_COMMAND_IO |
 | |
| 					 *   PCI_COMMAND_MEMORY |
 | |
| 					 *   PCI_COMMAND_MASTER |
 | |
| 					 *   PCI_COMMAND_INVALIDATE |
 | |
| 					 *   PCI_COMMAND_PARITY |
 | |
| 					 *   PCI_COMMAND_SERR */
 | |
| 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
 | |
| 
 | |
| 		/* set Bridge Control Register */
 | |
| 		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
 | |
| 					 *   PCI_BRIDGE_CTL_SERR |
 | |
| 					 *   PCI_BRIDGE_CTL_NO_ISA */
 | |
| 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
 | |
| 	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
 | |
| 		/* Standard device */
 | |
| 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
 | |
| 
 | |
| 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
 | |
| 			/* Display (video) adapter (not supported) */
 | |
| 			return DEVICE_TYPE_NOT_SUPPORTED;
 | |
| 		}
 | |
| 		/* Figure out IO and memory needs */
 | |
| 		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
 | |
| 			temp_register = 0xFFFFFFFF;
 | |
| 
 | |
| 			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
 | |
| 			rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
 | |
| 
 | |
| 			rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
 | |
| 			dbg("CND: base = 0x%x\n", temp_register);
 | |
| 
 | |
| 			if (temp_register) {	  /* If this register is implemented */
 | |
| 				if ((temp_register & 0x03L) == 0x01) {
 | |
| 					/* Map IO */
 | |
| 
 | |
| 					/* set base = amount of IO space */
 | |
| 					base = temp_register & 0xFFFFFFFC;
 | |
| 					base = ~base + 1;
 | |
| 
 | |
| 					dbg("CND:      length = 0x%x\n", base);
 | |
| 					io_node = get_io_resource(&(resources->io_head), base);
 | |
| 					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
 | |
| 					    io_node->base, io_node->length, io_node->next);
 | |
| 					dbg("func (%p) io_head (%p)\n", func, func->io_head);
 | |
| 
 | |
| 					/* allocate the resource to the board */
 | |
| 					if (io_node) {
 | |
| 						base = io_node->base;
 | |
| 
 | |
| 						io_node->next = func->io_head;
 | |
| 						func->io_head = io_node;
 | |
| 					} else
 | |
| 						return -ENOMEM;
 | |
| 				} else if ((temp_register & 0x0BL) == 0x08) {
 | |
| 					/* Map prefetchable memory */
 | |
| 					base = temp_register & 0xFFFFFFF0;
 | |
| 					base = ~base + 1;
 | |
| 
 | |
| 					dbg("CND:      length = 0x%x\n", base);
 | |
| 					p_mem_node = get_resource(&(resources->p_mem_head), base);
 | |
| 
 | |
| 					/* allocate the resource to the board */
 | |
| 					if (p_mem_node) {
 | |
| 						base = p_mem_node->base;
 | |
| 
 | |
| 						p_mem_node->next = func->p_mem_head;
 | |
| 						func->p_mem_head = p_mem_node;
 | |
| 					} else
 | |
| 						return -ENOMEM;
 | |
| 				} else if ((temp_register & 0x0BL) == 0x00) {
 | |
| 					/* Map memory */
 | |
| 					base = temp_register & 0xFFFFFFF0;
 | |
| 					base = ~base + 1;
 | |
| 
 | |
| 					dbg("CND:      length = 0x%x\n", base);
 | |
| 					mem_node = get_resource(&(resources->mem_head), base);
 | |
| 
 | |
| 					/* allocate the resource to the board */
 | |
| 					if (mem_node) {
 | |
| 						base = mem_node->base;
 | |
| 
 | |
| 						mem_node->next = func->mem_head;
 | |
| 						func->mem_head = mem_node;
 | |
| 					} else
 | |
| 						return -ENOMEM;
 | |
| 				} else if ((temp_register & 0x0BL) == 0x04) {
 | |
| 					/* Map memory */
 | |
| 					base = temp_register & 0xFFFFFFF0;
 | |
| 					base = ~base + 1;
 | |
| 
 | |
| 					dbg("CND:      length = 0x%x\n", base);
 | |
| 					mem_node = get_resource(&(resources->mem_head), base);
 | |
| 
 | |
| 					/* allocate the resource to the board */
 | |
| 					if (mem_node) {
 | |
| 						base = mem_node->base;
 | |
| 
 | |
| 						mem_node->next = func->mem_head;
 | |
| 						func->mem_head = mem_node;
 | |
| 					} else
 | |
| 						return -ENOMEM;
 | |
| 				} else if ((temp_register & 0x0BL) == 0x06) {
 | |
| 					/* Those bits are reserved, we can't handle this */
 | |
| 					return 1;
 | |
| 				} else {
 | |
| 					/* Requesting space below 1M */
 | |
| 					return NOT_ENOUGH_RESOURCES;
 | |
| 				}
 | |
| 
 | |
| 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
 | |
| 
 | |
| 				/* Check for 64-bit base */
 | |
| 				if ((temp_register & 0x07L) == 0x04) {
 | |
| 					cloop += 4;
 | |
| 
 | |
| 					/* Upper 32 bits of address always zero
 | |
| 					 * on today's systems */
 | |
| 					/* FIXME this is probably not true on
 | |
| 					 * Alpha and ia64??? */
 | |
| 					base = 0;
 | |
| 					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
 | |
| 				}
 | |
| 			}
 | |
| 		}		/* End of base register loop */
 | |
| 		if (cpqhp_legacy_mode) {
 | |
| 			/* Figure out which interrupt pin this function uses */
 | |
| 			rc = pci_bus_read_config_byte (pci_bus, devfn,
 | |
| 				PCI_INTERRUPT_PIN, &temp_byte);
 | |
| 
 | |
| 			/* If this function needs an interrupt and we are behind
 | |
| 			 * a bridge and the pin is tied to something that's
 | |
| 			 * alread mapped, set this one the same */
 | |
| 			if (temp_byte && resources->irqs &&
 | |
| 			    (resources->irqs->valid_INT &
 | |
| 			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
 | |
| 				/* We have to share with something already set up */
 | |
| 				IRQ = resources->irqs->interrupt[(temp_byte +
 | |
| 					resources->irqs->barber_pole - 1) & 0x03];
 | |
| 			} else {
 | |
| 				/* Program IRQ based on card type */
 | |
| 				rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
 | |
| 
 | |
| 				if (class_code == PCI_BASE_CLASS_STORAGE)
 | |
| 					IRQ = cpqhp_disk_irq;
 | |
| 				else
 | |
| 					IRQ = cpqhp_nic_irq;
 | |
| 			}
 | |
| 
 | |
| 			/* IRQ Line */
 | |
| 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
 | |
| 		}
 | |
| 
 | |
| 		if (!behind_bridge) {
 | |
| 			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
 | |
| 			if (rc)
 | |
| 				return 1;
 | |
| 		} else {
 | |
| 			/* TBD - this code may also belong in the other clause
 | |
| 			 * of this If statement */
 | |
| 			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
 | |
| 			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
 | |
| 		}
 | |
| 
 | |
| 		/* Latency Timer */
 | |
| 		temp_byte = 0x40;
 | |
| 		rc = pci_bus_write_config_byte(pci_bus, devfn,
 | |
| 					PCI_LATENCY_TIMER, temp_byte);
 | |
| 
 | |
| 		/* Cache Line size */
 | |
| 		temp_byte = 0x08;
 | |
| 		rc = pci_bus_write_config_byte(pci_bus, devfn,
 | |
| 					PCI_CACHE_LINE_SIZE, temp_byte);
 | |
| 
 | |
| 		/* disable ROM base Address */
 | |
| 		temp_dword = 0x00L;
 | |
| 		rc = pci_bus_write_config_word(pci_bus, devfn,
 | |
| 					PCI_ROM_ADDRESS, temp_dword);
 | |
| 
 | |
| 		/* enable card */
 | |
| 		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
 | |
| 					 *   PCI_COMMAND_MEMORY |
 | |
| 					 *   PCI_COMMAND_MASTER |
 | |
| 					 *   PCI_COMMAND_INVALIDATE |
 | |
| 					 *   PCI_COMMAND_PARITY |
 | |
| 					 *   PCI_COMMAND_SERR */
 | |
| 		rc = pci_bus_write_config_word (pci_bus, devfn,
 | |
| 					PCI_COMMAND, temp_word);
 | |
| 	} else {		/* End of Not-A-Bridge else */
 | |
| 		/* It's some strange type of PCI adapter (Cardbus?) */
 | |
| 		return DEVICE_TYPE_NOT_SUPPORTED;
 | |
| 	}
 | |
| 
 | |
| 	func->configured = 1;
 | |
| 
 | |
| 	return 0;
 | |
| free_and_out:
 | |
| 	cpqhp_destroy_resource_list (&temp_resources);
 | |
| 
 | |
| 	return_resource(&(resources-> bus_head), hold_bus_node);
 | |
| 	return_resource(&(resources-> io_head), hold_IO_node);
 | |
| 	return_resource(&(resources-> mem_head), hold_mem_node);
 | |
| 	return_resource(&(resources-> p_mem_head), hold_p_mem_node);
 | |
| 	return rc;
 | |
| }
 |