mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-30 03:40:41 +00:00 
			
		
		
		
	 e534c7c5f8
			
		
	
	
		e534c7c5f8
		
	
	
	
	
		
			
			x86 arch specific changes to use generic numa_node_id() based on generic percpu variable infrastructure. Back out x86's custom version of numa_node_id() Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			902 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			902 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Generic VM initialization for x86-64 NUMA setups.
 | |
|  * Copyright 2002,2003 Andi Kleen, SuSE Labs.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/sched.h>
 | |
| 
 | |
| #include <asm/e820.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/numa.h>
 | |
| #include <asm/acpi.h>
 | |
| #include <asm/k8.h>
 | |
| 
 | |
| struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
 | |
| EXPORT_SYMBOL(node_data);
 | |
| 
 | |
| struct memnode memnode;
 | |
| 
 | |
| s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
 | |
| 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
 | |
| };
 | |
| 
 | |
| int numa_off __initdata;
 | |
| static unsigned long __initdata nodemap_addr;
 | |
| static unsigned long __initdata nodemap_size;
 | |
| 
 | |
| /*
 | |
|  * Map cpu index to node index
 | |
|  */
 | |
| DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
 | |
| EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
 | |
| 
 | |
| /*
 | |
|  * Given a shift value, try to populate memnodemap[]
 | |
|  * Returns :
 | |
|  * 1 if OK
 | |
|  * 0 if memnodmap[] too small (of shift too small)
 | |
|  * -1 if node overlap or lost ram (shift too big)
 | |
|  */
 | |
| static int __init populate_memnodemap(const struct bootnode *nodes,
 | |
| 				      int numnodes, int shift, int *nodeids)
 | |
| {
 | |
| 	unsigned long addr, end;
 | |
| 	int i, res = -1;
 | |
| 
 | |
| 	memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
 | |
| 	for (i = 0; i < numnodes; i++) {
 | |
| 		addr = nodes[i].start;
 | |
| 		end = nodes[i].end;
 | |
| 		if (addr >= end)
 | |
| 			continue;
 | |
| 		if ((end >> shift) >= memnodemapsize)
 | |
| 			return 0;
 | |
| 		do {
 | |
| 			if (memnodemap[addr >> shift] != NUMA_NO_NODE)
 | |
| 				return -1;
 | |
| 
 | |
| 			if (!nodeids)
 | |
| 				memnodemap[addr >> shift] = i;
 | |
| 			else
 | |
| 				memnodemap[addr >> shift] = nodeids[i];
 | |
| 
 | |
| 			addr += (1UL << shift);
 | |
| 		} while (addr < end);
 | |
| 		res = 1;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int __init allocate_cachealigned_memnodemap(void)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	memnodemap = memnode.embedded_map;
 | |
| 	if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
 | |
| 		return 0;
 | |
| 
 | |
| 	addr = 0x8000;
 | |
| 	nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
 | |
| 	nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
 | |
| 				      nodemap_size, L1_CACHE_BYTES);
 | |
| 	if (nodemap_addr == -1UL) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "NUMA: Unable to allocate Memory to Node hash map\n");
 | |
| 		nodemap_addr = nodemap_size = 0;
 | |
| 		return -1;
 | |
| 	}
 | |
| 	memnodemap = phys_to_virt(nodemap_addr);
 | |
| 	reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
 | |
| 
 | |
| 	printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
 | |
| 	       nodemap_addr, nodemap_addr + nodemap_size);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The LSB of all start and end addresses in the node map is the value of the
 | |
|  * maximum possible shift.
 | |
|  */
 | |
| static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
 | |
| 					 int numnodes)
 | |
| {
 | |
| 	int i, nodes_used = 0;
 | |
| 	unsigned long start, end;
 | |
| 	unsigned long bitfield = 0, memtop = 0;
 | |
| 
 | |
| 	for (i = 0; i < numnodes; i++) {
 | |
| 		start = nodes[i].start;
 | |
| 		end = nodes[i].end;
 | |
| 		if (start >= end)
 | |
| 			continue;
 | |
| 		bitfield |= start;
 | |
| 		nodes_used++;
 | |
| 		if (end > memtop)
 | |
| 			memtop = end;
 | |
| 	}
 | |
| 	if (nodes_used <= 1)
 | |
| 		i = 63;
 | |
| 	else
 | |
| 		i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
 | |
| 	memnodemapsize = (memtop >> i)+1;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
 | |
| 			      int *nodeids)
 | |
| {
 | |
| 	int shift;
 | |
| 
 | |
| 	shift = extract_lsb_from_nodes(nodes, numnodes);
 | |
| 	if (allocate_cachealigned_memnodemap())
 | |
| 		return -1;
 | |
| 	printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
 | |
| 		shift);
 | |
| 
 | |
| 	if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
 | |
| 		printk(KERN_INFO "Your memory is not aligned you need to "
 | |
| 		       "rebuild your kernel with a bigger NODEMAPSIZE "
 | |
| 		       "shift=%d\n", shift);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return shift;
 | |
| }
 | |
| 
 | |
| int __meminit  __early_pfn_to_nid(unsigned long pfn)
 | |
| {
 | |
| 	return phys_to_nid(pfn << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| static void * __init early_node_mem(int nodeid, unsigned long start,
 | |
| 				    unsigned long end, unsigned long size,
 | |
| 				    unsigned long align)
 | |
| {
 | |
| 	unsigned long mem;
 | |
| 
 | |
| 	/*
 | |
| 	 * put it on high as possible
 | |
| 	 * something will go with NODE_DATA
 | |
| 	 */
 | |
| 	if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
 | |
| 		start = MAX_DMA_PFN<<PAGE_SHIFT;
 | |
| 	if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
 | |
| 	    end > (MAX_DMA32_PFN<<PAGE_SHIFT))
 | |
| 		start = MAX_DMA32_PFN<<PAGE_SHIFT;
 | |
| 	mem = find_e820_area(start, end, size, align);
 | |
| 	if (mem != -1L)
 | |
| 		return __va(mem);
 | |
| 
 | |
| 	/* extend the search scope */
 | |
| 	end = max_pfn_mapped << PAGE_SHIFT;
 | |
| 	if (end > (MAX_DMA32_PFN<<PAGE_SHIFT))
 | |
| 		start = MAX_DMA32_PFN<<PAGE_SHIFT;
 | |
| 	else
 | |
| 		start = MAX_DMA_PFN<<PAGE_SHIFT;
 | |
| 	mem = find_e820_area(start, end, size, align);
 | |
| 	if (mem != -1L)
 | |
| 		return __va(mem);
 | |
| 
 | |
| 	printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
 | |
| 		       size, nodeid);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Initialize bootmem allocator for a node */
 | |
| void __init
 | |
| setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long start_pfn, last_pfn, nodedata_phys;
 | |
| 	const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
 | |
| 	int nid;
 | |
| #ifndef CONFIG_NO_BOOTMEM
 | |
| 	unsigned long bootmap_start, bootmap_pages, bootmap_size;
 | |
| 	void *bootmap;
 | |
| #endif
 | |
| 
 | |
| 	if (!end)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't confuse VM with a node that doesn't have the
 | |
| 	 * minimum amount of memory:
 | |
| 	 */
 | |
| 	if (end && (end - start) < NODE_MIN_SIZE)
 | |
| 		return;
 | |
| 
 | |
| 	start = roundup(start, ZONE_ALIGN);
 | |
| 
 | |
| 	printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
 | |
| 	       start, end);
 | |
| 
 | |
| 	start_pfn = start >> PAGE_SHIFT;
 | |
| 	last_pfn = end >> PAGE_SHIFT;
 | |
| 
 | |
| 	node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
 | |
| 					   SMP_CACHE_BYTES);
 | |
| 	if (node_data[nodeid] == NULL)
 | |
| 		return;
 | |
| 	nodedata_phys = __pa(node_data[nodeid]);
 | |
| 	reserve_early(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
 | |
| 	printk(KERN_INFO "  NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
 | |
| 		nodedata_phys + pgdat_size - 1);
 | |
| 	nid = phys_to_nid(nodedata_phys);
 | |
| 	if (nid != nodeid)
 | |
| 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nodeid, nid);
 | |
| 
 | |
| 	memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
 | |
| 	NODE_DATA(nodeid)->node_id = nodeid;
 | |
| 	NODE_DATA(nodeid)->node_start_pfn = start_pfn;
 | |
| 	NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
 | |
| 
 | |
| #ifndef CONFIG_NO_BOOTMEM
 | |
| 	NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a place for the bootmem map
 | |
| 	 * nodedata_phys could be on other nodes by alloc_bootmem,
 | |
| 	 * so need to sure bootmap_start not to be small, otherwise
 | |
| 	 * early_node_mem will get that with find_e820_area instead
 | |
| 	 * of alloc_bootmem, that could clash with reserved range
 | |
| 	 */
 | |
| 	bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
 | |
| 	bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
 | |
| 	/*
 | |
| 	 * SMP_CACHE_BYTES could be enough, but init_bootmem_node like
 | |
| 	 * to use that to align to PAGE_SIZE
 | |
| 	 */
 | |
| 	bootmap = early_node_mem(nodeid, bootmap_start, end,
 | |
| 				 bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
 | |
| 	if (bootmap == NULL)  {
 | |
| 		free_early(nodedata_phys, nodedata_phys + pgdat_size);
 | |
| 		node_data[nodeid] = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 	bootmap_start = __pa(bootmap);
 | |
| 	reserve_early(bootmap_start, bootmap_start+(bootmap_pages<<PAGE_SHIFT),
 | |
| 			"BOOTMAP");
 | |
| 
 | |
| 	bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
 | |
| 					 bootmap_start >> PAGE_SHIFT,
 | |
| 					 start_pfn, last_pfn);
 | |
| 
 | |
| 	printk(KERN_INFO "  bootmap [%016lx -  %016lx] pages %lx\n",
 | |
| 		 bootmap_start, bootmap_start + bootmap_size - 1,
 | |
| 		 bootmap_pages);
 | |
| 	nid = phys_to_nid(bootmap_start);
 | |
| 	if (nid != nodeid)
 | |
| 		printk(KERN_INFO "    bootmap(%d) on node %d\n", nodeid, nid);
 | |
| 
 | |
| 	free_bootmem_with_active_regions(nodeid, end);
 | |
| #endif
 | |
| 
 | |
| 	node_set_online(nodeid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are unfortunately some poorly designed mainboards around that
 | |
|  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
 | |
|  * mapping. To avoid this fill in the mapping for all possible CPUs,
 | |
|  * as the number of CPUs is not known yet. We round robin the existing
 | |
|  * nodes.
 | |
|  */
 | |
| void __init numa_init_array(void)
 | |
| {
 | |
| 	int rr, i;
 | |
| 
 | |
| 	rr = first_node(node_online_map);
 | |
| 	for (i = 0; i < nr_cpu_ids; i++) {
 | |
| 		if (early_cpu_to_node(i) != NUMA_NO_NODE)
 | |
| 			continue;
 | |
| 		numa_set_node(i, rr);
 | |
| 		rr = next_node(rr, node_online_map);
 | |
| 		if (rr == MAX_NUMNODES)
 | |
| 			rr = first_node(node_online_map);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA_EMU
 | |
| /* Numa emulation */
 | |
| static struct bootnode nodes[MAX_NUMNODES] __initdata;
 | |
| static struct bootnode physnodes[MAX_NUMNODES] __initdata;
 | |
| static char *cmdline __initdata;
 | |
| 
 | |
| static int __init setup_physnodes(unsigned long start, unsigned long end,
 | |
| 					int acpi, int k8)
 | |
| {
 | |
| 	int nr_nodes = 0;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| #ifdef CONFIG_ACPI_NUMA
 | |
| 	if (acpi)
 | |
| 		nr_nodes = acpi_get_nodes(physnodes);
 | |
| #endif
 | |
| #ifdef CONFIG_K8_NUMA
 | |
| 	if (k8)
 | |
| 		nr_nodes = k8_get_nodes(physnodes);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Basic sanity checking on the physical node map: there may be errors
 | |
| 	 * if the SRAT or K8 incorrectly reported the topology or the mem=
 | |
| 	 * kernel parameter is used.
 | |
| 	 */
 | |
| 	for (i = 0; i < nr_nodes; i++) {
 | |
| 		if (physnodes[i].start == physnodes[i].end)
 | |
| 			continue;
 | |
| 		if (physnodes[i].start > end) {
 | |
| 			physnodes[i].end = physnodes[i].start;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (physnodes[i].end < start) {
 | |
| 			physnodes[i].start = physnodes[i].end;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (physnodes[i].start < start)
 | |
| 			physnodes[i].start = start;
 | |
| 		if (physnodes[i].end > end)
 | |
| 			physnodes[i].end = end;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove all nodes that have no memory or were truncated because of the
 | |
| 	 * limited address range.
 | |
| 	 */
 | |
| 	for (i = 0; i < nr_nodes; i++) {
 | |
| 		if (physnodes[i].start == physnodes[i].end)
 | |
| 			continue;
 | |
| 		physnodes[ret].start = physnodes[i].start;
 | |
| 		physnodes[ret].end = physnodes[i].end;
 | |
| 		ret++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If no physical topology was detected, a single node is faked to cover
 | |
| 	 * the entire address space.
 | |
| 	 */
 | |
| 	if (!ret) {
 | |
| 		physnodes[ret].start = start;
 | |
| 		physnodes[ret].end = end;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setups up nid to range from addr to addr + size.  If the end
 | |
|  * boundary is greater than max_addr, then max_addr is used instead.
 | |
|  * The return value is 0 if there is additional memory left for
 | |
|  * allocation past addr and -1 otherwise.  addr is adjusted to be at
 | |
|  * the end of the node.
 | |
|  */
 | |
| static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	nodes[nid].start = *addr;
 | |
| 	*addr += size;
 | |
| 	if (*addr >= max_addr) {
 | |
| 		*addr = max_addr;
 | |
| 		ret = -1;
 | |
| 	}
 | |
| 	nodes[nid].end = *addr;
 | |
| 	node_set(nid, node_possible_map);
 | |
| 	printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
 | |
| 	       nodes[nid].start, nodes[nid].end,
 | |
| 	       (nodes[nid].end - nodes[nid].start) >> 20);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
 | |
|  * to max_addr.  The return value is the number of nodes allocated.
 | |
|  */
 | |
| static int __init split_nodes_interleave(u64 addr, u64 max_addr,
 | |
| 						int nr_phys_nodes, int nr_nodes)
 | |
| {
 | |
| 	nodemask_t physnode_mask = NODE_MASK_NONE;
 | |
| 	u64 size;
 | |
| 	int big;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (nr_nodes <= 0)
 | |
| 		return -1;
 | |
| 	if (nr_nodes > MAX_NUMNODES) {
 | |
| 		pr_info("numa=fake=%d too large, reducing to %d\n",
 | |
| 			nr_nodes, MAX_NUMNODES);
 | |
| 		nr_nodes = MAX_NUMNODES;
 | |
| 	}
 | |
| 
 | |
| 	size = (max_addr - addr - e820_hole_size(addr, max_addr)) / nr_nodes;
 | |
| 	/*
 | |
| 	 * Calculate the number of big nodes that can be allocated as a result
 | |
| 	 * of consolidating the remainder.
 | |
| 	 */
 | |
| 	big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
 | |
| 		FAKE_NODE_MIN_SIZE;
 | |
| 
 | |
| 	size &= FAKE_NODE_MIN_HASH_MASK;
 | |
| 	if (!size) {
 | |
| 		pr_err("Not enough memory for each node.  "
 | |
| 			"NUMA emulation disabled.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr_phys_nodes; i++)
 | |
| 		if (physnodes[i].start != physnodes[i].end)
 | |
| 			node_set(i, physnode_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Continue to fill physical nodes with fake nodes until there is no
 | |
| 	 * memory left on any of them.
 | |
| 	 */
 | |
| 	while (nodes_weight(physnode_mask)) {
 | |
| 		for_each_node_mask(i, physnode_mask) {
 | |
| 			u64 end = physnodes[i].start + size;
 | |
| 			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
 | |
| 
 | |
| 			if (ret < big)
 | |
| 				end += FAKE_NODE_MIN_SIZE;
 | |
| 
 | |
| 			/*
 | |
| 			 * Continue to add memory to this fake node if its
 | |
| 			 * non-reserved memory is less than the per-node size.
 | |
| 			 */
 | |
| 			while (end - physnodes[i].start -
 | |
| 				e820_hole_size(physnodes[i].start, end) < size) {
 | |
| 				end += FAKE_NODE_MIN_SIZE;
 | |
| 				if (end > physnodes[i].end) {
 | |
| 					end = physnodes[i].end;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
 | |
| 			 * non-reserved memory in ZONE_DMA32 for the next node,
 | |
| 			 * this one must extend to the boundary.
 | |
| 			 */
 | |
| 			if (end < dma32_end && dma32_end - end -
 | |
| 			    e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
 | |
| 				end = dma32_end;
 | |
| 
 | |
| 			/*
 | |
| 			 * If there won't be enough non-reserved memory for the
 | |
| 			 * next node, this one must extend to the end of the
 | |
| 			 * physical node.
 | |
| 			 */
 | |
| 			if (physnodes[i].end - end -
 | |
| 			    e820_hole_size(end, physnodes[i].end) < size)
 | |
| 				end = physnodes[i].end;
 | |
| 
 | |
| 			/*
 | |
| 			 * Avoid allocating more nodes than requested, which can
 | |
| 			 * happen as a result of rounding down each node's size
 | |
| 			 * to FAKE_NODE_MIN_SIZE.
 | |
| 			 */
 | |
| 			if (nodes_weight(physnode_mask) + ret >= nr_nodes)
 | |
| 				end = physnodes[i].end;
 | |
| 
 | |
| 			if (setup_node_range(ret++, &physnodes[i].start,
 | |
| 						end - physnodes[i].start,
 | |
| 						physnodes[i].end) < 0)
 | |
| 				node_clear(i, physnode_mask);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the end address of a node so that there is at least `size' amount of
 | |
|  * non-reserved memory or `max_addr' is reached.
 | |
|  */
 | |
| static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
 | |
| {
 | |
| 	u64 end = start + size;
 | |
| 
 | |
| 	while (end - start - e820_hole_size(start, end) < size) {
 | |
| 		end += FAKE_NODE_MIN_SIZE;
 | |
| 		if (end > max_addr) {
 | |
| 			end = max_addr;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return end;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets up fake nodes of `size' interleaved over physical nodes ranging from
 | |
|  * `addr' to `max_addr'.  The return value is the number of nodes allocated.
 | |
|  */
 | |
| static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
 | |
| {
 | |
| 	nodemask_t physnode_mask = NODE_MASK_NONE;
 | |
| 	u64 min_size;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return -1;
 | |
| 	/*
 | |
| 	 * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
 | |
| 	 * increased accordingly if the requested size is too small.  This
 | |
| 	 * creates a uniform distribution of node sizes across the entire
 | |
| 	 * machine (but not necessarily over physical nodes).
 | |
| 	 */
 | |
| 	min_size = (max_addr - addr - e820_hole_size(addr, max_addr)) /
 | |
| 						MAX_NUMNODES;
 | |
| 	min_size = max(min_size, FAKE_NODE_MIN_SIZE);
 | |
| 	if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
 | |
| 		min_size = (min_size + FAKE_NODE_MIN_SIZE) &
 | |
| 						FAKE_NODE_MIN_HASH_MASK;
 | |
| 	if (size < min_size) {
 | |
| 		pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
 | |
| 			size >> 20, min_size >> 20);
 | |
| 		size = min_size;
 | |
| 	}
 | |
| 	size &= FAKE_NODE_MIN_HASH_MASK;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++)
 | |
| 		if (physnodes[i].start != physnodes[i].end)
 | |
| 			node_set(i, physnode_mask);
 | |
| 	/*
 | |
| 	 * Fill physical nodes with fake nodes of size until there is no memory
 | |
| 	 * left on any of them.
 | |
| 	 */
 | |
| 	while (nodes_weight(physnode_mask)) {
 | |
| 		for_each_node_mask(i, physnode_mask) {
 | |
| 			u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
 | |
| 			u64 end;
 | |
| 
 | |
| 			end = find_end_of_node(physnodes[i].start,
 | |
| 						physnodes[i].end, size);
 | |
| 			/*
 | |
| 			 * If there won't be at least FAKE_NODE_MIN_SIZE of
 | |
| 			 * non-reserved memory in ZONE_DMA32 for the next node,
 | |
| 			 * this one must extend to the boundary.
 | |
| 			 */
 | |
| 			if (end < dma32_end && dma32_end - end -
 | |
| 			    e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
 | |
| 				end = dma32_end;
 | |
| 
 | |
| 			/*
 | |
| 			 * If there won't be enough non-reserved memory for the
 | |
| 			 * next node, this one must extend to the end of the
 | |
| 			 * physical node.
 | |
| 			 */
 | |
| 			if (physnodes[i].end - end -
 | |
| 			    e820_hole_size(end, physnodes[i].end) < size)
 | |
| 				end = physnodes[i].end;
 | |
| 
 | |
| 			/*
 | |
| 			 * Setup the fake node that will be allocated as bootmem
 | |
| 			 * later.  If setup_node_range() returns non-zero, there
 | |
| 			 * is no more memory available on this physical node.
 | |
| 			 */
 | |
| 			if (setup_node_range(ret++, &physnodes[i].start,
 | |
| 						end - physnodes[i].start,
 | |
| 						physnodes[i].end) < 0)
 | |
| 				node_clear(i, physnode_mask);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets up the system RAM area from start_pfn to last_pfn according to the
 | |
|  * numa=fake command-line option.
 | |
|  */
 | |
| static int __init numa_emulation(unsigned long start_pfn,
 | |
| 			unsigned long last_pfn, int acpi, int k8)
 | |
| {
 | |
| 	u64 addr = start_pfn << PAGE_SHIFT;
 | |
| 	u64 max_addr = last_pfn << PAGE_SHIFT;
 | |
| 	int num_phys_nodes;
 | |
| 	int num_nodes;
 | |
| 	int i;
 | |
| 
 | |
| 	num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8);
 | |
| 	/*
 | |
| 	 * If the numa=fake command-line contains a 'M' or 'G', it represents
 | |
| 	 * the fixed node size.  Otherwise, if it is just a single number N,
 | |
| 	 * split the system RAM into N fake nodes.
 | |
| 	 */
 | |
| 	if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
 | |
| 		u64 size;
 | |
| 
 | |
| 		size = memparse(cmdline, &cmdline);
 | |
| 		num_nodes = split_nodes_size_interleave(addr, max_addr, size);
 | |
| 	} else {
 | |
| 		unsigned long n;
 | |
| 
 | |
| 		n = simple_strtoul(cmdline, NULL, 0);
 | |
| 		num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n);
 | |
| 	}
 | |
| 
 | |
| 	if (num_nodes < 0)
 | |
| 		return num_nodes;
 | |
| 	memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
 | |
| 	if (memnode_shift < 0) {
 | |
| 		memnode_shift = 0;
 | |
| 		printk(KERN_ERR "No NUMA hash function found.  NUMA emulation "
 | |
| 		       "disabled.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to vacate all active ranges that may have been registered for
 | |
| 	 * the e820 memory map.
 | |
| 	 */
 | |
| 	remove_all_active_ranges();
 | |
| 	for_each_node_mask(i, node_possible_map) {
 | |
| 		e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
 | |
| 						nodes[i].end >> PAGE_SHIFT);
 | |
| 		setup_node_bootmem(i, nodes[i].start, nodes[i].end);
 | |
| 	}
 | |
| 	acpi_fake_nodes(nodes, num_nodes);
 | |
| 	numa_init_array();
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_EMU */
 | |
| 
 | |
| void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
 | |
| 				int acpi, int k8)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	nodes_clear(node_possible_map);
 | |
| 	nodes_clear(node_online_map);
 | |
| 
 | |
| #ifdef CONFIG_NUMA_EMU
 | |
| 	if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8))
 | |
| 		return;
 | |
| 	nodes_clear(node_possible_map);
 | |
| 	nodes_clear(node_online_map);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ACPI_NUMA
 | |
| 	if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
 | |
| 						  last_pfn << PAGE_SHIFT))
 | |
| 		return;
 | |
| 	nodes_clear(node_possible_map);
 | |
| 	nodes_clear(node_online_map);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_K8_NUMA
 | |
| 	if (!numa_off && k8 && !k8_scan_nodes())
 | |
| 		return;
 | |
| 	nodes_clear(node_possible_map);
 | |
| 	nodes_clear(node_online_map);
 | |
| #endif
 | |
| 	printk(KERN_INFO "%s\n",
 | |
| 	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
 | |
| 
 | |
| 	printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
 | |
| 	       start_pfn << PAGE_SHIFT,
 | |
| 	       last_pfn << PAGE_SHIFT);
 | |
| 	/* setup dummy node covering all memory */
 | |
| 	memnode_shift = 63;
 | |
| 	memnodemap = memnode.embedded_map;
 | |
| 	memnodemap[0] = 0;
 | |
| 	node_set_online(0);
 | |
| 	node_set(0, node_possible_map);
 | |
| 	for (i = 0; i < nr_cpu_ids; i++)
 | |
| 		numa_set_node(i, 0);
 | |
| 	e820_register_active_regions(0, start_pfn, last_pfn);
 | |
| 	setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| unsigned long __init numa_free_all_bootmem(void)
 | |
| {
 | |
| 	unsigned long pages = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_node(i)
 | |
| 		pages += free_all_bootmem_node(NODE_DATA(i));
 | |
| 
 | |
| #ifdef CONFIG_NO_BOOTMEM
 | |
| 	pages += free_all_memory_core_early(MAX_NUMNODES);
 | |
| #endif
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| static __init int numa_setup(char *opt)
 | |
| {
 | |
| 	if (!opt)
 | |
| 		return -EINVAL;
 | |
| 	if (!strncmp(opt, "off", 3))
 | |
| 		numa_off = 1;
 | |
| #ifdef CONFIG_NUMA_EMU
 | |
| 	if (!strncmp(opt, "fake=", 5))
 | |
| 		cmdline = opt + 5;
 | |
| #endif
 | |
| #ifdef CONFIG_ACPI_NUMA
 | |
| 	if (!strncmp(opt, "noacpi", 6))
 | |
| 		acpi_numa = -1;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| early_param("numa", numa_setup);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 
 | |
| static __init int find_near_online_node(int node)
 | |
| {
 | |
| 	int n, val;
 | |
| 	int min_val = INT_MAX;
 | |
| 	int best_node = -1;
 | |
| 
 | |
| 	for_each_online_node(n) {
 | |
| 		val = node_distance(node, n);
 | |
| 
 | |
| 		if (val < min_val) {
 | |
| 			min_val = val;
 | |
| 			best_node = n;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return best_node;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup early cpu_to_node.
 | |
|  *
 | |
|  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
 | |
|  * and apicid_to_node[] tables have valid entries for a CPU.
 | |
|  * This means we skip cpu_to_node[] initialisation for NUMA
 | |
|  * emulation and faking node case (when running a kernel compiled
 | |
|  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
 | |
|  * is already initialized in a round robin manner at numa_init_array,
 | |
|  * prior to this call, and this initialization is good enough
 | |
|  * for the fake NUMA cases.
 | |
|  *
 | |
|  * Called before the per_cpu areas are setup.
 | |
|  */
 | |
| void __init init_cpu_to_node(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
 | |
| 
 | |
| 	BUG_ON(cpu_to_apicid == NULL);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		int node;
 | |
| 		u16 apicid = cpu_to_apicid[cpu];
 | |
| 
 | |
| 		if (apicid == BAD_APICID)
 | |
| 			continue;
 | |
| 		node = apicid_to_node[apicid];
 | |
| 		if (node == NUMA_NO_NODE)
 | |
| 			continue;
 | |
| 		if (!node_online(node))
 | |
| 			node = find_near_online_node(node);
 | |
| 		numa_set_node(cpu, node);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| void __cpuinit numa_set_node(int cpu, int node)
 | |
| {
 | |
| 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
 | |
| 
 | |
| 	/* early setting, no percpu area yet */
 | |
| 	if (cpu_to_node_map) {
 | |
| 		cpu_to_node_map[cpu] = node;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PER_CPU_MAPS
 | |
| 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 | |
| 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
 | |
| 		dump_stack();
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	per_cpu(x86_cpu_to_node_map, cpu) = node;
 | |
| 
 | |
| 	if (node != NUMA_NO_NODE)
 | |
| 		set_cpu_numa_node(cpu, node);
 | |
| }
 | |
| 
 | |
| void __cpuinit numa_clear_node(int cpu)
 | |
| {
 | |
| 	numa_set_node(cpu, NUMA_NO_NODE);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_DEBUG_PER_CPU_MAPS
 | |
| 
 | |
| void __cpuinit numa_add_cpu(int cpu)
 | |
| {
 | |
| 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
 | |
| }
 | |
| 
 | |
| void __cpuinit numa_remove_cpu(int cpu)
 | |
| {
 | |
| 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_DEBUG_PER_CPU_MAPS */
 | |
| 
 | |
| /*
 | |
|  * --------- debug versions of the numa functions ---------
 | |
|  */
 | |
| static void __cpuinit numa_set_cpumask(int cpu, int enable)
 | |
| {
 | |
| 	int node = early_cpu_to_node(cpu);
 | |
| 	struct cpumask *mask;
 | |
| 	char buf[64];
 | |
| 
 | |
| 	mask = node_to_cpumask_map[node];
 | |
| 	if (mask == NULL) {
 | |
| 		printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
 | |
| 		dump_stack();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (enable)
 | |
| 		cpumask_set_cpu(cpu, mask);
 | |
| 	else
 | |
| 		cpumask_clear_cpu(cpu, mask);
 | |
| 
 | |
| 	cpulist_scnprintf(buf, sizeof(buf), mask);
 | |
| 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
 | |
| 		enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
 | |
| }
 | |
| 
 | |
| void __cpuinit numa_add_cpu(int cpu)
 | |
| {
 | |
| 	numa_set_cpumask(cpu, 1);
 | |
| }
 | |
| 
 | |
| void __cpuinit numa_remove_cpu(int cpu)
 | |
| {
 | |
| 	numa_set_cpumask(cpu, 0);
 | |
| }
 | |
| 
 | |
| int __cpu_to_node(int cpu)
 | |
| {
 | |
| 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"cpu_to_node(%d): usage too early!\n", cpu);
 | |
| 		dump_stack();
 | |
| 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
 | |
| 	}
 | |
| 	return per_cpu(x86_cpu_to_node_map, cpu);
 | |
| }
 | |
| EXPORT_SYMBOL(__cpu_to_node);
 | |
| 
 | |
| /*
 | |
|  * Same function as cpu_to_node() but used if called before the
 | |
|  * per_cpu areas are setup.
 | |
|  */
 | |
| int early_cpu_to_node(int cpu)
 | |
| {
 | |
| 	if (early_per_cpu_ptr(x86_cpu_to_node_map))
 | |
| 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
 | |
| 
 | |
| 	if (!cpu_possible(cpu)) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
 | |
| 		dump_stack();
 | |
| 		return NUMA_NO_NODE;
 | |
| 	}
 | |
| 	return per_cpu(x86_cpu_to_node_map, cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * --------- end of debug versions of the numa functions ---------
 | |
|  */
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
 |