mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 09:36:25 +00:00 
			
		
		
		
	 3444d7da18
			
		
	
	
		3444d7da18
		
	
	
	
	
		
			
			vmx does not restore GDT.LIMIT to the host value, instead it sets it to 64KB. This means host userspace can learn a few bits of host memory. Fix by reloading GDTR when we load other host state. Signed-off-by: Avi Kivity <avi@redhat.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
		
			
				
	
	
		
			4462 lines
		
	
	
		
			113 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4462 lines
		
	
	
		
			113 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * This module enables machines with Intel VT-x extensions to run virtual
 | |
|  * machines without emulation or binary translation.
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affilates.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "irq.h"
 | |
| #include "mmu.h"
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/ftrace_event.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/tboot.h>
 | |
| #include "kvm_cache_regs.h"
 | |
| #include "x86.h"
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/vmx.h>
 | |
| #include <asm/virtext.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/i387.h>
 | |
| #include <asm/xcr.h>
 | |
| 
 | |
| #include "trace.h"
 | |
| 
 | |
| #define __ex(x) __kvm_handle_fault_on_reboot(x)
 | |
| 
 | |
| MODULE_AUTHOR("Qumranet");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| static int __read_mostly bypass_guest_pf = 1;
 | |
| module_param(bypass_guest_pf, bool, S_IRUGO);
 | |
| 
 | |
| static int __read_mostly enable_vpid = 1;
 | |
| module_param_named(vpid, enable_vpid, bool, 0444);
 | |
| 
 | |
| static int __read_mostly flexpriority_enabled = 1;
 | |
| module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
 | |
| 
 | |
| static int __read_mostly enable_ept = 1;
 | |
| module_param_named(ept, enable_ept, bool, S_IRUGO);
 | |
| 
 | |
| static int __read_mostly enable_unrestricted_guest = 1;
 | |
| module_param_named(unrestricted_guest,
 | |
| 			enable_unrestricted_guest, bool, S_IRUGO);
 | |
| 
 | |
| static int __read_mostly emulate_invalid_guest_state = 0;
 | |
| module_param(emulate_invalid_guest_state, bool, S_IRUGO);
 | |
| 
 | |
| static int __read_mostly vmm_exclusive = 1;
 | |
| module_param(vmm_exclusive, bool, S_IRUGO);
 | |
| 
 | |
| #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST				\
 | |
| 	(X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
 | |
| #define KVM_GUEST_CR0_MASK						\
 | |
| 	(KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
 | |
| #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST				\
 | |
| 	(X86_CR0_WP | X86_CR0_NE)
 | |
| #define KVM_VM_CR0_ALWAYS_ON						\
 | |
| 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
 | |
| #define KVM_CR4_GUEST_OWNED_BITS				      \
 | |
| 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 | |
| 	 | X86_CR4_OSXMMEXCPT)
 | |
| 
 | |
| #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 | |
| #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 | |
| 
 | |
| #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 | |
| 
 | |
| /*
 | |
|  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 | |
|  * ple_gap:    upper bound on the amount of time between two successive
 | |
|  *             executions of PAUSE in a loop. Also indicate if ple enabled.
 | |
|  *             According to test, this time is usually small than 41 cycles.
 | |
|  * ple_window: upper bound on the amount of time a guest is allowed to execute
 | |
|  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 | |
|  *             less than 2^12 cycles
 | |
|  * Time is measured based on a counter that runs at the same rate as the TSC,
 | |
|  * refer SDM volume 3b section 21.6.13 & 22.1.3.
 | |
|  */
 | |
| #define KVM_VMX_DEFAULT_PLE_GAP    41
 | |
| #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
 | |
| static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
 | |
| module_param(ple_gap, int, S_IRUGO);
 | |
| 
 | |
| static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 | |
| module_param(ple_window, int, S_IRUGO);
 | |
| 
 | |
| #define NR_AUTOLOAD_MSRS 1
 | |
| 
 | |
| struct vmcs {
 | |
| 	u32 revision_id;
 | |
| 	u32 abort;
 | |
| 	char data[0];
 | |
| };
 | |
| 
 | |
| struct shared_msr_entry {
 | |
| 	unsigned index;
 | |
| 	u64 data;
 | |
| 	u64 mask;
 | |
| };
 | |
| 
 | |
| struct vcpu_vmx {
 | |
| 	struct kvm_vcpu       vcpu;
 | |
| 	struct list_head      local_vcpus_link;
 | |
| 	unsigned long         host_rsp;
 | |
| 	int                   launched;
 | |
| 	u8                    fail;
 | |
| 	u32                   idt_vectoring_info;
 | |
| 	struct shared_msr_entry *guest_msrs;
 | |
| 	int                   nmsrs;
 | |
| 	int                   save_nmsrs;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	u64 		      msr_host_kernel_gs_base;
 | |
| 	u64 		      msr_guest_kernel_gs_base;
 | |
| #endif
 | |
| 	struct vmcs          *vmcs;
 | |
| 	struct msr_autoload {
 | |
| 		unsigned nr;
 | |
| 		struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
 | |
| 		struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
 | |
| 	} msr_autoload;
 | |
| 	struct {
 | |
| 		int           loaded;
 | |
| 		u16           fs_sel, gs_sel, ldt_sel;
 | |
| 		int           gs_ldt_reload_needed;
 | |
| 		int           fs_reload_needed;
 | |
| 	} host_state;
 | |
| 	struct {
 | |
| 		int vm86_active;
 | |
| 		ulong save_rflags;
 | |
| 		struct kvm_save_segment {
 | |
| 			u16 selector;
 | |
| 			unsigned long base;
 | |
| 			u32 limit;
 | |
| 			u32 ar;
 | |
| 		} tr, es, ds, fs, gs;
 | |
| 		struct {
 | |
| 			bool pending;
 | |
| 			u8 vector;
 | |
| 			unsigned rip;
 | |
| 		} irq;
 | |
| 	} rmode;
 | |
| 	int vpid;
 | |
| 	bool emulation_required;
 | |
| 
 | |
| 	/* Support for vnmi-less CPUs */
 | |
| 	int soft_vnmi_blocked;
 | |
| 	ktime_t entry_time;
 | |
| 	s64 vnmi_blocked_time;
 | |
| 	u32 exit_reason;
 | |
| 
 | |
| 	bool rdtscp_enabled;
 | |
| };
 | |
| 
 | |
| static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return container_of(vcpu, struct vcpu_vmx, vcpu);
 | |
| }
 | |
| 
 | |
| static int init_rmode(struct kvm *kvm);
 | |
| static u64 construct_eptp(unsigned long root_hpa);
 | |
| static void kvm_cpu_vmxon(u64 addr);
 | |
| static void kvm_cpu_vmxoff(void);
 | |
| 
 | |
| static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 | |
| static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 | |
| static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
 | |
| static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
 | |
| 
 | |
| static unsigned long *vmx_io_bitmap_a;
 | |
| static unsigned long *vmx_io_bitmap_b;
 | |
| static unsigned long *vmx_msr_bitmap_legacy;
 | |
| static unsigned long *vmx_msr_bitmap_longmode;
 | |
| 
 | |
| static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 | |
| static DEFINE_SPINLOCK(vmx_vpid_lock);
 | |
| 
 | |
| static struct vmcs_config {
 | |
| 	int size;
 | |
| 	int order;
 | |
| 	u32 revision_id;
 | |
| 	u32 pin_based_exec_ctrl;
 | |
| 	u32 cpu_based_exec_ctrl;
 | |
| 	u32 cpu_based_2nd_exec_ctrl;
 | |
| 	u32 vmexit_ctrl;
 | |
| 	u32 vmentry_ctrl;
 | |
| } vmcs_config;
 | |
| 
 | |
| static struct vmx_capability {
 | |
| 	u32 ept;
 | |
| 	u32 vpid;
 | |
| } vmx_capability;
 | |
| 
 | |
| #define VMX_SEGMENT_FIELD(seg)					\
 | |
| 	[VCPU_SREG_##seg] = {                                   \
 | |
| 		.selector = GUEST_##seg##_SELECTOR,		\
 | |
| 		.base = GUEST_##seg##_BASE,		   	\
 | |
| 		.limit = GUEST_##seg##_LIMIT,		   	\
 | |
| 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
 | |
| 	}
 | |
| 
 | |
| static struct kvm_vmx_segment_field {
 | |
| 	unsigned selector;
 | |
| 	unsigned base;
 | |
| 	unsigned limit;
 | |
| 	unsigned ar_bytes;
 | |
| } kvm_vmx_segment_fields[] = {
 | |
| 	VMX_SEGMENT_FIELD(CS),
 | |
| 	VMX_SEGMENT_FIELD(DS),
 | |
| 	VMX_SEGMENT_FIELD(ES),
 | |
| 	VMX_SEGMENT_FIELD(FS),
 | |
| 	VMX_SEGMENT_FIELD(GS),
 | |
| 	VMX_SEGMENT_FIELD(SS),
 | |
| 	VMX_SEGMENT_FIELD(TR),
 | |
| 	VMX_SEGMENT_FIELD(LDTR),
 | |
| };
 | |
| 
 | |
| static u64 host_efer;
 | |
| 
 | |
| static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| /*
 | |
|  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
 | |
|  * away by decrementing the array size.
 | |
|  */
 | |
| static const u32 vmx_msr_index[] = {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 | |
| #endif
 | |
| 	MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
 | |
| };
 | |
| #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
 | |
| 
 | |
| static inline bool is_page_fault(u32 intr_info)
 | |
| {
 | |
| 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 | |
| 			     INTR_INFO_VALID_MASK)) ==
 | |
| 		(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool is_no_device(u32 intr_info)
 | |
| {
 | |
| 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 | |
| 			     INTR_INFO_VALID_MASK)) ==
 | |
| 		(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool is_invalid_opcode(u32 intr_info)
 | |
| {
 | |
| 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 | |
| 			     INTR_INFO_VALID_MASK)) ==
 | |
| 		(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool is_external_interrupt(u32 intr_info)
 | |
| {
 | |
| 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
 | |
| 		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool is_machine_check(u32 intr_info)
 | |
| {
 | |
| 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 | |
| 			     INTR_INFO_VALID_MASK)) ==
 | |
| 		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_msr_bitmap(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_tpr_shadow(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
 | |
| }
 | |
| 
 | |
| static inline bool vm_need_tpr_shadow(struct kvm *kvm)
 | |
| {
 | |
| 	return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_secondary_exec_ctrls(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_exec_ctrl &
 | |
| 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_flexpriority(void)
 | |
| {
 | |
| 	return cpu_has_vmx_tpr_shadow() &&
 | |
| 		cpu_has_vmx_virtualize_apic_accesses();
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_execute_only(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_eptp_uncacheable(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPTP_UC_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_eptp_writeback(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPTP_WB_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_2m_page(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_1g_page(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_4levels(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invept_individual_addr(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invept_context(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invept_global(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invvpid_single(void)
 | |
| {
 | |
| 	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invvpid_global(void)
 | |
| {
 | |
| 	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_ENABLE_EPT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_unrestricted_guest(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_UNRESTRICTED_GUEST;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ple(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
 | |
| }
 | |
| 
 | |
| static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
 | |
| {
 | |
| 	return flexpriority_enabled && irqchip_in_kernel(kvm);
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_vpid(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_ENABLE_VPID;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_rdtscp(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_RDTSCP;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_virtual_nmis(void)
 | |
| {
 | |
| 	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_wbinvd_exit(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_WBINVD_EXITING;
 | |
| }
 | |
| 
 | |
| static inline bool report_flexpriority(void)
 | |
| {
 | |
| 	return flexpriority_enabled;
 | |
| }
 | |
| 
 | |
| static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < vmx->nmsrs; ++i)
 | |
| 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
 | |
| 			return i;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline void __invvpid(int ext, u16 vpid, gva_t gva)
 | |
| {
 | |
|     struct {
 | |
| 	u64 vpid : 16;
 | |
| 	u64 rsvd : 48;
 | |
| 	u64 gva;
 | |
|     } operand = { vpid, 0, gva };
 | |
| 
 | |
|     asm volatile (__ex(ASM_VMX_INVVPID)
 | |
| 		  /* CF==1 or ZF==1 --> rc = -1 */
 | |
| 		  "; ja 1f ; ud2 ; 1:"
 | |
| 		  : : "a"(&operand), "c"(ext) : "cc", "memory");
 | |
| }
 | |
| 
 | |
| static inline void __invept(int ext, u64 eptp, gpa_t gpa)
 | |
| {
 | |
| 	struct {
 | |
| 		u64 eptp, gpa;
 | |
| 	} operand = {eptp, gpa};
 | |
| 
 | |
| 	asm volatile (__ex(ASM_VMX_INVEPT)
 | |
| 			/* CF==1 or ZF==1 --> rc = -1 */
 | |
| 			"; ja 1f ; ud2 ; 1:\n"
 | |
| 			: : "a" (&operand), "c" (ext) : "cc", "memory");
 | |
| }
 | |
| 
 | |
| static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	i = __find_msr_index(vmx, msr);
 | |
| 	if (i >= 0)
 | |
| 		return &vmx->guest_msrs[i];
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void vmcs_clear(struct vmcs *vmcs)
 | |
| {
 | |
| 	u64 phys_addr = __pa(vmcs);
 | |
| 	u8 error;
 | |
| 
 | |
| 	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
 | |
| 		      : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
 | |
| 		      : "cc", "memory");
 | |
| 	if (error)
 | |
| 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
 | |
| 		       vmcs, phys_addr);
 | |
| }
 | |
| 
 | |
| static void vmcs_load(struct vmcs *vmcs)
 | |
| {
 | |
| 	u64 phys_addr = __pa(vmcs);
 | |
| 	u8 error;
 | |
| 
 | |
| 	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
 | |
| 			: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
 | |
| 			: "cc", "memory");
 | |
| 	if (error)
 | |
| 		printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
 | |
| 		       vmcs, phys_addr);
 | |
| }
 | |
| 
 | |
| static void __vcpu_clear(void *arg)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = arg;
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 
 | |
| 	if (vmx->vcpu.cpu == cpu)
 | |
| 		vmcs_clear(vmx->vmcs);
 | |
| 	if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
 | |
| 		per_cpu(current_vmcs, cpu) = NULL;
 | |
| 	rdtscll(vmx->vcpu.arch.host_tsc);
 | |
| 	list_del(&vmx->local_vcpus_link);
 | |
| 	vmx->vcpu.cpu = -1;
 | |
| 	vmx->launched = 0;
 | |
| }
 | |
| 
 | |
| static void vcpu_clear(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	if (vmx->vcpu.cpu == -1)
 | |
| 		return;
 | |
| 	smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
 | |
| }
 | |
| 
 | |
| static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	if (vmx->vpid == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (cpu_has_vmx_invvpid_single())
 | |
| 		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
 | |
| }
 | |
| 
 | |
| static inline void vpid_sync_vcpu_global(void)
 | |
| {
 | |
| 	if (cpu_has_vmx_invvpid_global())
 | |
| 		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
 | |
| }
 | |
| 
 | |
| static inline void vpid_sync_context(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	if (cpu_has_vmx_invvpid_single())
 | |
| 		vpid_sync_vcpu_single(vmx);
 | |
| 	else
 | |
| 		vpid_sync_vcpu_global();
 | |
| }
 | |
| 
 | |
| static inline void ept_sync_global(void)
 | |
| {
 | |
| 	if (cpu_has_vmx_invept_global())
 | |
| 		__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
 | |
| }
 | |
| 
 | |
| static inline void ept_sync_context(u64 eptp)
 | |
| {
 | |
| 	if (enable_ept) {
 | |
| 		if (cpu_has_vmx_invept_context())
 | |
| 			__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
 | |
| 		else
 | |
| 			ept_sync_global();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
 | |
| {
 | |
| 	if (enable_ept) {
 | |
| 		if (cpu_has_vmx_invept_individual_addr())
 | |
| 			__invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
 | |
| 					eptp, gpa);
 | |
| 		else
 | |
| 			ept_sync_context(eptp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long vmcs_readl(unsigned long field)
 | |
| {
 | |
| 	unsigned long value;
 | |
| 
 | |
| 	asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
 | |
| 		      : "=a"(value) : "d"(field) : "cc");
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| static u16 vmcs_read16(unsigned long field)
 | |
| {
 | |
| 	return vmcs_readl(field);
 | |
| }
 | |
| 
 | |
| static u32 vmcs_read32(unsigned long field)
 | |
| {
 | |
| 	return vmcs_readl(field);
 | |
| }
 | |
| 
 | |
| static u64 vmcs_read64(unsigned long field)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	return vmcs_readl(field);
 | |
| #else
 | |
| 	return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static noinline void vmwrite_error(unsigned long field, unsigned long value)
 | |
| {
 | |
| 	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
 | |
| 	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static void vmcs_writel(unsigned long field, unsigned long value)
 | |
| {
 | |
| 	u8 error;
 | |
| 
 | |
| 	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
 | |
| 		       : "=q"(error) : "a"(value), "d"(field) : "cc");
 | |
| 	if (unlikely(error))
 | |
| 		vmwrite_error(field, value);
 | |
| }
 | |
| 
 | |
| static void vmcs_write16(unsigned long field, u16 value)
 | |
| {
 | |
| 	vmcs_writel(field, value);
 | |
| }
 | |
| 
 | |
| static void vmcs_write32(unsigned long field, u32 value)
 | |
| {
 | |
| 	vmcs_writel(field, value);
 | |
| }
 | |
| 
 | |
| static void vmcs_write64(unsigned long field, u64 value)
 | |
| {
 | |
| 	vmcs_writel(field, value);
 | |
| #ifndef CONFIG_X86_64
 | |
| 	asm volatile ("");
 | |
| 	vmcs_writel(field+1, value >> 32);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void vmcs_clear_bits(unsigned long field, u32 mask)
 | |
| {
 | |
| 	vmcs_writel(field, vmcs_readl(field) & ~mask);
 | |
| }
 | |
| 
 | |
| static void vmcs_set_bits(unsigned long field, u32 mask)
 | |
| {
 | |
| 	vmcs_writel(field, vmcs_readl(field) | mask);
 | |
| }
 | |
| 
 | |
| static void update_exception_bitmap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 eb;
 | |
| 
 | |
| 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
 | |
| 	     (1u << NM_VECTOR) | (1u << DB_VECTOR);
 | |
| 	if ((vcpu->guest_debug &
 | |
| 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
 | |
| 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
 | |
| 		eb |= 1u << BP_VECTOR;
 | |
| 	if (to_vmx(vcpu)->rmode.vm86_active)
 | |
| 		eb = ~0;
 | |
| 	if (enable_ept)
 | |
| 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
 | |
| 	if (vcpu->fpu_active)
 | |
| 		eb &= ~(1u << NM_VECTOR);
 | |
| 	vmcs_write32(EXCEPTION_BITMAP, eb);
 | |
| }
 | |
| 
 | |
| static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	struct msr_autoload *m = &vmx->msr_autoload;
 | |
| 
 | |
| 	for (i = 0; i < m->nr; ++i)
 | |
| 		if (m->guest[i].index == msr)
 | |
| 			break;
 | |
| 
 | |
| 	if (i == m->nr)
 | |
| 		return;
 | |
| 	--m->nr;
 | |
| 	m->guest[i] = m->guest[m->nr];
 | |
| 	m->host[i] = m->host[m->nr];
 | |
| 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
 | |
| 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
 | |
| }
 | |
| 
 | |
| static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
 | |
| 				  u64 guest_val, u64 host_val)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	struct msr_autoload *m = &vmx->msr_autoload;
 | |
| 
 | |
| 	for (i = 0; i < m->nr; ++i)
 | |
| 		if (m->guest[i].index == msr)
 | |
| 			break;
 | |
| 
 | |
| 	if (i == m->nr) {
 | |
| 		++m->nr;
 | |
| 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
 | |
| 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
 | |
| 	}
 | |
| 
 | |
| 	m->guest[i].index = msr;
 | |
| 	m->guest[i].value = guest_val;
 | |
| 	m->host[i].index = msr;
 | |
| 	m->host[i].value = host_val;
 | |
| }
 | |
| 
 | |
| static void reload_tss(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * VT restores TR but not its size.  Useless.
 | |
| 	 */
 | |
| 	struct desc_ptr gdt;
 | |
| 	struct desc_struct *descs;
 | |
| 
 | |
| 	native_store_gdt(&gdt);
 | |
| 	descs = (void *)gdt.address;
 | |
| 	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
 | |
| 	load_TR_desc();
 | |
| }
 | |
| 
 | |
| static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
 | |
| {
 | |
| 	u64 guest_efer;
 | |
| 	u64 ignore_bits;
 | |
| 
 | |
| 	guest_efer = vmx->vcpu.arch.efer;
 | |
| 
 | |
| 	/*
 | |
| 	 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
 | |
| 	 * outside long mode
 | |
| 	 */
 | |
| 	ignore_bits = EFER_NX | EFER_SCE;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	ignore_bits |= EFER_LMA | EFER_LME;
 | |
| 	/* SCE is meaningful only in long mode on Intel */
 | |
| 	if (guest_efer & EFER_LMA)
 | |
| 		ignore_bits &= ~(u64)EFER_SCE;
 | |
| #endif
 | |
| 	guest_efer &= ~ignore_bits;
 | |
| 	guest_efer |= host_efer & ignore_bits;
 | |
| 	vmx->guest_msrs[efer_offset].data = guest_efer;
 | |
| 	vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
 | |
| 
 | |
| 	clear_atomic_switch_msr(vmx, MSR_EFER);
 | |
| 	/* On ept, can't emulate nx, and must switch nx atomically */
 | |
| 	if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
 | |
| 		guest_efer = vmx->vcpu.arch.efer;
 | |
| 		if (!(guest_efer & EFER_LMA))
 | |
| 			guest_efer &= ~EFER_LME;
 | |
| 		add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static unsigned long segment_base(u16 selector)
 | |
| {
 | |
| 	struct desc_ptr gdt;
 | |
| 	struct desc_struct *d;
 | |
| 	unsigned long table_base;
 | |
| 	unsigned long v;
 | |
| 
 | |
| 	if (!(selector & ~3))
 | |
| 		return 0;
 | |
| 
 | |
| 	native_store_gdt(&gdt);
 | |
| 	table_base = gdt.address;
 | |
| 
 | |
| 	if (selector & 4) {           /* from ldt */
 | |
| 		u16 ldt_selector = kvm_read_ldt();
 | |
| 
 | |
| 		if (!(ldt_selector & ~3))
 | |
| 			return 0;
 | |
| 
 | |
| 		table_base = segment_base(ldt_selector);
 | |
| 	}
 | |
| 	d = (struct desc_struct *)(table_base + (selector & ~7));
 | |
| 	v = get_desc_base(d);
 | |
| #ifdef CONFIG_X86_64
 | |
|        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
 | |
|                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
 | |
| #endif
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static inline unsigned long kvm_read_tr_base(void)
 | |
| {
 | |
| 	u16 tr;
 | |
| 	asm("str %0" : "=g"(tr));
 | |
| 	return segment_base(tr);
 | |
| }
 | |
| 
 | |
| static void vmx_save_host_state(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int i;
 | |
| 
 | |
| 	if (vmx->host_state.loaded)
 | |
| 		return;
 | |
| 
 | |
| 	vmx->host_state.loaded = 1;
 | |
| 	/*
 | |
| 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
 | |
| 	 * allow segment selectors with cpl > 0 or ti == 1.
 | |
| 	 */
 | |
| 	vmx->host_state.ldt_sel = kvm_read_ldt();
 | |
| 	vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
 | |
| 	vmx->host_state.fs_sel = kvm_read_fs();
 | |
| 	if (!(vmx->host_state.fs_sel & 7)) {
 | |
| 		vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
 | |
| 		vmx->host_state.fs_reload_needed = 0;
 | |
| 	} else {
 | |
| 		vmcs_write16(HOST_FS_SELECTOR, 0);
 | |
| 		vmx->host_state.fs_reload_needed = 1;
 | |
| 	}
 | |
| 	vmx->host_state.gs_sel = kvm_read_gs();
 | |
| 	if (!(vmx->host_state.gs_sel & 7))
 | |
| 		vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
 | |
| 	else {
 | |
| 		vmcs_write16(HOST_GS_SELECTOR, 0);
 | |
| 		vmx->host_state.gs_ldt_reload_needed = 1;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
 | |
| 	vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
 | |
| #else
 | |
| 	vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
 | |
| 	vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (is_long_mode(&vmx->vcpu)) {
 | |
| 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
 | |
| 		wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
 | |
| 	}
 | |
| #endif
 | |
| 	for (i = 0; i < vmx->save_nmsrs; ++i)
 | |
| 		kvm_set_shared_msr(vmx->guest_msrs[i].index,
 | |
| 				   vmx->guest_msrs[i].data,
 | |
| 				   vmx->guest_msrs[i].mask);
 | |
| }
 | |
| 
 | |
| static void __vmx_load_host_state(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!vmx->host_state.loaded)
 | |
| 		return;
 | |
| 
 | |
| 	++vmx->vcpu.stat.host_state_reload;
 | |
| 	vmx->host_state.loaded = 0;
 | |
| 	if (vmx->host_state.fs_reload_needed)
 | |
| 		kvm_load_fs(vmx->host_state.fs_sel);
 | |
| 	if (vmx->host_state.gs_ldt_reload_needed) {
 | |
| 		kvm_load_ldt(vmx->host_state.ldt_sel);
 | |
| 		/*
 | |
| 		 * If we have to reload gs, we must take care to
 | |
| 		 * preserve our gs base.
 | |
| 		 */
 | |
| 		local_irq_save(flags);
 | |
| 		kvm_load_gs(vmx->host_state.gs_sel);
 | |
| #ifdef CONFIG_X86_64
 | |
| 		wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
 | |
| #endif
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 	reload_tss();
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (is_long_mode(&vmx->vcpu)) {
 | |
| 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
 | |
| 		wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
 | |
| 	}
 | |
| #endif
 | |
| 	if (current_thread_info()->status & TS_USEDFPU)
 | |
| 		clts();
 | |
| 	load_gdt(&__get_cpu_var(host_gdt));
 | |
| }
 | |
| 
 | |
| static void vmx_load_host_state(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	__vmx_load_host_state(vmx);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
 | |
|  * vcpu mutex is already taken.
 | |
|  */
 | |
| static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u64 tsc_this, delta, new_offset;
 | |
| 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
 | |
| 
 | |
| 	if (!vmm_exclusive)
 | |
| 		kvm_cpu_vmxon(phys_addr);
 | |
| 	else if (vcpu->cpu != cpu)
 | |
| 		vcpu_clear(vmx);
 | |
| 
 | |
| 	if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
 | |
| 		per_cpu(current_vmcs, cpu) = vmx->vmcs;
 | |
| 		vmcs_load(vmx->vmcs);
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->cpu != cpu) {
 | |
| 		struct desc_ptr dt;
 | |
| 		unsigned long sysenter_esp;
 | |
| 
 | |
| 		kvm_migrate_timers(vcpu);
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 | |
| 		local_irq_disable();
 | |
| 		list_add(&vmx->local_vcpus_link,
 | |
| 			 &per_cpu(vcpus_on_cpu, cpu));
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 		vcpu->cpu = cpu;
 | |
| 		/*
 | |
| 		 * Linux uses per-cpu TSS and GDT, so set these when switching
 | |
| 		 * processors.
 | |
| 		 */
 | |
| 		vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
 | |
| 		native_store_gdt(&dt);
 | |
| 		vmcs_writel(HOST_GDTR_BASE, dt.address);   /* 22.2.4 */
 | |
| 
 | |
| 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
 | |
| 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure the time stamp counter is monotonous.
 | |
| 		 */
 | |
| 		rdtscll(tsc_this);
 | |
| 		if (tsc_this < vcpu->arch.host_tsc) {
 | |
| 			delta = vcpu->arch.host_tsc - tsc_this;
 | |
| 			new_offset = vmcs_read64(TSC_OFFSET) + delta;
 | |
| 			vmcs_write64(TSC_OFFSET, new_offset);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	__vmx_load_host_state(to_vmx(vcpu));
 | |
| 	if (!vmm_exclusive) {
 | |
| 		__vcpu_clear(to_vmx(vcpu));
 | |
| 		kvm_cpu_vmxoff();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ulong cr0;
 | |
| 
 | |
| 	if (vcpu->fpu_active)
 | |
| 		return;
 | |
| 	vcpu->fpu_active = 1;
 | |
| 	cr0 = vmcs_readl(GUEST_CR0);
 | |
| 	cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
 | |
| 	cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
 | |
| 	vmcs_writel(GUEST_CR0, cr0);
 | |
| 	update_exception_bitmap(vcpu);
 | |
| 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
 | |
| 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
 | |
| }
 | |
| 
 | |
| static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vmx_decache_cr0_guest_bits(vcpu);
 | |
| 	vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
 | |
| 	update_exception_bitmap(vcpu);
 | |
| 	vcpu->arch.cr0_guest_owned_bits = 0;
 | |
| 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
 | |
| 	vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
 | |
| }
 | |
| 
 | |
| static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long rflags, save_rflags;
 | |
| 
 | |
| 	rflags = vmcs_readl(GUEST_RFLAGS);
 | |
| 	if (to_vmx(vcpu)->rmode.vm86_active) {
 | |
| 		rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
 | |
| 		save_rflags = to_vmx(vcpu)->rmode.save_rflags;
 | |
| 		rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
 | |
| 	}
 | |
| 	return rflags;
 | |
| }
 | |
| 
 | |
| static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
 | |
| {
 | |
| 	if (to_vmx(vcpu)->rmode.vm86_active) {
 | |
| 		to_vmx(vcpu)->rmode.save_rflags = rflags;
 | |
| 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
 | |
| 	}
 | |
| 	vmcs_writel(GUEST_RFLAGS, rflags);
 | |
| }
 | |
| 
 | |
| static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 | |
| {
 | |
| 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (interruptibility & GUEST_INTR_STATE_STI)
 | |
| 		ret |= KVM_X86_SHADOW_INT_STI;
 | |
| 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
 | |
| 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
 | |
| 
 | |
| 	return ret & mask;
 | |
| }
 | |
| 
 | |
| static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 | |
| {
 | |
| 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
 | |
| 	u32 interruptibility = interruptibility_old;
 | |
| 
 | |
| 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
 | |
| 
 | |
| 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
 | |
| 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
 | |
| 	else if (mask & KVM_X86_SHADOW_INT_STI)
 | |
| 		interruptibility |= GUEST_INTR_STATE_STI;
 | |
| 
 | |
| 	if ((interruptibility != interruptibility_old))
 | |
| 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
 | |
| }
 | |
| 
 | |
| static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long rip;
 | |
| 
 | |
| 	rip = kvm_rip_read(vcpu);
 | |
| 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 | |
| 	kvm_rip_write(vcpu, rip);
 | |
| 
 | |
| 	/* skipping an emulated instruction also counts */
 | |
| 	vmx_set_interrupt_shadow(vcpu, 0);
 | |
| }
 | |
| 
 | |
| static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
 | |
| 				bool has_error_code, u32 error_code,
 | |
| 				bool reinject)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
 | |
| 
 | |
| 	if (has_error_code) {
 | |
| 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
 | |
| 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->rmode.vm86_active) {
 | |
| 		vmx->rmode.irq.pending = true;
 | |
| 		vmx->rmode.irq.vector = nr;
 | |
| 		vmx->rmode.irq.rip = kvm_rip_read(vcpu);
 | |
| 		if (kvm_exception_is_soft(nr))
 | |
| 			vmx->rmode.irq.rip +=
 | |
| 				vmx->vcpu.arch.event_exit_inst_len;
 | |
| 		intr_info |= INTR_TYPE_SOFT_INTR;
 | |
| 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
 | |
| 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
 | |
| 		kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_exception_is_soft(nr)) {
 | |
| 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
 | |
| 			     vmx->vcpu.arch.event_exit_inst_len);
 | |
| 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
 | |
| 	} else
 | |
| 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
 | |
| 
 | |
| 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
 | |
| }
 | |
| 
 | |
| static bool vmx_rdtscp_supported(void)
 | |
| {
 | |
| 	return cpu_has_vmx_rdtscp();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Swap MSR entry in host/guest MSR entry array.
 | |
|  */
 | |
| static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
 | |
| {
 | |
| 	struct shared_msr_entry tmp;
 | |
| 
 | |
| 	tmp = vmx->guest_msrs[to];
 | |
| 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
 | |
| 	vmx->guest_msrs[from] = tmp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up the vmcs to automatically save and restore system
 | |
|  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
 | |
|  * mode, as fiddling with msrs is very expensive.
 | |
|  */
 | |
| static void setup_msrs(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	int save_nmsrs, index;
 | |
| 	unsigned long *msr_bitmap;
 | |
| 
 | |
| 	vmx_load_host_state(vmx);
 | |
| 	save_nmsrs = 0;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (is_long_mode(&vmx->vcpu)) {
 | |
| 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
 | |
| 		if (index >= 0)
 | |
| 			move_msr_up(vmx, index, save_nmsrs++);
 | |
| 		index = __find_msr_index(vmx, MSR_LSTAR);
 | |
| 		if (index >= 0)
 | |
| 			move_msr_up(vmx, index, save_nmsrs++);
 | |
| 		index = __find_msr_index(vmx, MSR_CSTAR);
 | |
| 		if (index >= 0)
 | |
| 			move_msr_up(vmx, index, save_nmsrs++);
 | |
| 		index = __find_msr_index(vmx, MSR_TSC_AUX);
 | |
| 		if (index >= 0 && vmx->rdtscp_enabled)
 | |
| 			move_msr_up(vmx, index, save_nmsrs++);
 | |
| 		/*
 | |
| 		 * MSR_K6_STAR is only needed on long mode guests, and only
 | |
| 		 * if efer.sce is enabled.
 | |
| 		 */
 | |
| 		index = __find_msr_index(vmx, MSR_K6_STAR);
 | |
| 		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
 | |
| 			move_msr_up(vmx, index, save_nmsrs++);
 | |
| 	}
 | |
| #endif
 | |
| 	index = __find_msr_index(vmx, MSR_EFER);
 | |
| 	if (index >= 0 && update_transition_efer(vmx, index))
 | |
| 		move_msr_up(vmx, index, save_nmsrs++);
 | |
| 
 | |
| 	vmx->save_nmsrs = save_nmsrs;
 | |
| 
 | |
| 	if (cpu_has_vmx_msr_bitmap()) {
 | |
| 		if (is_long_mode(&vmx->vcpu))
 | |
| 			msr_bitmap = vmx_msr_bitmap_longmode;
 | |
| 		else
 | |
| 			msr_bitmap = vmx_msr_bitmap_legacy;
 | |
| 
 | |
| 		vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * reads and returns guest's timestamp counter "register"
 | |
|  * guest_tsc = host_tsc + tsc_offset    -- 21.3
 | |
|  */
 | |
| static u64 guest_read_tsc(void)
 | |
| {
 | |
| 	u64 host_tsc, tsc_offset;
 | |
| 
 | |
| 	rdtscll(host_tsc);
 | |
| 	tsc_offset = vmcs_read64(TSC_OFFSET);
 | |
| 	return host_tsc + tsc_offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * writes 'guest_tsc' into guest's timestamp counter "register"
 | |
|  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
 | |
|  */
 | |
| static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
 | |
| {
 | |
| 	vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reads an msr value (of 'msr_index') into 'pdata'.
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
 | |
| {
 | |
| 	u64 data;
 | |
| 	struct shared_msr_entry *msr;
 | |
| 
 | |
| 	if (!pdata) {
 | |
| 		printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	switch (msr_index) {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case MSR_FS_BASE:
 | |
| 		data = vmcs_readl(GUEST_FS_BASE);
 | |
| 		break;
 | |
| 	case MSR_GS_BASE:
 | |
| 		data = vmcs_readl(GUEST_GS_BASE);
 | |
| 		break;
 | |
| 	case MSR_KERNEL_GS_BASE:
 | |
| 		vmx_load_host_state(to_vmx(vcpu));
 | |
| 		data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
 | |
| 		break;
 | |
| #endif
 | |
| 	case MSR_EFER:
 | |
| 		return kvm_get_msr_common(vcpu, msr_index, pdata);
 | |
| 	case MSR_IA32_TSC:
 | |
| 		data = guest_read_tsc();
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_CS:
 | |
| 		data = vmcs_read32(GUEST_SYSENTER_CS);
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_EIP:
 | |
| 		data = vmcs_readl(GUEST_SYSENTER_EIP);
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_ESP:
 | |
| 		data = vmcs_readl(GUEST_SYSENTER_ESP);
 | |
| 		break;
 | |
| 	case MSR_TSC_AUX:
 | |
| 		if (!to_vmx(vcpu)->rdtscp_enabled)
 | |
| 			return 1;
 | |
| 		/* Otherwise falls through */
 | |
| 	default:
 | |
| 		vmx_load_host_state(to_vmx(vcpu));
 | |
| 		msr = find_msr_entry(to_vmx(vcpu), msr_index);
 | |
| 		if (msr) {
 | |
| 			vmx_load_host_state(to_vmx(vcpu));
 | |
| 			data = msr->data;
 | |
| 			break;
 | |
| 		}
 | |
| 		return kvm_get_msr_common(vcpu, msr_index, pdata);
 | |
| 	}
 | |
| 
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Writes msr value into into the appropriate "register".
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct shared_msr_entry *msr;
 | |
| 	u64 host_tsc;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (msr_index) {
 | |
| 	case MSR_EFER:
 | |
| 		vmx_load_host_state(vmx);
 | |
| 		ret = kvm_set_msr_common(vcpu, msr_index, data);
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case MSR_FS_BASE:
 | |
| 		vmcs_writel(GUEST_FS_BASE, data);
 | |
| 		break;
 | |
| 	case MSR_GS_BASE:
 | |
| 		vmcs_writel(GUEST_GS_BASE, data);
 | |
| 		break;
 | |
| 	case MSR_KERNEL_GS_BASE:
 | |
| 		vmx_load_host_state(vmx);
 | |
| 		vmx->msr_guest_kernel_gs_base = data;
 | |
| 		break;
 | |
| #endif
 | |
| 	case MSR_IA32_SYSENTER_CS:
 | |
| 		vmcs_write32(GUEST_SYSENTER_CS, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_EIP:
 | |
| 		vmcs_writel(GUEST_SYSENTER_EIP, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_ESP:
 | |
| 		vmcs_writel(GUEST_SYSENTER_ESP, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_TSC:
 | |
| 		rdtscll(host_tsc);
 | |
| 		guest_write_tsc(data, host_tsc);
 | |
| 		break;
 | |
| 	case MSR_IA32_CR_PAT:
 | |
| 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
 | |
| 			vmcs_write64(GUEST_IA32_PAT, data);
 | |
| 			vcpu->arch.pat = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = kvm_set_msr_common(vcpu, msr_index, data);
 | |
| 		break;
 | |
| 	case MSR_TSC_AUX:
 | |
| 		if (!vmx->rdtscp_enabled)
 | |
| 			return 1;
 | |
| 		/* Check reserved bit, higher 32 bits should be zero */
 | |
| 		if ((data >> 32) != 0)
 | |
| 			return 1;
 | |
| 		/* Otherwise falls through */
 | |
| 	default:
 | |
| 		msr = find_msr_entry(vmx, msr_index);
 | |
| 		if (msr) {
 | |
| 			vmx_load_host_state(vmx);
 | |
| 			msr->data = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = kvm_set_msr_common(vcpu, msr_index, data);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
 | |
| {
 | |
| 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
 | |
| 	switch (reg) {
 | |
| 	case VCPU_REGS_RSP:
 | |
| 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
 | |
| 		break;
 | |
| 	case VCPU_REGS_RIP:
 | |
| 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
 | |
| 		break;
 | |
| 	case VCPU_EXREG_PDPTR:
 | |
| 		if (enable_ept)
 | |
| 			ept_save_pdptrs(vcpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
 | |
| {
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 | |
| 		vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
 | |
| 	else
 | |
| 		vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
 | |
| 
 | |
| 	update_exception_bitmap(vcpu);
 | |
| }
 | |
| 
 | |
| static __init int cpu_has_kvm_support(void)
 | |
| {
 | |
| 	return cpu_has_vmx();
 | |
| }
 | |
| 
 | |
| static __init int vmx_disabled_by_bios(void)
 | |
| {
 | |
| 	u64 msr;
 | |
| 
 | |
| 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
 | |
| 	if (msr & FEATURE_CONTROL_LOCKED) {
 | |
| 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
 | |
| 			&& tboot_enabled())
 | |
| 			return 1;
 | |
| 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
 | |
| 			&& !tboot_enabled())
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 	/* locked but not enabled */
 | |
| }
 | |
| 
 | |
| static void kvm_cpu_vmxon(u64 addr)
 | |
| {
 | |
| 	asm volatile (ASM_VMX_VMXON_RAX
 | |
| 			: : "a"(&addr), "m"(addr)
 | |
| 			: "memory", "cc");
 | |
| }
 | |
| 
 | |
| static int hardware_enable(void *garbage)
 | |
| {
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
 | |
| 	u64 old, test_bits;
 | |
| 
 | |
| 	if (read_cr4() & X86_CR4_VMXE)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
 | |
| 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
 | |
| 
 | |
| 	test_bits = FEATURE_CONTROL_LOCKED;
 | |
| 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
 | |
| 	if (tboot_enabled())
 | |
| 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
 | |
| 
 | |
| 	if ((old & test_bits) != test_bits) {
 | |
| 		/* enable and lock */
 | |
| 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
 | |
| 	}
 | |
| 	write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
 | |
| 
 | |
| 	if (vmm_exclusive) {
 | |
| 		kvm_cpu_vmxon(phys_addr);
 | |
| 		ept_sync_global();
 | |
| 	}
 | |
| 
 | |
| 	store_gdt(&__get_cpu_var(host_gdt));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmclear_local_vcpus(void)
 | |
| {
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 	struct vcpu_vmx *vmx, *n;
 | |
| 
 | |
| 	list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
 | |
| 				 local_vcpus_link)
 | |
| 		__vcpu_clear(vmx);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
 | |
|  * tricks.
 | |
|  */
 | |
| static void kvm_cpu_vmxoff(void)
 | |
| {
 | |
| 	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
 | |
| }
 | |
| 
 | |
| static void hardware_disable(void *garbage)
 | |
| {
 | |
| 	if (vmm_exclusive) {
 | |
| 		vmclear_local_vcpus();
 | |
| 		kvm_cpu_vmxoff();
 | |
| 	}
 | |
| 	write_cr4(read_cr4() & ~X86_CR4_VMXE);
 | |
| }
 | |
| 
 | |
| static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
 | |
| 				      u32 msr, u32 *result)
 | |
| {
 | |
| 	u32 vmx_msr_low, vmx_msr_high;
 | |
| 	u32 ctl = ctl_min | ctl_opt;
 | |
| 
 | |
| 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
 | |
| 
 | |
| 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
 | |
| 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
 | |
| 
 | |
| 	/* Ensure minimum (required) set of control bits are supported. */
 | |
| 	if (ctl_min & ~ctl)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	*result = ctl;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
 | |
| {
 | |
| 	u32 vmx_msr_low, vmx_msr_high;
 | |
| 	u32 min, opt, min2, opt2;
 | |
| 	u32 _pin_based_exec_control = 0;
 | |
| 	u32 _cpu_based_exec_control = 0;
 | |
| 	u32 _cpu_based_2nd_exec_control = 0;
 | |
| 	u32 _vmexit_control = 0;
 | |
| 	u32 _vmentry_control = 0;
 | |
| 
 | |
| 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
 | |
| 	opt = PIN_BASED_VIRTUAL_NMIS;
 | |
| 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
 | |
| 				&_pin_based_exec_control) < 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	min = CPU_BASED_HLT_EXITING |
 | |
| #ifdef CONFIG_X86_64
 | |
| 	      CPU_BASED_CR8_LOAD_EXITING |
 | |
| 	      CPU_BASED_CR8_STORE_EXITING |
 | |
| #endif
 | |
| 	      CPU_BASED_CR3_LOAD_EXITING |
 | |
| 	      CPU_BASED_CR3_STORE_EXITING |
 | |
| 	      CPU_BASED_USE_IO_BITMAPS |
 | |
| 	      CPU_BASED_MOV_DR_EXITING |
 | |
| 	      CPU_BASED_USE_TSC_OFFSETING |
 | |
| 	      CPU_BASED_MWAIT_EXITING |
 | |
| 	      CPU_BASED_MONITOR_EXITING |
 | |
| 	      CPU_BASED_INVLPG_EXITING;
 | |
| 	opt = CPU_BASED_TPR_SHADOW |
 | |
| 	      CPU_BASED_USE_MSR_BITMAPS |
 | |
| 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 | |
| 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
 | |
| 				&_cpu_based_exec_control) < 0)
 | |
| 		return -EIO;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
 | |
| 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
 | |
| 					   ~CPU_BASED_CR8_STORE_EXITING;
 | |
| #endif
 | |
| 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
 | |
| 		min2 = 0;
 | |
| 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
 | |
| 			SECONDARY_EXEC_WBINVD_EXITING |
 | |
| 			SECONDARY_EXEC_ENABLE_VPID |
 | |
| 			SECONDARY_EXEC_ENABLE_EPT |
 | |
| 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
 | |
| 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
 | |
| 			SECONDARY_EXEC_RDTSCP;
 | |
| 		if (adjust_vmx_controls(min2, opt2,
 | |
| 					MSR_IA32_VMX_PROCBASED_CTLS2,
 | |
| 					&_cpu_based_2nd_exec_control) < 0)
 | |
| 			return -EIO;
 | |
| 	}
 | |
| #ifndef CONFIG_X86_64
 | |
| 	if (!(_cpu_based_2nd_exec_control &
 | |
| 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
 | |
| 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
 | |
| #endif
 | |
| 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
 | |
| 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
 | |
| 		   enabled */
 | |
| 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
 | |
| 					     CPU_BASED_CR3_STORE_EXITING |
 | |
| 					     CPU_BASED_INVLPG_EXITING);
 | |
| 		rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
 | |
| 		      vmx_capability.ept, vmx_capability.vpid);
 | |
| 	}
 | |
| 
 | |
| 	min = 0;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
 | |
| #endif
 | |
| 	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
 | |
| 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
 | |
| 				&_vmexit_control) < 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	min = 0;
 | |
| 	opt = VM_ENTRY_LOAD_IA32_PAT;
 | |
| 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
 | |
| 				&_vmentry_control) < 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
 | |
| 
 | |
| 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
 | |
| 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
 | |
| 		return -EIO;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
 | |
| 	if (vmx_msr_high & (1u<<16))
 | |
| 		return -EIO;
 | |
| #endif
 | |
| 
 | |
| 	/* Require Write-Back (WB) memory type for VMCS accesses. */
 | |
| 	if (((vmx_msr_high >> 18) & 15) != 6)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	vmcs_conf->size = vmx_msr_high & 0x1fff;
 | |
| 	vmcs_conf->order = get_order(vmcs_config.size);
 | |
| 	vmcs_conf->revision_id = vmx_msr_low;
 | |
| 
 | |
| 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
 | |
| 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
 | |
| 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
 | |
| 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
 | |
| 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct vmcs *alloc_vmcs_cpu(int cpu)
 | |
| {
 | |
| 	int node = cpu_to_node(cpu);
 | |
| 	struct page *pages;
 | |
| 	struct vmcs *vmcs;
 | |
| 
 | |
| 	pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
 | |
| 	if (!pages)
 | |
| 		return NULL;
 | |
| 	vmcs = page_address(pages);
 | |
| 	memset(vmcs, 0, vmcs_config.size);
 | |
| 	vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
 | |
| 	return vmcs;
 | |
| }
 | |
| 
 | |
| static struct vmcs *alloc_vmcs(void)
 | |
| {
 | |
| 	return alloc_vmcs_cpu(raw_smp_processor_id());
 | |
| }
 | |
| 
 | |
| static void free_vmcs(struct vmcs *vmcs)
 | |
| {
 | |
| 	free_pages((unsigned long)vmcs, vmcs_config.order);
 | |
| }
 | |
| 
 | |
| static void free_kvm_area(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		free_vmcs(per_cpu(vmxarea, cpu));
 | |
| 		per_cpu(vmxarea, cpu) = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __init int alloc_kvm_area(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct vmcs *vmcs;
 | |
| 
 | |
| 		vmcs = alloc_vmcs_cpu(cpu);
 | |
| 		if (!vmcs) {
 | |
| 			free_kvm_area();
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		per_cpu(vmxarea, cpu) = vmcs;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __init int hardware_setup(void)
 | |
| {
 | |
| 	if (setup_vmcs_config(&vmcs_config) < 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_NX))
 | |
| 		kvm_enable_efer_bits(EFER_NX);
 | |
| 
 | |
| 	if (!cpu_has_vmx_vpid())
 | |
| 		enable_vpid = 0;
 | |
| 
 | |
| 	if (!cpu_has_vmx_ept() ||
 | |
| 	    !cpu_has_vmx_ept_4levels()) {
 | |
| 		enable_ept = 0;
 | |
| 		enable_unrestricted_guest = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!cpu_has_vmx_unrestricted_guest())
 | |
| 		enable_unrestricted_guest = 0;
 | |
| 
 | |
| 	if (!cpu_has_vmx_flexpriority())
 | |
| 		flexpriority_enabled = 0;
 | |
| 
 | |
| 	if (!cpu_has_vmx_tpr_shadow())
 | |
| 		kvm_x86_ops->update_cr8_intercept = NULL;
 | |
| 
 | |
| 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
 | |
| 		kvm_disable_largepages();
 | |
| 
 | |
| 	if (!cpu_has_vmx_ple())
 | |
| 		ple_gap = 0;
 | |
| 
 | |
| 	return alloc_kvm_area();
 | |
| }
 | |
| 
 | |
| static __exit void hardware_unsetup(void)
 | |
| {
 | |
| 	free_kvm_area();
 | |
| }
 | |
| 
 | |
| static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
 | |
| {
 | |
| 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 | |
| 
 | |
| 	if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
 | |
| 		vmcs_write16(sf->selector, save->selector);
 | |
| 		vmcs_writel(sf->base, save->base);
 | |
| 		vmcs_write32(sf->limit, save->limit);
 | |
| 		vmcs_write32(sf->ar_bytes, save->ar);
 | |
| 	} else {
 | |
| 		u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
 | |
| 			<< AR_DPL_SHIFT;
 | |
| 		vmcs_write32(sf->ar_bytes, 0x93 | dpl);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void enter_pmode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	vmx->emulation_required = 1;
 | |
| 	vmx->rmode.vm86_active = 0;
 | |
| 
 | |
| 	vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
 | |
| 	vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
 | |
| 	vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
 | |
| 
 | |
| 	flags = vmcs_readl(GUEST_RFLAGS);
 | |
| 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
 | |
| 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
 | |
| 	vmcs_writel(GUEST_RFLAGS, flags);
 | |
| 
 | |
| 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
 | |
| 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
 | |
| 
 | |
| 	update_exception_bitmap(vcpu);
 | |
| 
 | |
| 	if (emulate_invalid_guest_state)
 | |
| 		return;
 | |
| 
 | |
| 	fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
 | |
| 	fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
 | |
| 	fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
 | |
| 	fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
 | |
| 
 | |
| 	vmcs_write16(GUEST_SS_SELECTOR, 0);
 | |
| 	vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
 | |
| 
 | |
| 	vmcs_write16(GUEST_CS_SELECTOR,
 | |
| 		     vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
 | |
| 	vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
 | |
| }
 | |
| 
 | |
| static gva_t rmode_tss_base(struct kvm *kvm)
 | |
| {
 | |
| 	if (!kvm->arch.tss_addr) {
 | |
| 		struct kvm_memslots *slots;
 | |
| 		gfn_t base_gfn;
 | |
| 
 | |
| 		slots = kvm_memslots(kvm);
 | |
| 		base_gfn = slots->memslots[0].base_gfn +
 | |
| 				 kvm->memslots->memslots[0].npages - 3;
 | |
| 		return base_gfn << PAGE_SHIFT;
 | |
| 	}
 | |
| 	return kvm->arch.tss_addr;
 | |
| }
 | |
| 
 | |
| static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
 | |
| {
 | |
| 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 | |
| 
 | |
| 	save->selector = vmcs_read16(sf->selector);
 | |
| 	save->base = vmcs_readl(sf->base);
 | |
| 	save->limit = vmcs_read32(sf->limit);
 | |
| 	save->ar = vmcs_read32(sf->ar_bytes);
 | |
| 	vmcs_write16(sf->selector, save->base >> 4);
 | |
| 	vmcs_write32(sf->base, save->base & 0xfffff);
 | |
| 	vmcs_write32(sf->limit, 0xffff);
 | |
| 	vmcs_write32(sf->ar_bytes, 0xf3);
 | |
| }
 | |
| 
 | |
| static void enter_rmode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (enable_unrestricted_guest)
 | |
| 		return;
 | |
| 
 | |
| 	vmx->emulation_required = 1;
 | |
| 	vmx->rmode.vm86_active = 1;
 | |
| 
 | |
| 	vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
 | |
| 	vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
 | |
| 
 | |
| 	vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
 | |
| 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
 | |
| 
 | |
| 	vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
 | |
| 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
 | |
| 
 | |
| 	flags = vmcs_readl(GUEST_RFLAGS);
 | |
| 	vmx->rmode.save_rflags = flags;
 | |
| 
 | |
| 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
 | |
| 
 | |
| 	vmcs_writel(GUEST_RFLAGS, flags);
 | |
| 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
 | |
| 	update_exception_bitmap(vcpu);
 | |
| 
 | |
| 	if (emulate_invalid_guest_state)
 | |
| 		goto continue_rmode;
 | |
| 
 | |
| 	vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
 | |
| 	vmcs_write32(GUEST_SS_LIMIT, 0xffff);
 | |
| 	vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
 | |
| 
 | |
| 	vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
 | |
| 	vmcs_write32(GUEST_CS_LIMIT, 0xffff);
 | |
| 	if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
 | |
| 		vmcs_writel(GUEST_CS_BASE, 0xf0000);
 | |
| 	vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
 | |
| 
 | |
| 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
 | |
| 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
 | |
| 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
 | |
| 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
 | |
| 
 | |
| continue_rmode:
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| 	init_rmode(vcpu->kvm);
 | |
| }
 | |
| 
 | |
| static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
 | |
| 
 | |
| 	if (!msr)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Force kernel_gs_base reloading before EFER changes, as control
 | |
| 	 * of this msr depends on is_long_mode().
 | |
| 	 */
 | |
| 	vmx_load_host_state(to_vmx(vcpu));
 | |
| 	vcpu->arch.efer = efer;
 | |
| 	if (efer & EFER_LMA) {
 | |
| 		vmcs_write32(VM_ENTRY_CONTROLS,
 | |
| 			     vmcs_read32(VM_ENTRY_CONTROLS) |
 | |
| 			     VM_ENTRY_IA32E_MODE);
 | |
| 		msr->data = efer;
 | |
| 	} else {
 | |
| 		vmcs_write32(VM_ENTRY_CONTROLS,
 | |
| 			     vmcs_read32(VM_ENTRY_CONTROLS) &
 | |
| 			     ~VM_ENTRY_IA32E_MODE);
 | |
| 
 | |
| 		msr->data = efer & ~EFER_LME;
 | |
| 	}
 | |
| 	setup_msrs(vmx);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| static void enter_lmode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 guest_tr_ar;
 | |
| 
 | |
| 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
 | |
| 	if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
 | |
| 		printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
 | |
| 		       __func__);
 | |
| 		vmcs_write32(GUEST_TR_AR_BYTES,
 | |
| 			     (guest_tr_ar & ~AR_TYPE_MASK)
 | |
| 			     | AR_TYPE_BUSY_64_TSS);
 | |
| 	}
 | |
| 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
 | |
| }
 | |
| 
 | |
| static void exit_lmode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vmcs_write32(VM_ENTRY_CONTROLS,
 | |
| 		     vmcs_read32(VM_ENTRY_CONTROLS)
 | |
| 		     & ~VM_ENTRY_IA32E_MODE);
 | |
| 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vpid_sync_context(to_vmx(vcpu));
 | |
| 	if (enable_ept) {
 | |
| 		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
 | |
| 			return;
 | |
| 		ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
 | |
| 
 | |
| 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
 | |
| 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
 | |
| }
 | |
| 
 | |
| static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
 | |
| 
 | |
| 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
 | |
| 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
 | |
| }
 | |
| 
 | |
| static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!test_bit(VCPU_EXREG_PDPTR,
 | |
| 		      (unsigned long *)&vcpu->arch.regs_dirty))
 | |
| 		return;
 | |
| 
 | |
| 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
 | |
| 		vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
 | |
| 		vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
 | |
| 		vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
 | |
| 		vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
 | |
| 		vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
 | |
| 		vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
 | |
| 		vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
 | |
| 		vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
 | |
| 	}
 | |
| 
 | |
| 	__set_bit(VCPU_EXREG_PDPTR,
 | |
| 		  (unsigned long *)&vcpu->arch.regs_avail);
 | |
| 	__set_bit(VCPU_EXREG_PDPTR,
 | |
| 		  (unsigned long *)&vcpu->arch.regs_dirty);
 | |
| }
 | |
| 
 | |
| static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
 | |
| 
 | |
| static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
 | |
| 					unsigned long cr0,
 | |
| 					struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!(cr0 & X86_CR0_PG)) {
 | |
| 		/* From paging/starting to nonpaging */
 | |
| 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
 | |
| 			     (CPU_BASED_CR3_LOAD_EXITING |
 | |
| 			      CPU_BASED_CR3_STORE_EXITING));
 | |
| 		vcpu->arch.cr0 = cr0;
 | |
| 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
 | |
| 	} else if (!is_paging(vcpu)) {
 | |
| 		/* From nonpaging to paging */
 | |
| 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
 | |
| 			     ~(CPU_BASED_CR3_LOAD_EXITING |
 | |
| 			       CPU_BASED_CR3_STORE_EXITING));
 | |
| 		vcpu->arch.cr0 = cr0;
 | |
| 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
 | |
| 	}
 | |
| 
 | |
| 	if (!(cr0 & X86_CR0_WP))
 | |
| 		*hw_cr0 &= ~X86_CR0_WP;
 | |
| }
 | |
| 
 | |
| static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned long hw_cr0;
 | |
| 
 | |
| 	if (enable_unrestricted_guest)
 | |
| 		hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
 | |
| 			| KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
 | |
| 	else
 | |
| 		hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
 | |
| 
 | |
| 	if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
 | |
| 		enter_pmode(vcpu);
 | |
| 
 | |
| 	if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
 | |
| 		enter_rmode(vcpu);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (vcpu->arch.efer & EFER_LME) {
 | |
| 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
 | |
| 			enter_lmode(vcpu);
 | |
| 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
 | |
| 			exit_lmode(vcpu);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (enable_ept)
 | |
| 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
 | |
| 
 | |
| 	if (!vcpu->fpu_active)
 | |
| 		hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
 | |
| 
 | |
| 	vmcs_writel(CR0_READ_SHADOW, cr0);
 | |
| 	vmcs_writel(GUEST_CR0, hw_cr0);
 | |
| 	vcpu->arch.cr0 = cr0;
 | |
| }
 | |
| 
 | |
| static u64 construct_eptp(unsigned long root_hpa)
 | |
| {
 | |
| 	u64 eptp;
 | |
| 
 | |
| 	/* TODO write the value reading from MSR */
 | |
| 	eptp = VMX_EPT_DEFAULT_MT |
 | |
| 		VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
 | |
| 	eptp |= (root_hpa & PAGE_MASK);
 | |
| 
 | |
| 	return eptp;
 | |
| }
 | |
| 
 | |
| static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 | |
| {
 | |
| 	unsigned long guest_cr3;
 | |
| 	u64 eptp;
 | |
| 
 | |
| 	guest_cr3 = cr3;
 | |
| 	if (enable_ept) {
 | |
| 		eptp = construct_eptp(cr3);
 | |
| 		vmcs_write64(EPT_POINTER, eptp);
 | |
| 		guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
 | |
| 			vcpu->kvm->arch.ept_identity_map_addr;
 | |
| 		ept_load_pdptrs(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	vmx_flush_tlb(vcpu);
 | |
| 	vmcs_writel(GUEST_CR3, guest_cr3);
 | |
| }
 | |
| 
 | |
| static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 | |
| {
 | |
| 	unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
 | |
| 		    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
 | |
| 
 | |
| 	vcpu->arch.cr4 = cr4;
 | |
| 	if (enable_ept) {
 | |
| 		if (!is_paging(vcpu)) {
 | |
| 			hw_cr4 &= ~X86_CR4_PAE;
 | |
| 			hw_cr4 |= X86_CR4_PSE;
 | |
| 		} else if (!(cr4 & X86_CR4_PAE)) {
 | |
| 			hw_cr4 &= ~X86_CR4_PAE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	vmcs_writel(CR4_READ_SHADOW, cr4);
 | |
| 	vmcs_writel(GUEST_CR4, hw_cr4);
 | |
| }
 | |
| 
 | |
| static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 | |
| 
 | |
| 	return vmcs_readl(sf->base);
 | |
| }
 | |
| 
 | |
| static void vmx_get_segment(struct kvm_vcpu *vcpu,
 | |
| 			    struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 | |
| 	u32 ar;
 | |
| 
 | |
| 	var->base = vmcs_readl(sf->base);
 | |
| 	var->limit = vmcs_read32(sf->limit);
 | |
| 	var->selector = vmcs_read16(sf->selector);
 | |
| 	ar = vmcs_read32(sf->ar_bytes);
 | |
| 	if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
 | |
| 		ar = 0;
 | |
| 	var->type = ar & 15;
 | |
| 	var->s = (ar >> 4) & 1;
 | |
| 	var->dpl = (ar >> 5) & 3;
 | |
| 	var->present = (ar >> 7) & 1;
 | |
| 	var->avl = (ar >> 12) & 1;
 | |
| 	var->l = (ar >> 13) & 1;
 | |
| 	var->db = (ar >> 14) & 1;
 | |
| 	var->g = (ar >> 15) & 1;
 | |
| 	var->unusable = (ar >> 16) & 1;
 | |
| }
 | |
| 
 | |
| static int vmx_get_cpl(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!is_protmode(vcpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
 | |
| 		return 3;
 | |
| 
 | |
| 	return vmcs_read16(GUEST_CS_SELECTOR) & 3;
 | |
| }
 | |
| 
 | |
| static u32 vmx_segment_access_rights(struct kvm_segment *var)
 | |
| {
 | |
| 	u32 ar;
 | |
| 
 | |
| 	if (var->unusable)
 | |
| 		ar = 1 << 16;
 | |
| 	else {
 | |
| 		ar = var->type & 15;
 | |
| 		ar |= (var->s & 1) << 4;
 | |
| 		ar |= (var->dpl & 3) << 5;
 | |
| 		ar |= (var->present & 1) << 7;
 | |
| 		ar |= (var->avl & 1) << 12;
 | |
| 		ar |= (var->l & 1) << 13;
 | |
| 		ar |= (var->db & 1) << 14;
 | |
| 		ar |= (var->g & 1) << 15;
 | |
| 	}
 | |
| 	if (ar == 0) /* a 0 value means unusable */
 | |
| 		ar = AR_UNUSABLE_MASK;
 | |
| 
 | |
| 	return ar;
 | |
| }
 | |
| 
 | |
| static void vmx_set_segment(struct kvm_vcpu *vcpu,
 | |
| 			    struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 | |
| 	u32 ar;
 | |
| 
 | |
| 	if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
 | |
| 		vmx->rmode.tr.selector = var->selector;
 | |
| 		vmx->rmode.tr.base = var->base;
 | |
| 		vmx->rmode.tr.limit = var->limit;
 | |
| 		vmx->rmode.tr.ar = vmx_segment_access_rights(var);
 | |
| 		return;
 | |
| 	}
 | |
| 	vmcs_writel(sf->base, var->base);
 | |
| 	vmcs_write32(sf->limit, var->limit);
 | |
| 	vmcs_write16(sf->selector, var->selector);
 | |
| 	if (vmx->rmode.vm86_active && var->s) {
 | |
| 		/*
 | |
| 		 * Hack real-mode segments into vm86 compatibility.
 | |
| 		 */
 | |
| 		if (var->base == 0xffff0000 && var->selector == 0xf000)
 | |
| 			vmcs_writel(sf->base, 0xf0000);
 | |
| 		ar = 0xf3;
 | |
| 	} else
 | |
| 		ar = vmx_segment_access_rights(var);
 | |
| 
 | |
| 	/*
 | |
| 	 *   Fix the "Accessed" bit in AR field of segment registers for older
 | |
| 	 * qemu binaries.
 | |
| 	 *   IA32 arch specifies that at the time of processor reset the
 | |
| 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
 | |
| 	 * is setting it to 0 in the usedland code. This causes invalid guest
 | |
| 	 * state vmexit when "unrestricted guest" mode is turned on.
 | |
| 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
 | |
| 	 * tree. Newer qemu binaries with that qemu fix would not need this
 | |
| 	 * kvm hack.
 | |
| 	 */
 | |
| 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
 | |
| 		ar |= 0x1; /* Accessed */
 | |
| 
 | |
| 	vmcs_write32(sf->ar_bytes, ar);
 | |
| }
 | |
| 
 | |
| static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
 | |
| {
 | |
| 	u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
 | |
| 
 | |
| 	*db = (ar >> 14) & 1;
 | |
| 	*l = (ar >> 13) & 1;
 | |
| }
 | |
| 
 | |
| static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
 | |
| 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
 | |
| }
 | |
| 
 | |
| static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
 | |
| 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
 | |
| }
 | |
| 
 | |
| static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
 | |
| 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
 | |
| }
 | |
| 
 | |
| static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
 | |
| 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
 | |
| }
 | |
| 
 | |
| static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	struct kvm_segment var;
 | |
| 	u32 ar;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &var, seg);
 | |
| 	ar = vmx_segment_access_rights(&var);
 | |
| 
 | |
| 	if (var.base != (var.selector << 4))
 | |
| 		return false;
 | |
| 	if (var.limit != 0xffff)
 | |
| 		return false;
 | |
| 	if (ar != 0xf3)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool code_segment_valid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment cs;
 | |
| 	unsigned int cs_rpl;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	cs_rpl = cs.selector & SELECTOR_RPL_MASK;
 | |
| 
 | |
| 	if (cs.unusable)
 | |
| 		return false;
 | |
| 	if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
 | |
| 		return false;
 | |
| 	if (!cs.s)
 | |
| 		return false;
 | |
| 	if (cs.type & AR_TYPE_WRITEABLE_MASK) {
 | |
| 		if (cs.dpl > cs_rpl)
 | |
| 			return false;
 | |
| 	} else {
 | |
| 		if (cs.dpl != cs_rpl)
 | |
| 			return false;
 | |
| 	}
 | |
| 	if (!cs.present)
 | |
| 		return false;
 | |
| 
 | |
| 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool stack_segment_valid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment ss;
 | |
| 	unsigned int ss_rpl;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
 | |
| 	ss_rpl = ss.selector & SELECTOR_RPL_MASK;
 | |
| 
 | |
| 	if (ss.unusable)
 | |
| 		return true;
 | |
| 	if (ss.type != 3 && ss.type != 7)
 | |
| 		return false;
 | |
| 	if (!ss.s)
 | |
| 		return false;
 | |
| 	if (ss.dpl != ss_rpl) /* DPL != RPL */
 | |
| 		return false;
 | |
| 	if (!ss.present)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	struct kvm_segment var;
 | |
| 	unsigned int rpl;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &var, seg);
 | |
| 	rpl = var.selector & SELECTOR_RPL_MASK;
 | |
| 
 | |
| 	if (var.unusable)
 | |
| 		return true;
 | |
| 	if (!var.s)
 | |
| 		return false;
 | |
| 	if (!var.present)
 | |
| 		return false;
 | |
| 	if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
 | |
| 		if (var.dpl < rpl) /* DPL < RPL */
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
 | |
| 	 * rights flags
 | |
| 	 */
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool tr_valid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment tr;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
 | |
| 
 | |
| 	if (tr.unusable)
 | |
| 		return false;
 | |
| 	if (tr.selector & SELECTOR_TI_MASK)	/* TI = 1 */
 | |
| 		return false;
 | |
| 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
 | |
| 		return false;
 | |
| 	if (!tr.present)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool ldtr_valid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment ldtr;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	if (ldtr.unusable)
 | |
| 		return true;
 | |
| 	if (ldtr.selector & SELECTOR_TI_MASK)	/* TI = 1 */
 | |
| 		return false;
 | |
| 	if (ldtr.type != 2)
 | |
| 		return false;
 | |
| 	if (!ldtr.present)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment cs, ss;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
 | |
| 
 | |
| 	return ((cs.selector & SELECTOR_RPL_MASK) ==
 | |
| 		 (ss.selector & SELECTOR_RPL_MASK));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if guest state is valid. Returns true if valid, false if
 | |
|  * not.
 | |
|  * We assume that registers are always usable
 | |
|  */
 | |
| static bool guest_state_valid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* real mode guest state checks */
 | |
| 	if (!is_protmode(vcpu)) {
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
 | |
| 			return false;
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
 | |
| 			return false;
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
 | |
| 			return false;
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
 | |
| 			return false;
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
 | |
| 			return false;
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
 | |
| 			return false;
 | |
| 	} else {
 | |
| 	/* protected mode guest state checks */
 | |
| 		if (!cs_ss_rpl_check(vcpu))
 | |
| 			return false;
 | |
| 		if (!code_segment_valid(vcpu))
 | |
| 			return false;
 | |
| 		if (!stack_segment_valid(vcpu))
 | |
| 			return false;
 | |
| 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
 | |
| 			return false;
 | |
| 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
 | |
| 			return false;
 | |
| 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
 | |
| 			return false;
 | |
| 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
 | |
| 			return false;
 | |
| 		if (!tr_valid(vcpu))
 | |
| 			return false;
 | |
| 		if (!ldtr_valid(vcpu))
 | |
| 			return false;
 | |
| 	}
 | |
| 	/* TODO:
 | |
| 	 * - Add checks on RIP
 | |
| 	 * - Add checks on RFLAGS
 | |
| 	 */
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int init_rmode_tss(struct kvm *kvm)
 | |
| {
 | |
| 	gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
 | |
| 	u16 data = 0;
 | |
| 	int ret = 0;
 | |
| 	int r;
 | |
| 
 | |
| 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
 | |
| 	r = kvm_write_guest_page(kvm, fn++, &data,
 | |
| 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	data = ~0;
 | |
| 	r = kvm_write_guest_page(kvm, fn, &data,
 | |
| 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
 | |
| 				 sizeof(u8));
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int init_rmode_identity_map(struct kvm *kvm)
 | |
| {
 | |
| 	int i, r, ret;
 | |
| 	pfn_t identity_map_pfn;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	if (!enable_ept)
 | |
| 		return 1;
 | |
| 	if (unlikely(!kvm->arch.ept_identity_pagetable)) {
 | |
| 		printk(KERN_ERR "EPT: identity-mapping pagetable "
 | |
| 			"haven't been allocated!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (likely(kvm->arch.ept_identity_pagetable_done))
 | |
| 		return 1;
 | |
| 	ret = 0;
 | |
| 	identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
 | |
| 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	/* Set up identity-mapping pagetable for EPT in real mode */
 | |
| 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
 | |
| 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
 | |
| 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
 | |
| 		r = kvm_write_guest_page(kvm, identity_map_pfn,
 | |
| 				&tmp, i * sizeof(tmp), sizeof(tmp));
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	kvm->arch.ept_identity_pagetable_done = true;
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void seg_setup(int seg)
 | |
| {
 | |
| 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 | |
| 	unsigned int ar;
 | |
| 
 | |
| 	vmcs_write16(sf->selector, 0);
 | |
| 	vmcs_writel(sf->base, 0);
 | |
| 	vmcs_write32(sf->limit, 0xffff);
 | |
| 	if (enable_unrestricted_guest) {
 | |
| 		ar = 0x93;
 | |
| 		if (seg == VCPU_SREG_CS)
 | |
| 			ar |= 0x08; /* code segment */
 | |
| 	} else
 | |
| 		ar = 0xf3;
 | |
| 
 | |
| 	vmcs_write32(sf->ar_bytes, ar);
 | |
| }
 | |
| 
 | |
| static int alloc_apic_access_page(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_userspace_memory_region kvm_userspace_mem;
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->slots_lock);
 | |
| 	if (kvm->arch.apic_access_page)
 | |
| 		goto out;
 | |
| 	kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
 | |
| 	kvm_userspace_mem.flags = 0;
 | |
| 	kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
 | |
| 	kvm_userspace_mem.memory_size = PAGE_SIZE;
 | |
| 	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
 | |
| out:
 | |
| 	mutex_unlock(&kvm->slots_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int alloc_identity_pagetable(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_userspace_memory_region kvm_userspace_mem;
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->slots_lock);
 | |
| 	if (kvm->arch.ept_identity_pagetable)
 | |
| 		goto out;
 | |
| 	kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
 | |
| 	kvm_userspace_mem.flags = 0;
 | |
| 	kvm_userspace_mem.guest_phys_addr =
 | |
| 		kvm->arch.ept_identity_map_addr;
 | |
| 	kvm_userspace_mem.memory_size = PAGE_SIZE;
 | |
| 	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
 | |
| 			kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
 | |
| out:
 | |
| 	mutex_unlock(&kvm->slots_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void allocate_vpid(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	int vpid;
 | |
| 
 | |
| 	vmx->vpid = 0;
 | |
| 	if (!enable_vpid)
 | |
| 		return;
 | |
| 	spin_lock(&vmx_vpid_lock);
 | |
| 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
 | |
| 	if (vpid < VMX_NR_VPIDS) {
 | |
| 		vmx->vpid = vpid;
 | |
| 		__set_bit(vpid, vmx_vpid_bitmap);
 | |
| 	}
 | |
| 	spin_unlock(&vmx_vpid_lock);
 | |
| }
 | |
| 
 | |
| static void free_vpid(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	if (!enable_vpid)
 | |
| 		return;
 | |
| 	spin_lock(&vmx_vpid_lock);
 | |
| 	if (vmx->vpid != 0)
 | |
| 		__clear_bit(vmx->vpid, vmx_vpid_bitmap);
 | |
| 	spin_unlock(&vmx_vpid_lock);
 | |
| }
 | |
| 
 | |
| static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
 | |
| {
 | |
| 	int f = sizeof(unsigned long);
 | |
| 
 | |
| 	if (!cpu_has_vmx_msr_bitmap())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
 | |
| 	 * have the write-low and read-high bitmap offsets the wrong way round.
 | |
| 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
 | |
| 	 */
 | |
| 	if (msr <= 0x1fff) {
 | |
| 		__clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
 | |
| 		__clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
 | |
| 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 | |
| 		msr &= 0x1fff;
 | |
| 		__clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
 | |
| 		__clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
 | |
| {
 | |
| 	if (!longmode_only)
 | |
| 		__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
 | |
| 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets up the vmcs for emulated real mode.
 | |
|  */
 | |
| static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	u32 host_sysenter_cs, msr_low, msr_high;
 | |
| 	u32 junk;
 | |
| 	u64 host_pat, tsc_this, tsc_base;
 | |
| 	unsigned long a;
 | |
| 	struct desc_ptr dt;
 | |
| 	int i;
 | |
| 	unsigned long kvm_vmx_return;
 | |
| 	u32 exec_control;
 | |
| 
 | |
| 	/* I/O */
 | |
| 	vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
 | |
| 	vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
 | |
| 
 | |
| 	if (cpu_has_vmx_msr_bitmap())
 | |
| 		vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
 | |
| 
 | |
| 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
 | |
| 
 | |
| 	/* Control */
 | |
| 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
 | |
| 		vmcs_config.pin_based_exec_ctrl);
 | |
| 
 | |
| 	exec_control = vmcs_config.cpu_based_exec_ctrl;
 | |
| 	if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
 | |
| 		exec_control &= ~CPU_BASED_TPR_SHADOW;
 | |
| #ifdef CONFIG_X86_64
 | |
| 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
 | |
| 				CPU_BASED_CR8_LOAD_EXITING;
 | |
| #endif
 | |
| 	}
 | |
| 	if (!enable_ept)
 | |
| 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
 | |
| 				CPU_BASED_CR3_LOAD_EXITING  |
 | |
| 				CPU_BASED_INVLPG_EXITING;
 | |
| 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
 | |
| 
 | |
| 	if (cpu_has_secondary_exec_ctrls()) {
 | |
| 		exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
 | |
| 		if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
 | |
| 			exec_control &=
 | |
| 				~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 | |
| 		if (vmx->vpid == 0)
 | |
| 			exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
 | |
| 		if (!enable_ept) {
 | |
| 			exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
 | |
| 			enable_unrestricted_guest = 0;
 | |
| 		}
 | |
| 		if (!enable_unrestricted_guest)
 | |
| 			exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
 | |
| 		if (!ple_gap)
 | |
| 			exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
 | |
| 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
 | |
| 	}
 | |
| 
 | |
| 	if (ple_gap) {
 | |
| 		vmcs_write32(PLE_GAP, ple_gap);
 | |
| 		vmcs_write32(PLE_WINDOW, ple_window);
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
 | |
| 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
 | |
| 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
 | |
| 
 | |
| 	vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
 | |
| 	vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
 | |
| 	vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
 | |
| 
 | |
| 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
 | |
| 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
 | |
| 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
 | |
| 	vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
 | |
| 	vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
 | |
| 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
 | |
| #ifdef CONFIG_X86_64
 | |
| 	rdmsrl(MSR_FS_BASE, a);
 | |
| 	vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
 | |
| 	rdmsrl(MSR_GS_BASE, a);
 | |
| 	vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
 | |
| #else
 | |
| 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
 | |
| 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
 | |
| #endif
 | |
| 
 | |
| 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
 | |
| 
 | |
| 	native_store_idt(&dt);
 | |
| 	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
 | |
| 
 | |
| 	asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
 | |
| 	vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
 | |
| 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
 | |
| 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
 | |
| 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
 | |
| 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
 | |
| 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
 | |
| 
 | |
| 	rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
 | |
| 	vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
 | |
| 	rdmsrl(MSR_IA32_SYSENTER_ESP, a);
 | |
| 	vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
 | |
| 	rdmsrl(MSR_IA32_SYSENTER_EIP, a);
 | |
| 	vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
 | |
| 
 | |
| 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
 | |
| 		rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
 | |
| 		host_pat = msr_low | ((u64) msr_high << 32);
 | |
| 		vmcs_write64(HOST_IA32_PAT, host_pat);
 | |
| 	}
 | |
| 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
 | |
| 		rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
 | |
| 		host_pat = msr_low | ((u64) msr_high << 32);
 | |
| 		/* Write the default value follow host pat */
 | |
| 		vmcs_write64(GUEST_IA32_PAT, host_pat);
 | |
| 		/* Keep arch.pat sync with GUEST_IA32_PAT */
 | |
| 		vmx->vcpu.arch.pat = host_pat;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < NR_VMX_MSR; ++i) {
 | |
| 		u32 index = vmx_msr_index[i];
 | |
| 		u32 data_low, data_high;
 | |
| 		int j = vmx->nmsrs;
 | |
| 
 | |
| 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
 | |
| 			continue;
 | |
| 		if (wrmsr_safe(index, data_low, data_high) < 0)
 | |
| 			continue;
 | |
| 		vmx->guest_msrs[j].index = i;
 | |
| 		vmx->guest_msrs[j].data = 0;
 | |
| 		vmx->guest_msrs[j].mask = -1ull;
 | |
| 		++vmx->nmsrs;
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
 | |
| 
 | |
| 	/* 22.2.1, 20.8.1 */
 | |
| 	vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
 | |
| 
 | |
| 	vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
 | |
| 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
 | |
| 	if (enable_ept)
 | |
| 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
 | |
| 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
 | |
| 
 | |
| 	tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
 | |
| 	rdtscll(tsc_this);
 | |
| 	if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
 | |
| 		tsc_base = tsc_this;
 | |
| 
 | |
| 	guest_write_tsc(0, tsc_base);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int init_rmode(struct kvm *kvm)
 | |
| {
 | |
| 	int idx, ret = 0;
 | |
| 
 | |
| 	idx = srcu_read_lock(&kvm->srcu);
 | |
| 	if (!init_rmode_tss(kvm))
 | |
| 		goto exit;
 | |
| 	if (!init_rmode_identity_map(kvm))
 | |
| 		goto exit;
 | |
| 
 | |
| 	ret = 1;
 | |
| exit:
 | |
| 	srcu_read_unlock(&kvm->srcu, idx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u64 msr;
 | |
| 	int ret;
 | |
| 
 | |
| 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
 | |
| 	if (!init_rmode(vmx->vcpu.kvm)) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	vmx->rmode.vm86_active = 0;
 | |
| 
 | |
| 	vmx->soft_vnmi_blocked = 0;
 | |
| 
 | |
| 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
 | |
| 	kvm_set_cr8(&vmx->vcpu, 0);
 | |
| 	msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
 | |
| 	if (kvm_vcpu_is_bsp(&vmx->vcpu))
 | |
| 		msr |= MSR_IA32_APICBASE_BSP;
 | |
| 	kvm_set_apic_base(&vmx->vcpu, msr);
 | |
| 
 | |
| 	ret = fx_init(&vmx->vcpu);
 | |
| 	if (ret != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	seg_setup(VCPU_SREG_CS);
 | |
| 	/*
 | |
| 	 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
 | |
| 	 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
 | |
| 	 */
 | |
| 	if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
 | |
| 		vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
 | |
| 		vmcs_writel(GUEST_CS_BASE, 0x000f0000);
 | |
| 	} else {
 | |
| 		vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
 | |
| 		vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
 | |
| 	}
 | |
| 
 | |
| 	seg_setup(VCPU_SREG_DS);
 | |
| 	seg_setup(VCPU_SREG_ES);
 | |
| 	seg_setup(VCPU_SREG_FS);
 | |
| 	seg_setup(VCPU_SREG_GS);
 | |
| 	seg_setup(VCPU_SREG_SS);
 | |
| 
 | |
| 	vmcs_write16(GUEST_TR_SELECTOR, 0);
 | |
| 	vmcs_writel(GUEST_TR_BASE, 0);
 | |
| 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
 | |
| 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
 | |
| 
 | |
| 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
 | |
| 	vmcs_writel(GUEST_LDTR_BASE, 0);
 | |
| 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
 | |
| 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
 | |
| 
 | |
| 	vmcs_write32(GUEST_SYSENTER_CS, 0);
 | |
| 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
 | |
| 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
 | |
| 
 | |
| 	vmcs_writel(GUEST_RFLAGS, 0x02);
 | |
| 	if (kvm_vcpu_is_bsp(&vmx->vcpu))
 | |
| 		kvm_rip_write(vcpu, 0xfff0);
 | |
| 	else
 | |
| 		kvm_rip_write(vcpu, 0);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
 | |
| 
 | |
| 	vmcs_writel(GUEST_DR7, 0x400);
 | |
| 
 | |
| 	vmcs_writel(GUEST_GDTR_BASE, 0);
 | |
| 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
 | |
| 
 | |
| 	vmcs_writel(GUEST_IDTR_BASE, 0);
 | |
| 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
 | |
| 
 | |
| 	vmcs_write32(GUEST_ACTIVITY_STATE, 0);
 | |
| 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
 | |
| 	vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
 | |
| 
 | |
| 	/* Special registers */
 | |
| 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
 | |
| 
 | |
| 	setup_msrs(vmx);
 | |
| 
 | |
| 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
 | |
| 
 | |
| 	if (cpu_has_vmx_tpr_shadow()) {
 | |
| 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
 | |
| 		if (vm_need_tpr_shadow(vmx->vcpu.kvm))
 | |
| 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
 | |
| 				page_to_phys(vmx->vcpu.arch.apic->regs_page));
 | |
| 		vmcs_write32(TPR_THRESHOLD, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
 | |
| 		vmcs_write64(APIC_ACCESS_ADDR,
 | |
| 			     page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
 | |
| 
 | |
| 	if (vmx->vpid != 0)
 | |
| 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
 | |
| 
 | |
| 	vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
 | |
| 	vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
 | |
| 	vmx_set_cr4(&vmx->vcpu, 0);
 | |
| 	vmx_set_efer(&vmx->vcpu, 0);
 | |
| 	vmx_fpu_activate(&vmx->vcpu);
 | |
| 	update_exception_bitmap(&vmx->vcpu);
 | |
| 
 | |
| 	vpid_sync_context(vmx);
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/* HACK: Don't enable emulation on guest boot/reset */
 | |
| 	vmx->emulation_required = 0;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void enable_irq_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 cpu_based_vm_exec_control;
 | |
| 
 | |
| 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
 | |
| 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
 | |
| 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
 | |
| }
 | |
| 
 | |
| static void enable_nmi_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 cpu_based_vm_exec_control;
 | |
| 
 | |
| 	if (!cpu_has_virtual_nmis()) {
 | |
| 		enable_irq_window(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
 | |
| 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
 | |
| 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
 | |
| }
 | |
| 
 | |
| static void vmx_inject_irq(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	uint32_t intr;
 | |
| 	int irq = vcpu->arch.interrupt.nr;
 | |
| 
 | |
| 	trace_kvm_inj_virq(irq);
 | |
| 
 | |
| 	++vcpu->stat.irq_injections;
 | |
| 	if (vmx->rmode.vm86_active) {
 | |
| 		vmx->rmode.irq.pending = true;
 | |
| 		vmx->rmode.irq.vector = irq;
 | |
| 		vmx->rmode.irq.rip = kvm_rip_read(vcpu);
 | |
| 		if (vcpu->arch.interrupt.soft)
 | |
| 			vmx->rmode.irq.rip +=
 | |
| 				vmx->vcpu.arch.event_exit_inst_len;
 | |
| 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
 | |
| 			     irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
 | |
| 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
 | |
| 		kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
 | |
| 		return;
 | |
| 	}
 | |
| 	intr = irq | INTR_INFO_VALID_MASK;
 | |
| 	if (vcpu->arch.interrupt.soft) {
 | |
| 		intr |= INTR_TYPE_SOFT_INTR;
 | |
| 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
 | |
| 			     vmx->vcpu.arch.event_exit_inst_len);
 | |
| 	} else
 | |
| 		intr |= INTR_TYPE_EXT_INTR;
 | |
| 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
 | |
| }
 | |
| 
 | |
| static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (!cpu_has_virtual_nmis()) {
 | |
| 		/*
 | |
| 		 * Tracking the NMI-blocked state in software is built upon
 | |
| 		 * finding the next open IRQ window. This, in turn, depends on
 | |
| 		 * well-behaving guests: They have to keep IRQs disabled at
 | |
| 		 * least as long as the NMI handler runs. Otherwise we may
 | |
| 		 * cause NMI nesting, maybe breaking the guest. But as this is
 | |
| 		 * highly unlikely, we can live with the residual risk.
 | |
| 		 */
 | |
| 		vmx->soft_vnmi_blocked = 1;
 | |
| 		vmx->vnmi_blocked_time = 0;
 | |
| 	}
 | |
| 
 | |
| 	++vcpu->stat.nmi_injections;
 | |
| 	if (vmx->rmode.vm86_active) {
 | |
| 		vmx->rmode.irq.pending = true;
 | |
| 		vmx->rmode.irq.vector = NMI_VECTOR;
 | |
| 		vmx->rmode.irq.rip = kvm_rip_read(vcpu);
 | |
| 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
 | |
| 			     NMI_VECTOR | INTR_TYPE_SOFT_INTR |
 | |
| 			     INTR_INFO_VALID_MASK);
 | |
| 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
 | |
| 		kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
 | |
| 		return;
 | |
| 	}
 | |
| 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
 | |
| 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
 | |
| }
 | |
| 
 | |
| static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
 | |
| 		return 0;
 | |
| 
 | |
| 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
 | |
| 			(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_NMI));
 | |
| }
 | |
| 
 | |
| static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!cpu_has_virtual_nmis())
 | |
| 		return to_vmx(vcpu)->soft_vnmi_blocked;
 | |
| 	return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)	& GUEST_INTR_STATE_NMI;
 | |
| }
 | |
| 
 | |
| static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (!cpu_has_virtual_nmis()) {
 | |
| 		if (vmx->soft_vnmi_blocked != masked) {
 | |
| 			vmx->soft_vnmi_blocked = masked;
 | |
| 			vmx->vnmi_blocked_time = 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (masked)
 | |
| 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 				      GUEST_INTR_STATE_NMI);
 | |
| 		else
 | |
| 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 					GUEST_INTR_STATE_NMI);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
 | |
| 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
 | |
| 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
 | |
| }
 | |
| 
 | |
| static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct kvm_userspace_memory_region tss_mem = {
 | |
| 		.slot = TSS_PRIVATE_MEMSLOT,
 | |
| 		.guest_phys_addr = addr,
 | |
| 		.memory_size = PAGE_SIZE * 3,
 | |
| 		.flags = 0,
 | |
| 	};
 | |
| 
 | |
| 	ret = kvm_set_memory_region(kvm, &tss_mem, 0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	kvm->arch.tss_addr = addr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int handle_rmode_exception(struct kvm_vcpu *vcpu,
 | |
| 				  int vec, u32 err_code)
 | |
| {
 | |
| 	/*
 | |
| 	 * Instruction with address size override prefix opcode 0x67
 | |
| 	 * Cause the #SS fault with 0 error code in VM86 mode.
 | |
| 	 */
 | |
| 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
 | |
| 		if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
 | |
| 			return 1;
 | |
| 	/*
 | |
| 	 * Forward all other exceptions that are valid in real mode.
 | |
| 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
 | |
| 	 *        the required debugging infrastructure rework.
 | |
| 	 */
 | |
| 	switch (vec) {
 | |
| 	case DB_VECTOR:
 | |
| 		if (vcpu->guest_debug &
 | |
| 		    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
 | |
| 			return 0;
 | |
| 		kvm_queue_exception(vcpu, vec);
 | |
| 		return 1;
 | |
| 	case BP_VECTOR:
 | |
| 		/*
 | |
| 		 * Update instruction length as we may reinject the exception
 | |
| 		 * from user space while in guest debugging mode.
 | |
| 		 */
 | |
| 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
 | |
| 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 | |
| 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
 | |
| 			return 0;
 | |
| 		/* fall through */
 | |
| 	case DE_VECTOR:
 | |
| 	case OF_VECTOR:
 | |
| 	case BR_VECTOR:
 | |
| 	case UD_VECTOR:
 | |
| 	case DF_VECTOR:
 | |
| 	case SS_VECTOR:
 | |
| 	case GP_VECTOR:
 | |
| 	case MF_VECTOR:
 | |
| 		kvm_queue_exception(vcpu, vec);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trigger machine check on the host. We assume all the MSRs are already set up
 | |
|  * by the CPU and that we still run on the same CPU as the MCE occurred on.
 | |
|  * We pass a fake environment to the machine check handler because we want
 | |
|  * the guest to be always treated like user space, no matter what context
 | |
|  * it used internally.
 | |
|  */
 | |
| static void kvm_machine_check(void)
 | |
| {
 | |
| #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
 | |
| 	struct pt_regs regs = {
 | |
| 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
 | |
| 		.flags = X86_EFLAGS_IF,
 | |
| 	};
 | |
| 
 | |
| 	do_machine_check(®s, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int handle_machine_check(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* already handled by vcpu_run */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_exception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 	u32 intr_info, ex_no, error_code;
 | |
| 	unsigned long cr2, rip, dr6;
 | |
| 	u32 vect_info;
 | |
| 	enum emulation_result er;
 | |
| 
 | |
| 	vect_info = vmx->idt_vectoring_info;
 | |
| 	intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
 | |
| 
 | |
| 	if (is_machine_check(intr_info))
 | |
| 		return handle_machine_check(vcpu);
 | |
| 
 | |
| 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
 | |
| 	    !is_page_fault(intr_info)) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
 | |
| 		vcpu->run->internal.ndata = 2;
 | |
| 		vcpu->run->internal.data[0] = vect_info;
 | |
| 		vcpu->run->internal.data[1] = intr_info;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
 | |
| 		return 1;  /* already handled by vmx_vcpu_run() */
 | |
| 
 | |
| 	if (is_no_device(intr_info)) {
 | |
| 		vmx_fpu_activate(vcpu);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (is_invalid_opcode(intr_info)) {
 | |
| 		er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
 | |
| 		if (er != EMULATE_DONE)
 | |
| 			kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	error_code = 0;
 | |
| 	rip = kvm_rip_read(vcpu);
 | |
| 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
 | |
| 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
 | |
| 	if (is_page_fault(intr_info)) {
 | |
| 		/* EPT won't cause page fault directly */
 | |
| 		if (enable_ept)
 | |
| 			BUG();
 | |
| 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 		trace_kvm_page_fault(cr2, error_code);
 | |
| 
 | |
| 		if (kvm_event_needs_reinjection(vcpu))
 | |
| 			kvm_mmu_unprotect_page_virt(vcpu, cr2);
 | |
| 		return kvm_mmu_page_fault(vcpu, cr2, error_code);
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->rmode.vm86_active &&
 | |
| 	    handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
 | |
| 								error_code)) {
 | |
| 		if (vcpu->arch.halt_request) {
 | |
| 			vcpu->arch.halt_request = 0;
 | |
| 			return kvm_emulate_halt(vcpu);
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
 | |
| 	switch (ex_no) {
 | |
| 	case DB_VECTOR:
 | |
| 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 		if (!(vcpu->guest_debug &
 | |
| 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
 | |
| 			vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
 | |
| 			kvm_queue_exception(vcpu, DB_VECTOR);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
 | |
| 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
 | |
| 		/* fall through */
 | |
| 	case BP_VECTOR:
 | |
| 		/*
 | |
| 		 * Update instruction length as we may reinject #BP from
 | |
| 		 * user space while in guest debugging mode. Reading it for
 | |
| 		 * #DB as well causes no harm, it is not used in that case.
 | |
| 		 */
 | |
| 		vmx->vcpu.arch.event_exit_inst_len =
 | |
| 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 | |
| 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
 | |
| 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
 | |
| 		kvm_run->debug.arch.exception = ex_no;
 | |
| 		break;
 | |
| 	default:
 | |
| 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
 | |
| 		kvm_run->ex.exception = ex_no;
 | |
| 		kvm_run->ex.error_code = error_code;
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int handle_external_interrupt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.irq_exits;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_triple_fault(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int handle_io(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification;
 | |
| 	int size, in, string;
 | |
| 	unsigned port;
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	string = (exit_qualification & 16) != 0;
 | |
| 	in = (exit_qualification & 8) != 0;
 | |
| 
 | |
| 	++vcpu->stat.io_exits;
 | |
| 
 | |
| 	if (string || in)
 | |
| 		return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
 | |
| 
 | |
| 	port = exit_qualification >> 16;
 | |
| 	size = (exit_qualification & 7) + 1;
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	return kvm_fast_pio_out(vcpu, size, port);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
 | |
| {
 | |
| 	/*
 | |
| 	 * Patch in the VMCALL instruction:
 | |
| 	 */
 | |
| 	hypercall[0] = 0x0f;
 | |
| 	hypercall[1] = 0x01;
 | |
| 	hypercall[2] = 0xc1;
 | |
| }
 | |
| 
 | |
| static void complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 | |
| {
 | |
| 	if (err)
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 	else
 | |
| 		skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_cr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification, val;
 | |
| 	int cr;
 | |
| 	int reg;
 | |
| 	int err;
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	cr = exit_qualification & 15;
 | |
| 	reg = (exit_qualification >> 8) & 15;
 | |
| 	switch ((exit_qualification >> 4) & 3) {
 | |
| 	case 0: /* mov to cr */
 | |
| 		val = kvm_register_read(vcpu, reg);
 | |
| 		trace_kvm_cr_write(cr, val);
 | |
| 		switch (cr) {
 | |
| 		case 0:
 | |
| 			err = kvm_set_cr0(vcpu, val);
 | |
| 			complete_insn_gp(vcpu, err);
 | |
| 			return 1;
 | |
| 		case 3:
 | |
| 			err = kvm_set_cr3(vcpu, val);
 | |
| 			complete_insn_gp(vcpu, err);
 | |
| 			return 1;
 | |
| 		case 4:
 | |
| 			err = kvm_set_cr4(vcpu, val);
 | |
| 			complete_insn_gp(vcpu, err);
 | |
| 			return 1;
 | |
| 		case 8: {
 | |
| 				u8 cr8_prev = kvm_get_cr8(vcpu);
 | |
| 				u8 cr8 = kvm_register_read(vcpu, reg);
 | |
| 				kvm_set_cr8(vcpu, cr8);
 | |
| 				skip_emulated_instruction(vcpu);
 | |
| 				if (irqchip_in_kernel(vcpu->kvm))
 | |
| 					return 1;
 | |
| 				if (cr8_prev <= cr8)
 | |
| 					return 1;
 | |
| 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
 | |
| 				return 0;
 | |
| 			}
 | |
| 		};
 | |
| 		break;
 | |
| 	case 2: /* clts */
 | |
| 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
 | |
| 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
 | |
| 		skip_emulated_instruction(vcpu);
 | |
| 		vmx_fpu_activate(vcpu);
 | |
| 		return 1;
 | |
| 	case 1: /*mov from cr*/
 | |
| 		switch (cr) {
 | |
| 		case 3:
 | |
| 			kvm_register_write(vcpu, reg, vcpu->arch.cr3);
 | |
| 			trace_kvm_cr_read(cr, vcpu->arch.cr3);
 | |
| 			skip_emulated_instruction(vcpu);
 | |
| 			return 1;
 | |
| 		case 8:
 | |
| 			val = kvm_get_cr8(vcpu);
 | |
| 			kvm_register_write(vcpu, reg, val);
 | |
| 			trace_kvm_cr_read(cr, val);
 | |
| 			skip_emulated_instruction(vcpu);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 3: /* lmsw */
 | |
| 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
 | |
| 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
 | |
| 		kvm_lmsw(vcpu, val);
 | |
| 
 | |
| 		skip_emulated_instruction(vcpu);
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	vcpu->run->exit_reason = 0;
 | |
| 	pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
 | |
| 	       (int)(exit_qualification >> 4) & 3, cr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int handle_dr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification;
 | |
| 	int dr, reg;
 | |
| 
 | |
| 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
 | |
| 	if (!kvm_require_cpl(vcpu, 0))
 | |
| 		return 1;
 | |
| 	dr = vmcs_readl(GUEST_DR7);
 | |
| 	if (dr & DR7_GD) {
 | |
| 		/*
 | |
| 		 * As the vm-exit takes precedence over the debug trap, we
 | |
| 		 * need to emulate the latter, either for the host or the
 | |
| 		 * guest debugging itself.
 | |
| 		 */
 | |
| 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
 | |
| 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
 | |
| 			vcpu->run->debug.arch.dr7 = dr;
 | |
| 			vcpu->run->debug.arch.pc =
 | |
| 				vmcs_readl(GUEST_CS_BASE) +
 | |
| 				vmcs_readl(GUEST_RIP);
 | |
| 			vcpu->run->debug.arch.exception = DB_VECTOR;
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			vcpu->arch.dr7 &= ~DR7_GD;
 | |
| 			vcpu->arch.dr6 |= DR6_BD;
 | |
| 			vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
 | |
| 			kvm_queue_exception(vcpu, DB_VECTOR);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
 | |
| 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
 | |
| 	if (exit_qualification & TYPE_MOV_FROM_DR) {
 | |
| 		unsigned long val;
 | |
| 		if (!kvm_get_dr(vcpu, dr, &val))
 | |
| 			kvm_register_write(vcpu, reg, val);
 | |
| 	} else
 | |
| 		kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
 | |
| {
 | |
| 	vmcs_writel(GUEST_DR7, val);
 | |
| }
 | |
| 
 | |
| static int handle_cpuid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_emulate_cpuid(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_rdmsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
 | |
| 	u64 data;
 | |
| 
 | |
| 	if (vmx_get_msr(vcpu, ecx, &data)) {
 | |
| 		trace_kvm_msr_read_ex(ecx);
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_msr_read(ecx, data);
 | |
| 
 | |
| 	/* FIXME: handling of bits 32:63 of rax, rdx */
 | |
| 	vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
 | |
| 	vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_wrmsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
 | |
| 	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
 | |
| 		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
 | |
| 
 | |
| 	if (vmx_set_msr(vcpu, ecx, data) != 0) {
 | |
| 		trace_kvm_msr_write_ex(ecx, data);
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_msr_write(ecx, data);
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_interrupt_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 cpu_based_vm_exec_control;
 | |
| 
 | |
| 	/* clear pending irq */
 | |
| 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
 | |
| 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
 | |
| 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
 | |
| 
 | |
| 	++vcpu->stat.irq_window_exits;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the user space waits to inject interrupts, exit as soon as
 | |
| 	 * possible
 | |
| 	 */
 | |
| 	if (!irqchip_in_kernel(vcpu->kvm) &&
 | |
| 	    vcpu->run->request_interrupt_window &&
 | |
| 	    !kvm_cpu_has_interrupt(vcpu)) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_halt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 	return kvm_emulate_halt(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_vmcall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 	kvm_emulate_hypercall(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_vmx_insn(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_invlpg(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 
 | |
| 	kvm_mmu_invlpg(vcpu, exit_qualification);
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_wbinvd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 	kvm_emulate_wbinvd(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_xsetbv(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 new_bv = kvm_read_edx_eax(vcpu);
 | |
| 	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 
 | |
| 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
 | |
| 		skip_emulated_instruction(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_apic_access(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| static int handle_task_switch(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned long exit_qualification;
 | |
| 	bool has_error_code = false;
 | |
| 	u32 error_code = 0;
 | |
| 	u16 tss_selector;
 | |
| 	int reason, type, idt_v;
 | |
| 
 | |
| 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
 | |
| 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 
 | |
| 	reason = (u32)exit_qualification >> 30;
 | |
| 	if (reason == TASK_SWITCH_GATE && idt_v) {
 | |
| 		switch (type) {
 | |
| 		case INTR_TYPE_NMI_INTR:
 | |
| 			vcpu->arch.nmi_injected = false;
 | |
| 			if (cpu_has_virtual_nmis())
 | |
| 				vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 					      GUEST_INTR_STATE_NMI);
 | |
| 			break;
 | |
| 		case INTR_TYPE_EXT_INTR:
 | |
| 		case INTR_TYPE_SOFT_INTR:
 | |
| 			kvm_clear_interrupt_queue(vcpu);
 | |
| 			break;
 | |
| 		case INTR_TYPE_HARD_EXCEPTION:
 | |
| 			if (vmx->idt_vectoring_info &
 | |
| 			    VECTORING_INFO_DELIVER_CODE_MASK) {
 | |
| 				has_error_code = true;
 | |
| 				error_code =
 | |
| 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
 | |
| 			}
 | |
| 			/* fall through */
 | |
| 		case INTR_TYPE_SOFT_EXCEPTION:
 | |
| 			kvm_clear_exception_queue(vcpu);
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	tss_selector = exit_qualification;
 | |
| 
 | |
| 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
 | |
| 		       type != INTR_TYPE_EXT_INTR &&
 | |
| 		       type != INTR_TYPE_NMI_INTR))
 | |
| 		skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	if (kvm_task_switch(vcpu, tss_selector, reason,
 | |
| 				has_error_code, error_code) == EMULATE_FAIL) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
 | |
| 		vcpu->run->internal.ndata = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* clear all local breakpoint enable flags */
 | |
| 	vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: What about debug traps on tss switch?
 | |
| 	 *       Are we supposed to inject them and update dr6?
 | |
| 	 */
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_ept_violation(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification;
 | |
| 	gpa_t gpa;
 | |
| 	int gla_validity;
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 
 | |
| 	if (exit_qualification & (1 << 6)) {
 | |
| 		printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	gla_validity = (exit_qualification >> 7) & 0x3;
 | |
| 	if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
 | |
| 		printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
 | |
| 		printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
 | |
| 			(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
 | |
| 			vmcs_readl(GUEST_LINEAR_ADDRESS));
 | |
| 		printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
 | |
| 			(long unsigned int)exit_qualification);
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
 | |
| 		vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
 | |
| 	trace_kvm_page_fault(gpa, exit_qualification);
 | |
| 	return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
 | |
| }
 | |
| 
 | |
| static u64 ept_rsvd_mask(u64 spte, int level)
 | |
| {
 | |
| 	int i;
 | |
| 	u64 mask = 0;
 | |
| 
 | |
| 	for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
 | |
| 		mask |= (1ULL << i);
 | |
| 
 | |
| 	if (level > 2)
 | |
| 		/* bits 7:3 reserved */
 | |
| 		mask |= 0xf8;
 | |
| 	else if (level == 2) {
 | |
| 		if (spte & (1ULL << 7))
 | |
| 			/* 2MB ref, bits 20:12 reserved */
 | |
| 			mask |= 0x1ff000;
 | |
| 		else
 | |
| 			/* bits 6:3 reserved */
 | |
| 			mask |= 0x78;
 | |
| 	}
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
 | |
| 				       int level)
 | |
| {
 | |
| 	printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
 | |
| 
 | |
| 	/* 010b (write-only) */
 | |
| 	WARN_ON((spte & 0x7) == 0x2);
 | |
| 
 | |
| 	/* 110b (write/execute) */
 | |
| 	WARN_ON((spte & 0x7) == 0x6);
 | |
| 
 | |
| 	/* 100b (execute-only) and value not supported by logical processor */
 | |
| 	if (!cpu_has_vmx_ept_execute_only())
 | |
| 		WARN_ON((spte & 0x7) == 0x4);
 | |
| 
 | |
| 	/* not 000b */
 | |
| 	if ((spte & 0x7)) {
 | |
| 		u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
 | |
| 
 | |
| 		if (rsvd_bits != 0) {
 | |
| 			printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
 | |
| 					 __func__, rsvd_bits);
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| 
 | |
| 		if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
 | |
| 			u64 ept_mem_type = (spte & 0x38) >> 3;
 | |
| 
 | |
| 			if (ept_mem_type == 2 || ept_mem_type == 3 ||
 | |
| 			    ept_mem_type == 7) {
 | |
| 				printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
 | |
| 						__func__, ept_mem_type);
 | |
| 				WARN_ON(1);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 sptes[4];
 | |
| 	int nr_sptes, i;
 | |
| 	gpa_t gpa;
 | |
| 
 | |
| 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
 | |
| 
 | |
| 	printk(KERN_ERR "EPT: Misconfiguration.\n");
 | |
| 	printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
 | |
| 
 | |
| 	nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
 | |
| 
 | |
| 	for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
 | |
| 		ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
 | |
| 
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
 | |
| 	vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int handle_nmi_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 cpu_based_vm_exec_control;
 | |
| 
 | |
| 	/* clear pending NMI */
 | |
| 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
 | |
| 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
 | |
| 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
 | |
| 	++vcpu->stat.nmi_window_exits;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	enum emulation_result err = EMULATE_DONE;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	while (!guest_state_valid(vcpu)) {
 | |
| 		err = emulate_instruction(vcpu, 0, 0, 0);
 | |
| 
 | |
| 		if (err == EMULATE_DO_MMIO) {
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (err != EMULATE_DONE)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (signal_pending(current))
 | |
| 			goto out;
 | |
| 		if (need_resched())
 | |
| 			schedule();
 | |
| 	}
 | |
| 
 | |
| 	vmx->emulation_required = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
 | |
|  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
 | |
|  */
 | |
| static int handle_pause(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 	kvm_vcpu_on_spin(vcpu);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_invalid_op(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The exit handlers return 1 if the exit was handled fully and guest execution
 | |
|  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
 | |
|  * to be done to userspace and return 0.
 | |
|  */
 | |
| static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
 | |
| 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
 | |
| 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
 | |
| 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
 | |
| 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
 | |
| 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
 | |
| 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
 | |
| 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
 | |
| 	[EXIT_REASON_CPUID]                   = handle_cpuid,
 | |
| 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
 | |
| 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
 | |
| 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
 | |
| 	[EXIT_REASON_HLT]                     = handle_halt,
 | |
| 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
 | |
| 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
 | |
| 	[EXIT_REASON_VMCLEAR]	              = handle_vmx_insn,
 | |
| 	[EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
 | |
| 	[EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
 | |
| 	[EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
 | |
| 	[EXIT_REASON_VMREAD]                  = handle_vmx_insn,
 | |
| 	[EXIT_REASON_VMRESUME]                = handle_vmx_insn,
 | |
| 	[EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
 | |
| 	[EXIT_REASON_VMOFF]                   = handle_vmx_insn,
 | |
| 	[EXIT_REASON_VMON]                    = handle_vmx_insn,
 | |
| 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
 | |
| 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
 | |
| 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
 | |
| 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
 | |
| 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
 | |
| 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
 | |
| 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
 | |
| 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
 | |
| 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
 | |
| 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_invalid_op,
 | |
| 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
 | |
| };
 | |
| 
 | |
| static const int kvm_vmx_max_exit_handlers =
 | |
| 	ARRAY_SIZE(kvm_vmx_exit_handlers);
 | |
| 
 | |
| /*
 | |
|  * The guest has exited.  See if we can fix it or if we need userspace
 | |
|  * assistance.
 | |
|  */
 | |
| static int vmx_handle_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 exit_reason = vmx->exit_reason;
 | |
| 	u32 vectoring_info = vmx->idt_vectoring_info;
 | |
| 
 | |
| 	trace_kvm_exit(exit_reason, vcpu);
 | |
| 
 | |
| 	/* If guest state is invalid, start emulating */
 | |
| 	if (vmx->emulation_required && emulate_invalid_guest_state)
 | |
| 		return handle_invalid_guest_state(vcpu);
 | |
| 
 | |
| 	/* Access CR3 don't cause VMExit in paging mode, so we need
 | |
| 	 * to sync with guest real CR3. */
 | |
| 	if (enable_ept && is_paging(vcpu))
 | |
| 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
 | |
| 
 | |
| 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 | |
| 		vcpu->run->fail_entry.hardware_entry_failure_reason
 | |
| 			= exit_reason;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vmx->fail)) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 | |
| 		vcpu->run->fail_entry.hardware_entry_failure_reason
 | |
| 			= vmcs_read32(VM_INSTRUCTION_ERROR);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
 | |
| 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
 | |
| 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
 | |
| 			exit_reason != EXIT_REASON_TASK_SWITCH))
 | |
| 		printk(KERN_WARNING "%s: unexpected, valid vectoring info "
 | |
| 		       "(0x%x) and exit reason is 0x%x\n",
 | |
| 		       __func__, vectoring_info, exit_reason);
 | |
| 
 | |
| 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
 | |
| 		if (vmx_interrupt_allowed(vcpu)) {
 | |
| 			vmx->soft_vnmi_blocked = 0;
 | |
| 		} else if (vmx->vnmi_blocked_time > 1000000000LL &&
 | |
| 			   vcpu->arch.nmi_pending) {
 | |
| 			/*
 | |
| 			 * This CPU don't support us in finding the end of an
 | |
| 			 * NMI-blocked window if the guest runs with IRQs
 | |
| 			 * disabled. So we pull the trigger after 1 s of
 | |
| 			 * futile waiting, but inform the user about this.
 | |
| 			 */
 | |
| 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
 | |
| 			       "state on VCPU %d after 1 s timeout\n",
 | |
| 			       __func__, vcpu->vcpu_id);
 | |
| 			vmx->soft_vnmi_blocked = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (exit_reason < kvm_vmx_max_exit_handlers
 | |
| 	    && kvm_vmx_exit_handlers[exit_reason])
 | |
| 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
 | |
| 	else {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
 | |
| 		vcpu->run->hw.hardware_exit_reason = exit_reason;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
 | |
| {
 | |
| 	if (irr == -1 || tpr < irr) {
 | |
| 		vmcs_write32(TPR_THRESHOLD, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write32(TPR_THRESHOLD, irr);
 | |
| }
 | |
| 
 | |
| static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	u32 exit_intr_info;
 | |
| 	u32 idt_vectoring_info = vmx->idt_vectoring_info;
 | |
| 	bool unblock_nmi;
 | |
| 	u8 vector;
 | |
| 	int type;
 | |
| 	bool idtv_info_valid;
 | |
| 
 | |
| 	exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
 | |
| 
 | |
| 	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
 | |
| 
 | |
| 	/* Handle machine checks before interrupts are enabled */
 | |
| 	if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
 | |
| 	    || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
 | |
| 		&& is_machine_check(exit_intr_info)))
 | |
| 		kvm_machine_check();
 | |
| 
 | |
| 	/* We need to handle NMIs before interrupts are enabled */
 | |
| 	if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
 | |
| 	    (exit_intr_info & INTR_INFO_VALID_MASK)) {
 | |
| 		kvm_before_handle_nmi(&vmx->vcpu);
 | |
| 		asm("int $2");
 | |
| 		kvm_after_handle_nmi(&vmx->vcpu);
 | |
| 	}
 | |
| 
 | |
| 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
 | |
| 
 | |
| 	if (cpu_has_virtual_nmis()) {
 | |
| 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
 | |
| 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
 | |
| 		/*
 | |
| 		 * SDM 3: 27.7.1.2 (September 2008)
 | |
| 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
 | |
| 		 * a guest IRET fault.
 | |
| 		 * SDM 3: 23.2.2 (September 2008)
 | |
| 		 * Bit 12 is undefined in any of the following cases:
 | |
| 		 *  If the VM exit sets the valid bit in the IDT-vectoring
 | |
| 		 *   information field.
 | |
| 		 *  If the VM exit is due to a double fault.
 | |
| 		 */
 | |
| 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
 | |
| 		    vector != DF_VECTOR && !idtv_info_valid)
 | |
| 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 				      GUEST_INTR_STATE_NMI);
 | |
| 	} else if (unlikely(vmx->soft_vnmi_blocked))
 | |
| 		vmx->vnmi_blocked_time +=
 | |
| 			ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
 | |
| 
 | |
| 	vmx->vcpu.arch.nmi_injected = false;
 | |
| 	kvm_clear_exception_queue(&vmx->vcpu);
 | |
| 	kvm_clear_interrupt_queue(&vmx->vcpu);
 | |
| 
 | |
| 	if (!idtv_info_valid)
 | |
| 		return;
 | |
| 
 | |
| 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
 | |
| 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case INTR_TYPE_NMI_INTR:
 | |
| 		vmx->vcpu.arch.nmi_injected = true;
 | |
| 		/*
 | |
| 		 * SDM 3: 27.7.1.2 (September 2008)
 | |
| 		 * Clear bit "block by NMI" before VM entry if a NMI
 | |
| 		 * delivery faulted.
 | |
| 		 */
 | |
| 		vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 				GUEST_INTR_STATE_NMI);
 | |
| 		break;
 | |
| 	case INTR_TYPE_SOFT_EXCEPTION:
 | |
| 		vmx->vcpu.arch.event_exit_inst_len =
 | |
| 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 | |
| 		/* fall through */
 | |
| 	case INTR_TYPE_HARD_EXCEPTION:
 | |
| 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
 | |
| 			u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
 | |
| 			kvm_queue_exception_e(&vmx->vcpu, vector, err);
 | |
| 		} else
 | |
| 			kvm_queue_exception(&vmx->vcpu, vector);
 | |
| 		break;
 | |
| 	case INTR_TYPE_SOFT_INTR:
 | |
| 		vmx->vcpu.arch.event_exit_inst_len =
 | |
| 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 | |
| 		/* fall through */
 | |
| 	case INTR_TYPE_EXT_INTR:
 | |
| 		kvm_queue_interrupt(&vmx->vcpu, vector,
 | |
| 			type == INTR_TYPE_SOFT_INTR);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Failure to inject an interrupt should give us the information
 | |
|  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
 | |
|  * when fetching the interrupt redirection bitmap in the real-mode
 | |
|  * tss, this doesn't happen.  So we do it ourselves.
 | |
|  */
 | |
| static void fixup_rmode_irq(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	vmx->rmode.irq.pending = 0;
 | |
| 	if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
 | |
| 		return;
 | |
| 	kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
 | |
| 	if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
 | |
| 		vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
 | |
| 		vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
 | |
| 		return;
 | |
| 	}
 | |
| 	vmx->idt_vectoring_info =
 | |
| 		VECTORING_INFO_VALID_MASK
 | |
| 		| INTR_TYPE_EXT_INTR
 | |
| 		| vmx->rmode.irq.vector;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| #define R "r"
 | |
| #define Q "q"
 | |
| #else
 | |
| #define R "e"
 | |
| #define Q "l"
 | |
| #endif
 | |
| 
 | |
| static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/* Record the guest's net vcpu time for enforced NMI injections. */
 | |
| 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
 | |
| 		vmx->entry_time = ktime_get();
 | |
| 
 | |
| 	/* Don't enter VMX if guest state is invalid, let the exit handler
 | |
| 	   start emulation until we arrive back to a valid state */
 | |
| 	if (vmx->emulation_required && emulate_invalid_guest_state)
 | |
| 		return;
 | |
| 
 | |
| 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
 | |
| 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
 | |
| 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
 | |
| 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
 | |
| 
 | |
| 	/* When single-stepping over STI and MOV SS, we must clear the
 | |
| 	 * corresponding interruptibility bits in the guest state. Otherwise
 | |
| 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
 | |
| 	 * exceptions being set, but that's not correct for the guest debugging
 | |
| 	 * case. */
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
 | |
| 		vmx_set_interrupt_shadow(vcpu, 0);
 | |
| 
 | |
| 	asm(
 | |
| 		/* Store host registers */
 | |
| 		"push %%"R"dx; push %%"R"bp;"
 | |
| 		"push %%"R"cx \n\t"
 | |
| 		"cmp %%"R"sp, %c[host_rsp](%0) \n\t"
 | |
| 		"je 1f \n\t"
 | |
| 		"mov %%"R"sp, %c[host_rsp](%0) \n\t"
 | |
| 		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
 | |
| 		"1: \n\t"
 | |
| 		/* Reload cr2 if changed */
 | |
| 		"mov %c[cr2](%0), %%"R"ax \n\t"
 | |
| 		"mov %%cr2, %%"R"dx \n\t"
 | |
| 		"cmp %%"R"ax, %%"R"dx \n\t"
 | |
| 		"je 2f \n\t"
 | |
| 		"mov %%"R"ax, %%cr2 \n\t"
 | |
| 		"2: \n\t"
 | |
| 		/* Check if vmlaunch of vmresume is needed */
 | |
| 		"cmpl $0, %c[launched](%0) \n\t"
 | |
| 		/* Load guest registers.  Don't clobber flags. */
 | |
| 		"mov %c[rax](%0), %%"R"ax \n\t"
 | |
| 		"mov %c[rbx](%0), %%"R"bx \n\t"
 | |
| 		"mov %c[rdx](%0), %%"R"dx \n\t"
 | |
| 		"mov %c[rsi](%0), %%"R"si \n\t"
 | |
| 		"mov %c[rdi](%0), %%"R"di \n\t"
 | |
| 		"mov %c[rbp](%0), %%"R"bp \n\t"
 | |
| #ifdef CONFIG_X86_64
 | |
| 		"mov %c[r8](%0),  %%r8  \n\t"
 | |
| 		"mov %c[r9](%0),  %%r9  \n\t"
 | |
| 		"mov %c[r10](%0), %%r10 \n\t"
 | |
| 		"mov %c[r11](%0), %%r11 \n\t"
 | |
| 		"mov %c[r12](%0), %%r12 \n\t"
 | |
| 		"mov %c[r13](%0), %%r13 \n\t"
 | |
| 		"mov %c[r14](%0), %%r14 \n\t"
 | |
| 		"mov %c[r15](%0), %%r15 \n\t"
 | |
| #endif
 | |
| 		"mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
 | |
| 
 | |
| 		/* Enter guest mode */
 | |
| 		"jne .Llaunched \n\t"
 | |
| 		__ex(ASM_VMX_VMLAUNCH) "\n\t"
 | |
| 		"jmp .Lkvm_vmx_return \n\t"
 | |
| 		".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
 | |
| 		".Lkvm_vmx_return: "
 | |
| 		/* Save guest registers, load host registers, keep flags */
 | |
| 		"xchg %0,     (%%"R"sp) \n\t"
 | |
| 		"mov %%"R"ax, %c[rax](%0) \n\t"
 | |
| 		"mov %%"R"bx, %c[rbx](%0) \n\t"
 | |
| 		"push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
 | |
| 		"mov %%"R"dx, %c[rdx](%0) \n\t"
 | |
| 		"mov %%"R"si, %c[rsi](%0) \n\t"
 | |
| 		"mov %%"R"di, %c[rdi](%0) \n\t"
 | |
| 		"mov %%"R"bp, %c[rbp](%0) \n\t"
 | |
| #ifdef CONFIG_X86_64
 | |
| 		"mov %%r8,  %c[r8](%0) \n\t"
 | |
| 		"mov %%r9,  %c[r9](%0) \n\t"
 | |
| 		"mov %%r10, %c[r10](%0) \n\t"
 | |
| 		"mov %%r11, %c[r11](%0) \n\t"
 | |
| 		"mov %%r12, %c[r12](%0) \n\t"
 | |
| 		"mov %%r13, %c[r13](%0) \n\t"
 | |
| 		"mov %%r14, %c[r14](%0) \n\t"
 | |
| 		"mov %%r15, %c[r15](%0) \n\t"
 | |
| #endif
 | |
| 		"mov %%cr2, %%"R"ax   \n\t"
 | |
| 		"mov %%"R"ax, %c[cr2](%0) \n\t"
 | |
| 
 | |
| 		"pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
 | |
| 		"setbe %c[fail](%0) \n\t"
 | |
| 	      : : "c"(vmx), "d"((unsigned long)HOST_RSP),
 | |
| 		[launched]"i"(offsetof(struct vcpu_vmx, launched)),
 | |
| 		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
 | |
| 		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
 | |
| 		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
 | |
| 		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
 | |
| 		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
 | |
| 		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
 | |
| 		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
 | |
| 		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
 | |
| 		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
 | |
| #ifdef CONFIG_X86_64
 | |
| 		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
 | |
| 		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
 | |
| 		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
 | |
| 		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
 | |
| 		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
 | |
| 		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
 | |
| 		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
 | |
| 		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
 | |
| #endif
 | |
| 		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
 | |
| 	      : "cc", "memory"
 | |
| 		, R"bx", R"di", R"si"
 | |
| #ifdef CONFIG_X86_64
 | |
| 		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
 | |
| #endif
 | |
| 	      );
 | |
| 
 | |
| 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
 | |
| 				  | (1 << VCPU_EXREG_PDPTR));
 | |
| 	vcpu->arch.regs_dirty = 0;
 | |
| 
 | |
| 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
 | |
| 	if (vmx->rmode.irq.pending)
 | |
| 		fixup_rmode_irq(vmx);
 | |
| 
 | |
| 	asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
 | |
| 	vmx->launched = 1;
 | |
| 
 | |
| 	vmx_complete_interrupts(vmx);
 | |
| }
 | |
| 
 | |
| #undef R
 | |
| #undef Q
 | |
| 
 | |
| static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (vmx->vmcs) {
 | |
| 		vcpu_clear(vmx);
 | |
| 		free_vmcs(vmx->vmcs);
 | |
| 		vmx->vmcs = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	free_vpid(vmx);
 | |
| 	vmx_free_vmcs(vcpu);
 | |
| 	kfree(vmx->guest_msrs);
 | |
| 	kvm_vcpu_uninit(vcpu);
 | |
| 	kmem_cache_free(kvm_vcpu_cache, vmx);
 | |
| }
 | |
| 
 | |
| static inline void vmcs_init(struct vmcs *vmcs)
 | |
| {
 | |
| 	u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
 | |
| 
 | |
| 	if (!vmm_exclusive)
 | |
| 		kvm_cpu_vmxon(phys_addr);
 | |
| 
 | |
| 	vmcs_clear(vmcs);
 | |
| 
 | |
| 	if (!vmm_exclusive)
 | |
| 		kvm_cpu_vmxoff();
 | |
| }
 | |
| 
 | |
| static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
 | |
| {
 | |
| 	int err;
 | |
| 	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!vmx)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	allocate_vpid(vmx);
 | |
| 
 | |
| 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
 | |
| 	if (err)
 | |
| 		goto free_vcpu;
 | |
| 
 | |
| 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	if (!vmx->guest_msrs) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto uninit_vcpu;
 | |
| 	}
 | |
| 
 | |
| 	vmx->vmcs = alloc_vmcs();
 | |
| 	if (!vmx->vmcs)
 | |
| 		goto free_msrs;
 | |
| 
 | |
| 	vmcs_init(vmx->vmcs);
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	vmx_vcpu_load(&vmx->vcpu, cpu);
 | |
| 	err = vmx_vcpu_setup(vmx);
 | |
| 	vmx_vcpu_put(&vmx->vcpu);
 | |
| 	put_cpu();
 | |
| 	if (err)
 | |
| 		goto free_vmcs;
 | |
| 	if (vm_need_virtualize_apic_accesses(kvm))
 | |
| 		if (alloc_apic_access_page(kvm) != 0)
 | |
| 			goto free_vmcs;
 | |
| 
 | |
| 	if (enable_ept) {
 | |
| 		if (!kvm->arch.ept_identity_map_addr)
 | |
| 			kvm->arch.ept_identity_map_addr =
 | |
| 				VMX_EPT_IDENTITY_PAGETABLE_ADDR;
 | |
| 		if (alloc_identity_pagetable(kvm) != 0)
 | |
| 			goto free_vmcs;
 | |
| 	}
 | |
| 
 | |
| 	return &vmx->vcpu;
 | |
| 
 | |
| free_vmcs:
 | |
| 	free_vmcs(vmx->vmcs);
 | |
| free_msrs:
 | |
| 	kfree(vmx->guest_msrs);
 | |
| uninit_vcpu:
 | |
| 	kvm_vcpu_uninit(&vmx->vcpu);
 | |
| free_vcpu:
 | |
| 	free_vpid(vmx);
 | |
| 	kmem_cache_free(kvm_vcpu_cache, vmx);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static void __init vmx_check_processor_compat(void *rtn)
 | |
| {
 | |
| 	struct vmcs_config vmcs_conf;
 | |
| 
 | |
| 	*(int *)rtn = 0;
 | |
| 	if (setup_vmcs_config(&vmcs_conf) < 0)
 | |
| 		*(int *)rtn = -EIO;
 | |
| 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
 | |
| 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
 | |
| 				smp_processor_id());
 | |
| 		*(int *)rtn = -EIO;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int get_ept_level(void)
 | |
| {
 | |
| 	return VMX_EPT_DEFAULT_GAW + 1;
 | |
| }
 | |
| 
 | |
| static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
 | |
| {
 | |
| 	u64 ret;
 | |
| 
 | |
| 	/* For VT-d and EPT combination
 | |
| 	 * 1. MMIO: always map as UC
 | |
| 	 * 2. EPT with VT-d:
 | |
| 	 *   a. VT-d without snooping control feature: can't guarantee the
 | |
| 	 *	result, try to trust guest.
 | |
| 	 *   b. VT-d with snooping control feature: snooping control feature of
 | |
| 	 *	VT-d engine can guarantee the cache correctness. Just set it
 | |
| 	 *	to WB to keep consistent with host. So the same as item 3.
 | |
| 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
 | |
| 	 *    consistent with host MTRR
 | |
| 	 */
 | |
| 	if (is_mmio)
 | |
| 		ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
 | |
| 	else if (vcpu->kvm->arch.iommu_domain &&
 | |
| 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
 | |
| 		ret = kvm_get_guest_memory_type(vcpu, gfn) <<
 | |
| 		      VMX_EPT_MT_EPTE_SHIFT;
 | |
| 	else
 | |
| 		ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
 | |
| 			| VMX_EPT_IPAT_BIT;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define _ER(x) { EXIT_REASON_##x, #x }
 | |
| 
 | |
| static const struct trace_print_flags vmx_exit_reasons_str[] = {
 | |
| 	_ER(EXCEPTION_NMI),
 | |
| 	_ER(EXTERNAL_INTERRUPT),
 | |
| 	_ER(TRIPLE_FAULT),
 | |
| 	_ER(PENDING_INTERRUPT),
 | |
| 	_ER(NMI_WINDOW),
 | |
| 	_ER(TASK_SWITCH),
 | |
| 	_ER(CPUID),
 | |
| 	_ER(HLT),
 | |
| 	_ER(INVLPG),
 | |
| 	_ER(RDPMC),
 | |
| 	_ER(RDTSC),
 | |
| 	_ER(VMCALL),
 | |
| 	_ER(VMCLEAR),
 | |
| 	_ER(VMLAUNCH),
 | |
| 	_ER(VMPTRLD),
 | |
| 	_ER(VMPTRST),
 | |
| 	_ER(VMREAD),
 | |
| 	_ER(VMRESUME),
 | |
| 	_ER(VMWRITE),
 | |
| 	_ER(VMOFF),
 | |
| 	_ER(VMON),
 | |
| 	_ER(CR_ACCESS),
 | |
| 	_ER(DR_ACCESS),
 | |
| 	_ER(IO_INSTRUCTION),
 | |
| 	_ER(MSR_READ),
 | |
| 	_ER(MSR_WRITE),
 | |
| 	_ER(MWAIT_INSTRUCTION),
 | |
| 	_ER(MONITOR_INSTRUCTION),
 | |
| 	_ER(PAUSE_INSTRUCTION),
 | |
| 	_ER(MCE_DURING_VMENTRY),
 | |
| 	_ER(TPR_BELOW_THRESHOLD),
 | |
| 	_ER(APIC_ACCESS),
 | |
| 	_ER(EPT_VIOLATION),
 | |
| 	_ER(EPT_MISCONFIG),
 | |
| 	_ER(WBINVD),
 | |
| 	{ -1, NULL }
 | |
| };
 | |
| 
 | |
| #undef _ER
 | |
| 
 | |
| static int vmx_get_lpage_level(void)
 | |
| {
 | |
| 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
 | |
| 		return PT_DIRECTORY_LEVEL;
 | |
| 	else
 | |
| 		/* For shadow and EPT supported 1GB page */
 | |
| 		return PT_PDPE_LEVEL;
 | |
| }
 | |
| 
 | |
| static inline u32 bit(int bitno)
 | |
| {
 | |
| 	return 1 << (bitno & 31);
 | |
| }
 | |
| 
 | |
| static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 exec_control;
 | |
| 
 | |
| 	vmx->rdtscp_enabled = false;
 | |
| 	if (vmx_rdtscp_supported()) {
 | |
| 		exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
 | |
| 		if (exec_control & SECONDARY_EXEC_RDTSCP) {
 | |
| 			best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 | |
| 			if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
 | |
| 				vmx->rdtscp_enabled = true;
 | |
| 			else {
 | |
| 				exec_control &= ~SECONDARY_EXEC_RDTSCP;
 | |
| 				vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
 | |
| 						exec_control);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
 | |
| {
 | |
| }
 | |
| 
 | |
| static struct kvm_x86_ops vmx_x86_ops = {
 | |
| 	.cpu_has_kvm_support = cpu_has_kvm_support,
 | |
| 	.disabled_by_bios = vmx_disabled_by_bios,
 | |
| 	.hardware_setup = hardware_setup,
 | |
| 	.hardware_unsetup = hardware_unsetup,
 | |
| 	.check_processor_compatibility = vmx_check_processor_compat,
 | |
| 	.hardware_enable = hardware_enable,
 | |
| 	.hardware_disable = hardware_disable,
 | |
| 	.cpu_has_accelerated_tpr = report_flexpriority,
 | |
| 
 | |
| 	.vcpu_create = vmx_create_vcpu,
 | |
| 	.vcpu_free = vmx_free_vcpu,
 | |
| 	.vcpu_reset = vmx_vcpu_reset,
 | |
| 
 | |
| 	.prepare_guest_switch = vmx_save_host_state,
 | |
| 	.vcpu_load = vmx_vcpu_load,
 | |
| 	.vcpu_put = vmx_vcpu_put,
 | |
| 
 | |
| 	.set_guest_debug = set_guest_debug,
 | |
| 	.get_msr = vmx_get_msr,
 | |
| 	.set_msr = vmx_set_msr,
 | |
| 	.get_segment_base = vmx_get_segment_base,
 | |
| 	.get_segment = vmx_get_segment,
 | |
| 	.set_segment = vmx_set_segment,
 | |
| 	.get_cpl = vmx_get_cpl,
 | |
| 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
 | |
| 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
 | |
| 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
 | |
| 	.set_cr0 = vmx_set_cr0,
 | |
| 	.set_cr3 = vmx_set_cr3,
 | |
| 	.set_cr4 = vmx_set_cr4,
 | |
| 	.set_efer = vmx_set_efer,
 | |
| 	.get_idt = vmx_get_idt,
 | |
| 	.set_idt = vmx_set_idt,
 | |
| 	.get_gdt = vmx_get_gdt,
 | |
| 	.set_gdt = vmx_set_gdt,
 | |
| 	.set_dr7 = vmx_set_dr7,
 | |
| 	.cache_reg = vmx_cache_reg,
 | |
| 	.get_rflags = vmx_get_rflags,
 | |
| 	.set_rflags = vmx_set_rflags,
 | |
| 	.fpu_activate = vmx_fpu_activate,
 | |
| 	.fpu_deactivate = vmx_fpu_deactivate,
 | |
| 
 | |
| 	.tlb_flush = vmx_flush_tlb,
 | |
| 
 | |
| 	.run = vmx_vcpu_run,
 | |
| 	.handle_exit = vmx_handle_exit,
 | |
| 	.skip_emulated_instruction = skip_emulated_instruction,
 | |
| 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
 | |
| 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
 | |
| 	.patch_hypercall = vmx_patch_hypercall,
 | |
| 	.set_irq = vmx_inject_irq,
 | |
| 	.set_nmi = vmx_inject_nmi,
 | |
| 	.queue_exception = vmx_queue_exception,
 | |
| 	.interrupt_allowed = vmx_interrupt_allowed,
 | |
| 	.nmi_allowed = vmx_nmi_allowed,
 | |
| 	.get_nmi_mask = vmx_get_nmi_mask,
 | |
| 	.set_nmi_mask = vmx_set_nmi_mask,
 | |
| 	.enable_nmi_window = enable_nmi_window,
 | |
| 	.enable_irq_window = enable_irq_window,
 | |
| 	.update_cr8_intercept = update_cr8_intercept,
 | |
| 
 | |
| 	.set_tss_addr = vmx_set_tss_addr,
 | |
| 	.get_tdp_level = get_ept_level,
 | |
| 	.get_mt_mask = vmx_get_mt_mask,
 | |
| 
 | |
| 	.exit_reasons_str = vmx_exit_reasons_str,
 | |
| 	.get_lpage_level = vmx_get_lpage_level,
 | |
| 
 | |
| 	.cpuid_update = vmx_cpuid_update,
 | |
| 
 | |
| 	.rdtscp_supported = vmx_rdtscp_supported,
 | |
| 
 | |
| 	.set_supported_cpuid = vmx_set_supported_cpuid,
 | |
| 
 | |
| 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
 | |
| };
 | |
| 
 | |
| static int __init vmx_init(void)
 | |
| {
 | |
| 	int r, i;
 | |
| 
 | |
| 	rdmsrl_safe(MSR_EFER, &host_efer);
 | |
| 
 | |
| 	for (i = 0; i < NR_VMX_MSR; ++i)
 | |
| 		kvm_define_shared_msr(i, vmx_msr_index[i]);
 | |
| 
 | |
| 	vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
 | |
| 	if (!vmx_io_bitmap_a)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
 | |
| 	if (!vmx_io_bitmap_b) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
 | |
| 	if (!vmx_msr_bitmap_legacy) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto out1;
 | |
| 	}
 | |
| 
 | |
| 	vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
 | |
| 	if (!vmx_msr_bitmap_longmode) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow direct access to the PC debug port (it is often used for I/O
 | |
| 	 * delays, but the vmexits simply slow things down).
 | |
| 	 */
 | |
| 	memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
 | |
| 	clear_bit(0x80, vmx_io_bitmap_a);
 | |
| 
 | |
| 	memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
 | |
| 
 | |
| 	memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
 | |
| 	memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
 | |
| 
 | |
| 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
 | |
| 
 | |
| 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
 | |
| 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
 | |
| 	if (r)
 | |
| 		goto out3;
 | |
| 
 | |
| 	vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
 | |
| 	vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
 | |
| 	vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
 | |
| 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
 | |
| 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
 | |
| 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
 | |
| 
 | |
| 	if (enable_ept) {
 | |
| 		bypass_guest_pf = 0;
 | |
| 		kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
 | |
| 			VMX_EPT_WRITABLE_MASK);
 | |
| 		kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
 | |
| 				VMX_EPT_EXECUTABLE_MASK);
 | |
| 		kvm_enable_tdp();
 | |
| 	} else
 | |
| 		kvm_disable_tdp();
 | |
| 
 | |
| 	if (bypass_guest_pf)
 | |
| 		kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out3:
 | |
| 	free_page((unsigned long)vmx_msr_bitmap_longmode);
 | |
| out2:
 | |
| 	free_page((unsigned long)vmx_msr_bitmap_legacy);
 | |
| out1:
 | |
| 	free_page((unsigned long)vmx_io_bitmap_b);
 | |
| out:
 | |
| 	free_page((unsigned long)vmx_io_bitmap_a);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void __exit vmx_exit(void)
 | |
| {
 | |
| 	free_page((unsigned long)vmx_msr_bitmap_legacy);
 | |
| 	free_page((unsigned long)vmx_msr_bitmap_longmode);
 | |
| 	free_page((unsigned long)vmx_io_bitmap_b);
 | |
| 	free_page((unsigned long)vmx_io_bitmap_a);
 | |
| 
 | |
| 	kvm_exit();
 | |
| }
 | |
| 
 | |
| module_init(vmx_init)
 | |
| module_exit(vmx_exit)
 |