mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-30 16:13:18 +00:00 
			
		
		
		
	 537b60d178
			
		
	
	
		537b60d178
		
	
	
	
	
		
			
			* 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86, UV: uv_irq.c: Fix all sparse warnings x86, UV: Improve BAU performance and error recovery x86, UV: Delete unneeded boot messages x86, UV: Clean up UV headers for MMR definitions
		
			
				
	
	
		
			1398 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1398 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	SGI UltraViolet TLB flush routines.
 | |
|  *
 | |
|  *	(c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.
 | |
|  *
 | |
|  *	This code is released under the GNU General Public License version 2 or
 | |
|  *	later.
 | |
|  */
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/uv/uv.h>
 | |
| #include <asm/uv/uv_mmrs.h>
 | |
| #include <asm/uv/uv_hub.h>
 | |
| #include <asm/uv/uv_bau.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/idle.h>
 | |
| #include <asm/tsc.h>
 | |
| #include <asm/irq_vectors.h>
 | |
| #include <asm/timer.h>
 | |
| 
 | |
| struct msg_desc {
 | |
| 	struct bau_payload_queue_entry *msg;
 | |
| 	int msg_slot;
 | |
| 	int sw_ack_slot;
 | |
| 	struct bau_payload_queue_entry *va_queue_first;
 | |
| 	struct bau_payload_queue_entry *va_queue_last;
 | |
| };
 | |
| 
 | |
| #define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD	0x000000000bUL
 | |
| 
 | |
| static int uv_bau_max_concurrent __read_mostly;
 | |
| 
 | |
| static int nobau;
 | |
| static int __init setup_nobau(char *arg)
 | |
| {
 | |
| 	nobau = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nobau", setup_nobau);
 | |
| 
 | |
| /* base pnode in this partition */
 | |
| static int uv_partition_base_pnode __read_mostly;
 | |
| /* position of pnode (which is nasid>>1): */
 | |
| static int uv_nshift __read_mostly;
 | |
| static unsigned long uv_mmask __read_mostly;
 | |
| 
 | |
| static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
 | |
| static DEFINE_PER_CPU(struct bau_control, bau_control);
 | |
| static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
 | |
| 
 | |
| struct reset_args {
 | |
| 	int sender;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Determine the first node on a uvhub. 'Nodes' are used for kernel
 | |
|  * memory allocation.
 | |
|  */
 | |
| static int __init uvhub_to_first_node(int uvhub)
 | |
| {
 | |
| 	int node, b;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		b = uv_node_to_blade_id(node);
 | |
| 		if (uvhub == b)
 | |
| 			return node;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the apicid of the first cpu on a uvhub.
 | |
|  */
 | |
| static int __init uvhub_to_first_apicid(int uvhub)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_present_cpu(cpu)
 | |
| 		if (uvhub == uv_cpu_to_blade_id(cpu))
 | |
| 			return per_cpu(x86_cpu_to_apicid, cpu);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a software acknowledge hardware resource by clearing its Pending
 | |
|  * bit. This will return a reply to the sender.
 | |
|  * If the message has timed out, a reply has already been sent by the
 | |
|  * hardware but the resource has not been released. In that case our
 | |
|  * clear of the Timeout bit (as well) will free the resource. No reply will
 | |
|  * be sent (the hardware will only do one reply per message).
 | |
|  */
 | |
| static inline void uv_reply_to_message(struct msg_desc *mdp,
 | |
| 				       struct bau_control *bcp)
 | |
| {
 | |
| 	unsigned long dw;
 | |
| 	struct bau_payload_queue_entry *msg;
 | |
| 
 | |
| 	msg = mdp->msg;
 | |
| 	if (!msg->canceled) {
 | |
| 		dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) |
 | |
| 						msg->sw_ack_vector;
 | |
| 		uv_write_local_mmr(
 | |
| 				UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
 | |
| 	}
 | |
| 	msg->replied_to = 1;
 | |
| 	msg->sw_ack_vector = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process the receipt of a RETRY message
 | |
|  */
 | |
| static inline void uv_bau_process_retry_msg(struct msg_desc *mdp,
 | |
| 					    struct bau_control *bcp)
 | |
| {
 | |
| 	int i;
 | |
| 	int cancel_count = 0;
 | |
| 	int slot2;
 | |
| 	unsigned long msg_res;
 | |
| 	unsigned long mmr = 0;
 | |
| 	struct bau_payload_queue_entry *msg;
 | |
| 	struct bau_payload_queue_entry *msg2;
 | |
| 	struct ptc_stats *stat;
 | |
| 
 | |
| 	msg = mdp->msg;
 | |
| 	stat = &per_cpu(ptcstats, bcp->cpu);
 | |
| 	stat->d_retries++;
 | |
| 	/*
 | |
| 	 * cancel any message from msg+1 to the retry itself
 | |
| 	 */
 | |
| 	for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
 | |
| 		if (msg2 > mdp->va_queue_last)
 | |
| 			msg2 = mdp->va_queue_first;
 | |
| 		if (msg2 == msg)
 | |
| 			break;
 | |
| 
 | |
| 		/* same conditions for cancellation as uv_do_reset */
 | |
| 		if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
 | |
| 		    (msg2->sw_ack_vector) && ((msg2->sw_ack_vector &
 | |
| 			msg->sw_ack_vector) == 0) &&
 | |
| 		    (msg2->sending_cpu == msg->sending_cpu) &&
 | |
| 		    (msg2->msg_type != MSG_NOOP)) {
 | |
| 			slot2 = msg2 - mdp->va_queue_first;
 | |
| 			mmr = uv_read_local_mmr
 | |
| 				(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
 | |
| 			msg_res = ((msg2->sw_ack_vector << 8) |
 | |
| 				   msg2->sw_ack_vector);
 | |
| 			/*
 | |
| 			 * This is a message retry; clear the resources held
 | |
| 			 * by the previous message only if they timed out.
 | |
| 			 * If it has not timed out we have an unexpected
 | |
| 			 * situation to report.
 | |
| 			 */
 | |
| 			if (mmr & (msg_res << 8)) {
 | |
| 				/*
 | |
| 				 * is the resource timed out?
 | |
| 				 * make everyone ignore the cancelled message.
 | |
| 				 */
 | |
| 				msg2->canceled = 1;
 | |
| 				stat->d_canceled++;
 | |
| 				cancel_count++;
 | |
| 				uv_write_local_mmr(
 | |
| 				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
 | |
| 					(msg_res << 8) | msg_res);
 | |
| 			} else
 | |
| 				printk(KERN_INFO "note bau retry: no effect\n");
 | |
| 		}
 | |
| 	}
 | |
| 	if (!cancel_count)
 | |
| 		stat->d_nocanceled++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do all the things a cpu should do for a TLB shootdown message.
 | |
|  * Other cpu's may come here at the same time for this message.
 | |
|  */
 | |
| static void uv_bau_process_message(struct msg_desc *mdp,
 | |
| 				   struct bau_control *bcp)
 | |
| {
 | |
| 	int msg_ack_count;
 | |
| 	short socket_ack_count = 0;
 | |
| 	struct ptc_stats *stat;
 | |
| 	struct bau_payload_queue_entry *msg;
 | |
| 	struct bau_control *smaster = bcp->socket_master;
 | |
| 
 | |
| 	/*
 | |
| 	 * This must be a normal message, or retry of a normal message
 | |
| 	 */
 | |
| 	msg = mdp->msg;
 | |
| 	stat = &per_cpu(ptcstats, bcp->cpu);
 | |
| 	if (msg->address == TLB_FLUSH_ALL) {
 | |
| 		local_flush_tlb();
 | |
| 		stat->d_alltlb++;
 | |
| 	} else {
 | |
| 		__flush_tlb_one(msg->address);
 | |
| 		stat->d_onetlb++;
 | |
| 	}
 | |
| 	stat->d_requestee++;
 | |
| 
 | |
| 	/*
 | |
| 	 * One cpu on each uvhub has the additional job on a RETRY
 | |
| 	 * of releasing the resource held by the message that is
 | |
| 	 * being retried.  That message is identified by sending
 | |
| 	 * cpu number.
 | |
| 	 */
 | |
| 	if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
 | |
| 		uv_bau_process_retry_msg(mdp, bcp);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a sw_ack message, so we have to reply to it.
 | |
| 	 * Count each responding cpu on the socket. This avoids
 | |
| 	 * pinging the count's cache line back and forth between
 | |
| 	 * the sockets.
 | |
| 	 */
 | |
| 	socket_ack_count = atomic_add_short_return(1, (struct atomic_short *)
 | |
| 			&smaster->socket_acknowledge_count[mdp->msg_slot]);
 | |
| 	if (socket_ack_count == bcp->cpus_in_socket) {
 | |
| 		/*
 | |
| 		 * Both sockets dump their completed count total into
 | |
| 		 * the message's count.
 | |
| 		 */
 | |
| 		smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
 | |
| 		msg_ack_count = atomic_add_short_return(socket_ack_count,
 | |
| 				(struct atomic_short *)&msg->acknowledge_count);
 | |
| 
 | |
| 		if (msg_ack_count == bcp->cpus_in_uvhub) {
 | |
| 			/*
 | |
| 			 * All cpus in uvhub saw it; reply
 | |
| 			 */
 | |
| 			uv_reply_to_message(mdp, bcp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the first cpu on a uvhub.
 | |
|  */
 | |
| static int uvhub_to_first_cpu(int uvhub)
 | |
| {
 | |
| 	int cpu;
 | |
| 	for_each_present_cpu(cpu)
 | |
| 		if (uvhub == uv_cpu_to_blade_id(cpu))
 | |
| 			return cpu;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Last resort when we get a large number of destination timeouts is
 | |
|  * to clear resources held by a given cpu.
 | |
|  * Do this with IPI so that all messages in the BAU message queue
 | |
|  * can be identified by their nonzero sw_ack_vector field.
 | |
|  *
 | |
|  * This is entered for a single cpu on the uvhub.
 | |
|  * The sender want's this uvhub to free a specific message's
 | |
|  * sw_ack resources.
 | |
|  */
 | |
| static void
 | |
| uv_do_reset(void *ptr)
 | |
| {
 | |
| 	int i;
 | |
| 	int slot;
 | |
| 	int count = 0;
 | |
| 	unsigned long mmr;
 | |
| 	unsigned long msg_res;
 | |
| 	struct bau_control *bcp;
 | |
| 	struct reset_args *rap;
 | |
| 	struct bau_payload_queue_entry *msg;
 | |
| 	struct ptc_stats *stat;
 | |
| 
 | |
| 	bcp = &per_cpu(bau_control, smp_processor_id());
 | |
| 	rap = (struct reset_args *)ptr;
 | |
| 	stat = &per_cpu(ptcstats, bcp->cpu);
 | |
| 	stat->d_resets++;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're looking for the given sender, and
 | |
| 	 * will free its sw_ack resource.
 | |
| 	 * If all cpu's finally responded after the timeout, its
 | |
| 	 * message 'replied_to' was set.
 | |
| 	 */
 | |
| 	for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
 | |
| 		/* uv_do_reset: same conditions for cancellation as
 | |
| 		   uv_bau_process_retry_msg() */
 | |
| 		if ((msg->replied_to == 0) &&
 | |
| 		    (msg->canceled == 0) &&
 | |
| 		    (msg->sending_cpu == rap->sender) &&
 | |
| 		    (msg->sw_ack_vector) &&
 | |
| 		    (msg->msg_type != MSG_NOOP)) {
 | |
| 			/*
 | |
| 			 * make everyone else ignore this message
 | |
| 			 */
 | |
| 			msg->canceled = 1;
 | |
| 			slot = msg - bcp->va_queue_first;
 | |
| 			count++;
 | |
| 			/*
 | |
| 			 * only reset the resource if it is still pending
 | |
| 			 */
 | |
| 			mmr = uv_read_local_mmr
 | |
| 					(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
 | |
| 			msg_res = ((msg->sw_ack_vector << 8) |
 | |
| 						   msg->sw_ack_vector);
 | |
| 			if (mmr & msg_res) {
 | |
| 				stat->d_rcanceled++;
 | |
| 				uv_write_local_mmr(
 | |
| 				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
 | |
| 							msg_res);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use IPI to get all target uvhubs to release resources held by
 | |
|  * a given sending cpu number.
 | |
|  */
 | |
| static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution,
 | |
| 			      int sender)
 | |
| {
 | |
| 	int uvhub;
 | |
| 	int cpu;
 | |
| 	cpumask_t mask;
 | |
| 	struct reset_args reset_args;
 | |
| 
 | |
| 	reset_args.sender = sender;
 | |
| 
 | |
| 	cpus_clear(mask);
 | |
| 	/* find a single cpu for each uvhub in this distribution mask */
 | |
| 	for (uvhub = 0;
 | |
| 		    uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE;
 | |
| 		    uvhub++) {
 | |
| 		if (!bau_uvhub_isset(uvhub, distribution))
 | |
| 			continue;
 | |
| 		/* find a cpu for this uvhub */
 | |
| 		cpu = uvhub_to_first_cpu(uvhub);
 | |
| 		cpu_set(cpu, mask);
 | |
| 	}
 | |
| 	/* IPI all cpus; Preemption is already disabled */
 | |
| 	smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| cycles_2_us(unsigned long long cyc)
 | |
| {
 | |
| 	unsigned long long ns;
 | |
| 	unsigned long us;
 | |
| 	ns =  (cyc * per_cpu(cyc2ns, smp_processor_id()))
 | |
| 						>> CYC2NS_SCALE_FACTOR;
 | |
| 	us = ns / 1000;
 | |
| 	return us;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wait for all cpus on this hub to finish their sends and go quiet
 | |
|  * leaves uvhub_quiesce set so that no new broadcasts are started by
 | |
|  * bau_flush_send_and_wait()
 | |
|  */
 | |
| static inline void
 | |
| quiesce_local_uvhub(struct bau_control *hmaster)
 | |
| {
 | |
| 	atomic_add_short_return(1, (struct atomic_short *)
 | |
| 		 &hmaster->uvhub_quiesce);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mark this quiet-requestor as done
 | |
|  */
 | |
| static inline void
 | |
| end_uvhub_quiesce(struct bau_control *hmaster)
 | |
| {
 | |
| 	atomic_add_short_return(-1, (struct atomic_short *)
 | |
| 		&hmaster->uvhub_quiesce);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for completion of a broadcast software ack message
 | |
|  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
 | |
|  */
 | |
| static int uv_wait_completion(struct bau_desc *bau_desc,
 | |
| 	unsigned long mmr_offset, int right_shift, int this_cpu,
 | |
| 	struct bau_control *bcp, struct bau_control *smaster, long try)
 | |
| {
 | |
| 	int relaxes = 0;
 | |
| 	unsigned long descriptor_status;
 | |
| 	unsigned long mmr;
 | |
| 	unsigned long mask;
 | |
| 	cycles_t ttime;
 | |
| 	cycles_t timeout_time;
 | |
| 	struct ptc_stats *stat = &per_cpu(ptcstats, this_cpu);
 | |
| 	struct bau_control *hmaster;
 | |
| 
 | |
| 	hmaster = bcp->uvhub_master;
 | |
| 	timeout_time = get_cycles() + bcp->timeout_interval;
 | |
| 
 | |
| 	/* spin on the status MMR, waiting for it to go idle */
 | |
| 	while ((descriptor_status = (((unsigned long)
 | |
| 		uv_read_local_mmr(mmr_offset) >>
 | |
| 			right_shift) & UV_ACT_STATUS_MASK)) !=
 | |
| 			DESC_STATUS_IDLE) {
 | |
| 		/*
 | |
| 		 * Our software ack messages may be blocked because there are
 | |
| 		 * no swack resources available.  As long as none of them
 | |
| 		 * has timed out hardware will NACK our message and its
 | |
| 		 * state will stay IDLE.
 | |
| 		 */
 | |
| 		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
 | |
| 			stat->s_stimeout++;
 | |
| 			return FLUSH_GIVEUP;
 | |
| 		} else if (descriptor_status ==
 | |
| 					DESC_STATUS_DESTINATION_TIMEOUT) {
 | |
| 			stat->s_dtimeout++;
 | |
| 			ttime = get_cycles();
 | |
| 
 | |
| 			/*
 | |
| 			 * Our retries may be blocked by all destination
 | |
| 			 * swack resources being consumed, and a timeout
 | |
| 			 * pending.  In that case hardware returns the
 | |
| 			 * ERROR that looks like a destination timeout.
 | |
| 			 */
 | |
| 			if (cycles_2_us(ttime - bcp->send_message) < BIOS_TO) {
 | |
| 				bcp->conseccompletes = 0;
 | |
| 				return FLUSH_RETRY_PLUGGED;
 | |
| 			}
 | |
| 
 | |
| 			bcp->conseccompletes = 0;
 | |
| 			return FLUSH_RETRY_TIMEOUT;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * descriptor_status is still BUSY
 | |
| 			 */
 | |
| 			cpu_relax();
 | |
| 			relaxes++;
 | |
| 			if (relaxes >= 10000) {
 | |
| 				relaxes = 0;
 | |
| 				if (get_cycles() > timeout_time) {
 | |
| 					quiesce_local_uvhub(hmaster);
 | |
| 
 | |
| 					/* single-thread the register change */
 | |
| 					spin_lock(&hmaster->masks_lock);
 | |
| 					mmr = uv_read_local_mmr(mmr_offset);
 | |
| 					mask = 0UL;
 | |
| 					mask |= (3UL < right_shift);
 | |
| 					mask = ~mask;
 | |
| 					mmr &= mask;
 | |
| 					uv_write_local_mmr(mmr_offset, mmr);
 | |
| 					spin_unlock(&hmaster->masks_lock);
 | |
| 					end_uvhub_quiesce(hmaster);
 | |
| 					stat->s_busy++;
 | |
| 					return FLUSH_GIVEUP;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	bcp->conseccompletes++;
 | |
| 	return FLUSH_COMPLETE;
 | |
| }
 | |
| 
 | |
| static inline cycles_t
 | |
| sec_2_cycles(unsigned long sec)
 | |
| {
 | |
| 	unsigned long ns;
 | |
| 	cycles_t cyc;
 | |
| 
 | |
| 	ns = sec * 1000000000;
 | |
| 	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
 | |
| 	return cyc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * conditionally add 1 to *v, unless *v is >= u
 | |
|  * return 0 if we cannot add 1 to *v because it is >= u
 | |
|  * return 1 if we can add 1 to *v because it is < u
 | |
|  * the add is atomic
 | |
|  *
 | |
|  * This is close to atomic_add_unless(), but this allows the 'u' value
 | |
|  * to be lowered below the current 'v'.  atomic_add_unless can only stop
 | |
|  * on equal.
 | |
|  */
 | |
| static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
 | |
| {
 | |
| 	spin_lock(lock);
 | |
| 	if (atomic_read(v) >= u) {
 | |
| 		spin_unlock(lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	atomic_inc(v);
 | |
| 	spin_unlock(lock);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * uv_flush_send_and_wait
 | |
|  *
 | |
|  * Send a broadcast and wait for it to complete.
 | |
|  *
 | |
|  * The flush_mask contains the cpus the broadcast is to be sent to, plus
 | |
|  * cpus that are on the local uvhub.
 | |
|  *
 | |
|  * Returns NULL if all flushing represented in the mask was done. The mask
 | |
|  * is zeroed.
 | |
|  * Returns @flush_mask if some remote flushing remains to be done. The
 | |
|  * mask will have some bits still set, representing any cpus on the local
 | |
|  * uvhub (not current cpu) and any on remote uvhubs if the broadcast failed.
 | |
|  */
 | |
| const struct cpumask *uv_flush_send_and_wait(struct bau_desc *bau_desc,
 | |
| 					     struct cpumask *flush_mask,
 | |
| 					     struct bau_control *bcp)
 | |
| {
 | |
| 	int right_shift;
 | |
| 	int uvhub;
 | |
| 	int bit;
 | |
| 	int completion_status = 0;
 | |
| 	int seq_number = 0;
 | |
| 	long try = 0;
 | |
| 	int cpu = bcp->uvhub_cpu;
 | |
| 	int this_cpu = bcp->cpu;
 | |
| 	int this_uvhub = bcp->uvhub;
 | |
| 	unsigned long mmr_offset;
 | |
| 	unsigned long index;
 | |
| 	cycles_t time1;
 | |
| 	cycles_t time2;
 | |
| 	struct ptc_stats *stat = &per_cpu(ptcstats, bcp->cpu);
 | |
| 	struct bau_control *smaster = bcp->socket_master;
 | |
| 	struct bau_control *hmaster = bcp->uvhub_master;
 | |
| 
 | |
| 	/*
 | |
| 	 * Spin here while there are hmaster->max_concurrent or more active
 | |
| 	 * descriptors. This is the per-uvhub 'throttle'.
 | |
| 	 */
 | |
| 	if (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
 | |
| 			&hmaster->active_descriptor_count,
 | |
| 			hmaster->max_concurrent)) {
 | |
| 		stat->s_throttles++;
 | |
| 		do {
 | |
| 			cpu_relax();
 | |
| 		} while (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
 | |
| 			&hmaster->active_descriptor_count,
 | |
| 			hmaster->max_concurrent));
 | |
| 	}
 | |
| 
 | |
| 	while (hmaster->uvhub_quiesce)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	if (cpu < UV_CPUS_PER_ACT_STATUS) {
 | |
| 		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
 | |
| 		right_shift = cpu * UV_ACT_STATUS_SIZE;
 | |
| 	} else {
 | |
| 		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
 | |
| 		right_shift =
 | |
| 		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
 | |
| 	}
 | |
| 	time1 = get_cycles();
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Every message from any given cpu gets a unique message
 | |
| 		 * sequence number. But retries use that same number.
 | |
| 		 * Our message may have timed out at the destination because
 | |
| 		 * all sw-ack resources are in use and there is a timeout
 | |
| 		 * pending there.  In that case, our last send never got
 | |
| 		 * placed into the queue and we need to persist until it
 | |
| 		 * does.
 | |
| 		 *
 | |
| 		 * Make any retry a type MSG_RETRY so that the destination will
 | |
| 		 * free any resource held by a previous message from this cpu.
 | |
| 		 */
 | |
| 		if (try == 0) {
 | |
| 			/* use message type set by the caller the first time */
 | |
| 			seq_number = bcp->message_number++;
 | |
| 		} else {
 | |
| 			/* use RETRY type on all the rest; same sequence */
 | |
| 			bau_desc->header.msg_type = MSG_RETRY;
 | |
| 			stat->s_retry_messages++;
 | |
| 		}
 | |
| 		bau_desc->header.sequence = seq_number;
 | |
| 		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
 | |
| 			bcp->uvhub_cpu;
 | |
| 		bcp->send_message = get_cycles();
 | |
| 
 | |
| 		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
 | |
| 
 | |
| 		try++;
 | |
| 		completion_status = uv_wait_completion(bau_desc, mmr_offset,
 | |
| 			right_shift, this_cpu, bcp, smaster, try);
 | |
| 
 | |
| 		if (completion_status == FLUSH_RETRY_PLUGGED) {
 | |
| 			/*
 | |
| 			 * Our retries may be blocked by all destination swack
 | |
| 			 * resources being consumed, and a timeout pending. In
 | |
| 			 * that case hardware immediately returns the ERROR
 | |
| 			 * that looks like a destination timeout.
 | |
| 			 */
 | |
| 			udelay(TIMEOUT_DELAY);
 | |
| 			bcp->plugged_tries++;
 | |
| 			if (bcp->plugged_tries >= PLUGSB4RESET) {
 | |
| 				bcp->plugged_tries = 0;
 | |
| 				quiesce_local_uvhub(hmaster);
 | |
| 				spin_lock(&hmaster->queue_lock);
 | |
| 				uv_reset_with_ipi(&bau_desc->distribution,
 | |
| 							this_cpu);
 | |
| 				spin_unlock(&hmaster->queue_lock);
 | |
| 				end_uvhub_quiesce(hmaster);
 | |
| 				bcp->ipi_attempts++;
 | |
| 				stat->s_resets_plug++;
 | |
| 			}
 | |
| 		} else if (completion_status == FLUSH_RETRY_TIMEOUT) {
 | |
| 			hmaster->max_concurrent = 1;
 | |
| 			bcp->timeout_tries++;
 | |
| 			udelay(TIMEOUT_DELAY);
 | |
| 			if (bcp->timeout_tries >= TIMEOUTSB4RESET) {
 | |
| 				bcp->timeout_tries = 0;
 | |
| 				quiesce_local_uvhub(hmaster);
 | |
| 				spin_lock(&hmaster->queue_lock);
 | |
| 				uv_reset_with_ipi(&bau_desc->distribution,
 | |
| 								this_cpu);
 | |
| 				spin_unlock(&hmaster->queue_lock);
 | |
| 				end_uvhub_quiesce(hmaster);
 | |
| 				bcp->ipi_attempts++;
 | |
| 				stat->s_resets_timeout++;
 | |
| 			}
 | |
| 		}
 | |
| 		if (bcp->ipi_attempts >= 3) {
 | |
| 			bcp->ipi_attempts = 0;
 | |
| 			completion_status = FLUSH_GIVEUP;
 | |
| 			break;
 | |
| 		}
 | |
| 		cpu_relax();
 | |
| 	} while ((completion_status == FLUSH_RETRY_PLUGGED) ||
 | |
| 		 (completion_status == FLUSH_RETRY_TIMEOUT));
 | |
| 	time2 = get_cycles();
 | |
| 
 | |
| 	if ((completion_status == FLUSH_COMPLETE) && (bcp->conseccompletes > 5)
 | |
| 	    && (hmaster->max_concurrent < hmaster->max_concurrent_constant))
 | |
| 			hmaster->max_concurrent++;
 | |
| 
 | |
| 	/*
 | |
| 	 * hold any cpu not timing out here; no other cpu currently held by
 | |
| 	 * the 'throttle' should enter the activation code
 | |
| 	 */
 | |
| 	while (hmaster->uvhub_quiesce)
 | |
| 		cpu_relax();
 | |
| 	atomic_dec(&hmaster->active_descriptor_count);
 | |
| 
 | |
| 	/* guard against cycles wrap */
 | |
| 	if (time2 > time1)
 | |
| 		stat->s_time += (time2 - time1);
 | |
| 	else
 | |
| 		stat->s_requestor--; /* don't count this one */
 | |
| 	if (completion_status == FLUSH_COMPLETE && try > 1)
 | |
| 		stat->s_retriesok++;
 | |
| 	else if (completion_status == FLUSH_GIVEUP) {
 | |
| 		/*
 | |
| 		 * Cause the caller to do an IPI-style TLB shootdown on
 | |
| 		 * the target cpu's, all of which are still in the mask.
 | |
| 		 */
 | |
| 		stat->s_giveup++;
 | |
| 		return flush_mask;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Success, so clear the remote cpu's from the mask so we don't
 | |
| 	 * use the IPI method of shootdown on them.
 | |
| 	 */
 | |
| 	for_each_cpu(bit, flush_mask) {
 | |
| 		uvhub = uv_cpu_to_blade_id(bit);
 | |
| 		if (uvhub == this_uvhub)
 | |
| 			continue;
 | |
| 		cpumask_clear_cpu(bit, flush_mask);
 | |
| 	}
 | |
| 	if (!cpumask_empty(flush_mask))
 | |
| 		return flush_mask;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * uv_flush_tlb_others - globally purge translation cache of a virtual
 | |
|  * address or all TLB's
 | |
|  * @cpumask: mask of all cpu's in which the address is to be removed
 | |
|  * @mm: mm_struct containing virtual address range
 | |
|  * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
 | |
|  * @cpu: the current cpu
 | |
|  *
 | |
|  * This is the entry point for initiating any UV global TLB shootdown.
 | |
|  *
 | |
|  * Purges the translation caches of all specified processors of the given
 | |
|  * virtual address, or purges all TLB's on specified processors.
 | |
|  *
 | |
|  * The caller has derived the cpumask from the mm_struct.  This function
 | |
|  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
 | |
|  *
 | |
|  * The cpumask is converted into a uvhubmask of the uvhubs containing
 | |
|  * those cpus.
 | |
|  *
 | |
|  * Note that this function should be called with preemption disabled.
 | |
|  *
 | |
|  * Returns NULL if all remote flushing was done.
 | |
|  * Returns pointer to cpumask if some remote flushing remains to be
 | |
|  * done.  The returned pointer is valid till preemption is re-enabled.
 | |
|  */
 | |
| const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
 | |
| 					  struct mm_struct *mm,
 | |
| 					  unsigned long va, unsigned int cpu)
 | |
| {
 | |
| 	int remotes;
 | |
| 	int tcpu;
 | |
| 	int uvhub;
 | |
| 	int locals = 0;
 | |
| 	struct bau_desc *bau_desc;
 | |
| 	struct cpumask *flush_mask;
 | |
| 	struct ptc_stats *stat;
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	if (nobau)
 | |
| 		return cpumask;
 | |
| 
 | |
| 	bcp = &per_cpu(bau_control, cpu);
 | |
| 	/*
 | |
| 	 * Each sending cpu has a per-cpu mask which it fills from the caller's
 | |
| 	 * cpu mask.  Only remote cpus are converted to uvhubs and copied.
 | |
| 	 */
 | |
| 	flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
 | |
| 	/*
 | |
| 	 * copy cpumask to flush_mask, removing current cpu
 | |
| 	 * (current cpu should already have been flushed by the caller and
 | |
| 	 *  should never be returned if we return flush_mask)
 | |
| 	 */
 | |
| 	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
 | |
| 	if (cpu_isset(cpu, *cpumask))
 | |
| 		locals++;  /* current cpu was targeted */
 | |
| 
 | |
| 	bau_desc = bcp->descriptor_base;
 | |
| 	bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu;
 | |
| 
 | |
| 	bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
 | |
| 	remotes = 0;
 | |
| 	for_each_cpu(tcpu, flush_mask) {
 | |
| 		uvhub = uv_cpu_to_blade_id(tcpu);
 | |
| 		if (uvhub == bcp->uvhub) {
 | |
| 			locals++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		bau_uvhub_set(uvhub, &bau_desc->distribution);
 | |
| 		remotes++;
 | |
| 	}
 | |
| 	if (remotes == 0) {
 | |
| 		/*
 | |
| 		 * No off_hub flushing; return status for local hub.
 | |
| 		 * Return the caller's mask if all were local (the current
 | |
| 		 * cpu may be in that mask).
 | |
| 		 */
 | |
| 		if (locals)
 | |
| 			return cpumask;
 | |
| 		else
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	stat = &per_cpu(ptcstats, cpu);
 | |
| 	stat->s_requestor++;
 | |
| 	stat->s_ntargcpu += remotes;
 | |
| 	remotes = bau_uvhub_weight(&bau_desc->distribution);
 | |
| 	stat->s_ntarguvhub += remotes;
 | |
| 	if (remotes >= 16)
 | |
| 		stat->s_ntarguvhub16++;
 | |
| 	else if (remotes >= 8)
 | |
| 		stat->s_ntarguvhub8++;
 | |
| 	else if (remotes >= 4)
 | |
| 		stat->s_ntarguvhub4++;
 | |
| 	else if (remotes >= 2)
 | |
| 		stat->s_ntarguvhub2++;
 | |
| 	else
 | |
| 		stat->s_ntarguvhub1++;
 | |
| 
 | |
| 	bau_desc->payload.address = va;
 | |
| 	bau_desc->payload.sending_cpu = cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * uv_flush_send_and_wait returns null if all cpu's were messaged, or
 | |
| 	 * the adjusted flush_mask if any cpu's were not messaged.
 | |
| 	 */
 | |
| 	return uv_flush_send_and_wait(bau_desc, flush_mask, bcp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The BAU message interrupt comes here. (registered by set_intr_gate)
 | |
|  * See entry_64.S
 | |
|  *
 | |
|  * We received a broadcast assist message.
 | |
|  *
 | |
|  * Interrupts are disabled; this interrupt could represent
 | |
|  * the receipt of several messages.
 | |
|  *
 | |
|  * All cores/threads on this hub get this interrupt.
 | |
|  * The last one to see it does the software ack.
 | |
|  * (the resource will not be freed until noninterruptable cpus see this
 | |
|  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
 | |
|  */
 | |
| void uv_bau_message_interrupt(struct pt_regs *regs)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	cycles_t time_start;
 | |
| 	struct bau_payload_queue_entry *msg;
 | |
| 	struct bau_control *bcp;
 | |
| 	struct ptc_stats *stat;
 | |
| 	struct msg_desc msgdesc;
 | |
| 
 | |
| 	time_start = get_cycles();
 | |
| 	bcp = &per_cpu(bau_control, smp_processor_id());
 | |
| 	stat = &per_cpu(ptcstats, smp_processor_id());
 | |
| 	msgdesc.va_queue_first = bcp->va_queue_first;
 | |
| 	msgdesc.va_queue_last = bcp->va_queue_last;
 | |
| 	msg = bcp->bau_msg_head;
 | |
| 	while (msg->sw_ack_vector) {
 | |
| 		count++;
 | |
| 		msgdesc.msg_slot = msg - msgdesc.va_queue_first;
 | |
| 		msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1;
 | |
| 		msgdesc.msg = msg;
 | |
| 		uv_bau_process_message(&msgdesc, bcp);
 | |
| 		msg++;
 | |
| 		if (msg > msgdesc.va_queue_last)
 | |
| 			msg = msgdesc.va_queue_first;
 | |
| 		bcp->bau_msg_head = msg;
 | |
| 	}
 | |
| 	stat->d_time += (get_cycles() - time_start);
 | |
| 	if (!count)
 | |
| 		stat->d_nomsg++;
 | |
| 	else if (count > 1)
 | |
| 		stat->d_multmsg++;
 | |
| 	ack_APIC_irq();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * uv_enable_timeouts
 | |
|  *
 | |
|  * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have
 | |
|  * shootdown message timeouts enabled.  The timeout does not cause
 | |
|  * an interrupt, but causes an error message to be returned to
 | |
|  * the sender.
 | |
|  */
 | |
| static void uv_enable_timeouts(void)
 | |
| {
 | |
| 	int uvhub;
 | |
| 	int nuvhubs;
 | |
| 	int pnode;
 | |
| 	unsigned long mmr_image;
 | |
| 
 | |
| 	nuvhubs = uv_num_possible_blades();
 | |
| 
 | |
| 	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
 | |
| 		if (!uv_blade_nr_possible_cpus(uvhub))
 | |
| 			continue;
 | |
| 
 | |
| 		pnode = uv_blade_to_pnode(uvhub);
 | |
| 		mmr_image =
 | |
| 		    uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
 | |
| 		/*
 | |
| 		 * Set the timeout period and then lock it in, in three
 | |
| 		 * steps; captures and locks in the period.
 | |
| 		 *
 | |
| 		 * To program the period, the SOFT_ACK_MODE must be off.
 | |
| 		 */
 | |
| 		mmr_image &= ~((unsigned long)1 <<
 | |
| 		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
 | |
| 		uv_write_global_mmr64
 | |
| 		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
 | |
| 		/*
 | |
| 		 * Set the 4-bit period.
 | |
| 		 */
 | |
| 		mmr_image &= ~((unsigned long)0xf <<
 | |
| 		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
 | |
| 		mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
 | |
| 		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
 | |
| 		uv_write_global_mmr64
 | |
| 		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
 | |
| 		/*
 | |
| 		 * Subsequent reversals of the timebase bit (3) cause an
 | |
| 		 * immediate timeout of one or all INTD resources as
 | |
| 		 * indicated in bits 2:0 (7 causes all of them to timeout).
 | |
| 		 */
 | |
| 		mmr_image |= ((unsigned long)1 <<
 | |
| 		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
 | |
| 		uv_write_global_mmr64
 | |
| 		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
 | |
| {
 | |
| 	if (*offset < num_possible_cpus())
 | |
| 		return offset;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
 | |
| {
 | |
| 	(*offset)++;
 | |
| 	if (*offset < num_possible_cpus())
 | |
| 		return offset;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void uv_ptc_seq_stop(struct seq_file *file, void *data)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline unsigned long long
 | |
| millisec_2_cycles(unsigned long millisec)
 | |
| {
 | |
| 	unsigned long ns;
 | |
| 	unsigned long long cyc;
 | |
| 
 | |
| 	ns = millisec * 1000;
 | |
| 	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
 | |
| 	return cyc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Display the statistics thru /proc.
 | |
|  * 'data' points to the cpu number
 | |
|  */
 | |
| static int uv_ptc_seq_show(struct seq_file *file, void *data)
 | |
| {
 | |
| 	struct ptc_stats *stat;
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu = *(loff_t *)data;
 | |
| 
 | |
| 	if (!cpu) {
 | |
| 		seq_printf(file,
 | |
| 			"# cpu sent stime numuvhubs numuvhubs16 numuvhubs8 ");
 | |
| 		seq_printf(file,
 | |
| 			"numuvhubs4 numuvhubs2 numuvhubs1 numcpus dto ");
 | |
| 		seq_printf(file,
 | |
| 			"retries rok resetp resett giveup sto bz throt ");
 | |
| 		seq_printf(file,
 | |
| 			"sw_ack recv rtime all ");
 | |
| 		seq_printf(file,
 | |
| 			"one mult none retry canc nocan reset rcan\n");
 | |
| 	}
 | |
| 	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
 | |
| 		stat = &per_cpu(ptcstats, cpu);
 | |
| 		/* source side statistics */
 | |
| 		seq_printf(file,
 | |
| 			"cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
 | |
| 			   cpu, stat->s_requestor, cycles_2_us(stat->s_time),
 | |
| 			   stat->s_ntarguvhub, stat->s_ntarguvhub16,
 | |
| 			   stat->s_ntarguvhub8, stat->s_ntarguvhub4,
 | |
| 			   stat->s_ntarguvhub2, stat->s_ntarguvhub1,
 | |
| 			   stat->s_ntargcpu, stat->s_dtimeout);
 | |
| 		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
 | |
| 			   stat->s_retry_messages, stat->s_retriesok,
 | |
| 			   stat->s_resets_plug, stat->s_resets_timeout,
 | |
| 			   stat->s_giveup, stat->s_stimeout,
 | |
| 			   stat->s_busy, stat->s_throttles);
 | |
| 		/* destination side statistics */
 | |
| 		seq_printf(file,
 | |
| 			   "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
 | |
| 			   uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
 | |
| 					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
 | |
| 			   stat->d_requestee, cycles_2_us(stat->d_time),
 | |
| 			   stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
 | |
| 			   stat->d_nomsg, stat->d_retries, stat->d_canceled,
 | |
| 			   stat->d_nocanceled, stat->d_resets,
 | |
| 			   stat->d_rcanceled);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * -1: resetf the statistics
 | |
|  *  0: display meaning of the statistics
 | |
|  * >0: maximum concurrent active descriptors per uvhub (throttle)
 | |
|  */
 | |
| static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
 | |
| 				 size_t count, loff_t *data)
 | |
| {
 | |
| 	int cpu;
 | |
| 	long input_arg;
 | |
| 	char optstr[64];
 | |
| 	struct ptc_stats *stat;
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	if (count == 0 || count > sizeof(optstr))
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(optstr, user, count))
 | |
| 		return -EFAULT;
 | |
| 	optstr[count - 1] = '\0';
 | |
| 	if (strict_strtol(optstr, 10, &input_arg) < 0) {
 | |
| 		printk(KERN_DEBUG "%s is invalid\n", optstr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (input_arg == 0) {
 | |
| 		printk(KERN_DEBUG "# cpu:      cpu number\n");
 | |
| 		printk(KERN_DEBUG "Sender statistics:\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"sent:     number of shootdown messages sent\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"stime:    time spent sending messages\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"numuvhubs: number of hubs targeted with shootdown\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"numuvhubs16: number times 16 or more hubs targeted\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"numuvhubs8: number times 8 or more hubs targeted\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"numuvhubs4: number times 4 or more hubs targeted\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"numuvhubs2: number times 2 or more hubs targeted\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"numuvhubs1: number times 1 hub targeted\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"numcpus:  number of cpus targeted with shootdown\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"dto:      number of destination timeouts\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"retries:  destination timeout retries sent\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"rok:   :  destination timeouts successfully retried\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"resetp:   ipi-style resource resets for plugs\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"resett:   ipi-style resource resets for timeouts\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"giveup:   fall-backs to ipi-style shootdowns\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"sto:      number of source timeouts\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"bz:       number of stay-busy's\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"throt:    number times spun in throttle\n");
 | |
| 		printk(KERN_DEBUG "Destination side statistics:\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"sw_ack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"recv:     shootdown messages received\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"rtime:    time spent processing messages\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"all:      shootdown all-tlb messages\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"one:      shootdown one-tlb messages\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"mult:     interrupts that found multiple messages\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"none:     interrupts that found no messages\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"retry:    number of retry messages processed\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"canc:     number messages canceled by retries\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"nocan:    number retries that found nothing to cancel\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"reset:    number of ipi-style reset requests processed\n");
 | |
| 		printk(KERN_DEBUG
 | |
| 		"rcan:     number messages canceled by reset requests\n");
 | |
| 	} else if (input_arg == -1) {
 | |
| 		for_each_present_cpu(cpu) {
 | |
| 			stat = &per_cpu(ptcstats, cpu);
 | |
| 			memset(stat, 0, sizeof(struct ptc_stats));
 | |
| 		}
 | |
| 	} else {
 | |
| 		uv_bau_max_concurrent = input_arg;
 | |
| 		bcp = &per_cpu(bau_control, smp_processor_id());
 | |
| 		if (uv_bau_max_concurrent < 1 ||
 | |
| 		    uv_bau_max_concurrent > bcp->cpus_in_uvhub) {
 | |
| 			printk(KERN_DEBUG
 | |
| 				"Error: BAU max concurrent %d; %d is invalid\n",
 | |
| 				bcp->max_concurrent, uv_bau_max_concurrent);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		printk(KERN_DEBUG "Set BAU max concurrent:%d\n",
 | |
| 		       uv_bau_max_concurrent);
 | |
| 		for_each_present_cpu(cpu) {
 | |
| 			bcp = &per_cpu(bau_control, cpu);
 | |
| 			bcp->max_concurrent = uv_bau_max_concurrent;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations uv_ptc_seq_ops = {
 | |
| 	.start		= uv_ptc_seq_start,
 | |
| 	.next		= uv_ptc_seq_next,
 | |
| 	.stop		= uv_ptc_seq_stop,
 | |
| 	.show		= uv_ptc_seq_show
 | |
| };
 | |
| 
 | |
| static int uv_ptc_proc_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &uv_ptc_seq_ops);
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_uv_ptc_operations = {
 | |
| 	.open		= uv_ptc_proc_open,
 | |
| 	.read		= seq_read,
 | |
| 	.write		= uv_ptc_proc_write,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release,
 | |
| };
 | |
| 
 | |
| static int __init uv_ptc_init(void)
 | |
| {
 | |
| 	struct proc_dir_entry *proc_uv_ptc;
 | |
| 
 | |
| 	if (!is_uv_system())
 | |
| 		return 0;
 | |
| 
 | |
| 	proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
 | |
| 				  &proc_uv_ptc_operations);
 | |
| 	if (!proc_uv_ptc) {
 | |
| 		printk(KERN_ERR "unable to create %s proc entry\n",
 | |
| 		       UV_PTC_BASENAME);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * initialize the sending side's sending buffers
 | |
|  */
 | |
| static void
 | |
| uv_activation_descriptor_init(int node, int pnode)
 | |
| {
 | |
| 	int i;
 | |
| 	int cpu;
 | |
| 	unsigned long pa;
 | |
| 	unsigned long m;
 | |
| 	unsigned long n;
 | |
| 	struct bau_desc *bau_desc;
 | |
| 	struct bau_desc *bd2;
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	/*
 | |
| 	 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
 | |
| 	 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per uvhub
 | |
| 	 */
 | |
| 	bau_desc = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
 | |
| 		UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
 | |
| 	BUG_ON(!bau_desc);
 | |
| 
 | |
| 	pa = uv_gpa(bau_desc); /* need the real nasid*/
 | |
| 	n = pa >> uv_nshift;
 | |
| 	m = pa & uv_mmask;
 | |
| 
 | |
| 	uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
 | |
| 			      (n << UV_DESC_BASE_PNODE_SHIFT | m));
 | |
| 
 | |
| 	/*
 | |
| 	 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
 | |
| 	 * cpu even though we only use the first one; one descriptor can
 | |
| 	 * describe a broadcast to 256 uv hubs.
 | |
| 	 */
 | |
| 	for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
 | |
| 		i++, bd2++) {
 | |
| 		memset(bd2, 0, sizeof(struct bau_desc));
 | |
| 		bd2->header.sw_ack_flag = 1;
 | |
| 		/*
 | |
| 		 * base_dest_nodeid is the nasid (pnode<<1) of the first uvhub
 | |
| 		 * in the partition. The bit map will indicate uvhub numbers,
 | |
| 		 * which are 0-N in a partition. Pnodes are unique system-wide.
 | |
| 		 */
 | |
| 		bd2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
 | |
| 		bd2->header.dest_subnodeid = 0x10; /* the LB */
 | |
| 		bd2->header.command = UV_NET_ENDPOINT_INTD;
 | |
| 		bd2->header.int_both = 1;
 | |
| 		/*
 | |
| 		 * all others need to be set to zero:
 | |
| 		 *   fairness chaining multilevel count replied_to
 | |
| 		 */
 | |
| 	}
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
 | |
| 			continue;
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		bcp->descriptor_base = bau_desc;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * initialize the destination side's receiving buffers
 | |
|  * entered for each uvhub in the partition
 | |
|  * - node is first node (kernel memory notion) on the uvhub
 | |
|  * - pnode is the uvhub's physical identifier
 | |
|  */
 | |
| static void
 | |
| uv_payload_queue_init(int node, int pnode)
 | |
| {
 | |
| 	int pn;
 | |
| 	int cpu;
 | |
| 	char *cp;
 | |
| 	unsigned long pa;
 | |
| 	struct bau_payload_queue_entry *pqp;
 | |
| 	struct bau_payload_queue_entry *pqp_malloc;
 | |
| 	struct bau_control *bcp;
 | |
| 
 | |
| 	pqp = (struct bau_payload_queue_entry *) kmalloc_node(
 | |
| 		(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
 | |
| 		GFP_KERNEL, node);
 | |
| 	BUG_ON(!pqp);
 | |
| 	pqp_malloc = pqp;
 | |
| 
 | |
| 	cp = (char *)pqp + 31;
 | |
| 	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		if (pnode != uv_cpu_to_pnode(cpu))
 | |
| 			continue;
 | |
| 		/* for every cpu on this pnode: */
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		bcp->va_queue_first = pqp;
 | |
| 		bcp->bau_msg_head = pqp;
 | |
| 		bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * need the pnode of where the memory was really allocated
 | |
| 	 */
 | |
| 	pa = uv_gpa(pqp);
 | |
| 	pn = pa >> uv_nshift;
 | |
| 	uv_write_global_mmr64(pnode,
 | |
| 			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
 | |
| 			      ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
 | |
| 			      uv_physnodeaddr(pqp));
 | |
| 	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
 | |
| 			      uv_physnodeaddr(pqp));
 | |
| 	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
 | |
| 			      (unsigned long)
 | |
| 			      uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)));
 | |
| 	/* in effect, all msg_type's are set to MSG_NOOP */
 | |
| 	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialization of each UV hub's structures
 | |
|  */
 | |
| static void __init uv_init_uvhub(int uvhub, int vector)
 | |
| {
 | |
| 	int node;
 | |
| 	int pnode;
 | |
| 	unsigned long apicid;
 | |
| 
 | |
| 	node = uvhub_to_first_node(uvhub);
 | |
| 	pnode = uv_blade_to_pnode(uvhub);
 | |
| 	uv_activation_descriptor_init(node, pnode);
 | |
| 	uv_payload_queue_init(node, pnode);
 | |
| 	/*
 | |
| 	 * the below initialization can't be in firmware because the
 | |
| 	 * messaging IRQ will be determined by the OS
 | |
| 	 */
 | |
| 	apicid = uvhub_to_first_apicid(uvhub);
 | |
| 	uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
 | |
| 				      ((apicid << 32) | vector));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * initialize the bau_control structure for each cpu
 | |
|  */
 | |
| static void uv_init_per_cpu(int nuvhubs)
 | |
| {
 | |
| 	int i, j, k;
 | |
| 	int cpu;
 | |
| 	int pnode;
 | |
| 	int uvhub;
 | |
| 	short socket = 0;
 | |
| 	struct bau_control *bcp;
 | |
| 	struct uvhub_desc *bdp;
 | |
| 	struct socket_desc *sdp;
 | |
| 	struct bau_control *hmaster = NULL;
 | |
| 	struct bau_control *smaster = NULL;
 | |
| 	struct socket_desc {
 | |
| 		short num_cpus;
 | |
| 		short cpu_number[16];
 | |
| 	};
 | |
| 	struct uvhub_desc {
 | |
| 		short num_sockets;
 | |
| 		short num_cpus;
 | |
| 		short uvhub;
 | |
| 		short pnode;
 | |
| 		struct socket_desc socket[2];
 | |
| 	};
 | |
| 	struct uvhub_desc *uvhub_descs;
 | |
| 
 | |
| 	uvhub_descs = (struct uvhub_desc *)
 | |
| 		kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
 | |
| 	memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		bcp = &per_cpu(bau_control, cpu);
 | |
| 		memset(bcp, 0, sizeof(struct bau_control));
 | |
| 		spin_lock_init(&bcp->masks_lock);
 | |
| 		bcp->max_concurrent = uv_bau_max_concurrent;
 | |
| 		pnode = uv_cpu_hub_info(cpu)->pnode;
 | |
| 		uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
 | |
| 		bdp = &uvhub_descs[uvhub];
 | |
| 		bdp->num_cpus++;
 | |
| 		bdp->uvhub = uvhub;
 | |
| 		bdp->pnode = pnode;
 | |
| 		/* time interval to catch a hardware stay-busy bug */
 | |
| 		bcp->timeout_interval = millisec_2_cycles(3);
 | |
| 		/* kludge: assume uv_hub.h is constant */
 | |
| 		socket = (cpu_physical_id(cpu)>>5)&1;
 | |
| 		if (socket >= bdp->num_sockets)
 | |
| 			bdp->num_sockets = socket+1;
 | |
| 		sdp = &bdp->socket[socket];
 | |
| 		sdp->cpu_number[sdp->num_cpus] = cpu;
 | |
| 		sdp->num_cpus++;
 | |
| 	}
 | |
| 	socket = 0;
 | |
| 	for_each_possible_blade(uvhub) {
 | |
| 		bdp = &uvhub_descs[uvhub];
 | |
| 		for (i = 0; i < bdp->num_sockets; i++) {
 | |
| 			sdp = &bdp->socket[i];
 | |
| 			for (j = 0; j < sdp->num_cpus; j++) {
 | |
| 				cpu = sdp->cpu_number[j];
 | |
| 				bcp = &per_cpu(bau_control, cpu);
 | |
| 				bcp->cpu = cpu;
 | |
| 				if (j == 0) {
 | |
| 					smaster = bcp;
 | |
| 					if (i == 0)
 | |
| 						hmaster = bcp;
 | |
| 				}
 | |
| 				bcp->cpus_in_uvhub = bdp->num_cpus;
 | |
| 				bcp->cpus_in_socket = sdp->num_cpus;
 | |
| 				bcp->socket_master = smaster;
 | |
| 				bcp->uvhub_master = hmaster;
 | |
| 				for (k = 0; k < DEST_Q_SIZE; k++)
 | |
| 					bcp->socket_acknowledge_count[k] = 0;
 | |
| 				bcp->uvhub_cpu =
 | |
| 				  uv_cpu_hub_info(cpu)->blade_processor_id;
 | |
| 			}
 | |
| 			socket++;
 | |
| 		}
 | |
| 	}
 | |
| 	kfree(uvhub_descs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialization of BAU-related structures
 | |
|  */
 | |
| static int __init uv_bau_init(void)
 | |
| {
 | |
| 	int uvhub;
 | |
| 	int pnode;
 | |
| 	int nuvhubs;
 | |
| 	int cur_cpu;
 | |
| 	int vector;
 | |
| 	unsigned long mmr;
 | |
| 
 | |
| 	if (!is_uv_system())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (nobau)
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cur_cpu)
 | |
| 		zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
 | |
| 				       GFP_KERNEL, cpu_to_node(cur_cpu));
 | |
| 
 | |
| 	uv_bau_max_concurrent = MAX_BAU_CONCURRENT;
 | |
| 	uv_nshift = uv_hub_info->m_val;
 | |
| 	uv_mmask = (1UL << uv_hub_info->m_val) - 1;
 | |
| 	nuvhubs = uv_num_possible_blades();
 | |
| 
 | |
| 	uv_init_per_cpu(nuvhubs);
 | |
| 
 | |
| 	uv_partition_base_pnode = 0x7fffffff;
 | |
| 	for (uvhub = 0; uvhub < nuvhubs; uvhub++)
 | |
| 		if (uv_blade_nr_possible_cpus(uvhub) &&
 | |
| 			(uv_blade_to_pnode(uvhub) < uv_partition_base_pnode))
 | |
| 			uv_partition_base_pnode = uv_blade_to_pnode(uvhub);
 | |
| 
 | |
| 	vector = UV_BAU_MESSAGE;
 | |
| 	for_each_possible_blade(uvhub)
 | |
| 		if (uv_blade_nr_possible_cpus(uvhub))
 | |
| 			uv_init_uvhub(uvhub, vector);
 | |
| 
 | |
| 	uv_enable_timeouts();
 | |
| 	alloc_intr_gate(vector, uv_bau_message_intr1);
 | |
| 
 | |
| 	for_each_possible_blade(uvhub) {
 | |
| 		pnode = uv_blade_to_pnode(uvhub);
 | |
| 		/* INIT the bau */
 | |
| 		uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_ACTIVATION_CONTROL,
 | |
| 				      ((unsigned long)1 << 63));
 | |
| 		mmr = 1; /* should be 1 to broadcast to both sockets */
 | |
| 		uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST, mmr);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(uv_bau_init);
 | |
| core_initcall(uv_ptc_init);
 |