mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 b8ab5397bc
			
		
	
	
		b8ab5397bc
		
	
	
	
	
		
			
			Statuses 3 (0b00011) and 6 (0x00110) of DFSR are Access Flags faults on ARMv6K and ARMv7. Let's patch fsr_info[] at runtime if we are on ARMv7 or later. Unfortunately, we don't have runtime check for 'K' extension, so we can't check for it. Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
			
				
	
	
		
			625 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			625 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/arm/mm/fault.c
 | |
|  *
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *  Modifications for ARM processor (c) 1995-2004 Russell King
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/perf_event.h>
 | |
| 
 | |
| #include <asm/system.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #include "fault.h"
 | |
| 
 | |
| /*
 | |
|  * Fault status register encodings.  We steal bit 31 for our own purposes.
 | |
|  */
 | |
| #define FSR_LNX_PF		(1 << 31)
 | |
| #define FSR_WRITE		(1 << 11)
 | |
| #define FSR_FS4			(1 << 10)
 | |
| #define FSR_FS3_0		(15)
 | |
| 
 | |
| static inline int fsr_fs(unsigned int fsr)
 | |
| {
 | |
| 	return (fsr & FSR_FS3_0) | (fsr & FSR_FS4) >> 6;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| 
 | |
| #ifdef CONFIG_KPROBES
 | |
| static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!user_mode(regs)) {
 | |
| 		/* kprobe_running() needs smp_processor_id() */
 | |
| 		preempt_disable();
 | |
| 		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
 | |
| 			ret = 1;
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This is useful to dump out the page tables associated with
 | |
|  * 'addr' in mm 'mm'.
 | |
|  */
 | |
| void show_pte(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	if (!mm)
 | |
| 		mm = &init_mm;
 | |
| 
 | |
| 	printk(KERN_ALERT "pgd = %p\n", mm->pgd);
 | |
| 	pgd = pgd_offset(mm, addr);
 | |
| 	printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
 | |
| 
 | |
| 	do {
 | |
| 		pmd_t *pmd;
 | |
| 		pte_t *pte;
 | |
| 
 | |
| 		if (pgd_none(*pgd))
 | |
| 			break;
 | |
| 
 | |
| 		if (pgd_bad(*pgd)) {
 | |
| 			printk("(bad)");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pmd = pmd_offset(pgd, addr);
 | |
| 		if (PTRS_PER_PMD != 1)
 | |
| 			printk(", *pmd=%08lx", pmd_val(*pmd));
 | |
| 
 | |
| 		if (pmd_none(*pmd))
 | |
| 			break;
 | |
| 
 | |
| 		if (pmd_bad(*pmd)) {
 | |
| 			printk("(bad)");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* We must not map this if we have highmem enabled */
 | |
| 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
 | |
| 			break;
 | |
| 
 | |
| 		pte = pte_offset_map(pmd, addr);
 | |
| 		printk(", *pte=%08lx", pte_val(*pte));
 | |
| 		printk(", *ppte=%08lx", pte_val(pte[-PTRS_PER_PTE]));
 | |
| 		pte_unmap(pte);
 | |
| 	} while(0);
 | |
| 
 | |
| 	printk("\n");
 | |
| }
 | |
| #else					/* CONFIG_MMU */
 | |
| void show_pte(struct mm_struct *mm, unsigned long addr)
 | |
| { }
 | |
| #endif					/* CONFIG_MMU */
 | |
| 
 | |
| /*
 | |
|  * Oops.  The kernel tried to access some page that wasn't present.
 | |
|  */
 | |
| static void
 | |
| __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 | |
| 		  struct pt_regs *regs)
 | |
| {
 | |
| 	/*
 | |
| 	 * Are we prepared to handle this kernel fault?
 | |
| 	 */
 | |
| 	if (fixup_exception(regs))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * No handler, we'll have to terminate things with extreme prejudice.
 | |
| 	 */
 | |
| 	bust_spinlocks(1);
 | |
| 	printk(KERN_ALERT
 | |
| 		"Unable to handle kernel %s at virtual address %08lx\n",
 | |
| 		(addr < PAGE_SIZE) ? "NULL pointer dereference" :
 | |
| 		"paging request", addr);
 | |
| 
 | |
| 	show_pte(mm, addr);
 | |
| 	die("Oops", regs, fsr);
 | |
| 	bust_spinlocks(0);
 | |
| 	do_exit(SIGKILL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Something tried to access memory that isn't in our memory map..
 | |
|  * User mode accesses just cause a SIGSEGV
 | |
|  */
 | |
| static void
 | |
| __do_user_fault(struct task_struct *tsk, unsigned long addr,
 | |
| 		unsigned int fsr, unsigned int sig, int code,
 | |
| 		struct pt_regs *regs)
 | |
| {
 | |
| 	struct siginfo si;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_USER
 | |
| 	if (user_debug & UDBG_SEGV) {
 | |
| 		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
 | |
| 		       tsk->comm, sig, addr, fsr);
 | |
| 		show_pte(tsk->mm, addr);
 | |
| 		show_regs(regs);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	tsk->thread.address = addr;
 | |
| 	tsk->thread.error_code = fsr;
 | |
| 	tsk->thread.trap_no = 14;
 | |
| 	si.si_signo = sig;
 | |
| 	si.si_errno = 0;
 | |
| 	si.si_code = code;
 | |
| 	si.si_addr = (void __user *)addr;
 | |
| 	force_sig_info(sig, &si, tsk);
 | |
| }
 | |
| 
 | |
| void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct mm_struct *mm = tsk->active_mm;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are in kernel mode at this point, we
 | |
| 	 * have no context to handle this fault with.
 | |
| 	 */
 | |
| 	if (user_mode(regs))
 | |
| 		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
 | |
| 	else
 | |
| 		__do_kernel_fault(mm, addr, fsr, regs);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| #define VM_FAULT_BADMAP		0x010000
 | |
| #define VM_FAULT_BADACCESS	0x020000
 | |
| 
 | |
| /*
 | |
|  * Check that the permissions on the VMA allow for the fault which occurred.
 | |
|  * If we encountered a write fault, we must have write permission, otherwise
 | |
|  * we allow any permission.
 | |
|  */
 | |
| static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
 | |
| 
 | |
| 	if (fsr & FSR_WRITE)
 | |
| 		mask = VM_WRITE;
 | |
| 	if (fsr & FSR_LNX_PF)
 | |
| 		mask = VM_EXEC;
 | |
| 
 | |
| 	return vma->vm_flags & mask ? false : true;
 | |
| }
 | |
| 
 | |
| static int __kprobes
 | |
| __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 | |
| 		struct task_struct *tsk)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int fault;
 | |
| 
 | |
| 	vma = find_vma(mm, addr);
 | |
| 	fault = VM_FAULT_BADMAP;
 | |
| 	if (unlikely(!vma))
 | |
| 		goto out;
 | |
| 	if (unlikely(vma->vm_start > addr))
 | |
| 		goto check_stack;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, we have a good vm_area for this
 | |
| 	 * memory access, so we can handle it.
 | |
| 	 */
 | |
| good_area:
 | |
| 	if (access_error(fsr, vma)) {
 | |
| 		fault = VM_FAULT_BADACCESS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If for any reason at all we couldn't handle the fault, make
 | |
| 	 * sure we exit gracefully rather than endlessly redo the fault.
 | |
| 	 */
 | |
| 	fault = handle_mm_fault(mm, vma, addr & PAGE_MASK, (fsr & FSR_WRITE) ? FAULT_FLAG_WRITE : 0);
 | |
| 	if (unlikely(fault & VM_FAULT_ERROR))
 | |
| 		return fault;
 | |
| 	if (fault & VM_FAULT_MAJOR)
 | |
| 		tsk->maj_flt++;
 | |
| 	else
 | |
| 		tsk->min_flt++;
 | |
| 	return fault;
 | |
| 
 | |
| check_stack:
 | |
| 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
 | |
| 		goto good_area;
 | |
| out:
 | |
| 	return fault;
 | |
| }
 | |
| 
 | |
| static int __kprobes
 | |
| do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	struct mm_struct *mm;
 | |
| 	int fault, sig, code;
 | |
| 
 | |
| 	if (notify_page_fault(regs, fsr))
 | |
| 		return 0;
 | |
| 
 | |
| 	tsk = current;
 | |
| 	mm  = tsk->mm;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're in an interrupt or have no user
 | |
| 	 * context, we must not take the fault..
 | |
| 	 */
 | |
| 	if (in_atomic() || !mm)
 | |
| 		goto no_context;
 | |
| 
 | |
| 	/*
 | |
| 	 * As per x86, we may deadlock here.  However, since the kernel only
 | |
| 	 * validly references user space from well defined areas of the code,
 | |
| 	 * we can bug out early if this is from code which shouldn't.
 | |
| 	 */
 | |
| 	if (!down_read_trylock(&mm->mmap_sem)) {
 | |
| 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
 | |
| 			goto no_context;
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The above down_read_trylock() might have succeeded in
 | |
| 		 * which case, we'll have missed the might_sleep() from
 | |
| 		 * down_read()
 | |
| 		 */
 | |
| 		might_sleep();
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 		if (!user_mode(regs) &&
 | |
| 		    !search_exception_tables(regs->ARM_pc))
 | |
| 			goto no_context;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	fault = __do_page_fault(mm, addr, fsr, tsk);
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 
 | |
| 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, addr);
 | |
| 	if (fault & VM_FAULT_MAJOR)
 | |
| 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, regs, addr);
 | |
| 	else if (fault & VM_FAULT_MINOR)
 | |
| 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, regs, addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
 | |
| 	 */
 | |
| 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (fault & VM_FAULT_OOM) {
 | |
| 		/*
 | |
| 		 * We ran out of memory, call the OOM killer, and return to
 | |
| 		 * userspace (which will retry the fault, or kill us if we
 | |
| 		 * got oom-killed)
 | |
| 		 */
 | |
| 		pagefault_out_of_memory();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are in kernel mode at this point, we
 | |
| 	 * have no context to handle this fault with.
 | |
| 	 */
 | |
| 	if (!user_mode(regs))
 | |
| 		goto no_context;
 | |
| 
 | |
| 	if (fault & VM_FAULT_SIGBUS) {
 | |
| 		/*
 | |
| 		 * We had some memory, but were unable to
 | |
| 		 * successfully fix up this page fault.
 | |
| 		 */
 | |
| 		sig = SIGBUS;
 | |
| 		code = BUS_ADRERR;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Something tried to access memory that
 | |
| 		 * isn't in our memory map..
 | |
| 		 */
 | |
| 		sig = SIGSEGV;
 | |
| 		code = fault == VM_FAULT_BADACCESS ?
 | |
| 			SEGV_ACCERR : SEGV_MAPERR;
 | |
| 	}
 | |
| 
 | |
| 	__do_user_fault(tsk, addr, fsr, sig, code, regs);
 | |
| 	return 0;
 | |
| 
 | |
| no_context:
 | |
| 	__do_kernel_fault(mm, addr, fsr, regs);
 | |
| 	return 0;
 | |
| }
 | |
| #else					/* CONFIG_MMU */
 | |
| static int
 | |
| do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif					/* CONFIG_MMU */
 | |
| 
 | |
| /*
 | |
|  * First Level Translation Fault Handler
 | |
|  *
 | |
|  * We enter here because the first level page table doesn't contain
 | |
|  * a valid entry for the address.
 | |
|  *
 | |
|  * If the address is in kernel space (>= TASK_SIZE), then we are
 | |
|  * probably faulting in the vmalloc() area.
 | |
|  *
 | |
|  * If the init_task's first level page tables contains the relevant
 | |
|  * entry, we copy the it to this task.  If not, we send the process
 | |
|  * a signal, fixup the exception, or oops the kernel.
 | |
|  *
 | |
|  * NOTE! We MUST NOT take any locks for this case. We may be in an
 | |
|  * interrupt or a critical region, and should only copy the information
 | |
|  * from the master page table, nothing more.
 | |
|  */
 | |
| #ifdef CONFIG_MMU
 | |
| static int __kprobes
 | |
| do_translation_fault(unsigned long addr, unsigned int fsr,
 | |
| 		     struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int index;
 | |
| 	pgd_t *pgd, *pgd_k;
 | |
| 	pmd_t *pmd, *pmd_k;
 | |
| 
 | |
| 	if (addr < TASK_SIZE)
 | |
| 		return do_page_fault(addr, fsr, regs);
 | |
| 
 | |
| 	if (user_mode(regs))
 | |
| 		goto bad_area;
 | |
| 
 | |
| 	index = pgd_index(addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: CP15 C1 is write only on ARMv3 architectures.
 | |
| 	 */
 | |
| 	pgd = cpu_get_pgd() + index;
 | |
| 	pgd_k = init_mm.pgd + index;
 | |
| 
 | |
| 	if (pgd_none(*pgd_k))
 | |
| 		goto bad_area;
 | |
| 
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		set_pgd(pgd, *pgd_k);
 | |
| 
 | |
| 	pmd_k = pmd_offset(pgd_k, addr);
 | |
| 	pmd   = pmd_offset(pgd, addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * On ARM one Linux PGD entry contains two hardware entries (see page
 | |
| 	 * tables layout in pgtable.h). We normally guarantee that we always
 | |
| 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
 | |
| 	 * It can create inidividual L1 entries, so here we have to call
 | |
| 	 * pmd_none() check for the entry really corresponded to address, not
 | |
| 	 * for the first of pair.
 | |
| 	 */
 | |
| 	index = (addr >> SECTION_SHIFT) & 1;
 | |
| 	if (pmd_none(pmd_k[index]))
 | |
| 		goto bad_area;
 | |
| 
 | |
| 	copy_pmd(pmd, pmd_k);
 | |
| 	return 0;
 | |
| 
 | |
| bad_area:
 | |
| 	do_bad_area(addr, fsr, regs);
 | |
| 	return 0;
 | |
| }
 | |
| #else					/* CONFIG_MMU */
 | |
| static int
 | |
| do_translation_fault(unsigned long addr, unsigned int fsr,
 | |
| 		     struct pt_regs *regs)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif					/* CONFIG_MMU */
 | |
| 
 | |
| /*
 | |
|  * Some section permission faults need to be handled gracefully.
 | |
|  * They can happen due to a __{get,put}_user during an oops.
 | |
|  */
 | |
| static int
 | |
| do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	do_bad_area(addr, fsr, regs);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This abort handler always returns "fault".
 | |
|  */
 | |
| static int
 | |
| do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static struct fsr_info {
 | |
| 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
 | |
| 	int	sig;
 | |
| 	int	code;
 | |
| 	const char *name;
 | |
| } fsr_info[] = {
 | |
| 	/*
 | |
| 	 * The following are the standard ARMv3 and ARMv4 aborts.  ARMv5
 | |
| 	 * defines these to be "precise" aborts.
 | |
| 	 */
 | |
| 	{ do_bad,		SIGSEGV, 0,		"vector exception"		   },
 | |
| 	{ do_bad,		SIGBUS,	 BUS_ADRALN,	"alignment exception"		   },
 | |
| 	{ do_bad,		SIGKILL, 0,		"terminal exception"		   },
 | |
| 	{ do_bad,		SIGBUS,	 BUS_ADRALN,	"alignment exception"		   },
 | |
| 	{ do_bad,		SIGBUS,	 0,		"external abort on linefetch"	   },
 | |
| 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"section translation fault"	   },
 | |
| 	{ do_bad,		SIGBUS,	 0,		"external abort on linefetch"	   },
 | |
| 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"page translation fault"	   },
 | |
| 	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
 | |
| 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"section domain fault"		   },
 | |
| 	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
 | |
| 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"page domain fault"		   },
 | |
| 	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
 | |
| 	{ do_sect_fault,	SIGSEGV, SEGV_ACCERR,	"section permission fault"	   },
 | |
| 	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
 | |
| 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"page permission fault"		   },
 | |
| 	/*
 | |
| 	 * The following are "imprecise" aborts, which are signalled by bit
 | |
| 	 * 10 of the FSR, and may not be recoverable.  These are only
 | |
| 	 * supported if the CPU abort handler supports bit 10.
 | |
| 	 */
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 16"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 17"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 18"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 19"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"lock abort"			   }, /* xscale */
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 21"			   },
 | |
| 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"imprecise external abort"	   }, /* xscale */
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 23"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"dcache parity error"		   }, /* xscale */
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 25"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 26"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 27"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 28"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 29"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 30"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 31"			   }
 | |
| };
 | |
| 
 | |
| void __init
 | |
| hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 | |
| 		int sig, int code, const char *name)
 | |
| {
 | |
| 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
 | |
| 		BUG();
 | |
| 
 | |
| 	fsr_info[nr].fn   = fn;
 | |
| 	fsr_info[nr].sig  = sig;
 | |
| 	fsr_info[nr].code = code;
 | |
| 	fsr_info[nr].name = name;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dispatch a data abort to the relevant handler.
 | |
|  */
 | |
| asmlinkage void __exception
 | |
| do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
 | |
| 	struct siginfo info;
 | |
| 
 | |
| 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
 | |
| 		return;
 | |
| 
 | |
| 	printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
 | |
| 		inf->name, fsr, addr);
 | |
| 
 | |
| 	info.si_signo = inf->sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code  = inf->code;
 | |
| 	info.si_addr  = (void __user *)addr;
 | |
| 	arm_notify_die("", regs, &info, fsr, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct fsr_info ifsr_info[] = {
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 0"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 1"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"debug event"			   },
 | |
| 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"section access flag fault"	   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 4"			   },
 | |
| 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"section translation fault"	   },
 | |
| 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"page access flag fault"	   },
 | |
| 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"page translation fault"	   },
 | |
| 	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
 | |
| 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"section domain fault"		   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 10"			   },
 | |
| 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"page domain fault"		   },
 | |
| 	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
 | |
| 	{ do_sect_fault,	SIGSEGV, SEGV_ACCERR,	"section permission fault"	   },
 | |
| 	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
 | |
| 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"page permission fault"		   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 16"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 17"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 18"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 19"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 20"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 21"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 22"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 23"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 24"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 25"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 26"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 27"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 28"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 29"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 30"			   },
 | |
| 	{ do_bad,		SIGBUS,  0,		"unknown 31"			   },
 | |
| };
 | |
| 
 | |
| asmlinkage void __exception
 | |
| do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
 | |
| {
 | |
| 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
 | |
| 	struct siginfo info;
 | |
| 
 | |
| 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
 | |
| 		return;
 | |
| 
 | |
| 	printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
 | |
| 		inf->name, ifsr, addr);
 | |
| 
 | |
| 	info.si_signo = inf->sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code  = inf->code;
 | |
| 	info.si_addr  = (void __user *)addr;
 | |
| 	arm_notify_die("", regs, &info, ifsr, 0);
 | |
| }
 | |
| 
 | |
| static int __init exceptions_init(void)
 | |
| {
 | |
| 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 | |
| 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
 | |
| 				"I-cache maintenance fault");
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
 | |
| 		/*
 | |
| 		 * TODO: Access flag faults introduced in ARMv6K.
 | |
| 		 * Runtime check for 'K' extension is needed
 | |
| 		 */
 | |
| 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
 | |
| 				"section access flag fault");
 | |
| 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
 | |
| 				"section access flag fault");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| arch_initcall(exceptions_init);
 |