mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 16:38:31 +00:00 
			
		
		
		
	 b7ae5056c9
			
		
	
	
		b7ae5056c9
		
	
	
	
	
		
			
			Conflicts: drivers/gpu/drm/i915/intel_fb.c drivers/gpu/drm/radeon/r600_blit_kms.c drivers/gpu/drm/ttm/ttm_bo.c
		
			
				
	
	
		
			767 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			767 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2008 Advanced Micro Devices, Inc.
 | |
|  * Copyright 2008 Red Hat Inc.
 | |
|  * Copyright 2009 Jerome Glisse.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a
 | |
|  * copy of this software and associated documentation files (the "Software"),
 | |
|  * to deal in the Software without restriction, including without limitation
 | |
|  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | |
|  * and/or sell copies of the Software, and to permit persons to whom the
 | |
|  * Software is furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 | |
|  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 | |
|  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 | |
|  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 | |
|  * OTHER DEALINGS IN THE SOFTWARE.
 | |
|  *
 | |
|  * Authors: Dave Airlie
 | |
|  *          Alex Deucher
 | |
|  *          Jerome Glisse
 | |
|  */
 | |
| #include "drmP.h"
 | |
| #include "radeon.h"
 | |
| #include "radeon_asic.h"
 | |
| #include "atom.h"
 | |
| #include "rs690d.h"
 | |
| 
 | |
| static int rs690_mc_wait_for_idle(struct radeon_device *rdev)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	uint32_t tmp;
 | |
| 
 | |
| 	for (i = 0; i < rdev->usec_timeout; i++) {
 | |
| 		/* read MC_STATUS */
 | |
| 		tmp = RREG32_MC(R_000090_MC_SYSTEM_STATUS);
 | |
| 		if (G_000090_MC_SYSTEM_IDLE(tmp))
 | |
| 			return 0;
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void rs690_gpu_init(struct radeon_device *rdev)
 | |
| {
 | |
| 	/* FIXME: is this correct ? */
 | |
| 	r420_pipes_init(rdev);
 | |
| 	if (rs690_mc_wait_for_idle(rdev)) {
 | |
| 		printk(KERN_WARNING "Failed to wait MC idle while "
 | |
| 		       "programming pipes. Bad things might happen.\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| union igp_info {
 | |
| 	struct _ATOM_INTEGRATED_SYSTEM_INFO info;
 | |
| 	struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_v2;
 | |
| };
 | |
| 
 | |
| void rs690_pm_info(struct radeon_device *rdev)
 | |
| {
 | |
| 	int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
 | |
| 	union igp_info *info;
 | |
| 	uint16_t data_offset;
 | |
| 	uint8_t frev, crev;
 | |
| 	fixed20_12 tmp;
 | |
| 
 | |
| 	if (atom_parse_data_header(rdev->mode_info.atom_context, index, NULL,
 | |
| 				   &frev, &crev, &data_offset)) {
 | |
| 		info = (union igp_info *)(rdev->mode_info.atom_context->bios + data_offset);
 | |
| 
 | |
| 		/* Get various system informations from bios */
 | |
| 		switch (crev) {
 | |
| 		case 1:
 | |
| 			tmp.full = dfixed_const(100);
 | |
| 			rdev->pm.igp_sideport_mclk.full = dfixed_const(info->info.ulBootUpMemoryClock);
 | |
| 			rdev->pm.igp_sideport_mclk.full = dfixed_div(rdev->pm.igp_sideport_mclk, tmp);
 | |
| 			if (info->info.usK8MemoryClock)
 | |
| 				rdev->pm.igp_system_mclk.full = dfixed_const(le16_to_cpu(info->info.usK8MemoryClock));
 | |
| 			else if (rdev->clock.default_mclk) {
 | |
| 				rdev->pm.igp_system_mclk.full = dfixed_const(rdev->clock.default_mclk);
 | |
| 				rdev->pm.igp_system_mclk.full = dfixed_div(rdev->pm.igp_system_mclk, tmp);
 | |
| 			} else
 | |
| 				rdev->pm.igp_system_mclk.full = dfixed_const(400);
 | |
| 			rdev->pm.igp_ht_link_clk.full = dfixed_const(le16_to_cpu(info->info.usFSBClock));
 | |
| 			rdev->pm.igp_ht_link_width.full = dfixed_const(info->info.ucHTLinkWidth);
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			tmp.full = dfixed_const(100);
 | |
| 			rdev->pm.igp_sideport_mclk.full = dfixed_const(info->info_v2.ulBootUpSidePortClock);
 | |
| 			rdev->pm.igp_sideport_mclk.full = dfixed_div(rdev->pm.igp_sideport_mclk, tmp);
 | |
| 			if (info->info_v2.ulBootUpUMAClock)
 | |
| 				rdev->pm.igp_system_mclk.full = dfixed_const(info->info_v2.ulBootUpUMAClock);
 | |
| 			else if (rdev->clock.default_mclk)
 | |
| 				rdev->pm.igp_system_mclk.full = dfixed_const(rdev->clock.default_mclk);
 | |
| 			else
 | |
| 				rdev->pm.igp_system_mclk.full = dfixed_const(66700);
 | |
| 			rdev->pm.igp_system_mclk.full = dfixed_div(rdev->pm.igp_system_mclk, tmp);
 | |
| 			rdev->pm.igp_ht_link_clk.full = dfixed_const(info->info_v2.ulHTLinkFreq);
 | |
| 			rdev->pm.igp_ht_link_clk.full = dfixed_div(rdev->pm.igp_ht_link_clk, tmp);
 | |
| 			rdev->pm.igp_ht_link_width.full = dfixed_const(le16_to_cpu(info->info_v2.usMinHTLinkWidth));
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* We assume the slower possible clock ie worst case */
 | |
| 			rdev->pm.igp_sideport_mclk.full = dfixed_const(200);
 | |
| 			rdev->pm.igp_system_mclk.full = dfixed_const(200);
 | |
| 			rdev->pm.igp_ht_link_clk.full = dfixed_const(1000);
 | |
| 			rdev->pm.igp_ht_link_width.full = dfixed_const(8);
 | |
| 			DRM_ERROR("No integrated system info for your GPU, using safe default\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* We assume the slower possible clock ie worst case */
 | |
| 		rdev->pm.igp_sideport_mclk.full = dfixed_const(200);
 | |
| 		rdev->pm.igp_system_mclk.full = dfixed_const(200);
 | |
| 		rdev->pm.igp_ht_link_clk.full = dfixed_const(1000);
 | |
| 		rdev->pm.igp_ht_link_width.full = dfixed_const(8);
 | |
| 		DRM_ERROR("No integrated system info for your GPU, using safe default\n");
 | |
| 	}
 | |
| 	/* Compute various bandwidth */
 | |
| 	/* k8_bandwidth = (memory_clk / 2) * 2 * 8 * 0.5 = memory_clk * 4  */
 | |
| 	tmp.full = dfixed_const(4);
 | |
| 	rdev->pm.k8_bandwidth.full = dfixed_mul(rdev->pm.igp_system_mclk, tmp);
 | |
| 	/* ht_bandwidth = ht_clk * 2 * ht_width / 8 * 0.8
 | |
| 	 *              = ht_clk * ht_width / 5
 | |
| 	 */
 | |
| 	tmp.full = dfixed_const(5);
 | |
| 	rdev->pm.ht_bandwidth.full = dfixed_mul(rdev->pm.igp_ht_link_clk,
 | |
| 						rdev->pm.igp_ht_link_width);
 | |
| 	rdev->pm.ht_bandwidth.full = dfixed_div(rdev->pm.ht_bandwidth, tmp);
 | |
| 	if (tmp.full < rdev->pm.max_bandwidth.full) {
 | |
| 		/* HT link is a limiting factor */
 | |
| 		rdev->pm.max_bandwidth.full = tmp.full;
 | |
| 	}
 | |
| 	/* sideport_bandwidth = (sideport_clk / 2) * 2 * 2 * 0.7
 | |
| 	 *                    = (sideport_clk * 14) / 10
 | |
| 	 */
 | |
| 	tmp.full = dfixed_const(14);
 | |
| 	rdev->pm.sideport_bandwidth.full = dfixed_mul(rdev->pm.igp_sideport_mclk, tmp);
 | |
| 	tmp.full = dfixed_const(10);
 | |
| 	rdev->pm.sideport_bandwidth.full = dfixed_div(rdev->pm.sideport_bandwidth, tmp);
 | |
| }
 | |
| 
 | |
| void rs690_mc_init(struct radeon_device *rdev)
 | |
| {
 | |
| 	u64 base;
 | |
| 
 | |
| 	rs400_gart_adjust_size(rdev);
 | |
| 	rdev->mc.vram_is_ddr = true;
 | |
| 	rdev->mc.vram_width = 128;
 | |
| 	rdev->mc.real_vram_size = RREG32(RADEON_CONFIG_MEMSIZE);
 | |
| 	rdev->mc.mc_vram_size = rdev->mc.real_vram_size;
 | |
| 	rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
 | |
| 	rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
 | |
| 	rdev->mc.visible_vram_size = rdev->mc.aper_size;
 | |
| 	rdev->mc.active_vram_size = rdev->mc.visible_vram_size;
 | |
| 	base = RREG32_MC(R_000100_MCCFG_FB_LOCATION);
 | |
| 	base = G_000100_MC_FB_START(base) << 16;
 | |
| 	rdev->mc.igp_sideport_enabled = radeon_atombios_sideport_present(rdev);
 | |
| 	rs690_pm_info(rdev);
 | |
| 	radeon_vram_location(rdev, &rdev->mc, base);
 | |
| 	rdev->mc.gtt_base_align = rdev->mc.gtt_size - 1;
 | |
| 	radeon_gtt_location(rdev, &rdev->mc);
 | |
| 	radeon_update_bandwidth_info(rdev);
 | |
| }
 | |
| 
 | |
| void rs690_line_buffer_adjust(struct radeon_device *rdev,
 | |
| 			      struct drm_display_mode *mode1,
 | |
| 			      struct drm_display_mode *mode2)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Line Buffer Setup
 | |
| 	 * There is a single line buffer shared by both display controllers.
 | |
| 	 * R_006520_DC_LB_MEMORY_SPLIT controls how that line buffer is shared between
 | |
| 	 * the display controllers.  The paritioning can either be done
 | |
| 	 * manually or via one of four preset allocations specified in bits 1:0:
 | |
| 	 *  0 - line buffer is divided in half and shared between crtc
 | |
| 	 *  1 - D1 gets 3/4 of the line buffer, D2 gets 1/4
 | |
| 	 *  2 - D1 gets the whole buffer
 | |
| 	 *  3 - D1 gets 1/4 of the line buffer, D2 gets 3/4
 | |
| 	 * Setting bit 2 of R_006520_DC_LB_MEMORY_SPLIT controls switches to manual
 | |
| 	 * allocation mode. In manual allocation mode, D1 always starts at 0,
 | |
| 	 * D1 end/2 is specified in bits 14:4; D2 allocation follows D1.
 | |
| 	 */
 | |
| 	tmp = RREG32(R_006520_DC_LB_MEMORY_SPLIT) & C_006520_DC_LB_MEMORY_SPLIT;
 | |
| 	tmp &= ~C_006520_DC_LB_MEMORY_SPLIT_MODE;
 | |
| 	/* auto */
 | |
| 	if (mode1 && mode2) {
 | |
| 		if (mode1->hdisplay > mode2->hdisplay) {
 | |
| 			if (mode1->hdisplay > 2560)
 | |
| 				tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q;
 | |
| 			else
 | |
| 				tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
 | |
| 		} else if (mode2->hdisplay > mode1->hdisplay) {
 | |
| 			if (mode2->hdisplay > 2560)
 | |
| 				tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
 | |
| 			else
 | |
| 				tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
 | |
| 		} else
 | |
| 			tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
 | |
| 	} else if (mode1) {
 | |
| 		tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1_ONLY;
 | |
| 	} else if (mode2) {
 | |
| 		tmp |= V_006520_DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
 | |
| 	}
 | |
| 	WREG32(R_006520_DC_LB_MEMORY_SPLIT, tmp);
 | |
| }
 | |
| 
 | |
| struct rs690_watermark {
 | |
| 	u32        lb_request_fifo_depth;
 | |
| 	fixed20_12 num_line_pair;
 | |
| 	fixed20_12 estimated_width;
 | |
| 	fixed20_12 worst_case_latency;
 | |
| 	fixed20_12 consumption_rate;
 | |
| 	fixed20_12 active_time;
 | |
| 	fixed20_12 dbpp;
 | |
| 	fixed20_12 priority_mark_max;
 | |
| 	fixed20_12 priority_mark;
 | |
| 	fixed20_12 sclk;
 | |
| };
 | |
| 
 | |
| void rs690_crtc_bandwidth_compute(struct radeon_device *rdev,
 | |
| 				  struct radeon_crtc *crtc,
 | |
| 				  struct rs690_watermark *wm)
 | |
| {
 | |
| 	struct drm_display_mode *mode = &crtc->base.mode;
 | |
| 	fixed20_12 a, b, c;
 | |
| 	fixed20_12 pclk, request_fifo_depth, tolerable_latency, estimated_width;
 | |
| 	fixed20_12 consumption_time, line_time, chunk_time, read_delay_latency;
 | |
| 
 | |
| 	if (!crtc->base.enabled) {
 | |
| 		/* FIXME: wouldn't it better to set priority mark to maximum */
 | |
| 		wm->lb_request_fifo_depth = 4;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (crtc->vsc.full > dfixed_const(2))
 | |
| 		wm->num_line_pair.full = dfixed_const(2);
 | |
| 	else
 | |
| 		wm->num_line_pair.full = dfixed_const(1);
 | |
| 
 | |
| 	b.full = dfixed_const(mode->crtc_hdisplay);
 | |
| 	c.full = dfixed_const(256);
 | |
| 	a.full = dfixed_div(b, c);
 | |
| 	request_fifo_depth.full = dfixed_mul(a, wm->num_line_pair);
 | |
| 	request_fifo_depth.full = dfixed_ceil(request_fifo_depth);
 | |
| 	if (a.full < dfixed_const(4)) {
 | |
| 		wm->lb_request_fifo_depth = 4;
 | |
| 	} else {
 | |
| 		wm->lb_request_fifo_depth = dfixed_trunc(request_fifo_depth);
 | |
| 	}
 | |
| 
 | |
| 	/* Determine consumption rate
 | |
| 	 *  pclk = pixel clock period(ns) = 1000 / (mode.clock / 1000)
 | |
| 	 *  vtaps = number of vertical taps,
 | |
| 	 *  vsc = vertical scaling ratio, defined as source/destination
 | |
| 	 *  hsc = horizontal scaling ration, defined as source/destination
 | |
| 	 */
 | |
| 	a.full = dfixed_const(mode->clock);
 | |
| 	b.full = dfixed_const(1000);
 | |
| 	a.full = dfixed_div(a, b);
 | |
| 	pclk.full = dfixed_div(b, a);
 | |
| 	if (crtc->rmx_type != RMX_OFF) {
 | |
| 		b.full = dfixed_const(2);
 | |
| 		if (crtc->vsc.full > b.full)
 | |
| 			b.full = crtc->vsc.full;
 | |
| 		b.full = dfixed_mul(b, crtc->hsc);
 | |
| 		c.full = dfixed_const(2);
 | |
| 		b.full = dfixed_div(b, c);
 | |
| 		consumption_time.full = dfixed_div(pclk, b);
 | |
| 	} else {
 | |
| 		consumption_time.full = pclk.full;
 | |
| 	}
 | |
| 	a.full = dfixed_const(1);
 | |
| 	wm->consumption_rate.full = dfixed_div(a, consumption_time);
 | |
| 
 | |
| 
 | |
| 	/* Determine line time
 | |
| 	 *  LineTime = total time for one line of displayhtotal
 | |
| 	 *  LineTime = total number of horizontal pixels
 | |
| 	 *  pclk = pixel clock period(ns)
 | |
| 	 */
 | |
| 	a.full = dfixed_const(crtc->base.mode.crtc_htotal);
 | |
| 	line_time.full = dfixed_mul(a, pclk);
 | |
| 
 | |
| 	/* Determine active time
 | |
| 	 *  ActiveTime = time of active region of display within one line,
 | |
| 	 *  hactive = total number of horizontal active pixels
 | |
| 	 *  htotal = total number of horizontal pixels
 | |
| 	 */
 | |
| 	a.full = dfixed_const(crtc->base.mode.crtc_htotal);
 | |
| 	b.full = dfixed_const(crtc->base.mode.crtc_hdisplay);
 | |
| 	wm->active_time.full = dfixed_mul(line_time, b);
 | |
| 	wm->active_time.full = dfixed_div(wm->active_time, a);
 | |
| 
 | |
| 	/* Maximun bandwidth is the minimun bandwidth of all component */
 | |
| 	rdev->pm.max_bandwidth = rdev->pm.core_bandwidth;
 | |
| 	if (rdev->mc.igp_sideport_enabled) {
 | |
| 		if (rdev->pm.max_bandwidth.full > rdev->pm.sideport_bandwidth.full &&
 | |
| 			rdev->pm.sideport_bandwidth.full)
 | |
| 			rdev->pm.max_bandwidth = rdev->pm.sideport_bandwidth;
 | |
| 		read_delay_latency.full = dfixed_const(370 * 800 * 1000);
 | |
| 		read_delay_latency.full = dfixed_div(read_delay_latency,
 | |
| 			rdev->pm.igp_sideport_mclk);
 | |
| 	} else {
 | |
| 		if (rdev->pm.max_bandwidth.full > rdev->pm.k8_bandwidth.full &&
 | |
| 			rdev->pm.k8_bandwidth.full)
 | |
| 			rdev->pm.max_bandwidth = rdev->pm.k8_bandwidth;
 | |
| 		if (rdev->pm.max_bandwidth.full > rdev->pm.ht_bandwidth.full &&
 | |
| 			rdev->pm.ht_bandwidth.full)
 | |
| 			rdev->pm.max_bandwidth = rdev->pm.ht_bandwidth;
 | |
| 		read_delay_latency.full = dfixed_const(5000);
 | |
| 	}
 | |
| 
 | |
| 	/* sclk = system clocks(ns) = 1000 / max_bandwidth / 16 */
 | |
| 	a.full = dfixed_const(16);
 | |
| 	rdev->pm.sclk.full = dfixed_mul(rdev->pm.max_bandwidth, a);
 | |
| 	a.full = dfixed_const(1000);
 | |
| 	rdev->pm.sclk.full = dfixed_div(a, rdev->pm.sclk);
 | |
| 	/* Determine chunk time
 | |
| 	 * ChunkTime = the time it takes the DCP to send one chunk of data
 | |
| 	 * to the LB which consists of pipeline delay and inter chunk gap
 | |
| 	 * sclk = system clock(ns)
 | |
| 	 */
 | |
| 	a.full = dfixed_const(256 * 13);
 | |
| 	chunk_time.full = dfixed_mul(rdev->pm.sclk, a);
 | |
| 	a.full = dfixed_const(10);
 | |
| 	chunk_time.full = dfixed_div(chunk_time, a);
 | |
| 
 | |
| 	/* Determine the worst case latency
 | |
| 	 * NumLinePair = Number of line pairs to request(1=2 lines, 2=4 lines)
 | |
| 	 * WorstCaseLatency = worst case time from urgent to when the MC starts
 | |
| 	 *                    to return data
 | |
| 	 * READ_DELAY_IDLE_MAX = constant of 1us
 | |
| 	 * ChunkTime = time it takes the DCP to send one chunk of data to the LB
 | |
| 	 *             which consists of pipeline delay and inter chunk gap
 | |
| 	 */
 | |
| 	if (dfixed_trunc(wm->num_line_pair) > 1) {
 | |
| 		a.full = dfixed_const(3);
 | |
| 		wm->worst_case_latency.full = dfixed_mul(a, chunk_time);
 | |
| 		wm->worst_case_latency.full += read_delay_latency.full;
 | |
| 	} else {
 | |
| 		a.full = dfixed_const(2);
 | |
| 		wm->worst_case_latency.full = dfixed_mul(a, chunk_time);
 | |
| 		wm->worst_case_latency.full += read_delay_latency.full;
 | |
| 	}
 | |
| 
 | |
| 	/* Determine the tolerable latency
 | |
| 	 * TolerableLatency = Any given request has only 1 line time
 | |
| 	 *                    for the data to be returned
 | |
| 	 * LBRequestFifoDepth = Number of chunk requests the LB can
 | |
| 	 *                      put into the request FIFO for a display
 | |
| 	 *  LineTime = total time for one line of display
 | |
| 	 *  ChunkTime = the time it takes the DCP to send one chunk
 | |
| 	 *              of data to the LB which consists of
 | |
| 	 *  pipeline delay and inter chunk gap
 | |
| 	 */
 | |
| 	if ((2+wm->lb_request_fifo_depth) >= dfixed_trunc(request_fifo_depth)) {
 | |
| 		tolerable_latency.full = line_time.full;
 | |
| 	} else {
 | |
| 		tolerable_latency.full = dfixed_const(wm->lb_request_fifo_depth - 2);
 | |
| 		tolerable_latency.full = request_fifo_depth.full - tolerable_latency.full;
 | |
| 		tolerable_latency.full = dfixed_mul(tolerable_latency, chunk_time);
 | |
| 		tolerable_latency.full = line_time.full - tolerable_latency.full;
 | |
| 	}
 | |
| 	/* We assume worst case 32bits (4 bytes) */
 | |
| 	wm->dbpp.full = dfixed_const(4 * 8);
 | |
| 
 | |
| 	/* Determine the maximum priority mark
 | |
| 	 *  width = viewport width in pixels
 | |
| 	 */
 | |
| 	a.full = dfixed_const(16);
 | |
| 	wm->priority_mark_max.full = dfixed_const(crtc->base.mode.crtc_hdisplay);
 | |
| 	wm->priority_mark_max.full = dfixed_div(wm->priority_mark_max, a);
 | |
| 	wm->priority_mark_max.full = dfixed_ceil(wm->priority_mark_max);
 | |
| 
 | |
| 	/* Determine estimated width */
 | |
| 	estimated_width.full = tolerable_latency.full - wm->worst_case_latency.full;
 | |
| 	estimated_width.full = dfixed_div(estimated_width, consumption_time);
 | |
| 	if (dfixed_trunc(estimated_width) > crtc->base.mode.crtc_hdisplay) {
 | |
| 		wm->priority_mark.full = dfixed_const(10);
 | |
| 	} else {
 | |
| 		a.full = dfixed_const(16);
 | |
| 		wm->priority_mark.full = dfixed_div(estimated_width, a);
 | |
| 		wm->priority_mark.full = dfixed_ceil(wm->priority_mark);
 | |
| 		wm->priority_mark.full = wm->priority_mark_max.full - wm->priority_mark.full;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void rs690_bandwidth_update(struct radeon_device *rdev)
 | |
| {
 | |
| 	struct drm_display_mode *mode0 = NULL;
 | |
| 	struct drm_display_mode *mode1 = NULL;
 | |
| 	struct rs690_watermark wm0;
 | |
| 	struct rs690_watermark wm1;
 | |
| 	u32 tmp;
 | |
| 	u32 d1mode_priority_a_cnt = S_006548_D1MODE_PRIORITY_A_OFF(1);
 | |
| 	u32 d2mode_priority_a_cnt = S_006548_D1MODE_PRIORITY_A_OFF(1);
 | |
| 	fixed20_12 priority_mark02, priority_mark12, fill_rate;
 | |
| 	fixed20_12 a, b;
 | |
| 
 | |
| 	radeon_update_display_priority(rdev);
 | |
| 
 | |
| 	if (rdev->mode_info.crtcs[0]->base.enabled)
 | |
| 		mode0 = &rdev->mode_info.crtcs[0]->base.mode;
 | |
| 	if (rdev->mode_info.crtcs[1]->base.enabled)
 | |
| 		mode1 = &rdev->mode_info.crtcs[1]->base.mode;
 | |
| 	/*
 | |
| 	 * Set display0/1 priority up in the memory controller for
 | |
| 	 * modes if the user specifies HIGH for displaypriority
 | |
| 	 * option.
 | |
| 	 */
 | |
| 	if ((rdev->disp_priority == 2) &&
 | |
| 	    ((rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740))) {
 | |
| 		tmp = RREG32_MC(R_000104_MC_INIT_MISC_LAT_TIMER);
 | |
| 		tmp &= C_000104_MC_DISP0R_INIT_LAT;
 | |
| 		tmp &= C_000104_MC_DISP1R_INIT_LAT;
 | |
| 		if (mode0)
 | |
| 			tmp |= S_000104_MC_DISP0R_INIT_LAT(1);
 | |
| 		if (mode1)
 | |
| 			tmp |= S_000104_MC_DISP1R_INIT_LAT(1);
 | |
| 		WREG32_MC(R_000104_MC_INIT_MISC_LAT_TIMER, tmp);
 | |
| 	}
 | |
| 	rs690_line_buffer_adjust(rdev, mode0, mode1);
 | |
| 
 | |
| 	if ((rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740))
 | |
| 		WREG32(R_006C9C_DCP_CONTROL, 0);
 | |
| 	if ((rdev->family == CHIP_RS780) || (rdev->family == CHIP_RS880))
 | |
| 		WREG32(R_006C9C_DCP_CONTROL, 2);
 | |
| 
 | |
| 	rs690_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[0], &wm0);
 | |
| 	rs690_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[1], &wm1);
 | |
| 
 | |
| 	tmp = (wm0.lb_request_fifo_depth - 1);
 | |
| 	tmp |= (wm1.lb_request_fifo_depth - 1) << 16;
 | |
| 	WREG32(R_006D58_LB_MAX_REQ_OUTSTANDING, tmp);
 | |
| 
 | |
| 	if (mode0 && mode1) {
 | |
| 		if (dfixed_trunc(wm0.dbpp) > 64)
 | |
| 			a.full = dfixed_mul(wm0.dbpp, wm0.num_line_pair);
 | |
| 		else
 | |
| 			a.full = wm0.num_line_pair.full;
 | |
| 		if (dfixed_trunc(wm1.dbpp) > 64)
 | |
| 			b.full = dfixed_mul(wm1.dbpp, wm1.num_line_pair);
 | |
| 		else
 | |
| 			b.full = wm1.num_line_pair.full;
 | |
| 		a.full += b.full;
 | |
| 		fill_rate.full = dfixed_div(wm0.sclk, a);
 | |
| 		if (wm0.consumption_rate.full > fill_rate.full) {
 | |
| 			b.full = wm0.consumption_rate.full - fill_rate.full;
 | |
| 			b.full = dfixed_mul(b, wm0.active_time);
 | |
| 			a.full = dfixed_mul(wm0.worst_case_latency,
 | |
| 						wm0.consumption_rate);
 | |
| 			a.full = a.full + b.full;
 | |
| 			b.full = dfixed_const(16 * 1000);
 | |
| 			priority_mark02.full = dfixed_div(a, b);
 | |
| 		} else {
 | |
| 			a.full = dfixed_mul(wm0.worst_case_latency,
 | |
| 						wm0.consumption_rate);
 | |
| 			b.full = dfixed_const(16 * 1000);
 | |
| 			priority_mark02.full = dfixed_div(a, b);
 | |
| 		}
 | |
| 		if (wm1.consumption_rate.full > fill_rate.full) {
 | |
| 			b.full = wm1.consumption_rate.full - fill_rate.full;
 | |
| 			b.full = dfixed_mul(b, wm1.active_time);
 | |
| 			a.full = dfixed_mul(wm1.worst_case_latency,
 | |
| 						wm1.consumption_rate);
 | |
| 			a.full = a.full + b.full;
 | |
| 			b.full = dfixed_const(16 * 1000);
 | |
| 			priority_mark12.full = dfixed_div(a, b);
 | |
| 		} else {
 | |
| 			a.full = dfixed_mul(wm1.worst_case_latency,
 | |
| 						wm1.consumption_rate);
 | |
| 			b.full = dfixed_const(16 * 1000);
 | |
| 			priority_mark12.full = dfixed_div(a, b);
 | |
| 		}
 | |
| 		if (wm0.priority_mark.full > priority_mark02.full)
 | |
| 			priority_mark02.full = wm0.priority_mark.full;
 | |
| 		if (dfixed_trunc(priority_mark02) < 0)
 | |
| 			priority_mark02.full = 0;
 | |
| 		if (wm0.priority_mark_max.full > priority_mark02.full)
 | |
| 			priority_mark02.full = wm0.priority_mark_max.full;
 | |
| 		if (wm1.priority_mark.full > priority_mark12.full)
 | |
| 			priority_mark12.full = wm1.priority_mark.full;
 | |
| 		if (dfixed_trunc(priority_mark12) < 0)
 | |
| 			priority_mark12.full = 0;
 | |
| 		if (wm1.priority_mark_max.full > priority_mark12.full)
 | |
| 			priority_mark12.full = wm1.priority_mark_max.full;
 | |
| 		d1mode_priority_a_cnt = dfixed_trunc(priority_mark02);
 | |
| 		d2mode_priority_a_cnt = dfixed_trunc(priority_mark12);
 | |
| 		if (rdev->disp_priority == 2) {
 | |
| 			d1mode_priority_a_cnt |= S_006548_D1MODE_PRIORITY_A_ALWAYS_ON(1);
 | |
| 			d2mode_priority_a_cnt |= S_006D48_D2MODE_PRIORITY_A_ALWAYS_ON(1);
 | |
| 		}
 | |
| 	} else if (mode0) {
 | |
| 		if (dfixed_trunc(wm0.dbpp) > 64)
 | |
| 			a.full = dfixed_mul(wm0.dbpp, wm0.num_line_pair);
 | |
| 		else
 | |
| 			a.full = wm0.num_line_pair.full;
 | |
| 		fill_rate.full = dfixed_div(wm0.sclk, a);
 | |
| 		if (wm0.consumption_rate.full > fill_rate.full) {
 | |
| 			b.full = wm0.consumption_rate.full - fill_rate.full;
 | |
| 			b.full = dfixed_mul(b, wm0.active_time);
 | |
| 			a.full = dfixed_mul(wm0.worst_case_latency,
 | |
| 						wm0.consumption_rate);
 | |
| 			a.full = a.full + b.full;
 | |
| 			b.full = dfixed_const(16 * 1000);
 | |
| 			priority_mark02.full = dfixed_div(a, b);
 | |
| 		} else {
 | |
| 			a.full = dfixed_mul(wm0.worst_case_latency,
 | |
| 						wm0.consumption_rate);
 | |
| 			b.full = dfixed_const(16 * 1000);
 | |
| 			priority_mark02.full = dfixed_div(a, b);
 | |
| 		}
 | |
| 		if (wm0.priority_mark.full > priority_mark02.full)
 | |
| 			priority_mark02.full = wm0.priority_mark.full;
 | |
| 		if (dfixed_trunc(priority_mark02) < 0)
 | |
| 			priority_mark02.full = 0;
 | |
| 		if (wm0.priority_mark_max.full > priority_mark02.full)
 | |
| 			priority_mark02.full = wm0.priority_mark_max.full;
 | |
| 		d1mode_priority_a_cnt = dfixed_trunc(priority_mark02);
 | |
| 		if (rdev->disp_priority == 2)
 | |
| 			d1mode_priority_a_cnt |= S_006548_D1MODE_PRIORITY_A_ALWAYS_ON(1);
 | |
| 	} else if (mode1) {
 | |
| 		if (dfixed_trunc(wm1.dbpp) > 64)
 | |
| 			a.full = dfixed_mul(wm1.dbpp, wm1.num_line_pair);
 | |
| 		else
 | |
| 			a.full = wm1.num_line_pair.full;
 | |
| 		fill_rate.full = dfixed_div(wm1.sclk, a);
 | |
| 		if (wm1.consumption_rate.full > fill_rate.full) {
 | |
| 			b.full = wm1.consumption_rate.full - fill_rate.full;
 | |
| 			b.full = dfixed_mul(b, wm1.active_time);
 | |
| 			a.full = dfixed_mul(wm1.worst_case_latency,
 | |
| 						wm1.consumption_rate);
 | |
| 			a.full = a.full + b.full;
 | |
| 			b.full = dfixed_const(16 * 1000);
 | |
| 			priority_mark12.full = dfixed_div(a, b);
 | |
| 		} else {
 | |
| 			a.full = dfixed_mul(wm1.worst_case_latency,
 | |
| 						wm1.consumption_rate);
 | |
| 			b.full = dfixed_const(16 * 1000);
 | |
| 			priority_mark12.full = dfixed_div(a, b);
 | |
| 		}
 | |
| 		if (wm1.priority_mark.full > priority_mark12.full)
 | |
| 			priority_mark12.full = wm1.priority_mark.full;
 | |
| 		if (dfixed_trunc(priority_mark12) < 0)
 | |
| 			priority_mark12.full = 0;
 | |
| 		if (wm1.priority_mark_max.full > priority_mark12.full)
 | |
| 			priority_mark12.full = wm1.priority_mark_max.full;
 | |
| 		d2mode_priority_a_cnt = dfixed_trunc(priority_mark12);
 | |
| 		if (rdev->disp_priority == 2)
 | |
| 			d2mode_priority_a_cnt |= S_006D48_D2MODE_PRIORITY_A_ALWAYS_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	WREG32(R_006548_D1MODE_PRIORITY_A_CNT, d1mode_priority_a_cnt);
 | |
| 	WREG32(R_00654C_D1MODE_PRIORITY_B_CNT, d1mode_priority_a_cnt);
 | |
| 	WREG32(R_006D48_D2MODE_PRIORITY_A_CNT, d2mode_priority_a_cnt);
 | |
| 	WREG32(R_006D4C_D2MODE_PRIORITY_B_CNT, d2mode_priority_a_cnt);
 | |
| }
 | |
| 
 | |
| uint32_t rs690_mc_rreg(struct radeon_device *rdev, uint32_t reg)
 | |
| {
 | |
| 	uint32_t r;
 | |
| 
 | |
| 	WREG32(R_000078_MC_INDEX, S_000078_MC_IND_ADDR(reg));
 | |
| 	r = RREG32(R_00007C_MC_DATA);
 | |
| 	WREG32(R_000078_MC_INDEX, ~C_000078_MC_IND_ADDR);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void rs690_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v)
 | |
| {
 | |
| 	WREG32(R_000078_MC_INDEX, S_000078_MC_IND_ADDR(reg) |
 | |
| 		S_000078_MC_IND_WR_EN(1));
 | |
| 	WREG32(R_00007C_MC_DATA, v);
 | |
| 	WREG32(R_000078_MC_INDEX, 0x7F);
 | |
| }
 | |
| 
 | |
| void rs690_mc_program(struct radeon_device *rdev)
 | |
| {
 | |
| 	struct rv515_mc_save save;
 | |
| 
 | |
| 	/* Stops all mc clients */
 | |
| 	rv515_mc_stop(rdev, &save);
 | |
| 
 | |
| 	/* Wait for mc idle */
 | |
| 	if (rs690_mc_wait_for_idle(rdev))
 | |
| 		dev_warn(rdev->dev, "Wait MC idle timeout before updating MC.\n");
 | |
| 	/* Program MC, should be a 32bits limited address space */
 | |
| 	WREG32_MC(R_000100_MCCFG_FB_LOCATION,
 | |
| 			S_000100_MC_FB_START(rdev->mc.vram_start >> 16) |
 | |
| 			S_000100_MC_FB_TOP(rdev->mc.vram_end >> 16));
 | |
| 	WREG32(R_000134_HDP_FB_LOCATION,
 | |
| 		S_000134_HDP_FB_START(rdev->mc.vram_start >> 16));
 | |
| 
 | |
| 	rv515_mc_resume(rdev, &save);
 | |
| }
 | |
| 
 | |
| static int rs690_startup(struct radeon_device *rdev)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	rs690_mc_program(rdev);
 | |
| 	/* Resume clock */
 | |
| 	rv515_clock_startup(rdev);
 | |
| 	/* Initialize GPU configuration (# pipes, ...) */
 | |
| 	rs690_gpu_init(rdev);
 | |
| 	/* Initialize GART (initialize after TTM so we can allocate
 | |
| 	 * memory through TTM but finalize after TTM) */
 | |
| 	r = rs400_gart_enable(rdev);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	/* allocate wb buffer */
 | |
| 	r = radeon_wb_init(rdev);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	/* Enable IRQ */
 | |
| 	rs600_irq_set(rdev);
 | |
| 	rdev->config.r300.hdp_cntl = RREG32(RADEON_HOST_PATH_CNTL);
 | |
| 	/* 1M ring buffer */
 | |
| 	r = r100_cp_init(rdev, 1024 * 1024);
 | |
| 	if (r) {
 | |
| 		dev_err(rdev->dev, "failled initializing CP (%d).\n", r);
 | |
| 		return r;
 | |
| 	}
 | |
| 	r = r100_ib_init(rdev);
 | |
| 	if (r) {
 | |
| 		dev_err(rdev->dev, "failled initializing IB (%d).\n", r);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = r600_audio_init(rdev);
 | |
| 	if (r) {
 | |
| 		dev_err(rdev->dev, "failed initializing audio\n");
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int rs690_resume(struct radeon_device *rdev)
 | |
| {
 | |
| 	/* Make sur GART are not working */
 | |
| 	rs400_gart_disable(rdev);
 | |
| 	/* Resume clock before doing reset */
 | |
| 	rv515_clock_startup(rdev);
 | |
| 	/* Reset gpu before posting otherwise ATOM will enter infinite loop */
 | |
| 	if (radeon_asic_reset(rdev)) {
 | |
| 		dev_warn(rdev->dev, "GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n",
 | |
| 			RREG32(R_000E40_RBBM_STATUS),
 | |
| 			RREG32(R_0007C0_CP_STAT));
 | |
| 	}
 | |
| 	/* post */
 | |
| 	atom_asic_init(rdev->mode_info.atom_context);
 | |
| 	/* Resume clock after posting */
 | |
| 	rv515_clock_startup(rdev);
 | |
| 	/* Initialize surface registers */
 | |
| 	radeon_surface_init(rdev);
 | |
| 	return rs690_startup(rdev);
 | |
| }
 | |
| 
 | |
| int rs690_suspend(struct radeon_device *rdev)
 | |
| {
 | |
| 	r600_audio_fini(rdev);
 | |
| 	r100_cp_disable(rdev);
 | |
| 	radeon_wb_disable(rdev);
 | |
| 	rs600_irq_disable(rdev);
 | |
| 	rs400_gart_disable(rdev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void rs690_fini(struct radeon_device *rdev)
 | |
| {
 | |
| 	r600_audio_fini(rdev);
 | |
| 	r100_cp_fini(rdev);
 | |
| 	radeon_wb_fini(rdev);
 | |
| 	r100_ib_fini(rdev);
 | |
| 	radeon_gem_fini(rdev);
 | |
| 	rs400_gart_fini(rdev);
 | |
| 	radeon_irq_kms_fini(rdev);
 | |
| 	radeon_fence_driver_fini(rdev);
 | |
| 	radeon_bo_fini(rdev);
 | |
| 	radeon_atombios_fini(rdev);
 | |
| 	kfree(rdev->bios);
 | |
| 	rdev->bios = NULL;
 | |
| }
 | |
| 
 | |
| int rs690_init(struct radeon_device *rdev)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	/* Disable VGA */
 | |
| 	rv515_vga_render_disable(rdev);
 | |
| 	/* Initialize scratch registers */
 | |
| 	radeon_scratch_init(rdev);
 | |
| 	/* Initialize surface registers */
 | |
| 	radeon_surface_init(rdev);
 | |
| 	/* restore some register to sane defaults */
 | |
| 	r100_restore_sanity(rdev);
 | |
| 	/* TODO: disable VGA need to use VGA request */
 | |
| 	/* BIOS*/
 | |
| 	if (!radeon_get_bios(rdev)) {
 | |
| 		if (ASIC_IS_AVIVO(rdev))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 	if (rdev->is_atom_bios) {
 | |
| 		r = radeon_atombios_init(rdev);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	} else {
 | |
| 		dev_err(rdev->dev, "Expecting atombios for RV515 GPU\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	/* Reset gpu before posting otherwise ATOM will enter infinite loop */
 | |
| 	if (radeon_asic_reset(rdev)) {
 | |
| 		dev_warn(rdev->dev,
 | |
| 			"GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n",
 | |
| 			RREG32(R_000E40_RBBM_STATUS),
 | |
| 			RREG32(R_0007C0_CP_STAT));
 | |
| 	}
 | |
| 	/* check if cards are posted or not */
 | |
| 	if (radeon_boot_test_post_card(rdev) == false)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Initialize clocks */
 | |
| 	radeon_get_clock_info(rdev->ddev);
 | |
| 	/* initialize memory controller */
 | |
| 	rs690_mc_init(rdev);
 | |
| 	rv515_debugfs(rdev);
 | |
| 	/* Fence driver */
 | |
| 	r = radeon_fence_driver_init(rdev);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 	r = radeon_irq_kms_init(rdev);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 	/* Memory manager */
 | |
| 	r = radeon_bo_init(rdev);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 	r = rs400_gart_init(rdev);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 	rs600_set_safe_registers(rdev);
 | |
| 	rdev->accel_working = true;
 | |
| 	r = rs690_startup(rdev);
 | |
| 	if (r) {
 | |
| 		/* Somethings want wront with the accel init stop accel */
 | |
| 		dev_err(rdev->dev, "Disabling GPU acceleration\n");
 | |
| 		r100_cp_fini(rdev);
 | |
| 		radeon_wb_fini(rdev);
 | |
| 		r100_ib_fini(rdev);
 | |
| 		rs400_gart_fini(rdev);
 | |
| 		radeon_irq_kms_fini(rdev);
 | |
| 		rdev->accel_working = false;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 |