mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:06:46 +00:00 
			
		
		
		
	 4f4d1ad6ee
			
		
	
	
		4f4d1ad6ee
		
	
	
	
	
		
			
			Update the documentation accordingly. Cleanup and use printk_once. Signed-off-by: Thomas Renninger <trenn@suse.de> Signed-off-by: Dave Jones <davej@redhat.com>
		
			
				
	
	
		
			681 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			681 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  drivers/cpufreq/cpufreq_conservative.c
 | |
|  *
 | |
|  *  Copyright (C)  2001 Russell King
 | |
|  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 | |
|  *                      Jun Nakajima <jun.nakajima@intel.com>
 | |
|  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/ktime.h>
 | |
| #include <linux/sched.h>
 | |
| 
 | |
| /*
 | |
|  * dbs is used in this file as a shortform for demandbased switching
 | |
|  * It helps to keep variable names smaller, simpler
 | |
|  */
 | |
| 
 | |
| #define DEF_FREQUENCY_UP_THRESHOLD		(80)
 | |
| #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
 | |
| 
 | |
| /*
 | |
|  * The polling frequency of this governor depends on the capability of
 | |
|  * the processor. Default polling frequency is 1000 times the transition
 | |
|  * latency of the processor. The governor will work on any processor with
 | |
|  * transition latency <= 10mS, using appropriate sampling
 | |
|  * rate.
 | |
|  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 | |
|  * this governor will not work.
 | |
|  * All times here are in uS.
 | |
|  */
 | |
| #define MIN_SAMPLING_RATE_RATIO			(2)
 | |
| 
 | |
| static unsigned int min_sampling_rate;
 | |
| 
 | |
| #define LATENCY_MULTIPLIER			(1000)
 | |
| #define MIN_LATENCY_MULTIPLIER			(100)
 | |
| #define DEF_SAMPLING_DOWN_FACTOR		(1)
 | |
| #define MAX_SAMPLING_DOWN_FACTOR		(10)
 | |
| #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
 | |
| 
 | |
| static void do_dbs_timer(struct work_struct *work);
 | |
| 
 | |
| struct cpu_dbs_info_s {
 | |
| 	cputime64_t prev_cpu_idle;
 | |
| 	cputime64_t prev_cpu_wall;
 | |
| 	cputime64_t prev_cpu_nice;
 | |
| 	struct cpufreq_policy *cur_policy;
 | |
| 	struct delayed_work work;
 | |
| 	unsigned int down_skip;
 | |
| 	unsigned int requested_freq;
 | |
| 	int cpu;
 | |
| 	unsigned int enable:1;
 | |
| };
 | |
| static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
 | |
| 
 | |
| static unsigned int dbs_enable;	/* number of CPUs using this policy */
 | |
| 
 | |
| /*
 | |
|  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
 | |
|  * lock and dbs_mutex. cpu_hotplug lock should always be held before
 | |
|  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
 | |
|  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
 | |
|  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
 | |
|  * is recursive for the same process. -Venki
 | |
|  * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
 | |
|  * would deadlock with cancel_delayed_work_sync(), which is needed for proper
 | |
|  * raceless workqueue teardown.
 | |
|  */
 | |
| static DEFINE_MUTEX(dbs_mutex);
 | |
| 
 | |
| static struct workqueue_struct	*kconservative_wq;
 | |
| 
 | |
| static struct dbs_tuners {
 | |
| 	unsigned int sampling_rate;
 | |
| 	unsigned int sampling_down_factor;
 | |
| 	unsigned int up_threshold;
 | |
| 	unsigned int down_threshold;
 | |
| 	unsigned int ignore_nice;
 | |
| 	unsigned int freq_step;
 | |
| } dbs_tuners_ins = {
 | |
| 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
 | |
| 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
 | |
| 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
 | |
| 	.ignore_nice = 0,
 | |
| 	.freq_step = 5,
 | |
| };
 | |
| 
 | |
| static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
 | |
| 							cputime64_t *wall)
 | |
| {
 | |
| 	cputime64_t idle_time;
 | |
| 	cputime64_t cur_wall_time;
 | |
| 	cputime64_t busy_time;
 | |
| 
 | |
| 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
 | |
| 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
 | |
| 			kstat_cpu(cpu).cpustat.system);
 | |
| 
 | |
| 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
 | |
| 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
 | |
| 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
 | |
| 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
 | |
| 
 | |
| 	idle_time = cputime64_sub(cur_wall_time, busy_time);
 | |
| 	if (wall)
 | |
| 		*wall = cur_wall_time;
 | |
| 
 | |
| 	return idle_time;
 | |
| }
 | |
| 
 | |
| static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
 | |
| {
 | |
| 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
 | |
| 
 | |
| 	if (idle_time == -1ULL)
 | |
| 		return get_cpu_idle_time_jiffy(cpu, wall);
 | |
| 
 | |
| 	return idle_time;
 | |
| }
 | |
| 
 | |
| /* keep track of frequency transitions */
 | |
| static int
 | |
| dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 | |
| 		     void *data)
 | |
| {
 | |
| 	struct cpufreq_freqs *freq = data;
 | |
| 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
 | |
| 							freq->cpu);
 | |
| 
 | |
| 	struct cpufreq_policy *policy;
 | |
| 
 | |
| 	if (!this_dbs_info->enable)
 | |
| 		return 0;
 | |
| 
 | |
| 	policy = this_dbs_info->cur_policy;
 | |
| 
 | |
| 	/*
 | |
| 	 * we only care if our internally tracked freq moves outside
 | |
| 	 * the 'valid' ranges of freqency available to us otherwise
 | |
| 	 * we do not change it
 | |
| 	*/
 | |
| 	if (this_dbs_info->requested_freq > policy->max
 | |
| 			|| this_dbs_info->requested_freq < policy->min)
 | |
| 		this_dbs_info->requested_freq = freq->new;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct notifier_block dbs_cpufreq_notifier_block = {
 | |
| 	.notifier_call = dbs_cpufreq_notifier
 | |
| };
 | |
| 
 | |
| /************************** sysfs interface ************************/
 | |
| static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
 | |
| {
 | |
| 	printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
 | |
| 		    "sysfs file is deprecated - used by: %s\n", current->comm);
 | |
| 	return sprintf(buf, "%u\n", -1U);
 | |
| }
 | |
| 
 | |
| static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", min_sampling_rate);
 | |
| }
 | |
| 
 | |
| #define define_one_ro(_name)		\
 | |
| static struct freq_attr _name =		\
 | |
| __ATTR(_name, 0444, show_##_name, NULL)
 | |
| 
 | |
| define_one_ro(sampling_rate_max);
 | |
| define_one_ro(sampling_rate_min);
 | |
| 
 | |
| /* cpufreq_conservative Governor Tunables */
 | |
| #define show_one(file_name, object)					\
 | |
| static ssize_t show_##file_name						\
 | |
| (struct cpufreq_policy *unused, char *buf)				\
 | |
| {									\
 | |
| 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
 | |
| }
 | |
| show_one(sampling_rate, sampling_rate);
 | |
| show_one(sampling_down_factor, sampling_down_factor);
 | |
| show_one(up_threshold, up_threshold);
 | |
| show_one(down_threshold, down_threshold);
 | |
| show_one(ignore_nice_load, ignore_nice);
 | |
| show_one(freq_step, freq_step);
 | |
| 
 | |
| static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
 | |
| 		const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 
 | |
| 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&dbs_mutex);
 | |
| 	dbs_tuners_ins.sampling_down_factor = input;
 | |
| 	mutex_unlock(&dbs_mutex);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
 | |
| 		const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&dbs_mutex);
 | |
| 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
 | |
| 	mutex_unlock(&dbs_mutex);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_up_threshold(struct cpufreq_policy *unused,
 | |
| 		const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 
 | |
| 	mutex_lock(&dbs_mutex);
 | |
| 	if (ret != 1 || input > 100 ||
 | |
| 			input <= dbs_tuners_ins.down_threshold) {
 | |
| 		mutex_unlock(&dbs_mutex);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dbs_tuners_ins.up_threshold = input;
 | |
| 	mutex_unlock(&dbs_mutex);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_down_threshold(struct cpufreq_policy *unused,
 | |
| 		const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 
 | |
| 	mutex_lock(&dbs_mutex);
 | |
| 	/* cannot be lower than 11 otherwise freq will not fall */
 | |
| 	if (ret != 1 || input < 11 || input > 100 ||
 | |
| 			input >= dbs_tuners_ins.up_threshold) {
 | |
| 		mutex_unlock(&dbs_mutex);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dbs_tuners_ins.down_threshold = input;
 | |
| 	mutex_unlock(&dbs_mutex);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
 | |
| 		const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 
 | |
| 	unsigned int j;
 | |
| 
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (input > 1)
 | |
| 		input = 1;
 | |
| 
 | |
| 	mutex_lock(&dbs_mutex);
 | |
| 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
 | |
| 		mutex_unlock(&dbs_mutex);
 | |
| 		return count;
 | |
| 	}
 | |
| 	dbs_tuners_ins.ignore_nice = input;
 | |
| 
 | |
| 	/* we need to re-evaluate prev_cpu_idle */
 | |
| 	for_each_online_cpu(j) {
 | |
| 		struct cpu_dbs_info_s *dbs_info;
 | |
| 		dbs_info = &per_cpu(cpu_dbs_info, j);
 | |
| 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
 | |
| 						&dbs_info->prev_cpu_wall);
 | |
| 		if (dbs_tuners_ins.ignore_nice)
 | |
| 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
 | |
| 	}
 | |
| 	mutex_unlock(&dbs_mutex);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_freq_step(struct cpufreq_policy *policy,
 | |
| 		const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (input > 100)
 | |
| 		input = 100;
 | |
| 
 | |
| 	/* no need to test here if freq_step is zero as the user might actually
 | |
| 	 * want this, they would be crazy though :) */
 | |
| 	mutex_lock(&dbs_mutex);
 | |
| 	dbs_tuners_ins.freq_step = input;
 | |
| 	mutex_unlock(&dbs_mutex);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| #define define_one_rw(_name) \
 | |
| static struct freq_attr _name = \
 | |
| __ATTR(_name, 0644, show_##_name, store_##_name)
 | |
| 
 | |
| define_one_rw(sampling_rate);
 | |
| define_one_rw(sampling_down_factor);
 | |
| define_one_rw(up_threshold);
 | |
| define_one_rw(down_threshold);
 | |
| define_one_rw(ignore_nice_load);
 | |
| define_one_rw(freq_step);
 | |
| 
 | |
| static struct attribute *dbs_attributes[] = {
 | |
| 	&sampling_rate_max.attr,
 | |
| 	&sampling_rate_min.attr,
 | |
| 	&sampling_rate.attr,
 | |
| 	&sampling_down_factor.attr,
 | |
| 	&up_threshold.attr,
 | |
| 	&down_threshold.attr,
 | |
| 	&ignore_nice_load.attr,
 | |
| 	&freq_step.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct attribute_group dbs_attr_group = {
 | |
| 	.attrs = dbs_attributes,
 | |
| 	.name = "conservative",
 | |
| };
 | |
| 
 | |
| /************************** sysfs end ************************/
 | |
| 
 | |
| static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
 | |
| {
 | |
| 	unsigned int load = 0;
 | |
| 	unsigned int freq_target;
 | |
| 
 | |
| 	struct cpufreq_policy *policy;
 | |
| 	unsigned int j;
 | |
| 
 | |
| 	policy = this_dbs_info->cur_policy;
 | |
| 
 | |
| 	/*
 | |
| 	 * Every sampling_rate, we check, if current idle time is less
 | |
| 	 * than 20% (default), then we try to increase frequency
 | |
| 	 * Every sampling_rate*sampling_down_factor, we check, if current
 | |
| 	 * idle time is more than 80%, then we try to decrease frequency
 | |
| 	 *
 | |
| 	 * Any frequency increase takes it to the maximum frequency.
 | |
| 	 * Frequency reduction happens at minimum steps of
 | |
| 	 * 5% (default) of maximum frequency
 | |
| 	 */
 | |
| 
 | |
| 	/* Get Absolute Load */
 | |
| 	for_each_cpu(j, policy->cpus) {
 | |
| 		struct cpu_dbs_info_s *j_dbs_info;
 | |
| 		cputime64_t cur_wall_time, cur_idle_time;
 | |
| 		unsigned int idle_time, wall_time;
 | |
| 
 | |
| 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
 | |
| 
 | |
| 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
 | |
| 
 | |
| 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
 | |
| 				j_dbs_info->prev_cpu_wall);
 | |
| 		j_dbs_info->prev_cpu_wall = cur_wall_time;
 | |
| 
 | |
| 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
 | |
| 				j_dbs_info->prev_cpu_idle);
 | |
| 		j_dbs_info->prev_cpu_idle = cur_idle_time;
 | |
| 
 | |
| 		if (dbs_tuners_ins.ignore_nice) {
 | |
| 			cputime64_t cur_nice;
 | |
| 			unsigned long cur_nice_jiffies;
 | |
| 
 | |
| 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
 | |
| 					 j_dbs_info->prev_cpu_nice);
 | |
| 			/*
 | |
| 			 * Assumption: nice time between sampling periods will
 | |
| 			 * be less than 2^32 jiffies for 32 bit sys
 | |
| 			 */
 | |
| 			cur_nice_jiffies = (unsigned long)
 | |
| 					cputime64_to_jiffies64(cur_nice);
 | |
| 
 | |
| 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
 | |
| 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(!wall_time || wall_time < idle_time))
 | |
| 			continue;
 | |
| 
 | |
| 		load = 100 * (wall_time - idle_time) / wall_time;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * break out if we 'cannot' reduce the speed as the user might
 | |
| 	 * want freq_step to be zero
 | |
| 	 */
 | |
| 	if (dbs_tuners_ins.freq_step == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Check for frequency increase */
 | |
| 	if (load > dbs_tuners_ins.up_threshold) {
 | |
| 		this_dbs_info->down_skip = 0;
 | |
| 
 | |
| 		/* if we are already at full speed then break out early */
 | |
| 		if (this_dbs_info->requested_freq == policy->max)
 | |
| 			return;
 | |
| 
 | |
| 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
 | |
| 
 | |
| 		/* max freq cannot be less than 100. But who knows.... */
 | |
| 		if (unlikely(freq_target == 0))
 | |
| 			freq_target = 5;
 | |
| 
 | |
| 		this_dbs_info->requested_freq += freq_target;
 | |
| 		if (this_dbs_info->requested_freq > policy->max)
 | |
| 			this_dbs_info->requested_freq = policy->max;
 | |
| 
 | |
| 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
 | |
| 			CPUFREQ_RELATION_H);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The optimal frequency is the frequency that is the lowest that
 | |
| 	 * can support the current CPU usage without triggering the up
 | |
| 	 * policy. To be safe, we focus 10 points under the threshold.
 | |
| 	 */
 | |
| 	if (load < (dbs_tuners_ins.down_threshold - 10)) {
 | |
| 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
 | |
| 
 | |
| 		this_dbs_info->requested_freq -= freq_target;
 | |
| 		if (this_dbs_info->requested_freq < policy->min)
 | |
| 			this_dbs_info->requested_freq = policy->min;
 | |
| 
 | |
| 		/*
 | |
| 		 * if we cannot reduce the frequency anymore, break out early
 | |
| 		 */
 | |
| 		if (policy->cur == policy->min)
 | |
| 			return;
 | |
| 
 | |
| 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
 | |
| 				CPUFREQ_RELATION_H);
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void do_dbs_timer(struct work_struct *work)
 | |
| {
 | |
| 	struct cpu_dbs_info_s *dbs_info =
 | |
| 		container_of(work, struct cpu_dbs_info_s, work.work);
 | |
| 	unsigned int cpu = dbs_info->cpu;
 | |
| 
 | |
| 	/* We want all CPUs to do sampling nearly on same jiffy */
 | |
| 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
 | |
| 
 | |
| 	delay -= jiffies % delay;
 | |
| 
 | |
| 	if (lock_policy_rwsem_write(cpu) < 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (!dbs_info->enable) {
 | |
| 		unlock_policy_rwsem_write(cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dbs_check_cpu(dbs_info);
 | |
| 
 | |
| 	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
 | |
| 	unlock_policy_rwsem_write(cpu);
 | |
| }
 | |
| 
 | |
| static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
 | |
| {
 | |
| 	/* We want all CPUs to do sampling nearly on same jiffy */
 | |
| 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
 | |
| 	delay -= jiffies % delay;
 | |
| 
 | |
| 	dbs_info->enable = 1;
 | |
| 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
 | |
| 	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
 | |
| 				delay);
 | |
| }
 | |
| 
 | |
| static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
 | |
| {
 | |
| 	dbs_info->enable = 0;
 | |
| 	cancel_delayed_work_sync(&dbs_info->work);
 | |
| }
 | |
| 
 | |
| static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
 | |
| 				   unsigned int event)
 | |
| {
 | |
| 	unsigned int cpu = policy->cpu;
 | |
| 	struct cpu_dbs_info_s *this_dbs_info;
 | |
| 	unsigned int j;
 | |
| 	int rc;
 | |
| 
 | |
| 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
 | |
| 
 | |
| 	switch (event) {
 | |
| 	case CPUFREQ_GOV_START:
 | |
| 		if ((!cpu_online(cpu)) || (!policy->cur))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (this_dbs_info->enable) /* Already enabled */
 | |
| 			break;
 | |
| 
 | |
| 		mutex_lock(&dbs_mutex);
 | |
| 
 | |
| 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
 | |
| 		if (rc) {
 | |
| 			mutex_unlock(&dbs_mutex);
 | |
| 			return rc;
 | |
| 		}
 | |
| 
 | |
| 		for_each_cpu(j, policy->cpus) {
 | |
| 			struct cpu_dbs_info_s *j_dbs_info;
 | |
| 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
 | |
| 			j_dbs_info->cur_policy = policy;
 | |
| 
 | |
| 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
 | |
| 						&j_dbs_info->prev_cpu_wall);
 | |
| 			if (dbs_tuners_ins.ignore_nice) {
 | |
| 				j_dbs_info->prev_cpu_nice =
 | |
| 						kstat_cpu(j).cpustat.nice;
 | |
| 			}
 | |
| 		}
 | |
| 		this_dbs_info->down_skip = 0;
 | |
| 		this_dbs_info->requested_freq = policy->cur;
 | |
| 
 | |
| 		dbs_enable++;
 | |
| 		/*
 | |
| 		 * Start the timerschedule work, when this governor
 | |
| 		 * is used for first time
 | |
| 		 */
 | |
| 		if (dbs_enable == 1) {
 | |
| 			unsigned int latency;
 | |
| 			/* policy latency is in nS. Convert it to uS first */
 | |
| 			latency = policy->cpuinfo.transition_latency / 1000;
 | |
| 			if (latency == 0)
 | |
| 				latency = 1;
 | |
| 
 | |
| 			/*
 | |
| 			 * conservative does not implement micro like ondemand
 | |
| 			 * governor, thus we are bound to jiffes/HZ
 | |
| 			 */
 | |
| 			min_sampling_rate =
 | |
| 				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
 | |
| 			/* Bring kernel and HW constraints together */
 | |
| 			min_sampling_rate = max(min_sampling_rate,
 | |
| 					MIN_LATENCY_MULTIPLIER * latency);
 | |
| 			dbs_tuners_ins.sampling_rate =
 | |
| 				max(min_sampling_rate,
 | |
| 				    latency * LATENCY_MULTIPLIER);
 | |
| 
 | |
| 			cpufreq_register_notifier(
 | |
| 					&dbs_cpufreq_notifier_block,
 | |
| 					CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 		}
 | |
| 		dbs_timer_init(this_dbs_info);
 | |
| 
 | |
| 		mutex_unlock(&dbs_mutex);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case CPUFREQ_GOV_STOP:
 | |
| 		mutex_lock(&dbs_mutex);
 | |
| 		dbs_timer_exit(this_dbs_info);
 | |
| 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
 | |
| 		dbs_enable--;
 | |
| 
 | |
| 		/*
 | |
| 		 * Stop the timerschedule work, when this governor
 | |
| 		 * is used for first time
 | |
| 		 */
 | |
| 		if (dbs_enable == 0)
 | |
| 			cpufreq_unregister_notifier(
 | |
| 					&dbs_cpufreq_notifier_block,
 | |
| 					CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 
 | |
| 		mutex_unlock(&dbs_mutex);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case CPUFREQ_GOV_LIMITS:
 | |
| 		mutex_lock(&dbs_mutex);
 | |
| 		if (policy->max < this_dbs_info->cur_policy->cur)
 | |
| 			__cpufreq_driver_target(
 | |
| 					this_dbs_info->cur_policy,
 | |
| 					policy->max, CPUFREQ_RELATION_H);
 | |
| 		else if (policy->min > this_dbs_info->cur_policy->cur)
 | |
| 			__cpufreq_driver_target(
 | |
| 					this_dbs_info->cur_policy,
 | |
| 					policy->min, CPUFREQ_RELATION_L);
 | |
| 		mutex_unlock(&dbs_mutex);
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
 | |
| static
 | |
| #endif
 | |
| struct cpufreq_governor cpufreq_gov_conservative = {
 | |
| 	.name			= "conservative",
 | |
| 	.governor		= cpufreq_governor_dbs,
 | |
| 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
 | |
| 	.owner			= THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init cpufreq_gov_dbs_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	kconservative_wq = create_workqueue("kconservative");
 | |
| 	if (!kconservative_wq) {
 | |
| 		printk(KERN_ERR "Creation of kconservative failed\n");
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	err = cpufreq_register_governor(&cpufreq_gov_conservative);
 | |
| 	if (err)
 | |
| 		destroy_workqueue(kconservative_wq);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __exit cpufreq_gov_dbs_exit(void)
 | |
| {
 | |
| 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
 | |
| 	destroy_workqueue(kconservative_wq);
 | |
| }
 | |
| 
 | |
| 
 | |
| MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
 | |
| MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
 | |
| 		"Low Latency Frequency Transition capable processors "
 | |
| 		"optimised for use in a battery environment");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
 | |
| fs_initcall(cpufreq_gov_dbs_init);
 | |
| #else
 | |
| module_init(cpufreq_gov_dbs_init);
 | |
| #endif
 | |
| module_exit(cpufreq_gov_dbs_exit);
 |