mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 08:26:29 +00:00 
			
		
		
		
	 048cd5888f
			
		
	
	
		048cd5888f
		
	
	
	
	
		
			
			Remove calls to the BKL since concurrent access is protected by the spin lock rtc_lock. Signed-off-by: David John <davidjon@xenontk.org> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
		
			
				
	
	
		
			1433 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1433 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	Real Time Clock interface for Linux
 | |
|  *
 | |
|  *	Copyright (C) 1996 Paul Gortmaker
 | |
|  *
 | |
|  *	This driver allows use of the real time clock (built into
 | |
|  *	nearly all computers) from user space. It exports the /dev/rtc
 | |
|  *	interface supporting various ioctl() and also the
 | |
|  *	/proc/driver/rtc pseudo-file for status information.
 | |
|  *
 | |
|  *	The ioctls can be used to set the interrupt behaviour and
 | |
|  *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
 | |
|  *	interface can be used to make use of these timer interrupts,
 | |
|  *	be they interval or alarm based.
 | |
|  *
 | |
|  *	The /dev/rtc interface will block on reads until an interrupt
 | |
|  *	has been received. If a RTC interrupt has already happened,
 | |
|  *	it will output an unsigned long and then block. The output value
 | |
|  *	contains the interrupt status in the low byte and the number of
 | |
|  *	interrupts since the last read in the remaining high bytes. The
 | |
|  *	/dev/rtc interface can also be used with the select(2) call.
 | |
|  *
 | |
|  *	This program is free software; you can redistribute it and/or
 | |
|  *	modify it under the terms of the GNU General Public License
 | |
|  *	as published by the Free Software Foundation; either version
 | |
|  *	2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  *	Based on other minimal char device drivers, like Alan's
 | |
|  *	watchdog, Ted's random, etc. etc.
 | |
|  *
 | |
|  *	1.07	Paul Gortmaker.
 | |
|  *	1.08	Miquel van Smoorenburg: disallow certain things on the
 | |
|  *		DEC Alpha as the CMOS clock is also used for other things.
 | |
|  *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
 | |
|  *	1.09a	Pete Zaitcev: Sun SPARC
 | |
|  *	1.09b	Jeff Garzik: Modularize, init cleanup
 | |
|  *	1.09c	Jeff Garzik: SMP cleanup
 | |
|  *	1.10	Paul Barton-Davis: add support for async I/O
 | |
|  *	1.10a	Andrea Arcangeli: Alpha updates
 | |
|  *	1.10b	Andrew Morton: SMP lock fix
 | |
|  *	1.10c	Cesar Barros: SMP locking fixes and cleanup
 | |
|  *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
 | |
|  *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
 | |
|  *	1.11	Takashi Iwai: Kernel access functions
 | |
|  *			      rtc_register/rtc_unregister/rtc_control
 | |
|  *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
 | |
|  *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
 | |
|  *		CONFIG_HPET_EMULATE_RTC
 | |
|  *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
 | |
|  *	1.12ac	Alan Cox: Allow read access to the day of week register
 | |
|  *	1.12b	David John: Remove calls to the BKL.
 | |
|  */
 | |
| 
 | |
| #define RTC_VERSION		"1.12b"
 | |
| 
 | |
| /*
 | |
|  *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
 | |
|  *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
 | |
|  *	design of the RTC, we don't want two different things trying to
 | |
|  *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
 | |
|  *	this driver.)
 | |
|  */
 | |
| 
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/miscdevice.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/fcntl.h>
 | |
| #include <linux/mc146818rtc.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/bcd.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <asm/current.h>
 | |
| #include <asm/system.h>
 | |
| 
 | |
| #ifdef CONFIG_X86
 | |
| #include <asm/hpet.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SPARC32
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| static unsigned long rtc_port;
 | |
| static int rtc_irq;
 | |
| #endif
 | |
| 
 | |
| #ifdef	CONFIG_HPET_EMULATE_RTC
 | |
| #undef	RTC_IRQ
 | |
| #endif
 | |
| 
 | |
| #ifdef RTC_IRQ
 | |
| static int rtc_has_irq = 1;
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_HPET_EMULATE_RTC
 | |
| #define is_hpet_enabled()			0
 | |
| #define hpet_set_alarm_time(hrs, min, sec)	0
 | |
| #define hpet_set_periodic_freq(arg)		0
 | |
| #define hpet_mask_rtc_irq_bit(arg)		0
 | |
| #define hpet_set_rtc_irq_bit(arg)		0
 | |
| #define hpet_rtc_timer_init()			do { } while (0)
 | |
| #define hpet_rtc_dropped_irq()			0
 | |
| #define hpet_register_irq_handler(h)		({ 0; })
 | |
| #define hpet_unregister_irq_handler(h)		({ 0; })
 | |
| #ifdef RTC_IRQ
 | |
| static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *	We sponge a minor off of the misc major. No need slurping
 | |
|  *	up another valuable major dev number for this. If you add
 | |
|  *	an ioctl, make sure you don't conflict with SPARC's RTC
 | |
|  *	ioctls.
 | |
|  */
 | |
| 
 | |
| static struct fasync_struct *rtc_async_queue;
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
 | |
| 
 | |
| #ifdef RTC_IRQ
 | |
| static void rtc_dropped_irq(unsigned long data);
 | |
| 
 | |
| static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
 | |
| #endif
 | |
| 
 | |
| static ssize_t rtc_read(struct file *file, char __user *buf,
 | |
| 			size_t count, loff_t *ppos);
 | |
| 
 | |
| static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 | |
| static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
 | |
| 
 | |
| #ifdef RTC_IRQ
 | |
| static unsigned int rtc_poll(struct file *file, poll_table *wait);
 | |
| #endif
 | |
| 
 | |
| static void get_rtc_alm_time(struct rtc_time *alm_tm);
 | |
| #ifdef RTC_IRQ
 | |
| static void set_rtc_irq_bit_locked(unsigned char bit);
 | |
| static void mask_rtc_irq_bit_locked(unsigned char bit);
 | |
| 
 | |
| static inline void set_rtc_irq_bit(unsigned char bit)
 | |
| {
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	set_rtc_irq_bit_locked(bit);
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| }
 | |
| 
 | |
| static void mask_rtc_irq_bit(unsigned char bit)
 | |
| {
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	mask_rtc_irq_bit_locked(bit);
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static int rtc_proc_open(struct inode *inode, struct file *file);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *	Bits in rtc_status. (6 bits of room for future expansion)
 | |
|  */
 | |
| 
 | |
| #define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
 | |
| #define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
 | |
| 
 | |
| /*
 | |
|  * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
 | |
|  * protected by the spin lock rtc_lock. However, ioctl can still disable the
 | |
|  * timer in rtc_status and then with del_timer after the interrupt has read
 | |
|  * rtc_status but before mod_timer is called, which would then reenable the
 | |
|  * timer (but you would need to have an awful timing before you'd trip on it)
 | |
|  */
 | |
| static unsigned long rtc_status;	/* bitmapped status byte.	*/
 | |
| static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
 | |
| static unsigned long rtc_irq_data;	/* our output to the world	*/
 | |
| static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
 | |
| 
 | |
| #ifdef RTC_IRQ
 | |
| /*
 | |
|  * rtc_task_lock nests inside rtc_lock.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(rtc_task_lock);
 | |
| static rtc_task_t *rtc_callback;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *	If this driver ever becomes modularised, it will be really nice
 | |
|  *	to make the epoch retain its value across module reload...
 | |
|  */
 | |
| 
 | |
| static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
 | |
| 
 | |
| static const unsigned char days_in_mo[] =
 | |
| {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 | |
| 
 | |
| /*
 | |
|  * Returns true if a clock update is in progress
 | |
|  */
 | |
| static inline unsigned char rtc_is_updating(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned char uip;
 | |
| 
 | |
| 	spin_lock_irqsave(&rtc_lock, flags);
 | |
| 	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 | |
| 	spin_unlock_irqrestore(&rtc_lock, flags);
 | |
| 	return uip;
 | |
| }
 | |
| 
 | |
| #ifdef RTC_IRQ
 | |
| /*
 | |
|  *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
 | |
|  *	but there is possibility of conflicting with the set_rtc_mmss()
 | |
|  *	call (the rtc irq and the timer irq can easily run at the same
 | |
|  *	time in two different CPUs). So we need to serialize
 | |
|  *	accesses to the chip with the rtc_lock spinlock that each
 | |
|  *	architecture should implement in the timer code.
 | |
|  *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
 | |
|  */
 | |
| 
 | |
| static irqreturn_t rtc_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	/*
 | |
| 	 *	Can be an alarm interrupt, update complete interrupt,
 | |
| 	 *	or a periodic interrupt. We store the status in the
 | |
| 	 *	low byte and the number of interrupts received since
 | |
| 	 *	the last read in the remainder of rtc_irq_data.
 | |
| 	 */
 | |
| 
 | |
| 	spin_lock(&rtc_lock);
 | |
| 	rtc_irq_data += 0x100;
 | |
| 	rtc_irq_data &= ~0xff;
 | |
| 	if (is_hpet_enabled()) {
 | |
| 		/*
 | |
| 		 * In this case it is HPET RTC interrupt handler
 | |
| 		 * calling us, with the interrupt information
 | |
| 		 * passed as arg1, instead of irq.
 | |
| 		 */
 | |
| 		rtc_irq_data |= (unsigned long)irq & 0xF0;
 | |
| 	} else {
 | |
| 		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
 | |
| 	}
 | |
| 
 | |
| 	if (rtc_status & RTC_TIMER_ON)
 | |
| 		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
 | |
| 
 | |
| 	spin_unlock(&rtc_lock);
 | |
| 
 | |
| 	/* Now do the rest of the actions */
 | |
| 	spin_lock(&rtc_task_lock);
 | |
| 	if (rtc_callback)
 | |
| 		rtc_callback->func(rtc_callback->private_data);
 | |
| 	spin_unlock(&rtc_task_lock);
 | |
| 	wake_up_interruptible(&rtc_wait);
 | |
| 
 | |
| 	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * sysctl-tuning infrastructure.
 | |
|  */
 | |
| static ctl_table rtc_table[] = {
 | |
| 	{
 | |
| 		.ctl_name	= CTL_UNNUMBERED,
 | |
| 		.procname	= "max-user-freq",
 | |
| 		.data		= &rtc_max_user_freq,
 | |
| 		.maxlen		= sizeof(int),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= &proc_dointvec,
 | |
| 	},
 | |
| 	{ .ctl_name = 0 }
 | |
| };
 | |
| 
 | |
| static ctl_table rtc_root[] = {
 | |
| 	{
 | |
| 		.ctl_name	= CTL_UNNUMBERED,
 | |
| 		.procname	= "rtc",
 | |
| 		.mode		= 0555,
 | |
| 		.child		= rtc_table,
 | |
| 	},
 | |
| 	{ .ctl_name = 0 }
 | |
| };
 | |
| 
 | |
| static ctl_table dev_root[] = {
 | |
| 	{
 | |
| 		.ctl_name	= CTL_DEV,
 | |
| 		.procname	= "dev",
 | |
| 		.mode		= 0555,
 | |
| 		.child		= rtc_root,
 | |
| 	},
 | |
| 	{ .ctl_name = 0 }
 | |
| };
 | |
| 
 | |
| static struct ctl_table_header *sysctl_header;
 | |
| 
 | |
| static int __init init_sysctl(void)
 | |
| {
 | |
|     sysctl_header = register_sysctl_table(dev_root);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void __exit cleanup_sysctl(void)
 | |
| {
 | |
|     unregister_sysctl_table(sysctl_header);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Now all the various file operations that we export.
 | |
|  */
 | |
| 
 | |
| static ssize_t rtc_read(struct file *file, char __user *buf,
 | |
| 			size_t count, loff_t *ppos)
 | |
| {
 | |
| #ifndef RTC_IRQ
 | |
| 	return -EIO;
 | |
| #else
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 	unsigned long data;
 | |
| 	ssize_t retval;
 | |
| 
 | |
| 	if (rtc_has_irq == 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Historically this function used to assume that sizeof(unsigned long)
 | |
| 	 * is the same in userspace and kernelspace.  This lead to problems
 | |
| 	 * for configurations with multiple ABIs such a the MIPS o32 and 64
 | |
| 	 * ABIs supported on the same kernel.  So now we support read of both
 | |
| 	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
 | |
| 	 * userspace ABI.
 | |
| 	 */
 | |
| 	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	add_wait_queue(&rtc_wait, &wait);
 | |
| 
 | |
| 	do {
 | |
| 		/* First make it right. Then make it fast. Putting this whole
 | |
| 		 * block within the parentheses of a while would be too
 | |
| 		 * confusing. And no, xchg() is not the answer. */
 | |
| 
 | |
| 		__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 
 | |
| 		spin_lock_irq(&rtc_lock);
 | |
| 		data = rtc_irq_data;
 | |
| 		rtc_irq_data = 0;
 | |
| 		spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 		if (data != 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (file->f_flags & O_NONBLOCK) {
 | |
| 			retval = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (signal_pending(current)) {
 | |
| 			retval = -ERESTARTSYS;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		schedule();
 | |
| 	} while (1);
 | |
| 
 | |
| 	if (count == sizeof(unsigned int)) {
 | |
| 		retval = put_user(data,
 | |
| 				  (unsigned int __user *)buf) ?: sizeof(int);
 | |
| 	} else {
 | |
| 		retval = put_user(data,
 | |
| 				  (unsigned long __user *)buf) ?: sizeof(long);
 | |
| 	}
 | |
| 	if (!retval)
 | |
| 		retval = count;
 | |
|  out:
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	remove_wait_queue(&rtc_wait, &wait);
 | |
| 
 | |
| 	return retval;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
 | |
| {
 | |
| 	struct rtc_time wtime;
 | |
| 
 | |
| #ifdef RTC_IRQ
 | |
| 	if (rtc_has_irq == 0) {
 | |
| 		switch (cmd) {
 | |
| 		case RTC_AIE_OFF:
 | |
| 		case RTC_AIE_ON:
 | |
| 		case RTC_PIE_OFF:
 | |
| 		case RTC_PIE_ON:
 | |
| 		case RTC_UIE_OFF:
 | |
| 		case RTC_UIE_ON:
 | |
| 		case RTC_IRQP_READ:
 | |
| 		case RTC_IRQP_SET:
 | |
| 			return -EINVAL;
 | |
| 		};
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	switch (cmd) {
 | |
| #ifdef RTC_IRQ
 | |
| 	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
 | |
| 	{
 | |
| 		mask_rtc_irq_bit(RTC_AIE);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
 | |
| 	{
 | |
| 		set_rtc_irq_bit(RTC_AIE);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
 | |
| 	{
 | |
| 		/* can be called from isr via rtc_control() */
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&rtc_lock, flags);
 | |
| 		mask_rtc_irq_bit_locked(RTC_PIE);
 | |
| 		if (rtc_status & RTC_TIMER_ON) {
 | |
| 			rtc_status &= ~RTC_TIMER_ON;
 | |
| 			del_timer(&rtc_irq_timer);
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&rtc_lock, flags);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 	case RTC_PIE_ON:	/* Allow periodic ints		*/
 | |
| 	{
 | |
| 		/* can be called from isr via rtc_control() */
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't really want Joe User enabling more
 | |
| 		 * than 64Hz of interrupts on a multi-user machine.
 | |
| 		 */
 | |
| 		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
 | |
| 						(!capable(CAP_SYS_RESOURCE)))
 | |
| 			return -EACCES;
 | |
| 
 | |
| 		spin_lock_irqsave(&rtc_lock, flags);
 | |
| 		if (!(rtc_status & RTC_TIMER_ON)) {
 | |
| 			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
 | |
| 					2*HZ/100);
 | |
| 			rtc_status |= RTC_TIMER_ON;
 | |
| 		}
 | |
| 		set_rtc_irq_bit_locked(RTC_PIE);
 | |
| 		spin_unlock_irqrestore(&rtc_lock, flags);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
 | |
| 	{
 | |
| 		mask_rtc_irq_bit(RTC_UIE);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
 | |
| 	{
 | |
| 		set_rtc_irq_bit(RTC_UIE);
 | |
| 		return 0;
 | |
| 	}
 | |
| #endif
 | |
| 	case RTC_ALM_READ:	/* Read the present alarm time */
 | |
| 	{
 | |
| 		/*
 | |
| 		 * This returns a struct rtc_time. Reading >= 0xc0
 | |
| 		 * means "don't care" or "match all". Only the tm_hour,
 | |
| 		 * tm_min, and tm_sec values are filled in.
 | |
| 		 */
 | |
| 		memset(&wtime, 0, sizeof(struct rtc_time));
 | |
| 		get_rtc_alm_time(&wtime);
 | |
| 		break;
 | |
| 	}
 | |
| 	case RTC_ALM_SET:	/* Store a time into the alarm */
 | |
| 	{
 | |
| 		/*
 | |
| 		 * This expects a struct rtc_time. Writing 0xff means
 | |
| 		 * "don't care" or "match all". Only the tm_hour,
 | |
| 		 * tm_min and tm_sec are used.
 | |
| 		 */
 | |
| 		unsigned char hrs, min, sec;
 | |
| 		struct rtc_time alm_tm;
 | |
| 
 | |
| 		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
 | |
| 				   sizeof(struct rtc_time)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		hrs = alm_tm.tm_hour;
 | |
| 		min = alm_tm.tm_min;
 | |
| 		sec = alm_tm.tm_sec;
 | |
| 
 | |
| 		spin_lock_irq(&rtc_lock);
 | |
| 		if (hpet_set_alarm_time(hrs, min, sec)) {
 | |
| 			/*
 | |
| 			 * Fallthru and set alarm time in CMOS too,
 | |
| 			 * so that we will get proper value in RTC_ALM_READ
 | |
| 			 */
 | |
| 		}
 | |
| 		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
 | |
| 							RTC_ALWAYS_BCD) {
 | |
| 			if (sec < 60)
 | |
| 				sec = bin2bcd(sec);
 | |
| 			else
 | |
| 				sec = 0xff;
 | |
| 
 | |
| 			if (min < 60)
 | |
| 				min = bin2bcd(min);
 | |
| 			else
 | |
| 				min = 0xff;
 | |
| 
 | |
| 			if (hrs < 24)
 | |
| 				hrs = bin2bcd(hrs);
 | |
| 			else
 | |
| 				hrs = 0xff;
 | |
| 		}
 | |
| 		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 | |
| 		CMOS_WRITE(min, RTC_MINUTES_ALARM);
 | |
| 		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 | |
| 		spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
 | |
| 	{
 | |
| 		memset(&wtime, 0, sizeof(struct rtc_time));
 | |
| 		rtc_get_rtc_time(&wtime);
 | |
| 		break;
 | |
| 	}
 | |
| 	case RTC_SET_TIME:	/* Set the RTC */
 | |
| 	{
 | |
| 		struct rtc_time rtc_tm;
 | |
| 		unsigned char mon, day, hrs, min, sec, leap_yr;
 | |
| 		unsigned char save_control, save_freq_select;
 | |
| 		unsigned int yrs;
 | |
| #ifdef CONFIG_MACH_DECSTATION
 | |
| 		unsigned int real_yrs;
 | |
| #endif
 | |
| 
 | |
| 		if (!capable(CAP_SYS_TIME))
 | |
| 			return -EACCES;
 | |
| 
 | |
| 		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
 | |
| 				   sizeof(struct rtc_time)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		yrs = rtc_tm.tm_year + 1900;
 | |
| 		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
 | |
| 		day = rtc_tm.tm_mday;
 | |
| 		hrs = rtc_tm.tm_hour;
 | |
| 		min = rtc_tm.tm_min;
 | |
| 		sec = rtc_tm.tm_sec;
 | |
| 
 | |
| 		if (yrs < 1970)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
 | |
| 
 | |
| 		if ((mon > 12) || (day == 0))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		yrs -= epoch;
 | |
| 		if (yrs > 255)		/* They are unsigned */
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		spin_lock_irq(&rtc_lock);
 | |
| #ifdef CONFIG_MACH_DECSTATION
 | |
| 		real_yrs = yrs;
 | |
| 		yrs = 72;
 | |
| 
 | |
| 		/*
 | |
| 		 * We want to keep the year set to 73 until March
 | |
| 		 * for non-leap years, so that Feb, 29th is handled
 | |
| 		 * correctly.
 | |
| 		 */
 | |
| 		if (!leap_yr && mon < 3) {
 | |
| 			real_yrs--;
 | |
| 			yrs = 73;
 | |
| 		}
 | |
| #endif
 | |
| 		/* These limits and adjustments are independent of
 | |
| 		 * whether the chip is in binary mode or not.
 | |
| 		 */
 | |
| 		if (yrs > 169) {
 | |
| 			spin_unlock_irq(&rtc_lock);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (yrs >= 100)
 | |
| 			yrs -= 100;
 | |
| 
 | |
| 		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
 | |
| 		    || RTC_ALWAYS_BCD) {
 | |
| 			sec = bin2bcd(sec);
 | |
| 			min = bin2bcd(min);
 | |
| 			hrs = bin2bcd(hrs);
 | |
| 			day = bin2bcd(day);
 | |
| 			mon = bin2bcd(mon);
 | |
| 			yrs = bin2bcd(yrs);
 | |
| 		}
 | |
| 
 | |
| 		save_control = CMOS_READ(RTC_CONTROL);
 | |
| 		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 | |
| 		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
 | |
| 		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 | |
| 
 | |
| #ifdef CONFIG_MACH_DECSTATION
 | |
| 		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
 | |
| #endif
 | |
| 		CMOS_WRITE(yrs, RTC_YEAR);
 | |
| 		CMOS_WRITE(mon, RTC_MONTH);
 | |
| 		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
 | |
| 		CMOS_WRITE(hrs, RTC_HOURS);
 | |
| 		CMOS_WRITE(min, RTC_MINUTES);
 | |
| 		CMOS_WRITE(sec, RTC_SECONDS);
 | |
| 
 | |
| 		CMOS_WRITE(save_control, RTC_CONTROL);
 | |
| 		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 | |
| 
 | |
| 		spin_unlock_irq(&rtc_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| #ifdef RTC_IRQ
 | |
| 	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
 | |
| 	{
 | |
| 		return put_user(rtc_freq, (unsigned long __user *)arg);
 | |
| 	}
 | |
| 	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
 | |
| 	{
 | |
| 		int tmp = 0;
 | |
| 		unsigned char val;
 | |
| 		/* can be called from isr via rtc_control() */
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/*
 | |
| 		 * The max we can do is 8192Hz.
 | |
| 		 */
 | |
| 		if ((arg < 2) || (arg > 8192))
 | |
| 			return -EINVAL;
 | |
| 		/*
 | |
| 		 * We don't really want Joe User generating more
 | |
| 		 * than 64Hz of interrupts on a multi-user machine.
 | |
| 		 */
 | |
| 		if (!kernel && (arg > rtc_max_user_freq) &&
 | |
| 					!capable(CAP_SYS_RESOURCE))
 | |
| 			return -EACCES;
 | |
| 
 | |
| 		while (arg > (1<<tmp))
 | |
| 			tmp++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check that the input was really a power of 2.
 | |
| 		 */
 | |
| 		if (arg != (1<<tmp))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		rtc_freq = arg;
 | |
| 
 | |
| 		spin_lock_irqsave(&rtc_lock, flags);
 | |
| 		if (hpet_set_periodic_freq(arg)) {
 | |
| 			spin_unlock_irqrestore(&rtc_lock, flags);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
 | |
| 		val |= (16 - tmp);
 | |
| 		CMOS_WRITE(val, RTC_FREQ_SELECT);
 | |
| 		spin_unlock_irqrestore(&rtc_lock, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| #endif
 | |
| 	case RTC_EPOCH_READ:	/* Read the epoch.	*/
 | |
| 	{
 | |
| 		return put_user(epoch, (unsigned long __user *)arg);
 | |
| 	}
 | |
| 	case RTC_EPOCH_SET:	/* Set the epoch.	*/
 | |
| 	{
 | |
| 		/*
 | |
| 		 * There were no RTC clocks before 1900.
 | |
| 		 */
 | |
| 		if (arg < 1900)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!capable(CAP_SYS_TIME))
 | |
| 			return -EACCES;
 | |
| 
 | |
| 		epoch = arg;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	default:
 | |
| 		return -ENOTTY;
 | |
| 	}
 | |
| 	return copy_to_user((void __user *)arg,
 | |
| 			    &wtime, sizeof wtime) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	long ret;
 | |
| 	ret = rtc_do_ioctl(cmd, arg, 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	We enforce only one user at a time here with the open/close.
 | |
|  *	Also clear the previous interrupt data on an open, and clean
 | |
|  *	up things on a close.
 | |
|  */
 | |
| static int rtc_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 
 | |
| 	if (rtc_status & RTC_IS_OPEN)
 | |
| 		goto out_busy;
 | |
| 
 | |
| 	rtc_status |= RTC_IS_OPEN;
 | |
| 
 | |
| 	rtc_irq_data = 0;
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 	return 0;
 | |
| 
 | |
| out_busy:
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| static int rtc_fasync(int fd, struct file *filp, int on)
 | |
| {
 | |
| 	return fasync_helper(fd, filp, on, &rtc_async_queue);
 | |
| }
 | |
| 
 | |
| static int rtc_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| #ifdef RTC_IRQ
 | |
| 	unsigned char tmp;
 | |
| 
 | |
| 	if (rtc_has_irq == 0)
 | |
| 		goto no_irq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Turn off all interrupts once the device is no longer
 | |
| 	 * in use, and clear the data.
 | |
| 	 */
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
 | |
| 		tmp = CMOS_READ(RTC_CONTROL);
 | |
| 		tmp &=  ~RTC_PIE;
 | |
| 		tmp &=  ~RTC_AIE;
 | |
| 		tmp &=  ~RTC_UIE;
 | |
| 		CMOS_WRITE(tmp, RTC_CONTROL);
 | |
| 		CMOS_READ(RTC_INTR_FLAGS);
 | |
| 	}
 | |
| 	if (rtc_status & RTC_TIMER_ON) {
 | |
| 		rtc_status &= ~RTC_TIMER_ON;
 | |
| 		del_timer(&rtc_irq_timer);
 | |
| 	}
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| no_irq:
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	rtc_irq_data = 0;
 | |
| 	rtc_status &= ~RTC_IS_OPEN;
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef RTC_IRQ
 | |
| static unsigned int rtc_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	unsigned long l;
 | |
| 
 | |
| 	if (rtc_has_irq == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	poll_wait(file, &rtc_wait, wait);
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	l = rtc_irq_data;
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	if (l != 0)
 | |
| 		return POLLIN | POLLRDNORM;
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int rtc_register(rtc_task_t *task)
 | |
| {
 | |
| #ifndef RTC_IRQ
 | |
| 	return -EIO;
 | |
| #else
 | |
| 	if (task == NULL || task->func == NULL)
 | |
| 		return -EINVAL;
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	if (rtc_status & RTC_IS_OPEN) {
 | |
| 		spin_unlock_irq(&rtc_lock);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	spin_lock(&rtc_task_lock);
 | |
| 	if (rtc_callback) {
 | |
| 		spin_unlock(&rtc_task_lock);
 | |
| 		spin_unlock_irq(&rtc_lock);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	rtc_status |= RTC_IS_OPEN;
 | |
| 	rtc_callback = task;
 | |
| 	spin_unlock(&rtc_task_lock);
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(rtc_register);
 | |
| 
 | |
| int rtc_unregister(rtc_task_t *task)
 | |
| {
 | |
| #ifndef RTC_IRQ
 | |
| 	return -EIO;
 | |
| #else
 | |
| 	unsigned char tmp;
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	spin_lock(&rtc_task_lock);
 | |
| 	if (rtc_callback != task) {
 | |
| 		spin_unlock(&rtc_task_lock);
 | |
| 		spin_unlock_irq(&rtc_lock);
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 	rtc_callback = NULL;
 | |
| 
 | |
| 	/* disable controls */
 | |
| 	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
 | |
| 		tmp = CMOS_READ(RTC_CONTROL);
 | |
| 		tmp &= ~RTC_PIE;
 | |
| 		tmp &= ~RTC_AIE;
 | |
| 		tmp &= ~RTC_UIE;
 | |
| 		CMOS_WRITE(tmp, RTC_CONTROL);
 | |
| 		CMOS_READ(RTC_INTR_FLAGS);
 | |
| 	}
 | |
| 	if (rtc_status & RTC_TIMER_ON) {
 | |
| 		rtc_status &= ~RTC_TIMER_ON;
 | |
| 		del_timer(&rtc_irq_timer);
 | |
| 	}
 | |
| 	rtc_status &= ~RTC_IS_OPEN;
 | |
| 	spin_unlock(&rtc_task_lock);
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(rtc_unregister);
 | |
| 
 | |
| int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| #ifndef RTC_IRQ
 | |
| 	return -EIO;
 | |
| #else
 | |
| 	unsigned long flags;
 | |
| 	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
 | |
| 		return -EINVAL;
 | |
| 	spin_lock_irqsave(&rtc_task_lock, flags);
 | |
| 	if (rtc_callback != task) {
 | |
| 		spin_unlock_irqrestore(&rtc_task_lock, flags);
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&rtc_task_lock, flags);
 | |
| 	return rtc_do_ioctl(cmd, arg, 1);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(rtc_control);
 | |
| 
 | |
| /*
 | |
|  *	The various file operations we support.
 | |
|  */
 | |
| 
 | |
| static const struct file_operations rtc_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.llseek		= no_llseek,
 | |
| 	.read		= rtc_read,
 | |
| #ifdef RTC_IRQ
 | |
| 	.poll		= rtc_poll,
 | |
| #endif
 | |
| 	.unlocked_ioctl	= rtc_ioctl,
 | |
| 	.open		= rtc_open,
 | |
| 	.release	= rtc_release,
 | |
| 	.fasync		= rtc_fasync,
 | |
| };
 | |
| 
 | |
| static struct miscdevice rtc_dev = {
 | |
| 	.minor		= RTC_MINOR,
 | |
| 	.name		= "rtc",
 | |
| 	.fops		= &rtc_fops,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static const struct file_operations rtc_proc_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.open		= rtc_proc_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static resource_size_t rtc_size;
 | |
| 
 | |
| static struct resource * __init rtc_request_region(resource_size_t size)
 | |
| {
 | |
| 	struct resource *r;
 | |
| 
 | |
| 	if (RTC_IOMAPPED)
 | |
| 		r = request_region(RTC_PORT(0), size, "rtc");
 | |
| 	else
 | |
| 		r = request_mem_region(RTC_PORT(0), size, "rtc");
 | |
| 
 | |
| 	if (r)
 | |
| 		rtc_size = size;
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void rtc_release_region(void)
 | |
| {
 | |
| 	if (RTC_IOMAPPED)
 | |
| 		release_region(RTC_PORT(0), rtc_size);
 | |
| 	else
 | |
| 		release_mem_region(RTC_PORT(0), rtc_size);
 | |
| }
 | |
| 
 | |
| static int __init rtc_init(void)
 | |
| {
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 	struct proc_dir_entry *ent;
 | |
| #endif
 | |
| #if defined(__alpha__) || defined(__mips__)
 | |
| 	unsigned int year, ctrl;
 | |
| 	char *guess = NULL;
 | |
| #endif
 | |
| #ifdef CONFIG_SPARC32
 | |
| 	struct device_node *ebus_dp;
 | |
| 	struct of_device *op;
 | |
| #else
 | |
| 	void *r;
 | |
| #ifdef RTC_IRQ
 | |
| 	irq_handler_t rtc_int_handler_ptr;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SPARC32
 | |
| 	for_each_node_by_name(ebus_dp, "ebus") {
 | |
| 		struct device_node *dp;
 | |
| 		for (dp = ebus_dp; dp; dp = dp->sibling) {
 | |
| 			if (!strcmp(dp->name, "rtc")) {
 | |
| 				op = of_find_device_by_node(dp);
 | |
| 				if (op) {
 | |
| 					rtc_port = op->resource[0].start;
 | |
| 					rtc_irq = op->irqs[0];
 | |
| 					goto found;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	rtc_has_irq = 0;
 | |
| 	printk(KERN_ERR "rtc_init: no PC rtc found\n");
 | |
| 	return -EIO;
 | |
| 
 | |
| found:
 | |
| 	if (!rtc_irq) {
 | |
| 		rtc_has_irq = 0;
 | |
| 		goto no_irq;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
 | |
| 	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
 | |
| 	 */
 | |
| 	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
 | |
| 			(void *)&rtc_port)) {
 | |
| 		rtc_has_irq = 0;
 | |
| 		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| no_irq:
 | |
| #else
 | |
| 	r = rtc_request_region(RTC_IO_EXTENT);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we've already requested a smaller range (for example, because
 | |
| 	 * PNPBIOS or ACPI told us how the device is configured), the request
 | |
| 	 * above might fail because it's too big.
 | |
| 	 *
 | |
| 	 * If so, request just the range we actually use.
 | |
| 	 */
 | |
| 	if (!r)
 | |
| 		r = rtc_request_region(RTC_IO_EXTENT_USED);
 | |
| 	if (!r) {
 | |
| #ifdef RTC_IRQ
 | |
| 		rtc_has_irq = 0;
 | |
| #endif
 | |
| 		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
 | |
| 		       (long)(RTC_PORT(0)));
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| #ifdef RTC_IRQ
 | |
| 	if (is_hpet_enabled()) {
 | |
| 		int err;
 | |
| 
 | |
| 		rtc_int_handler_ptr = hpet_rtc_interrupt;
 | |
| 		err = hpet_register_irq_handler(rtc_interrupt);
 | |
| 		if (err != 0) {
 | |
| 			printk(KERN_WARNING "hpet_register_irq_handler failed "
 | |
| 					"in rtc_init().");
 | |
| 			return err;
 | |
| 		}
 | |
| 	} else {
 | |
| 		rtc_int_handler_ptr = rtc_interrupt;
 | |
| 	}
 | |
| 
 | |
| 	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
 | |
| 			"rtc", NULL)) {
 | |
| 		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
 | |
| 		rtc_has_irq = 0;
 | |
| 		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
 | |
| 		rtc_release_region();
 | |
| 
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	hpet_rtc_timer_init();
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif /* CONFIG_SPARC32 vs. others */
 | |
| 
 | |
| 	if (misc_register(&rtc_dev)) {
 | |
| #ifdef RTC_IRQ
 | |
| 		free_irq(RTC_IRQ, NULL);
 | |
| 		hpet_unregister_irq_handler(rtc_interrupt);
 | |
| 		rtc_has_irq = 0;
 | |
| #endif
 | |
| 		rtc_release_region();
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 	ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
 | |
| 	if (!ent)
 | |
| 		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
 | |
| #endif
 | |
| 
 | |
| #if defined(__alpha__) || defined(__mips__)
 | |
| 	rtc_freq = HZ;
 | |
| 
 | |
| 	/* Each operating system on an Alpha uses its own epoch.
 | |
| 	   Let's try to guess which one we are using now. */
 | |
| 
 | |
| 	if (rtc_is_updating() != 0)
 | |
| 		msleep(20);
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	year = CMOS_READ(RTC_YEAR);
 | |
| 	ctrl = CMOS_READ(RTC_CONTROL);
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 | |
| 		year = bcd2bin(year);       /* This should never happen... */
 | |
| 
 | |
| 	if (year < 20) {
 | |
| 		epoch = 2000;
 | |
| 		guess = "SRM (post-2000)";
 | |
| 	} else if (year >= 20 && year < 48) {
 | |
| 		epoch = 1980;
 | |
| 		guess = "ARC console";
 | |
| 	} else if (year >= 48 && year < 72) {
 | |
| 		epoch = 1952;
 | |
| 		guess = "Digital UNIX";
 | |
| #if defined(__mips__)
 | |
| 	} else if (year >= 72 && year < 74) {
 | |
| 		epoch = 2000;
 | |
| 		guess = "Digital DECstation";
 | |
| #else
 | |
| 	} else if (year >= 70) {
 | |
| 		epoch = 1900;
 | |
| 		guess = "Standard PC (1900)";
 | |
| #endif
 | |
| 	}
 | |
| 	if (guess)
 | |
| 		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
 | |
| 			guess, epoch);
 | |
| #endif
 | |
| #ifdef RTC_IRQ
 | |
| 	if (rtc_has_irq == 0)
 | |
| 		goto no_irq2;
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	rtc_freq = 1024;
 | |
| 	if (!hpet_set_periodic_freq(rtc_freq)) {
 | |
| 		/*
 | |
| 		 * Initialize periodic frequency to CMOS reset default,
 | |
| 		 * which is 1024Hz
 | |
| 		 */
 | |
| 		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
 | |
| 			   RTC_FREQ_SELECT);
 | |
| 	}
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| no_irq2:
 | |
| #endif
 | |
| 
 | |
| 	(void) init_sysctl();
 | |
| 
 | |
| 	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __exit rtc_exit(void)
 | |
| {
 | |
| 	cleanup_sysctl();
 | |
| 	remove_proc_entry("driver/rtc", NULL);
 | |
| 	misc_deregister(&rtc_dev);
 | |
| 
 | |
| #ifdef CONFIG_SPARC32
 | |
| 	if (rtc_has_irq)
 | |
| 		free_irq(rtc_irq, &rtc_port);
 | |
| #else
 | |
| 	rtc_release_region();
 | |
| #ifdef RTC_IRQ
 | |
| 	if (rtc_has_irq) {
 | |
| 		free_irq(RTC_IRQ, NULL);
 | |
| 		hpet_unregister_irq_handler(hpet_rtc_interrupt);
 | |
| 	}
 | |
| #endif
 | |
| #endif /* CONFIG_SPARC32 */
 | |
| }
 | |
| 
 | |
| module_init(rtc_init);
 | |
| module_exit(rtc_exit);
 | |
| 
 | |
| #ifdef RTC_IRQ
 | |
| /*
 | |
|  *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
 | |
|  *	(usually during an IDE disk interrupt, with IRQ unmasking off)
 | |
|  *	Since the interrupt handler doesn't get called, the IRQ status
 | |
|  *	byte doesn't get read, and the RTC stops generating interrupts.
 | |
|  *	A timer is set, and will call this function if/when that happens.
 | |
|  *	To get it out of this stalled state, we just read the status.
 | |
|  *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
 | |
|  *	(You *really* shouldn't be trying to use a non-realtime system
 | |
|  *	for something that requires a steady > 1KHz signal anyways.)
 | |
|  */
 | |
| 
 | |
| static void rtc_dropped_irq(unsigned long data)
 | |
| {
 | |
| 	unsigned long freq;
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 
 | |
| 	if (hpet_rtc_dropped_irq()) {
 | |
| 		spin_unlock_irq(&rtc_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Just in case someone disabled the timer from behind our back... */
 | |
| 	if (rtc_status & RTC_TIMER_ON)
 | |
| 		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
 | |
| 
 | |
| 	rtc_irq_data += ((rtc_freq/HZ)<<8);
 | |
| 	rtc_irq_data &= ~0xff;
 | |
| 	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
 | |
| 
 | |
| 	freq = rtc_freq;
 | |
| 
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	if (printk_ratelimit()) {
 | |
| 		printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
 | |
| 			freq);
 | |
| 	}
 | |
| 
 | |
| 	/* Now we have new data */
 | |
| 	wake_up_interruptible(&rtc_wait);
 | |
| 
 | |
| 	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| /*
 | |
|  *	Info exported via "/proc/driver/rtc".
 | |
|  */
 | |
| 
 | |
| static int rtc_proc_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| #define YN(bit) ((ctrl & bit) ? "yes" : "no")
 | |
| #define NY(bit) ((ctrl & bit) ? "no" : "yes")
 | |
| 	struct rtc_time tm;
 | |
| 	unsigned char batt, ctrl;
 | |
| 	unsigned long freq;
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
 | |
| 	ctrl = CMOS_READ(RTC_CONTROL);
 | |
| 	freq = rtc_freq;
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 
 | |
| 	rtc_get_rtc_time(&tm);
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no way to tell if the luser has the RTC set for local
 | |
| 	 * time or for Universal Standard Time (GMT). Probably local though.
 | |
| 	 */
 | |
| 	seq_printf(seq,
 | |
| 		   "rtc_time\t: %02d:%02d:%02d\n"
 | |
| 		   "rtc_date\t: %04d-%02d-%02d\n"
 | |
| 		   "rtc_epoch\t: %04lu\n",
 | |
| 		   tm.tm_hour, tm.tm_min, tm.tm_sec,
 | |
| 		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
 | |
| 
 | |
| 	get_rtc_alm_time(&tm);
 | |
| 
 | |
| 	/*
 | |
| 	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
 | |
| 	 * match any value for that particular field. Values that are
 | |
| 	 * greater than a valid time, but less than 0xc0 shouldn't appear.
 | |
| 	 */
 | |
| 	seq_puts(seq, "alarm\t\t: ");
 | |
| 	if (tm.tm_hour <= 24)
 | |
| 		seq_printf(seq, "%02d:", tm.tm_hour);
 | |
| 	else
 | |
| 		seq_puts(seq, "**:");
 | |
| 
 | |
| 	if (tm.tm_min <= 59)
 | |
| 		seq_printf(seq, "%02d:", tm.tm_min);
 | |
| 	else
 | |
| 		seq_puts(seq, "**:");
 | |
| 
 | |
| 	if (tm.tm_sec <= 59)
 | |
| 		seq_printf(seq, "%02d\n", tm.tm_sec);
 | |
| 	else
 | |
| 		seq_puts(seq, "**\n");
 | |
| 
 | |
| 	seq_printf(seq,
 | |
| 		   "DST_enable\t: %s\n"
 | |
| 		   "BCD\t\t: %s\n"
 | |
| 		   "24hr\t\t: %s\n"
 | |
| 		   "square_wave\t: %s\n"
 | |
| 		   "alarm_IRQ\t: %s\n"
 | |
| 		   "update_IRQ\t: %s\n"
 | |
| 		   "periodic_IRQ\t: %s\n"
 | |
| 		   "periodic_freq\t: %ld\n"
 | |
| 		   "batt_status\t: %s\n",
 | |
| 		   YN(RTC_DST_EN),
 | |
| 		   NY(RTC_DM_BINARY),
 | |
| 		   YN(RTC_24H),
 | |
| 		   YN(RTC_SQWE),
 | |
| 		   YN(RTC_AIE),
 | |
| 		   YN(RTC_UIE),
 | |
| 		   YN(RTC_PIE),
 | |
| 		   freq,
 | |
| 		   batt ? "okay" : "dead");
 | |
| 
 | |
| 	return  0;
 | |
| #undef YN
 | |
| #undef NY
 | |
| }
 | |
| 
 | |
| static int rtc_proc_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, rtc_proc_show, NULL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
 | |
| {
 | |
| 	unsigned long uip_watchdog = jiffies, flags;
 | |
| 	unsigned char ctrl;
 | |
| #ifdef CONFIG_MACH_DECSTATION
 | |
| 	unsigned int real_year;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * read RTC once any update in progress is done. The update
 | |
| 	 * can take just over 2ms. We wait 20ms. There is no need to
 | |
| 	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
 | |
| 	 * If you need to know *exactly* when a second has started, enable
 | |
| 	 * periodic update complete interrupts, (via ioctl) and then
 | |
| 	 * immediately read /dev/rtc which will block until you get the IRQ.
 | |
| 	 * Once the read clears, read the RTC time (again via ioctl). Easy.
 | |
| 	 */
 | |
| 
 | |
| 	while (rtc_is_updating() != 0 &&
 | |
| 	       time_before(jiffies, uip_watchdog + 2*HZ/100))
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	/*
 | |
| 	 * Only the values that we read from the RTC are set. We leave
 | |
| 	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
 | |
| 	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
 | |
| 	 * only updated by the RTC when initially set to a non-zero value.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&rtc_lock, flags);
 | |
| 	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
 | |
| 	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
 | |
| 	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
 | |
| 	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
 | |
| 	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
 | |
| 	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
 | |
| 	/* Only set from 2.6.16 onwards */
 | |
| 	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
 | |
| 
 | |
| #ifdef CONFIG_MACH_DECSTATION
 | |
| 	real_year = CMOS_READ(RTC_DEC_YEAR);
 | |
| #endif
 | |
| 	ctrl = CMOS_READ(RTC_CONTROL);
 | |
| 	spin_unlock_irqrestore(&rtc_lock, flags);
 | |
| 
 | |
| 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 | |
| 		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
 | |
| 		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
 | |
| 		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
 | |
| 		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
 | |
| 		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
 | |
| 		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
 | |
| 		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_MACH_DECSTATION
 | |
| 	rtc_tm->tm_year += real_year - 72;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Account for differences between how the RTC uses the values
 | |
| 	 * and how they are defined in a struct rtc_time;
 | |
| 	 */
 | |
| 	rtc_tm->tm_year += epoch - 1900;
 | |
| 	if (rtc_tm->tm_year <= 69)
 | |
| 		rtc_tm->tm_year += 100;
 | |
| 
 | |
| 	rtc_tm->tm_mon--;
 | |
| }
 | |
| 
 | |
| static void get_rtc_alm_time(struct rtc_time *alm_tm)
 | |
| {
 | |
| 	unsigned char ctrl;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only the values that we read from the RTC are set. That
 | |
| 	 * means only tm_hour, tm_min, and tm_sec.
 | |
| 	 */
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 | |
| 	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 | |
| 	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 | |
| 	ctrl = CMOS_READ(RTC_CONTROL);
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 | |
| 		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
 | |
| 		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
 | |
| 		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef RTC_IRQ
 | |
| /*
 | |
|  * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
 | |
|  * Rumour has it that if you frob the interrupt enable/disable
 | |
|  * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
 | |
|  * ensure you actually start getting interrupts. Probably for
 | |
|  * compatibility with older/broken chipset RTC implementations.
 | |
|  * We also clear out any old irq data after an ioctl() that
 | |
|  * meddles with the interrupt enable/disable bits.
 | |
|  */
 | |
| 
 | |
| static void mask_rtc_irq_bit_locked(unsigned char bit)
 | |
| {
 | |
| 	unsigned char val;
 | |
| 
 | |
| 	if (hpet_mask_rtc_irq_bit(bit))
 | |
| 		return;
 | |
| 	val = CMOS_READ(RTC_CONTROL);
 | |
| 	val &=  ~bit;
 | |
| 	CMOS_WRITE(val, RTC_CONTROL);
 | |
| 	CMOS_READ(RTC_INTR_FLAGS);
 | |
| 
 | |
| 	rtc_irq_data = 0;
 | |
| }
 | |
| 
 | |
| static void set_rtc_irq_bit_locked(unsigned char bit)
 | |
| {
 | |
| 	unsigned char val;
 | |
| 
 | |
| 	if (hpet_set_rtc_irq_bit(bit))
 | |
| 		return;
 | |
| 	val = CMOS_READ(RTC_CONTROL);
 | |
| 	val |= bit;
 | |
| 	CMOS_WRITE(val, RTC_CONTROL);
 | |
| 	CMOS_READ(RTC_INTR_FLAGS);
 | |
| 
 | |
| 	rtc_irq_data = 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| MODULE_AUTHOR("Paul Gortmaker");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS_MISCDEV(RTC_MINOR);
 |