mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 3f4528d6e9
			
		
	
	
		3f4528d6e9
		
	
	
	
	
		
			
			Fix warnings caused by the unsigned long long usage in sparc specific drivers. The drivers were considered sparc specific more or less from the filename alone. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			772 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			772 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* n2-drv.c: Niagara-2 RNG driver.
 | |
|  *
 | |
|  * Copyright (C) 2008 David S. Miller <davem@davemloft.net>
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/hw_random.h>
 | |
| 
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_device.h>
 | |
| 
 | |
| #include <asm/hypervisor.h>
 | |
| 
 | |
| #include "n2rng.h"
 | |
| 
 | |
| #define DRV_MODULE_NAME		"n2rng"
 | |
| #define PFX DRV_MODULE_NAME	": "
 | |
| #define DRV_MODULE_VERSION	"0.1"
 | |
| #define DRV_MODULE_RELDATE	"May 15, 2008"
 | |
| 
 | |
| static char version[] __devinitdata =
 | |
| 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 | |
| 
 | |
| MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
 | |
| MODULE_DESCRIPTION("Niagara2 RNG driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_MODULE_VERSION);
 | |
| 
 | |
| /* The Niagara2 RNG provides a 64-bit read-only random number
 | |
|  * register, plus a control register.  Access to the RNG is
 | |
|  * virtualized through the hypervisor so that both guests and control
 | |
|  * nodes can access the device.
 | |
|  *
 | |
|  * The entropy source consists of raw entropy sources, each
 | |
|  * constructed from a voltage controlled oscillator whose phase is
 | |
|  * jittered by thermal noise sources.
 | |
|  *
 | |
|  * The oscillator in each of the three raw entropy sources run at
 | |
|  * different frequencies.  Normally, all three generator outputs are
 | |
|  * gathered, xored together, and fed into a CRC circuit, the output of
 | |
|  * which is the 64-bit read-only register.
 | |
|  *
 | |
|  * Some time is necessary for all the necessary entropy to build up
 | |
|  * such that a full 64-bits of entropy are available in the register.
 | |
|  * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
 | |
|  * an interlock which blocks register reads until sufficient entropy
 | |
|  * is available.
 | |
|  *
 | |
|  * A control register is provided for adjusting various aspects of RNG
 | |
|  * operation, and to enable diagnostic modes.  Each of the three raw
 | |
|  * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
 | |
|  * provided are fields for controlling the minimum time in cycles
 | |
|  * between read accesses to the register (RNG_CTL_WAIT, this controls
 | |
|  * the interlock described in the previous paragraph).
 | |
|  *
 | |
|  * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
 | |
|  * all three entropy sources enabled, and the interlock time set
 | |
|  * appropriately.
 | |
|  *
 | |
|  * The CRC polynomial used by the chip is:
 | |
|  *
 | |
|  * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
 | |
|  *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
 | |
|  *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
 | |
|  *
 | |
|  * The RNG_CTL_VCO value of each noise cell must be programmed
 | |
|  * seperately.  This is why 4 control register values must be provided
 | |
|  * to the hypervisor.  During a write, the hypervisor writes them all,
 | |
|  * one at a time, to the actual RNG_CTL register.  The first three
 | |
|  * values are used to setup the desired RNG_CTL_VCO for each entropy
 | |
|  * source, for example:
 | |
|  *
 | |
|  *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
 | |
|  *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
 | |
|  *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
 | |
|  *
 | |
|  * And then the fourth value sets the final chip state and enables
 | |
|  * desired.
 | |
|  */
 | |
| 
 | |
| static int n2rng_hv_err_trans(unsigned long hv_err)
 | |
| {
 | |
| 	switch (hv_err) {
 | |
| 	case HV_EOK:
 | |
| 		return 0;
 | |
| 	case HV_EWOULDBLOCK:
 | |
| 		return -EAGAIN;
 | |
| 	case HV_ENOACCESS:
 | |
| 		return -EPERM;
 | |
| 	case HV_EIO:
 | |
| 		return -EIO;
 | |
| 	case HV_EBUSY:
 | |
| 		return -EBUSY;
 | |
| 	case HV_EBADALIGN:
 | |
| 	case HV_ENORADDR:
 | |
| 		return -EFAULT;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
 | |
| 						   unsigned long unit)
 | |
| {
 | |
| 	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
 | |
| 	int block = 0, busy = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
 | |
| 					       &ticks,
 | |
| 					       &watchdog_delta,
 | |
| 					       &watchdog_status);
 | |
| 		if (hv_err == HV_EOK)
 | |
| 			break;
 | |
| 
 | |
| 		if (hv_err == HV_EBUSY) {
 | |
| 			if (++busy >= N2RNG_BUSY_LIMIT)
 | |
| 				break;
 | |
| 
 | |
| 			udelay(1);
 | |
| 		} else if (hv_err == HV_EWOULDBLOCK) {
 | |
| 			if (++block >= N2RNG_BLOCK_LIMIT)
 | |
| 				break;
 | |
| 
 | |
| 			__delay(ticks);
 | |
| 		} else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return hv_err;
 | |
| }
 | |
| 
 | |
| /* In multi-socket situations, the hypervisor might need to
 | |
|  * queue up the RNG control register write if it's for a unit
 | |
|  * that is on a cpu socket other than the one we are executing on.
 | |
|  *
 | |
|  * We poll here waiting for a successful read of that control
 | |
|  * register to make sure the write has been actually performed.
 | |
|  */
 | |
| static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
 | |
| {
 | |
| 	unsigned long ra = __pa(&np->scratch_control[0]);
 | |
| 
 | |
| 	return n2rng_generic_read_control_v2(ra, unit);
 | |
| }
 | |
| 
 | |
| static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
 | |
| 					 unsigned long state,
 | |
| 					 unsigned long control_ra,
 | |
| 					 unsigned long watchdog_timeout,
 | |
| 					 unsigned long *ticks)
 | |
| {
 | |
| 	unsigned long hv_err;
 | |
| 
 | |
| 	if (np->hvapi_major == 1) {
 | |
| 		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
 | |
| 						watchdog_timeout, ticks);
 | |
| 	} else {
 | |
| 		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
 | |
| 						watchdog_timeout, unit);
 | |
| 		if (hv_err == HV_EOK)
 | |
| 			hv_err = n2rng_control_settle_v2(np, unit);
 | |
| 		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return hv_err;
 | |
| }
 | |
| 
 | |
| static int n2rng_generic_read_data(unsigned long data_ra)
 | |
| {
 | |
| 	unsigned long ticks, hv_err;
 | |
| 	int block = 0, hcheck = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		hv_err = sun4v_rng_data_read(data_ra, &ticks);
 | |
| 		if (hv_err == HV_EOK)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (hv_err == HV_EWOULDBLOCK) {
 | |
| 			if (++block >= N2RNG_BLOCK_LIMIT)
 | |
| 				return -EWOULDBLOCK;
 | |
| 			__delay(ticks);
 | |
| 		} else if (hv_err == HV_ENOACCESS) {
 | |
| 			return -EPERM;
 | |
| 		} else if (hv_err == HV_EIO) {
 | |
| 			if (++hcheck >= N2RNG_HCHECK_LIMIT)
 | |
| 				return -EIO;
 | |
| 			udelay(10000);
 | |
| 		} else
 | |
| 			return -ENODEV;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
 | |
| 					      unsigned long unit,
 | |
| 					      unsigned long data_ra,
 | |
| 					      unsigned long data_len,
 | |
| 					      unsigned long *ticks)
 | |
| {
 | |
| 	unsigned long hv_err;
 | |
| 
 | |
| 	if (np->hvapi_major == 1) {
 | |
| 		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
 | |
| 	} else {
 | |
| 		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
 | |
| 						     unit, ticks);
 | |
| 		if (!*ticks)
 | |
| 			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
 | |
| 	}
 | |
| 	return hv_err;
 | |
| }
 | |
| 
 | |
| static int n2rng_generic_read_diag_data(struct n2rng *np,
 | |
| 					unsigned long unit,
 | |
| 					unsigned long data_ra,
 | |
| 					unsigned long data_len)
 | |
| {
 | |
| 	unsigned long ticks, hv_err;
 | |
| 	int block = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		hv_err = n2rng_read_diag_data_one(np, unit,
 | |
| 						  data_ra, data_len,
 | |
| 						  &ticks);
 | |
| 		if (hv_err == HV_EOK)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (hv_err == HV_EWOULDBLOCK) {
 | |
| 			if (++block >= N2RNG_BLOCK_LIMIT)
 | |
| 				return -EWOULDBLOCK;
 | |
| 			__delay(ticks);
 | |
| 		} else if (hv_err == HV_ENOACCESS) {
 | |
| 			return -EPERM;
 | |
| 		} else if (hv_err == HV_EIO) {
 | |
| 			return -EIO;
 | |
| 		} else
 | |
| 			return -ENODEV;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int n2rng_generic_write_control(struct n2rng *np,
 | |
| 				       unsigned long control_ra,
 | |
| 				       unsigned long unit,
 | |
| 				       unsigned long state)
 | |
| {
 | |
| 	unsigned long hv_err, ticks;
 | |
| 	int block = 0, busy = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
 | |
| 					     np->wd_timeo, &ticks);
 | |
| 		if (hv_err == HV_EOK)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (hv_err == HV_EWOULDBLOCK) {
 | |
| 			if (++block >= N2RNG_BLOCK_LIMIT)
 | |
| 				return -EWOULDBLOCK;
 | |
| 			__delay(ticks);
 | |
| 		} else if (hv_err == HV_EBUSY) {
 | |
| 			if (++busy >= N2RNG_BUSY_LIMIT)
 | |
| 				return -EBUSY;
 | |
| 			udelay(1);
 | |
| 		} else
 | |
| 			return -ENODEV;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Just try to see if we can successfully access the control register
 | |
|  * of the RNG on the domain on which we are currently executing.
 | |
|  */
 | |
| static int n2rng_try_read_ctl(struct n2rng *np)
 | |
| {
 | |
| 	unsigned long hv_err;
 | |
| 	unsigned long x;
 | |
| 
 | |
| 	if (np->hvapi_major == 1) {
 | |
| 		hv_err = sun4v_rng_get_diag_ctl();
 | |
| 	} else {
 | |
| 		/* We purposefully give invalid arguments, HV_NOACCESS
 | |
| 		 * is higher priority than the errors we'd get from
 | |
| 		 * these other cases, and that's the error we are
 | |
| 		 * truly interested in.
 | |
| 		 */
 | |
| 		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
 | |
| 		switch (hv_err) {
 | |
| 		case HV_EWOULDBLOCK:
 | |
| 		case HV_ENOACCESS:
 | |
| 			break;
 | |
| 		default:
 | |
| 			hv_err = HV_EOK;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return n2rng_hv_err_trans(hv_err);
 | |
| }
 | |
| 
 | |
| #define CONTROL_DEFAULT_BASE		\
 | |
| 	((2 << RNG_CTL_ASEL_SHIFT) |	\
 | |
| 	 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) |	\
 | |
| 	 RNG_CTL_LFSR)
 | |
| 
 | |
| #define CONTROL_DEFAULT_0		\
 | |
| 	(CONTROL_DEFAULT_BASE |		\
 | |
| 	 (1 << RNG_CTL_VCO_SHIFT) |	\
 | |
| 	 RNG_CTL_ES1)
 | |
| #define CONTROL_DEFAULT_1		\
 | |
| 	(CONTROL_DEFAULT_BASE |		\
 | |
| 	 (2 << RNG_CTL_VCO_SHIFT) |	\
 | |
| 	 RNG_CTL_ES2)
 | |
| #define CONTROL_DEFAULT_2		\
 | |
| 	(CONTROL_DEFAULT_BASE |		\
 | |
| 	 (3 << RNG_CTL_VCO_SHIFT) |	\
 | |
| 	 RNG_CTL_ES3)
 | |
| #define CONTROL_DEFAULT_3		\
 | |
| 	(CONTROL_DEFAULT_BASE |		\
 | |
| 	 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
 | |
| 
 | |
| static void n2rng_control_swstate_init(struct n2rng *np)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	np->flags |= N2RNG_FLAG_CONTROL;
 | |
| 
 | |
| 	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
 | |
| 	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
 | |
| 	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
 | |
| 
 | |
| 	for (i = 0; i < np->num_units; i++) {
 | |
| 		struct n2rng_unit *up = &np->units[i];
 | |
| 
 | |
| 		up->control[0] = CONTROL_DEFAULT_0;
 | |
| 		up->control[1] = CONTROL_DEFAULT_1;
 | |
| 		up->control[2] = CONTROL_DEFAULT_2;
 | |
| 		up->control[3] = CONTROL_DEFAULT_3;
 | |
| 	}
 | |
| 
 | |
| 	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
 | |
| }
 | |
| 
 | |
| static int n2rng_grab_diag_control(struct n2rng *np)
 | |
| {
 | |
| 	int i, busy_count, err = -ENODEV;
 | |
| 
 | |
| 	busy_count = 0;
 | |
| 	for (i = 0; i < 100; i++) {
 | |
| 		err = n2rng_try_read_ctl(np);
 | |
| 		if (err != -EAGAIN)
 | |
| 			break;
 | |
| 
 | |
| 		if (++busy_count > 100) {
 | |
| 			dev_err(&np->op->dev,
 | |
| 				"Grab diag control timeout.\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int n2rng_init_control(struct n2rng *np)
 | |
| {
 | |
| 	int err = n2rng_grab_diag_control(np);
 | |
| 
 | |
| 	/* Not in the control domain, that's OK we are only a consumer
 | |
| 	 * of the RNG data, we don't setup and program it.
 | |
| 	 */
 | |
| 	if (err == -EPERM)
 | |
| 		return 0;
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	n2rng_control_swstate_init(np);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int n2rng_data_read(struct hwrng *rng, u32 *data)
 | |
| {
 | |
| 	struct n2rng *np = (struct n2rng *) rng->priv;
 | |
| 	unsigned long ra = __pa(&np->test_data);
 | |
| 	int len;
 | |
| 
 | |
| 	if (!(np->flags & N2RNG_FLAG_READY)) {
 | |
| 		len = 0;
 | |
| 	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
 | |
| 		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
 | |
| 		*data = np->buffer;
 | |
| 		len = 4;
 | |
| 	} else {
 | |
| 		int err = n2rng_generic_read_data(ra);
 | |
| 		if (!err) {
 | |
| 			np->buffer = np->test_data >> 32;
 | |
| 			*data = np->test_data & 0xffffffff;
 | |
| 			len = 4;
 | |
| 		} else {
 | |
| 			dev_err(&np->op->dev, "RNG error, restesting\n");
 | |
| 			np->flags &= ~N2RNG_FLAG_READY;
 | |
| 			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
 | |
| 				schedule_delayed_work(&np->work, 0);
 | |
| 			len = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /* On a guest node, just make sure we can read random data properly.
 | |
|  * If a control node reboots or reloads it's n2rng driver, this won't
 | |
|  * work during that time.  So we have to keep probing until the device
 | |
|  * becomes usable.
 | |
|  */
 | |
| static int n2rng_guest_check(struct n2rng *np)
 | |
| {
 | |
| 	unsigned long ra = __pa(&np->test_data);
 | |
| 
 | |
| 	return n2rng_generic_read_data(ra);
 | |
| }
 | |
| 
 | |
| static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
 | |
| 				   u64 *pre_control, u64 pre_state,
 | |
| 				   u64 *buffer, unsigned long buf_len,
 | |
| 				   u64 *post_control, u64 post_state)
 | |
| {
 | |
| 	unsigned long post_ctl_ra = __pa(post_control);
 | |
| 	unsigned long pre_ctl_ra = __pa(pre_control);
 | |
| 	unsigned long buffer_ra = __pa(buffer);
 | |
| 	int err;
 | |
| 
 | |
| 	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = n2rng_generic_read_diag_data(np, unit,
 | |
| 					   buffer_ra, buf_len);
 | |
| 
 | |
| 	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
 | |
| 					   post_state);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static u64 advance_polynomial(u64 poly, u64 val, int count)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		int highbit_set = ((s64)val < 0);
 | |
| 
 | |
| 		val <<= 1;
 | |
| 		if (highbit_set)
 | |
| 			val ^= poly;
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
 | |
| {
 | |
| 	int i, count = 0;
 | |
| 
 | |
| 	/* Purposefully skip over the first word.  */
 | |
| 	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
 | |
| 		if (np->test_buffer[i] == val)
 | |
| 			count++;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void n2rng_dump_test_buffer(struct n2rng *np)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
 | |
| 		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
 | |
| 			i, np->test_buffer[i]);
 | |
| }
 | |
| 
 | |
| static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
 | |
| {
 | |
| 	u64 val = SELFTEST_VAL;
 | |
| 	int err, matches, limit;
 | |
| 
 | |
| 	matches = 0;
 | |
| 	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
 | |
| 		matches += n2rng_test_buffer_find(np, val);
 | |
| 		if (matches >= SELFTEST_MATCH_GOAL)
 | |
| 			break;
 | |
| 		val = advance_polynomial(SELFTEST_POLY, val, 1);
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (limit >= SELFTEST_LOOPS_MAX) {
 | |
| 		err = -ENODEV;
 | |
| 		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
 | |
| 		n2rng_dump_test_buffer(np);
 | |
| 	} else
 | |
| 		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
 | |
| 	np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
 | |
| 	np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
 | |
| 	np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
 | |
| 			       RNG_CTL_LFSR |
 | |
| 			       ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
 | |
| 
 | |
| 
 | |
| 	err = n2rng_entropy_diag_read(np, unit, np->test_control,
 | |
| 				      HV_RNG_STATE_HEALTHCHECK,
 | |
| 				      np->test_buffer,
 | |
| 				      sizeof(np->test_buffer),
 | |
| 				      &np->units[unit].control[0],
 | |
| 				      np->hv_state);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return n2rng_check_selftest_buffer(np, unit);
 | |
| }
 | |
| 
 | |
| static int n2rng_control_check(struct n2rng *np)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < np->num_units; i++) {
 | |
| 		int err = n2rng_control_selftest(np, i);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* The sanity checks passed, install the final configuration into the
 | |
|  * chip, it's ready to use.
 | |
|  */
 | |
| static int n2rng_control_configure_units(struct n2rng *np)
 | |
| {
 | |
| 	int unit, err;
 | |
| 
 | |
| 	err = 0;
 | |
| 	for (unit = 0; unit < np->num_units; unit++) {
 | |
| 		struct n2rng_unit *up = &np->units[unit];
 | |
| 		unsigned long ctl_ra = __pa(&up->control[0]);
 | |
| 		int esrc;
 | |
| 		u64 base;
 | |
| 
 | |
| 		base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
 | |
| 			(2 << RNG_CTL_ASEL_SHIFT) |
 | |
| 			RNG_CTL_LFSR);
 | |
| 
 | |
| 		/* XXX This isn't the best.  We should fetch a bunch
 | |
| 		 * XXX of words using each entropy source combined XXX
 | |
| 		 * with each VCO setting, and see which combinations
 | |
| 		 * XXX give the best random data.
 | |
| 		 */
 | |
| 		for (esrc = 0; esrc < 3; esrc++)
 | |
| 			up->control[esrc] = base |
 | |
| 				(esrc << RNG_CTL_VCO_SHIFT) |
 | |
| 				(RNG_CTL_ES1 << esrc);
 | |
| 
 | |
| 		up->control[3] = base |
 | |
| 			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
 | |
| 
 | |
| 		err = n2rng_generic_write_control(np, ctl_ra, unit,
 | |
| 						  HV_RNG_STATE_CONFIGURED);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void n2rng_work(struct work_struct *work)
 | |
| {
 | |
| 	struct n2rng *np = container_of(work, struct n2rng, work.work);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
 | |
| 		err = n2rng_guest_check(np);
 | |
| 	} else {
 | |
| 		preempt_disable();
 | |
| 		err = n2rng_control_check(np);
 | |
| 		preempt_enable();
 | |
| 
 | |
| 		if (!err)
 | |
| 			err = n2rng_control_configure_units(np);
 | |
| 	}
 | |
| 
 | |
| 	if (!err) {
 | |
| 		np->flags |= N2RNG_FLAG_READY;
 | |
| 		dev_info(&np->op->dev, "RNG ready\n");
 | |
| 	}
 | |
| 
 | |
| 	if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
 | |
| 		schedule_delayed_work(&np->work, HZ * 2);
 | |
| }
 | |
| 
 | |
| static void __devinit n2rng_driver_version(void)
 | |
| {
 | |
| 	static int n2rng_version_printed;
 | |
| 
 | |
| 	if (n2rng_version_printed++ == 0)
 | |
| 		pr_info("%s", version);
 | |
| }
 | |
| 
 | |
| static int __devinit n2rng_probe(struct of_device *op,
 | |
| 				 const struct of_device_id *match)
 | |
| {
 | |
| 	int victoria_falls = (match->data != NULL);
 | |
| 	int err = -ENOMEM;
 | |
| 	struct n2rng *np;
 | |
| 
 | |
| 	n2rng_driver_version();
 | |
| 
 | |
| 	np = kzalloc(sizeof(*np), GFP_KERNEL);
 | |
| 	if (!np)
 | |
| 		goto out;
 | |
| 	np->op = op;
 | |
| 
 | |
| 	INIT_DELAYED_WORK(&np->work, n2rng_work);
 | |
| 
 | |
| 	if (victoria_falls)
 | |
| 		np->flags |= N2RNG_FLAG_VF;
 | |
| 
 | |
| 	err = -ENODEV;
 | |
| 	np->hvapi_major = 2;
 | |
| 	if (sun4v_hvapi_register(HV_GRP_RNG,
 | |
| 				 np->hvapi_major,
 | |
| 				 &np->hvapi_minor)) {
 | |
| 		np->hvapi_major = 1;
 | |
| 		if (sun4v_hvapi_register(HV_GRP_RNG,
 | |
| 					 np->hvapi_major,
 | |
| 					 &np->hvapi_minor)) {
 | |
| 			dev_err(&op->dev, "Cannot register suitable "
 | |
| 				"HVAPI version.\n");
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (np->flags & N2RNG_FLAG_VF) {
 | |
| 		if (np->hvapi_major < 2) {
 | |
| 			dev_err(&op->dev, "VF RNG requires HVAPI major "
 | |
| 				"version 2 or later, got %lu\n",
 | |
| 				np->hvapi_major);
 | |
| 			goto out_hvapi_unregister;
 | |
| 		}
 | |
| 		np->num_units = of_getintprop_default(op->node,
 | |
| 						      "rng-#units", 0);
 | |
| 		if (!np->num_units) {
 | |
| 			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
 | |
| 			goto out_hvapi_unregister;
 | |
| 		}
 | |
| 	} else
 | |
| 		np->num_units = 1;
 | |
| 
 | |
| 	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
 | |
| 		 np->hvapi_major, np->hvapi_minor);
 | |
| 
 | |
| 	np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units,
 | |
| 			    GFP_KERNEL);
 | |
| 	err = -ENOMEM;
 | |
| 	if (!np->units)
 | |
| 		goto out_hvapi_unregister;
 | |
| 
 | |
| 	err = n2rng_init_control(np);
 | |
| 	if (err)
 | |
| 		goto out_free_units;
 | |
| 
 | |
| 	dev_info(&op->dev, "Found %s RNG, units: %d\n",
 | |
| 		 ((np->flags & N2RNG_FLAG_VF) ?
 | |
| 		  "Victoria Falls" : "Niagara2"),
 | |
| 		 np->num_units);
 | |
| 
 | |
| 	np->hwrng.name = "n2rng";
 | |
| 	np->hwrng.data_read = n2rng_data_read;
 | |
| 	np->hwrng.priv = (unsigned long) np;
 | |
| 
 | |
| 	err = hwrng_register(&np->hwrng);
 | |
| 	if (err)
 | |
| 		goto out_free_units;
 | |
| 
 | |
| 	dev_set_drvdata(&op->dev, np);
 | |
| 
 | |
| 	schedule_delayed_work(&np->work, 0);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_units:
 | |
| 	kfree(np->units);
 | |
| 	np->units = NULL;
 | |
| 
 | |
| out_hvapi_unregister:
 | |
| 	sun4v_hvapi_unregister(HV_GRP_RNG);
 | |
| 
 | |
| out_free:
 | |
| 	kfree(np);
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __devexit n2rng_remove(struct of_device *op)
 | |
| {
 | |
| 	struct n2rng *np = dev_get_drvdata(&op->dev);
 | |
| 
 | |
| 	np->flags |= N2RNG_FLAG_SHUTDOWN;
 | |
| 
 | |
| 	cancel_delayed_work_sync(&np->work);
 | |
| 
 | |
| 	hwrng_unregister(&np->hwrng);
 | |
| 
 | |
| 	sun4v_hvapi_unregister(HV_GRP_RNG);
 | |
| 
 | |
| 	kfree(np->units);
 | |
| 	np->units = NULL;
 | |
| 
 | |
| 	kfree(np);
 | |
| 
 | |
| 	dev_set_drvdata(&op->dev, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id n2rng_match[] = {
 | |
| 	{
 | |
| 		.name		= "random-number-generator",
 | |
| 		.compatible	= "SUNW,n2-rng",
 | |
| 	},
 | |
| 	{
 | |
| 		.name		= "random-number-generator",
 | |
| 		.compatible	= "SUNW,vf-rng",
 | |
| 		.data		= (void *) 1,
 | |
| 	},
 | |
| 	{},
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, n2rng_match);
 | |
| 
 | |
| static struct of_platform_driver n2rng_driver = {
 | |
| 	.name		= "n2rng",
 | |
| 	.match_table	= n2rng_match,
 | |
| 	.probe		= n2rng_probe,
 | |
| 	.remove		= __devexit_p(n2rng_remove),
 | |
| };
 | |
| 
 | |
| static int __init n2rng_init(void)
 | |
| {
 | |
| 	return of_register_driver(&n2rng_driver, &of_bus_type);
 | |
| }
 | |
| 
 | |
| static void __exit n2rng_exit(void)
 | |
| {
 | |
| 	of_unregister_driver(&n2rng_driver);
 | |
| }
 | |
| 
 | |
| module_init(n2rng_init);
 | |
| module_exit(n2rng_exit);
 |