mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 a4768d2275
			
		
	
	
		a4768d2275
		
	
	
	
	
		
			
			Original code for 2.6.10 and 2.6.28 series done by Texas Instruments and MontaVista, but major updates and rework done by Troy Kisky and David Brownell. Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com> Cc: Sudhakar Rajashekhara <sudhakar.raj@ti.com> Cc: Troy Kisky <troy.kisky@boundarydevices.com> Cc: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
		
			
				
	
	
		
			1136 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1136 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * EDMA3 support for DaVinci
 | |
|  *
 | |
|  * Copyright (C) 2006-2009 Texas Instruments.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <mach/cputype.h>
 | |
| #include <mach/memory.h>
 | |
| #include <mach/hardware.h>
 | |
| #include <mach/irqs.h>
 | |
| #include <mach/edma.h>
 | |
| #include <mach/mux.h>
 | |
| 
 | |
| 
 | |
| /* Offsets matching "struct edmacc_param" */
 | |
| #define PARM_OPT		0x00
 | |
| #define PARM_SRC		0x04
 | |
| #define PARM_A_B_CNT		0x08
 | |
| #define PARM_DST		0x0c
 | |
| #define PARM_SRC_DST_BIDX	0x10
 | |
| #define PARM_LINK_BCNTRLD	0x14
 | |
| #define PARM_SRC_DST_CIDX	0x18
 | |
| #define PARM_CCNT		0x1c
 | |
| 
 | |
| #define PARM_SIZE		0x20
 | |
| 
 | |
| /* Offsets for EDMA CC global channel registers and their shadows */
 | |
| #define SH_ER		0x00	/* 64 bits */
 | |
| #define SH_ECR		0x08	/* 64 bits */
 | |
| #define SH_ESR		0x10	/* 64 bits */
 | |
| #define SH_CER		0x18	/* 64 bits */
 | |
| #define SH_EER		0x20	/* 64 bits */
 | |
| #define SH_EECR		0x28	/* 64 bits */
 | |
| #define SH_EESR		0x30	/* 64 bits */
 | |
| #define SH_SER		0x38	/* 64 bits */
 | |
| #define SH_SECR		0x40	/* 64 bits */
 | |
| #define SH_IER		0x50	/* 64 bits */
 | |
| #define SH_IECR		0x58	/* 64 bits */
 | |
| #define SH_IESR		0x60	/* 64 bits */
 | |
| #define SH_IPR		0x68	/* 64 bits */
 | |
| #define SH_ICR		0x70	/* 64 bits */
 | |
| #define SH_IEVAL	0x78
 | |
| #define SH_QER		0x80
 | |
| #define SH_QEER		0x84
 | |
| #define SH_QEECR	0x88
 | |
| #define SH_QEESR	0x8c
 | |
| #define SH_QSER		0x90
 | |
| #define SH_QSECR	0x94
 | |
| #define SH_SIZE		0x200
 | |
| 
 | |
| /* Offsets for EDMA CC global registers */
 | |
| #define EDMA_REV	0x0000
 | |
| #define EDMA_CCCFG	0x0004
 | |
| #define EDMA_QCHMAP	0x0200	/* 8 registers */
 | |
| #define EDMA_DMAQNUM	0x0240	/* 8 registers (4 on OMAP-L1xx) */
 | |
| #define EDMA_QDMAQNUM	0x0260
 | |
| #define EDMA_QUETCMAP	0x0280
 | |
| #define EDMA_QUEPRI	0x0284
 | |
| #define EDMA_EMR	0x0300	/* 64 bits */
 | |
| #define EDMA_EMCR	0x0308	/* 64 bits */
 | |
| #define EDMA_QEMR	0x0310
 | |
| #define EDMA_QEMCR	0x0314
 | |
| #define EDMA_CCERR	0x0318
 | |
| #define EDMA_CCERRCLR	0x031c
 | |
| #define EDMA_EEVAL	0x0320
 | |
| #define EDMA_DRAE	0x0340	/* 4 x 64 bits*/
 | |
| #define EDMA_QRAE	0x0380	/* 4 registers */
 | |
| #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
 | |
| #define EDMA_QSTAT	0x0600	/* 2 registers */
 | |
| #define EDMA_QWMTHRA	0x0620
 | |
| #define EDMA_QWMTHRB	0x0624
 | |
| #define EDMA_CCSTAT	0x0640
 | |
| 
 | |
| #define EDMA_M		0x1000	/* global channel registers */
 | |
| #define EDMA_ECR	0x1008
 | |
| #define EDMA_ECRH	0x100C
 | |
| #define EDMA_SHADOW0	0x2000	/* 4 regions shadowing global channels */
 | |
| #define EDMA_PARM	0x4000	/* 128 param entries */
 | |
| 
 | |
| #define DAVINCI_DMA_3PCC_BASE	0x01C00000
 | |
| 
 | |
| #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
 | |
| 
 | |
| #define EDMA_MAX_DMACH           64
 | |
| #define EDMA_MAX_PARAMENTRY     512
 | |
| #define EDMA_MAX_EVQUE            2	/* FIXME too small */
 | |
| 
 | |
| 
 | |
| /*****************************************************************************/
 | |
| 
 | |
| static void __iomem *edmacc_regs_base;
 | |
| 
 | |
| static inline unsigned int edma_read(int offset)
 | |
| {
 | |
| 	return (unsigned int)__raw_readl(edmacc_regs_base + offset);
 | |
| }
 | |
| 
 | |
| static inline void edma_write(int offset, int val)
 | |
| {
 | |
| 	__raw_writel(val, edmacc_regs_base + offset);
 | |
| }
 | |
| static inline void edma_modify(int offset, unsigned and, unsigned or)
 | |
| {
 | |
| 	unsigned val = edma_read(offset);
 | |
| 	val &= and;
 | |
| 	val |= or;
 | |
| 	edma_write(offset, val);
 | |
| }
 | |
| static inline void edma_and(int offset, unsigned and)
 | |
| {
 | |
| 	unsigned val = edma_read(offset);
 | |
| 	val &= and;
 | |
| 	edma_write(offset, val);
 | |
| }
 | |
| static inline void edma_or(int offset, unsigned or)
 | |
| {
 | |
| 	unsigned val = edma_read(offset);
 | |
| 	val |= or;
 | |
| 	edma_write(offset, val);
 | |
| }
 | |
| static inline unsigned int edma_read_array(int offset, int i)
 | |
| {
 | |
| 	return edma_read(offset + (i << 2));
 | |
| }
 | |
| static inline void edma_write_array(int offset, int i, unsigned val)
 | |
| {
 | |
| 	edma_write(offset + (i << 2), val);
 | |
| }
 | |
| static inline void edma_modify_array(int offset, int i,
 | |
| 		unsigned and, unsigned or)
 | |
| {
 | |
| 	edma_modify(offset + (i << 2), and, or);
 | |
| }
 | |
| static inline void edma_or_array(int offset, int i, unsigned or)
 | |
| {
 | |
| 	edma_or(offset + (i << 2), or);
 | |
| }
 | |
| static inline void edma_or_array2(int offset, int i, int j, unsigned or)
 | |
| {
 | |
| 	edma_or(offset + ((i*2 + j) << 2), or);
 | |
| }
 | |
| static inline void edma_write_array2(int offset, int i, int j, unsigned val)
 | |
| {
 | |
| 	edma_write(offset + ((i*2 + j) << 2), val);
 | |
| }
 | |
| static inline unsigned int edma_shadow0_read(int offset)
 | |
| {
 | |
| 	return edma_read(EDMA_SHADOW0 + offset);
 | |
| }
 | |
| static inline unsigned int edma_shadow0_read_array(int offset, int i)
 | |
| {
 | |
| 	return edma_read(EDMA_SHADOW0 + offset + (i << 2));
 | |
| }
 | |
| static inline void edma_shadow0_write(int offset, unsigned val)
 | |
| {
 | |
| 	edma_write(EDMA_SHADOW0 + offset, val);
 | |
| }
 | |
| static inline void edma_shadow0_write_array(int offset, int i, unsigned val)
 | |
| {
 | |
| 	edma_write(EDMA_SHADOW0 + offset + (i << 2), val);
 | |
| }
 | |
| static inline unsigned int edma_parm_read(int offset, int param_no)
 | |
| {
 | |
| 	return edma_read(EDMA_PARM + offset + (param_no << 5));
 | |
| }
 | |
| static inline void edma_parm_write(int offset, int param_no, unsigned val)
 | |
| {
 | |
| 	edma_write(EDMA_PARM + offset + (param_no << 5), val);
 | |
| }
 | |
| static inline void edma_parm_modify(int offset, int param_no,
 | |
| 		unsigned and, unsigned or)
 | |
| {
 | |
| 	edma_modify(EDMA_PARM + offset + (param_no << 5), and, or);
 | |
| }
 | |
| static inline void edma_parm_and(int offset, int param_no, unsigned and)
 | |
| {
 | |
| 	edma_and(EDMA_PARM + offset + (param_no << 5), and);
 | |
| }
 | |
| static inline void edma_parm_or(int offset, int param_no, unsigned or)
 | |
| {
 | |
| 	edma_or(EDMA_PARM + offset + (param_no << 5), or);
 | |
| }
 | |
| 
 | |
| /*****************************************************************************/
 | |
| 
 | |
| /* actual number of DMA channels and slots on this silicon */
 | |
| static unsigned num_channels;
 | |
| static unsigned num_slots;
 | |
| 
 | |
| static struct dma_interrupt_data {
 | |
| 	void (*callback)(unsigned channel, unsigned short ch_status,
 | |
| 			 void *data);
 | |
| 	void *data;
 | |
| } intr_data[EDMA_MAX_DMACH];
 | |
| 
 | |
| /* The edma_inuse bit for each PaRAM slot is clear unless the
 | |
|  * channel is in use ... by ARM or DSP, for QDMA, or whatever.
 | |
|  */
 | |
| static DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
 | |
| 
 | |
| /* The edma_noevent bit for each channel is clear unless
 | |
|  * it doesn't trigger DMA events on this platform.  It uses a
 | |
|  * bit of SOC-specific initialization code.
 | |
|  */
 | |
| static DECLARE_BITMAP(edma_noevent, EDMA_MAX_DMACH);
 | |
| 
 | |
| /* dummy param set used to (re)initialize parameter RAM slots */
 | |
| static const struct edmacc_param dummy_paramset = {
 | |
| 	.link_bcntrld = 0xffff,
 | |
| 	.ccnt = 1,
 | |
| };
 | |
| 
 | |
| static const int __initconst
 | |
| queue_tc_mapping[EDMA_MAX_EVQUE + 1][2] = {
 | |
| /* {event queue no, TC no} */
 | |
| 	{0, 0},
 | |
| 	{1, 1},
 | |
| 	{-1, -1}
 | |
| };
 | |
| 
 | |
| static const int __initconst
 | |
| queue_priority_mapping[EDMA_MAX_EVQUE + 1][2] = {
 | |
| 	/* {event queue no, Priority} */
 | |
| 	{0, 3},
 | |
| 	{1, 7},
 | |
| 	{-1, -1}
 | |
| };
 | |
| 
 | |
| /*****************************************************************************/
 | |
| 
 | |
| static void map_dmach_queue(unsigned ch_no, enum dma_event_q queue_no)
 | |
| {
 | |
| 	int bit = (ch_no & 0x7) * 4;
 | |
| 
 | |
| 	/* default to low priority queue */
 | |
| 	if (queue_no == EVENTQ_DEFAULT)
 | |
| 		queue_no = EVENTQ_1;
 | |
| 
 | |
| 	queue_no &= 7;
 | |
| 	edma_modify_array(EDMA_DMAQNUM, (ch_no >> 3),
 | |
| 			~(0x7 << bit), queue_no << bit);
 | |
| }
 | |
| 
 | |
| static void __init map_queue_tc(int queue_no, int tc_no)
 | |
| {
 | |
| 	int bit = queue_no * 4;
 | |
| 	edma_modify(EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
 | |
| }
 | |
| 
 | |
| static void __init assign_priority_to_queue(int queue_no, int priority)
 | |
| {
 | |
| 	int bit = queue_no * 4;
 | |
| 	edma_modify(EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| setup_dma_interrupt(unsigned lch,
 | |
| 	void (*callback)(unsigned channel, u16 ch_status, void *data),
 | |
| 	void *data)
 | |
| {
 | |
| 	if (!callback) {
 | |
| 		edma_shadow0_write_array(SH_IECR, lch >> 5,
 | |
| 				(1 << (lch & 0x1f)));
 | |
| 	}
 | |
| 
 | |
| 	intr_data[lch].callback = callback;
 | |
| 	intr_data[lch].data = data;
 | |
| 
 | |
| 	if (callback) {
 | |
| 		edma_shadow0_write_array(SH_ICR, lch >> 5,
 | |
| 				(1 << (lch & 0x1f)));
 | |
| 		edma_shadow0_write_array(SH_IESR, lch >> 5,
 | |
| 				(1 << (lch & 0x1f)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  * DMA interrupt handler
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| static irqreturn_t dma_irq_handler(int irq, void *data)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int cnt = 0;
 | |
| 
 | |
| 	dev_dbg(data, "dma_irq_handler\n");
 | |
| 
 | |
| 	if ((edma_shadow0_read_array(SH_IPR, 0) == 0)
 | |
| 	    && (edma_shadow0_read_array(SH_IPR, 1) == 0))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	while (1) {
 | |
| 		int j;
 | |
| 		if (edma_shadow0_read_array(SH_IPR, 0))
 | |
| 			j = 0;
 | |
| 		else if (edma_shadow0_read_array(SH_IPR, 1))
 | |
| 			j = 1;
 | |
| 		else
 | |
| 			break;
 | |
| 		dev_dbg(data, "IPR%d %08x\n", j,
 | |
| 				edma_shadow0_read_array(SH_IPR, j));
 | |
| 		for (i = 0; i < 32; i++) {
 | |
| 			int k = (j << 5) + i;
 | |
| 			if (edma_shadow0_read_array(SH_IPR, j) & (1 << i)) {
 | |
| 				/* Clear the corresponding IPR bits */
 | |
| 				edma_shadow0_write_array(SH_ICR, j, (1 << i));
 | |
| 				if (intr_data[k].callback) {
 | |
| 					intr_data[k].callback(k, DMA_COMPLETE,
 | |
| 						intr_data[k].data);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		cnt++;
 | |
| 		if (cnt > 10)
 | |
| 			break;
 | |
| 	}
 | |
| 	edma_shadow0_write(SH_IEVAL, 1);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  * DMA error interrupt handler
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| static irqreturn_t dma_ccerr_handler(int irq, void *data)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int cnt = 0;
 | |
| 
 | |
| 	dev_dbg(data, "dma_ccerr_handler\n");
 | |
| 
 | |
| 	if ((edma_read_array(EDMA_EMR, 0) == 0) &&
 | |
| 	    (edma_read_array(EDMA_EMR, 1) == 0) &&
 | |
| 	    (edma_read(EDMA_QEMR) == 0) && (edma_read(EDMA_CCERR) == 0))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	while (1) {
 | |
| 		int j = -1;
 | |
| 		if (edma_read_array(EDMA_EMR, 0))
 | |
| 			j = 0;
 | |
| 		else if (edma_read_array(EDMA_EMR, 1))
 | |
| 			j = 1;
 | |
| 		if (j >= 0) {
 | |
| 			dev_dbg(data, "EMR%d %08x\n", j,
 | |
| 					edma_read_array(EDMA_EMR, j));
 | |
| 			for (i = 0; i < 32; i++) {
 | |
| 				int k = (j << 5) + i;
 | |
| 				if (edma_read_array(EDMA_EMR, j) & (1 << i)) {
 | |
| 					/* Clear the corresponding EMR bits */
 | |
| 					edma_write_array(EDMA_EMCR, j, 1 << i);
 | |
| 					/* Clear any SER */
 | |
| 					edma_shadow0_write_array(SH_SECR, j,
 | |
| 							(1 << i));
 | |
| 					if (intr_data[k].callback) {
 | |
| 						intr_data[k].callback(k,
 | |
| 								DMA_CC_ERROR,
 | |
| 								intr_data
 | |
| 								[k].data);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (edma_read(EDMA_QEMR)) {
 | |
| 			dev_dbg(data, "QEMR %02x\n",
 | |
| 				edma_read(EDMA_QEMR));
 | |
| 			for (i = 0; i < 8; i++) {
 | |
| 				if (edma_read(EDMA_QEMR) & (1 << i)) {
 | |
| 					/* Clear the corresponding IPR bits */
 | |
| 					edma_write(EDMA_QEMCR, 1 << i);
 | |
| 					edma_shadow0_write(SH_QSECR, (1 << i));
 | |
| 
 | |
| 					/* NOTE:  not reported!! */
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (edma_read(EDMA_CCERR)) {
 | |
| 			dev_dbg(data, "CCERR %08x\n",
 | |
| 				edma_read(EDMA_CCERR));
 | |
| 			/* FIXME:  CCERR.BIT(16) ignored!  much better
 | |
| 			 * to just write CCERRCLR with CCERR value...
 | |
| 			 */
 | |
| 			for (i = 0; i < 8; i++) {
 | |
| 				if (edma_read(EDMA_CCERR) & (1 << i)) {
 | |
| 					/* Clear the corresponding IPR bits */
 | |
| 					edma_write(EDMA_CCERRCLR, 1 << i);
 | |
| 
 | |
| 					/* NOTE:  not reported!! */
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if ((edma_read_array(EDMA_EMR, 0) == 0)
 | |
| 		    && (edma_read_array(EDMA_EMR, 1) == 0)
 | |
| 		    && (edma_read(EDMA_QEMR) == 0)
 | |
| 		    && (edma_read(EDMA_CCERR) == 0)) {
 | |
| 			break;
 | |
| 		}
 | |
| 		cnt++;
 | |
| 		if (cnt > 10)
 | |
| 			break;
 | |
| 	}
 | |
| 	edma_write(EDMA_EEVAL, 1);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  * Transfer controller error interrupt handlers
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| 
 | |
| #define tc_errs_handled	false	/* disabled as long as they're NOPs */
 | |
| 
 | |
| static irqreturn_t dma_tc0err_handler(int irq, void *data)
 | |
| {
 | |
| 	dev_dbg(data, "dma_tc0err_handler\n");
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t dma_tc1err_handler(int irq, void *data)
 | |
| {
 | |
| 	dev_dbg(data, "dma_tc1err_handler\n");
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*-----------------------------------------------------------------------*/
 | |
| 
 | |
| /* Resource alloc/free:  dma channels, parameter RAM slots */
 | |
| 
 | |
| /**
 | |
|  * edma_alloc_channel - allocate DMA channel and paired parameter RAM
 | |
|  * @channel: specific channel to allocate; negative for "any unmapped channel"
 | |
|  * @callback: optional; to be issued on DMA completion or errors
 | |
|  * @data: passed to callback
 | |
|  * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
 | |
|  *	Controller (TC) executes requests using this channel.  Use
 | |
|  *	EVENTQ_DEFAULT unless you really need a high priority queue.
 | |
|  *
 | |
|  * This allocates a DMA channel and its associated parameter RAM slot.
 | |
|  * The parameter RAM is initialized to hold a dummy transfer.
 | |
|  *
 | |
|  * Normal use is to pass a specific channel number as @channel, to make
 | |
|  * use of hardware events mapped to that channel.  When the channel will
 | |
|  * be used only for software triggering or event chaining, channels not
 | |
|  * mapped to hardware events (or mapped to unused events) are preferable.
 | |
|  *
 | |
|  * DMA transfers start from a channel using edma_start(), or by
 | |
|  * chaining.  When the transfer described in that channel's parameter RAM
 | |
|  * slot completes, that slot's data may be reloaded through a link.
 | |
|  *
 | |
|  * DMA errors are only reported to the @callback associated with the
 | |
|  * channel driving that transfer, but transfer completion callbacks can
 | |
|  * be sent to another channel under control of the TCC field in
 | |
|  * the option word of the transfer's parameter RAM set.  Drivers must not
 | |
|  * use DMA transfer completion callbacks for channels they did not allocate.
 | |
|  * (The same applies to TCC codes used in transfer chaining.)
 | |
|  *
 | |
|  * Returns the number of the channel, else negative errno.
 | |
|  */
 | |
| int edma_alloc_channel(int channel,
 | |
| 		void (*callback)(unsigned channel, u16 ch_status, void *data),
 | |
| 		void *data,
 | |
| 		enum dma_event_q eventq_no)
 | |
| {
 | |
| 	if (channel < 0) {
 | |
| 		channel = 0;
 | |
| 		for (;;) {
 | |
| 			channel = find_next_bit(edma_noevent,
 | |
| 					num_channels, channel);
 | |
| 			if (channel == num_channels)
 | |
| 				return -ENOMEM;
 | |
| 			if (!test_and_set_bit(channel, edma_inuse))
 | |
| 				break;
 | |
| 			channel++;
 | |
| 		}
 | |
| 	} else if (channel >= num_channels) {
 | |
| 		return -EINVAL;
 | |
| 	} else if (test_and_set_bit(channel, edma_inuse)) {
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* ensure access through shadow region 0 */
 | |
| 	edma_or_array2(EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
 | |
| 
 | |
| 	/* ensure no events are pending */
 | |
| 	edma_stop(channel);
 | |
| 	memcpy_toio(edmacc_regs_base + PARM_OFFSET(channel),
 | |
| 			&dummy_paramset, PARM_SIZE);
 | |
| 
 | |
| 	if (callback)
 | |
| 		setup_dma_interrupt(channel, callback, data);
 | |
| 
 | |
| 	map_dmach_queue(channel, eventq_no);
 | |
| 
 | |
| 	return channel;
 | |
| }
 | |
| EXPORT_SYMBOL(edma_alloc_channel);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * edma_free_channel - deallocate DMA channel
 | |
|  * @channel: dma channel returned from edma_alloc_channel()
 | |
|  *
 | |
|  * This deallocates the DMA channel and associated parameter RAM slot
 | |
|  * allocated by edma_alloc_channel().
 | |
|  *
 | |
|  * Callers are responsible for ensuring the channel is inactive, and
 | |
|  * will not be reactivated by linking, chaining, or software calls to
 | |
|  * edma_start().
 | |
|  */
 | |
| void edma_free_channel(unsigned channel)
 | |
| {
 | |
| 	if (channel >= num_channels)
 | |
| 		return;
 | |
| 
 | |
| 	setup_dma_interrupt(channel, NULL, NULL);
 | |
| 	/* REVISIT should probably take out of shadow region 0 */
 | |
| 
 | |
| 	memcpy_toio(edmacc_regs_base + PARM_OFFSET(channel),
 | |
| 			&dummy_paramset, PARM_SIZE);
 | |
| 	clear_bit(channel, edma_inuse);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_free_channel);
 | |
| 
 | |
| /**
 | |
|  * edma_alloc_slot - allocate DMA parameter RAM
 | |
|  * @slot: specific slot to allocate; negative for "any unused slot"
 | |
|  *
 | |
|  * This allocates a parameter RAM slot, initializing it to hold a
 | |
|  * dummy transfer.  Slots allocated using this routine have not been
 | |
|  * mapped to a hardware DMA channel, and will normally be used by
 | |
|  * linking to them from a slot associated with a DMA channel.
 | |
|  *
 | |
|  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 | |
|  * slots may be allocated on behalf of DSP firmware.
 | |
|  *
 | |
|  * Returns the number of the slot, else negative errno.
 | |
|  */
 | |
| int edma_alloc_slot(int slot)
 | |
| {
 | |
| 	if (slot < 0) {
 | |
| 		slot = num_channels;
 | |
| 		for (;;) {
 | |
| 			slot = find_next_zero_bit(edma_inuse,
 | |
| 					num_slots, slot);
 | |
| 			if (slot == num_slots)
 | |
| 				return -ENOMEM;
 | |
| 			if (!test_and_set_bit(slot, edma_inuse))
 | |
| 				break;
 | |
| 		}
 | |
| 	} else if (slot < num_channels || slot >= num_slots) {
 | |
| 		return -EINVAL;
 | |
| 	} else if (test_and_set_bit(slot, edma_inuse)) {
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	memcpy_toio(edmacc_regs_base + PARM_OFFSET(slot),
 | |
| 			&dummy_paramset, PARM_SIZE);
 | |
| 
 | |
| 	return slot;
 | |
| }
 | |
| EXPORT_SYMBOL(edma_alloc_slot);
 | |
| 
 | |
| /**
 | |
|  * edma_free_slot - deallocate DMA parameter RAM
 | |
|  * @slot: parameter RAM slot returned from edma_alloc_slot()
 | |
|  *
 | |
|  * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
 | |
|  * Callers are responsible for ensuring the slot is inactive, and will
 | |
|  * not be activated.
 | |
|  */
 | |
| void edma_free_slot(unsigned slot)
 | |
| {
 | |
| 	if (slot < num_channels || slot >= num_slots)
 | |
| 		return;
 | |
| 
 | |
| 	memcpy_toio(edmacc_regs_base + PARM_OFFSET(slot),
 | |
| 			&dummy_paramset, PARM_SIZE);
 | |
| 	clear_bit(slot, edma_inuse);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_free_slot);
 | |
| 
 | |
| /*-----------------------------------------------------------------------*/
 | |
| 
 | |
| /* Parameter RAM operations (i) -- read/write partial slots */
 | |
| 
 | |
| /**
 | |
|  * edma_set_src - set initial DMA source address in parameter RAM slot
 | |
|  * @slot: parameter RAM slot being configured
 | |
|  * @src_port: physical address of source (memory, controller FIFO, etc)
 | |
|  * @addressMode: INCR, except in very rare cases
 | |
|  * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 | |
|  *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 | |
|  *
 | |
|  * Note that the source address is modified during the DMA transfer
 | |
|  * according to edma_set_src_index().
 | |
|  */
 | |
| void edma_set_src(unsigned slot, dma_addr_t src_port,
 | |
| 				enum address_mode mode, enum fifo_width width)
 | |
| {
 | |
| 	if (slot < num_slots) {
 | |
| 		unsigned int i = edma_parm_read(PARM_OPT, slot);
 | |
| 
 | |
| 		if (mode) {
 | |
| 			/* set SAM and program FWID */
 | |
| 			i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
 | |
| 		} else {
 | |
| 			/* clear SAM */
 | |
| 			i &= ~SAM;
 | |
| 		}
 | |
| 		edma_parm_write(PARM_OPT, slot, i);
 | |
| 
 | |
| 		/* set the source port address
 | |
| 		   in source register of param structure */
 | |
| 		edma_parm_write(PARM_SRC, slot, src_port);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_set_src);
 | |
| 
 | |
| /**
 | |
|  * edma_set_dest - set initial DMA destination address in parameter RAM slot
 | |
|  * @slot: parameter RAM slot being configured
 | |
|  * @dest_port: physical address of destination (memory, controller FIFO, etc)
 | |
|  * @addressMode: INCR, except in very rare cases
 | |
|  * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 | |
|  *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 | |
|  *
 | |
|  * Note that the destination address is modified during the DMA transfer
 | |
|  * according to edma_set_dest_index().
 | |
|  */
 | |
| void edma_set_dest(unsigned slot, dma_addr_t dest_port,
 | |
| 				 enum address_mode mode, enum fifo_width width)
 | |
| {
 | |
| 	if (slot < num_slots) {
 | |
| 		unsigned int i = edma_parm_read(PARM_OPT, slot);
 | |
| 
 | |
| 		if (mode) {
 | |
| 			/* set DAM and program FWID */
 | |
| 			i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
 | |
| 		} else {
 | |
| 			/* clear DAM */
 | |
| 			i &= ~DAM;
 | |
| 		}
 | |
| 		edma_parm_write(PARM_OPT, slot, i);
 | |
| 		/* set the destination port address
 | |
| 		   in dest register of param structure */
 | |
| 		edma_parm_write(PARM_DST, slot, dest_port);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_set_dest);
 | |
| 
 | |
| /**
 | |
|  * edma_get_position - returns the current transfer points
 | |
|  * @slot: parameter RAM slot being examined
 | |
|  * @src: pointer to source port position
 | |
|  * @dst: pointer to destination port position
 | |
|  *
 | |
|  * Returns current source and destination addresses for a particular
 | |
|  * parameter RAM slot.  Its channel should not be active when this is called.
 | |
|  */
 | |
| void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
 | |
| {
 | |
| 	struct edmacc_param temp;
 | |
| 
 | |
| 	edma_read_slot(slot, &temp);
 | |
| 	if (src != NULL)
 | |
| 		*src = temp.src;
 | |
| 	if (dst != NULL)
 | |
| 		*dst = temp.dst;
 | |
| }
 | |
| EXPORT_SYMBOL(edma_get_position);
 | |
| 
 | |
| /**
 | |
|  * edma_set_src_index - configure DMA source address indexing
 | |
|  * @slot: parameter RAM slot being configured
 | |
|  * @src_bidx: byte offset between source arrays in a frame
 | |
|  * @src_cidx: byte offset between source frames in a block
 | |
|  *
 | |
|  * Offsets are specified to support either contiguous or discontiguous
 | |
|  * memory transfers, or repeated access to a hardware register, as needed.
 | |
|  * When accessing hardware registers, both offsets are normally zero.
 | |
|  */
 | |
| void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
 | |
| {
 | |
| 	if (slot < num_slots) {
 | |
| 		edma_parm_modify(PARM_SRC_DST_BIDX, slot,
 | |
| 				0xffff0000, src_bidx);
 | |
| 		edma_parm_modify(PARM_SRC_DST_CIDX, slot,
 | |
| 				0xffff0000, src_cidx);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_set_src_index);
 | |
| 
 | |
| /**
 | |
|  * edma_set_dest_index - configure DMA destination address indexing
 | |
|  * @slot: parameter RAM slot being configured
 | |
|  * @dest_bidx: byte offset between destination arrays in a frame
 | |
|  * @dest_cidx: byte offset between destination frames in a block
 | |
|  *
 | |
|  * Offsets are specified to support either contiguous or discontiguous
 | |
|  * memory transfers, or repeated access to a hardware register, as needed.
 | |
|  * When accessing hardware registers, both offsets are normally zero.
 | |
|  */
 | |
| void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
 | |
| {
 | |
| 	if (slot < num_slots) {
 | |
| 		edma_parm_modify(PARM_SRC_DST_BIDX, slot,
 | |
| 				0x0000ffff, dest_bidx << 16);
 | |
| 		edma_parm_modify(PARM_SRC_DST_CIDX, slot,
 | |
| 				0x0000ffff, dest_cidx << 16);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_set_dest_index);
 | |
| 
 | |
| /**
 | |
|  * edma_set_transfer_params - configure DMA transfer parameters
 | |
|  * @slot: parameter RAM slot being configured
 | |
|  * @acnt: how many bytes per array (at least one)
 | |
|  * @bcnt: how many arrays per frame (at least one)
 | |
|  * @ccnt: how many frames per block (at least one)
 | |
|  * @bcnt_rld: used only for A-Synchronized transfers; this specifies
 | |
|  *	the value to reload into bcnt when it decrements to zero
 | |
|  * @sync_mode: ASYNC or ABSYNC
 | |
|  *
 | |
|  * See the EDMA3 documentation to understand how to configure and link
 | |
|  * transfers using the fields in PaRAM slots.  If you are not doing it
 | |
|  * all at once with edma_write_slot(), you will use this routine
 | |
|  * plus two calls each for source and destination, setting the initial
 | |
|  * address and saying how to index that address.
 | |
|  *
 | |
|  * An example of an A-Synchronized transfer is a serial link using a
 | |
|  * single word shift register.  In that case, @acnt would be equal to
 | |
|  * that word size; the serial controller issues a DMA synchronization
 | |
|  * event to transfer each word, and memory access by the DMA transfer
 | |
|  * controller will be word-at-a-time.
 | |
|  *
 | |
|  * An example of an AB-Synchronized transfer is a device using a FIFO.
 | |
|  * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
 | |
|  * The controller with the FIFO issues DMA synchronization events when
 | |
|  * the FIFO threshold is reached, and the DMA transfer controller will
 | |
|  * transfer one frame to (or from) the FIFO.  It will probably use
 | |
|  * efficient burst modes to access memory.
 | |
|  */
 | |
| void edma_set_transfer_params(unsigned slot,
 | |
| 		u16 acnt, u16 bcnt, u16 ccnt,
 | |
| 		u16 bcnt_rld, enum sync_dimension sync_mode)
 | |
| {
 | |
| 	if (slot < num_slots) {
 | |
| 		edma_parm_modify(PARM_LINK_BCNTRLD, slot,
 | |
| 				0x0000ffff, bcnt_rld << 16);
 | |
| 		if (sync_mode == ASYNC)
 | |
| 			edma_parm_and(PARM_OPT, slot, ~SYNCDIM);
 | |
| 		else
 | |
| 			edma_parm_or(PARM_OPT, slot, SYNCDIM);
 | |
| 		/* Set the acount, bcount, ccount registers */
 | |
| 		edma_parm_write(PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
 | |
| 		edma_parm_write(PARM_CCNT, slot, ccnt);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_set_transfer_params);
 | |
| 
 | |
| /**
 | |
|  * edma_link - link one parameter RAM slot to another
 | |
|  * @from: parameter RAM slot originating the link
 | |
|  * @to: parameter RAM slot which is the link target
 | |
|  *
 | |
|  * The originating slot should not be part of any active DMA transfer.
 | |
|  */
 | |
| void edma_link(unsigned from, unsigned to)
 | |
| {
 | |
| 	if (from >= num_slots)
 | |
| 		return;
 | |
| 	if (to >= num_slots)
 | |
| 		return;
 | |
| 	edma_parm_modify(PARM_LINK_BCNTRLD, from, 0xffff0000, PARM_OFFSET(to));
 | |
| }
 | |
| EXPORT_SYMBOL(edma_link);
 | |
| 
 | |
| /**
 | |
|  * edma_unlink - cut link from one parameter RAM slot
 | |
|  * @from: parameter RAM slot originating the link
 | |
|  *
 | |
|  * The originating slot should not be part of any active DMA transfer.
 | |
|  * Its link is set to 0xffff.
 | |
|  */
 | |
| void edma_unlink(unsigned from)
 | |
| {
 | |
| 	if (from >= num_slots)
 | |
| 		return;
 | |
| 	edma_parm_or(PARM_LINK_BCNTRLD, from, 0xffff);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_unlink);
 | |
| 
 | |
| /*-----------------------------------------------------------------------*/
 | |
| 
 | |
| /* Parameter RAM operations (ii) -- read/write whole parameter sets */
 | |
| 
 | |
| /**
 | |
|  * edma_write_slot - write parameter RAM data for slot
 | |
|  * @slot: number of parameter RAM slot being modified
 | |
|  * @param: data to be written into parameter RAM slot
 | |
|  *
 | |
|  * Use this to assign all parameters of a transfer at once.  This
 | |
|  * allows more efficient setup of transfers than issuing multiple
 | |
|  * calls to set up those parameters in small pieces, and provides
 | |
|  * complete control over all transfer options.
 | |
|  */
 | |
| void edma_write_slot(unsigned slot, const struct edmacc_param *param)
 | |
| {
 | |
| 	if (slot >= num_slots)
 | |
| 		return;
 | |
| 	memcpy_toio(edmacc_regs_base + PARM_OFFSET(slot), param, PARM_SIZE);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_write_slot);
 | |
| 
 | |
| /**
 | |
|  * edma_read_slot - read parameter RAM data from slot
 | |
|  * @slot: number of parameter RAM slot being copied
 | |
|  * @param: where to store copy of parameter RAM data
 | |
|  *
 | |
|  * Use this to read data from a parameter RAM slot, perhaps to
 | |
|  * save them as a template for later reuse.
 | |
|  */
 | |
| void edma_read_slot(unsigned slot, struct edmacc_param *param)
 | |
| {
 | |
| 	if (slot >= num_slots)
 | |
| 		return;
 | |
| 	memcpy_fromio(param, edmacc_regs_base + PARM_OFFSET(slot), PARM_SIZE);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_read_slot);
 | |
| 
 | |
| /*-----------------------------------------------------------------------*/
 | |
| 
 | |
| /* Various EDMA channel control operations */
 | |
| 
 | |
| /**
 | |
|  * edma_pause - pause dma on a channel
 | |
|  * @channel: on which edma_start() has been called
 | |
|  *
 | |
|  * This temporarily disables EDMA hardware events on the specified channel,
 | |
|  * preventing them from triggering new transfers on its behalf
 | |
|  */
 | |
| void edma_pause(unsigned channel)
 | |
| {
 | |
| 	if (channel < num_channels) {
 | |
| 		unsigned int mask = (1 << (channel & 0x1f));
 | |
| 
 | |
| 		edma_shadow0_write_array(SH_EECR, channel >> 5, mask);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_pause);
 | |
| 
 | |
| /**
 | |
|  * edma_resume - resumes dma on a paused channel
 | |
|  * @channel: on which edma_pause() has been called
 | |
|  *
 | |
|  * This re-enables EDMA hardware events on the specified channel.
 | |
|  */
 | |
| void edma_resume(unsigned channel)
 | |
| {
 | |
| 	if (channel < num_channels) {
 | |
| 		unsigned int mask = (1 << (channel & 0x1f));
 | |
| 
 | |
| 		edma_shadow0_write_array(SH_EESR, channel >> 5, mask);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_resume);
 | |
| 
 | |
| /**
 | |
|  * edma_start - start dma on a channel
 | |
|  * @channel: channel being activated
 | |
|  *
 | |
|  * Channels with event associations will be triggered by their hardware
 | |
|  * events, and channels without such associations will be triggered by
 | |
|  * software.  (At this writing there is no interface for using software
 | |
|  * triggers except with channels that don't support hardware triggers.)
 | |
|  *
 | |
|  * Returns zero on success, else negative errno.
 | |
|  */
 | |
| int edma_start(unsigned channel)
 | |
| {
 | |
| 	if (channel < num_channels) {
 | |
| 		int j = channel >> 5;
 | |
| 		unsigned int mask = (1 << (channel & 0x1f));
 | |
| 
 | |
| 		/* EDMA channels without event association */
 | |
| 		if (test_bit(channel, edma_noevent)) {
 | |
| 			pr_debug("EDMA: ESR%d %08x\n", j,
 | |
| 				edma_shadow0_read_array(SH_ESR, j));
 | |
| 			edma_shadow0_write_array(SH_ESR, j, mask);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* EDMA channel with event association */
 | |
| 		pr_debug("EDMA: ER%d %08x\n", j,
 | |
| 			edma_shadow0_read_array(SH_ER, j));
 | |
| 		/* Clear any pending error */
 | |
| 		edma_write_array(EDMA_EMCR, j, mask);
 | |
| 		/* Clear any SER */
 | |
| 		edma_shadow0_write_array(SH_SECR, j, mask);
 | |
| 		edma_shadow0_write_array(SH_EESR, j, mask);
 | |
| 		pr_debug("EDMA: EER%d %08x\n", j,
 | |
| 			edma_shadow0_read_array(SH_EER, j));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| EXPORT_SYMBOL(edma_start);
 | |
| 
 | |
| /**
 | |
|  * edma_stop - stops dma on the channel passed
 | |
|  * @channel: channel being deactivated
 | |
|  *
 | |
|  * When @lch is a channel, any active transfer is paused and
 | |
|  * all pending hardware events are cleared.  The current transfer
 | |
|  * may not be resumed, and the channel's Parameter RAM should be
 | |
|  * reinitialized before being reused.
 | |
|  */
 | |
| void edma_stop(unsigned channel)
 | |
| {
 | |
| 	if (channel < num_channels) {
 | |
| 		int j = channel >> 5;
 | |
| 		unsigned int mask = (1 << (channel & 0x1f));
 | |
| 
 | |
| 		edma_shadow0_write_array(SH_EECR, j, mask);
 | |
| 		edma_shadow0_write_array(SH_ECR, j, mask);
 | |
| 		edma_shadow0_write_array(SH_SECR, j, mask);
 | |
| 		edma_write_array(EDMA_EMCR, j, mask);
 | |
| 
 | |
| 		pr_debug("EDMA: EER%d %08x\n", j,
 | |
| 				edma_shadow0_read_array(SH_EER, j));
 | |
| 
 | |
| 		/* REVISIT:  consider guarding against inappropriate event
 | |
| 		 * chaining by overwriting with dummy_paramset.
 | |
| 		 */
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_stop);
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  * It cleans ParamEntry qand bring back EDMA to initial state if media has
 | |
|  * been removed before EDMA has finished.It is usedful for removable media.
 | |
|  * Arguments:
 | |
|  *      ch_no     - channel no
 | |
|  *
 | |
|  * Return: zero on success, or corresponding error no on failure
 | |
|  *
 | |
|  * FIXME this should not be needed ... edma_stop() should suffice.
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| 
 | |
| void edma_clean_channel(unsigned channel)
 | |
| {
 | |
| 	if (channel < num_channels) {
 | |
| 		int j = (channel >> 5);
 | |
| 		unsigned int mask = 1 << (channel & 0x1f);
 | |
| 
 | |
| 		pr_debug("EDMA: EMR%d %08x\n", j,
 | |
| 				edma_read_array(EDMA_EMR, j));
 | |
| 		edma_shadow0_write_array(SH_ECR, j, mask);
 | |
| 		/* Clear the corresponding EMR bits */
 | |
| 		edma_write_array(EDMA_EMCR, j, mask);
 | |
| 		/* Clear any SER */
 | |
| 		edma_shadow0_write_array(SH_SECR, j, mask);
 | |
| 		edma_write(EDMA_CCERRCLR, (1 << 16) | 0x3);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_clean_channel);
 | |
| 
 | |
| /*
 | |
|  * edma_clear_event - clear an outstanding event on the DMA channel
 | |
|  * Arguments:
 | |
|  *	channel - channel number
 | |
|  */
 | |
| void edma_clear_event(unsigned channel)
 | |
| {
 | |
| 	if (channel >= num_channels)
 | |
| 		return;
 | |
| 	if (channel < 32)
 | |
| 		edma_write(EDMA_ECR, 1 << channel);
 | |
| 	else
 | |
| 		edma_write(EDMA_ECRH, 1 << (channel - 32));
 | |
| }
 | |
| EXPORT_SYMBOL(edma_clear_event);
 | |
| 
 | |
| /*-----------------------------------------------------------------------*/
 | |
| 
 | |
| static int __init edma_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct edma_soc_info	*info = pdev->dev.platform_data;
 | |
| 	int			i;
 | |
| 	int			status;
 | |
| 	const s8		*noevent;
 | |
| 	int			irq = 0, err_irq = 0;
 | |
| 	struct resource		*r;
 | |
| 	resource_size_t		len;
 | |
| 
 | |
| 	if (!info)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma_cc");
 | |
| 	if (!r)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	len = r->end - r->start + 1;
 | |
| 
 | |
| 	r = request_mem_region(r->start, len, r->name);
 | |
| 	if (!r)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	edmacc_regs_base = ioremap(r->start, len);
 | |
| 	if (!edmacc_regs_base) {
 | |
| 		status = -EBUSY;
 | |
| 		goto fail1;
 | |
| 	}
 | |
| 
 | |
| 	num_channels = min_t(unsigned, info->n_channel, EDMA_MAX_DMACH);
 | |
| 	num_slots = min_t(unsigned, info->n_slot, EDMA_MAX_PARAMENTRY);
 | |
| 
 | |
| 	dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n", edmacc_regs_base);
 | |
| 
 | |
| 	for (i = 0; i < num_slots; i++)
 | |
| 		memcpy_toio(edmacc_regs_base + PARM_OFFSET(i),
 | |
| 				&dummy_paramset, PARM_SIZE);
 | |
| 
 | |
| 	noevent = info->noevent;
 | |
| 	if (noevent) {
 | |
| 		while (*noevent != -1)
 | |
| 			set_bit(*noevent++, edma_noevent);
 | |
| 	}
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	status = request_irq(irq, dma_irq_handler, 0, "edma", &pdev->dev);
 | |
| 	if (status < 0) {
 | |
| 		dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
 | |
| 			irq, status);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	err_irq = platform_get_irq(pdev, 1);
 | |
| 	status = request_irq(err_irq, dma_ccerr_handler, 0,
 | |
| 				"edma_error", &pdev->dev);
 | |
| 	if (status < 0) {
 | |
| 		dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
 | |
| 			err_irq, status);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (tc_errs_handled) {
 | |
| 		status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
 | |
| 					"edma_tc0", &pdev->dev);
 | |
| 		if (status < 0) {
 | |
| 			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
 | |
| 				IRQ_TCERRINT0, status);
 | |
| 			return status;
 | |
| 		}
 | |
| 		status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
 | |
| 					"edma_tc1", &pdev->dev);
 | |
| 		if (status < 0) {
 | |
| 			dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
 | |
| 				IRQ_TCERRINT, status);
 | |
| 			return status;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Everything lives on transfer controller 1 until otherwise specified.
 | |
| 	 * This way, long transfers on the low priority queue
 | |
| 	 * started by the codec engine will not cause audio defects.
 | |
| 	 */
 | |
| 	for (i = 0; i < num_channels; i++)
 | |
| 		map_dmach_queue(i, EVENTQ_1);
 | |
| 
 | |
| 	/* Event queue to TC mapping */
 | |
| 	for (i = 0; queue_tc_mapping[i][0] != -1; i++)
 | |
| 		map_queue_tc(queue_tc_mapping[i][0], queue_tc_mapping[i][1]);
 | |
| 
 | |
| 	/* Event queue priority mapping */
 | |
| 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
 | |
| 		assign_priority_to_queue(queue_priority_mapping[i][0],
 | |
| 					 queue_priority_mapping[i][1]);
 | |
| 
 | |
| 	for (i = 0; i < info->n_region; i++) {
 | |
| 		edma_write_array2(EDMA_DRAE, i, 0, 0x0);
 | |
| 		edma_write_array2(EDMA_DRAE, i, 1, 0x0);
 | |
| 		edma_write_array(EDMA_QRAE, i, 0x0);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	if (err_irq)
 | |
| 		free_irq(err_irq, NULL);
 | |
| 	if (irq)
 | |
| 		free_irq(irq, NULL);
 | |
| 	iounmap(edmacc_regs_base);
 | |
| fail1:
 | |
| 	release_mem_region(r->start, len);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct platform_driver edma_driver = {
 | |
| 	.driver.name	= "edma",
 | |
| };
 | |
| 
 | |
| static int __init edma_init(void)
 | |
| {
 | |
| 	return platform_driver_probe(&edma_driver, edma_probe);
 | |
| }
 | |
| arch_initcall(edma_init);
 | |
| 
 |