mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 12:39:23 +00:00 
			
		
		
		
	 f77d390c97
			
		
	
	
		f77d390c97
		
	
	
	
	
		
			
			Once upon a time, the DRM made the distinction between the drm_map data structure exchanged with user space and the drm_local_map used in the kernel. For some reasons, while the BSD port still has that "feature", the linux part abused drm_map for kernel internal usage as the local map only existed as a typedef of the struct drm_map. This patch fixes it by declaring struct drm_local_map separately (though its content is currently identical to the userspace variant), and changing the kernel code to only use that, except when it's a user<->kernel interface (ie. ioctl). This allows subsequent changes to the in-kernel format I've also replaced the use of drm_local_map_t with struct drm_local_map in a couple of places. Mostly by accident but they are the same (the former is a typedef of the later) and I have some remote plans and half finished patch to completely kill the drm_local_map_t typedef so I left those bits in. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Eric Anholt <eric@anholt.net> Signed-off-by: Dave Airlie <airlied@linux.ie>
		
			
				
	
	
		
			564 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			564 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright © 2008 Intel Corporation
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a
 | |
|  * copy of this software and associated documentation files (the "Software"),
 | |
|  * to deal in the Software without restriction, including without limitation
 | |
|  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | |
|  * and/or sell copies of the Software, and to permit persons to whom the
 | |
|  * Software is furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice (including the next
 | |
|  * paragraph) shall be included in all copies or substantial portions of the
 | |
|  * Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 | |
|  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 | |
|  * IN THE SOFTWARE.
 | |
|  *
 | |
|  * Authors:
 | |
|  *    Eric Anholt <eric@anholt.net>
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include "drmP.h"
 | |
| 
 | |
| /** @file drm_gem.c
 | |
|  *
 | |
|  * This file provides some of the base ioctls and library routines for
 | |
|  * the graphics memory manager implemented by each device driver.
 | |
|  *
 | |
|  * Because various devices have different requirements in terms of
 | |
|  * synchronization and migration strategies, implementing that is left up to
 | |
|  * the driver, and all that the general API provides should be generic --
 | |
|  * allocating objects, reading/writing data with the cpu, freeing objects.
 | |
|  * Even there, platform-dependent optimizations for reading/writing data with
 | |
|  * the CPU mean we'll likely hook those out to driver-specific calls.  However,
 | |
|  * the DRI2 implementation wants to have at least allocate/mmap be generic.
 | |
|  *
 | |
|  * The goal was to have swap-backed object allocation managed through
 | |
|  * struct file.  However, file descriptors as handles to a struct file have
 | |
|  * two major failings:
 | |
|  * - Process limits prevent more than 1024 or so being used at a time by
 | |
|  *   default.
 | |
|  * - Inability to allocate high fds will aggravate the X Server's select()
 | |
|  *   handling, and likely that of many GL client applications as well.
 | |
|  *
 | |
|  * This led to a plan of using our own integer IDs (called handles, following
 | |
|  * DRM terminology) to mimic fds, and implement the fd syscalls we need as
 | |
|  * ioctls.  The objects themselves will still include the struct file so
 | |
|  * that we can transition to fds if the required kernel infrastructure shows
 | |
|  * up at a later date, and as our interface with shmfs for memory allocation.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * We make up offsets for buffer objects so we can recognize them at
 | |
|  * mmap time.
 | |
|  */
 | |
| #define DRM_FILE_PAGE_OFFSET_START ((0xFFFFFFFFUL >> PAGE_SHIFT) + 1)
 | |
| #define DRM_FILE_PAGE_OFFSET_SIZE ((0xFFFFFFFFUL >> PAGE_SHIFT) * 16)
 | |
| 
 | |
| /**
 | |
|  * Initialize the GEM device fields
 | |
|  */
 | |
| 
 | |
| int
 | |
| drm_gem_init(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_gem_mm *mm;
 | |
| 
 | |
| 	spin_lock_init(&dev->object_name_lock);
 | |
| 	idr_init(&dev->object_name_idr);
 | |
| 	atomic_set(&dev->object_count, 0);
 | |
| 	atomic_set(&dev->object_memory, 0);
 | |
| 	atomic_set(&dev->pin_count, 0);
 | |
| 	atomic_set(&dev->pin_memory, 0);
 | |
| 	atomic_set(&dev->gtt_count, 0);
 | |
| 	atomic_set(&dev->gtt_memory, 0);
 | |
| 
 | |
| 	mm = drm_calloc(1, sizeof(struct drm_gem_mm), DRM_MEM_MM);
 | |
| 	if (!mm) {
 | |
| 		DRM_ERROR("out of memory\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	dev->mm_private = mm;
 | |
| 
 | |
| 	if (drm_ht_create(&mm->offset_hash, 19)) {
 | |
| 		drm_free(mm, sizeof(struct drm_gem_mm), DRM_MEM_MM);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (drm_mm_init(&mm->offset_manager, DRM_FILE_PAGE_OFFSET_START,
 | |
| 			DRM_FILE_PAGE_OFFSET_SIZE)) {
 | |
| 		drm_ht_remove(&mm->offset_hash);
 | |
| 		drm_free(mm, sizeof(struct drm_gem_mm), DRM_MEM_MM);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| drm_gem_destroy(struct drm_device *dev)
 | |
| {
 | |
| 	struct drm_gem_mm *mm = dev->mm_private;
 | |
| 
 | |
| 	drm_mm_takedown(&mm->offset_manager);
 | |
| 	drm_ht_remove(&mm->offset_hash);
 | |
| 	drm_free(mm, sizeof(struct drm_gem_mm), DRM_MEM_MM);
 | |
| 	dev->mm_private = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Allocate a GEM object of the specified size with shmfs backing store
 | |
|  */
 | |
| struct drm_gem_object *
 | |
| drm_gem_object_alloc(struct drm_device *dev, size_t size)
 | |
| {
 | |
| 	struct drm_gem_object *obj;
 | |
| 
 | |
| 	BUG_ON((size & (PAGE_SIZE - 1)) != 0);
 | |
| 
 | |
| 	obj = kcalloc(1, sizeof(*obj), GFP_KERNEL);
 | |
| 
 | |
| 	obj->dev = dev;
 | |
| 	obj->filp = shmem_file_setup("drm mm object", size, VM_NORESERVE);
 | |
| 	if (IS_ERR(obj->filp)) {
 | |
| 		kfree(obj);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	kref_init(&obj->refcount);
 | |
| 	kref_init(&obj->handlecount);
 | |
| 	obj->size = size;
 | |
| 	if (dev->driver->gem_init_object != NULL &&
 | |
| 	    dev->driver->gem_init_object(obj) != 0) {
 | |
| 		fput(obj->filp);
 | |
| 		kfree(obj);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	atomic_inc(&dev->object_count);
 | |
| 	atomic_add(obj->size, &dev->object_memory);
 | |
| 	return obj;
 | |
| }
 | |
| EXPORT_SYMBOL(drm_gem_object_alloc);
 | |
| 
 | |
| /**
 | |
|  * Removes the mapping from handle to filp for this object.
 | |
|  */
 | |
| static int
 | |
| drm_gem_handle_delete(struct drm_file *filp, int handle)
 | |
| {
 | |
| 	struct drm_device *dev;
 | |
| 	struct drm_gem_object *obj;
 | |
| 
 | |
| 	/* This is gross. The idr system doesn't let us try a delete and
 | |
| 	 * return an error code.  It just spews if you fail at deleting.
 | |
| 	 * So, we have to grab a lock around finding the object and then
 | |
| 	 * doing the delete on it and dropping the refcount, or the user
 | |
| 	 * could race us to double-decrement the refcount and cause a
 | |
| 	 * use-after-free later.  Given the frequency of our handle lookups,
 | |
| 	 * we may want to use ida for number allocation and a hash table
 | |
| 	 * for the pointers, anyway.
 | |
| 	 */
 | |
| 	spin_lock(&filp->table_lock);
 | |
| 
 | |
| 	/* Check if we currently have a reference on the object */
 | |
| 	obj = idr_find(&filp->object_idr, handle);
 | |
| 	if (obj == NULL) {
 | |
| 		spin_unlock(&filp->table_lock);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	dev = obj->dev;
 | |
| 
 | |
| 	/* Release reference and decrement refcount. */
 | |
| 	idr_remove(&filp->object_idr, handle);
 | |
| 	spin_unlock(&filp->table_lock);
 | |
| 
 | |
| 	mutex_lock(&dev->struct_mutex);
 | |
| 	drm_gem_object_handle_unreference(obj);
 | |
| 	mutex_unlock(&dev->struct_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Create a handle for this object. This adds a handle reference
 | |
|  * to the object, which includes a regular reference count. Callers
 | |
|  * will likely want to dereference the object afterwards.
 | |
|  */
 | |
| int
 | |
| drm_gem_handle_create(struct drm_file *file_priv,
 | |
| 		       struct drm_gem_object *obj,
 | |
| 		       int *handlep)
 | |
| {
 | |
| 	int	ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the user-visible handle using idr.
 | |
| 	 */
 | |
| again:
 | |
| 	/* ensure there is space available to allocate a handle */
 | |
| 	if (idr_pre_get(&file_priv->object_idr, GFP_KERNEL) == 0)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* do the allocation under our spinlock */
 | |
| 	spin_lock(&file_priv->table_lock);
 | |
| 	ret = idr_get_new_above(&file_priv->object_idr, obj, 1, handlep);
 | |
| 	spin_unlock(&file_priv->table_lock);
 | |
| 	if (ret == -EAGAIN)
 | |
| 		goto again;
 | |
| 
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	drm_gem_object_handle_reference(obj);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(drm_gem_handle_create);
 | |
| 
 | |
| /** Returns a reference to the object named by the handle. */
 | |
| struct drm_gem_object *
 | |
| drm_gem_object_lookup(struct drm_device *dev, struct drm_file *filp,
 | |
| 		      int handle)
 | |
| {
 | |
| 	struct drm_gem_object *obj;
 | |
| 
 | |
| 	spin_lock(&filp->table_lock);
 | |
| 
 | |
| 	/* Check if we currently have a reference on the object */
 | |
| 	obj = idr_find(&filp->object_idr, handle);
 | |
| 	if (obj == NULL) {
 | |
| 		spin_unlock(&filp->table_lock);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	drm_gem_object_reference(obj);
 | |
| 
 | |
| 	spin_unlock(&filp->table_lock);
 | |
| 
 | |
| 	return obj;
 | |
| }
 | |
| EXPORT_SYMBOL(drm_gem_object_lookup);
 | |
| 
 | |
| /**
 | |
|  * Releases the handle to an mm object.
 | |
|  */
 | |
| int
 | |
| drm_gem_close_ioctl(struct drm_device *dev, void *data,
 | |
| 		    struct drm_file *file_priv)
 | |
| {
 | |
| 	struct drm_gem_close *args = data;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!(dev->driver->driver_features & DRIVER_GEM))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	ret = drm_gem_handle_delete(file_priv, args->handle);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Create a global name for an object, returning the name.
 | |
|  *
 | |
|  * Note that the name does not hold a reference; when the object
 | |
|  * is freed, the name goes away.
 | |
|  */
 | |
| int
 | |
| drm_gem_flink_ioctl(struct drm_device *dev, void *data,
 | |
| 		    struct drm_file *file_priv)
 | |
| {
 | |
| 	struct drm_gem_flink *args = data;
 | |
| 	struct drm_gem_object *obj;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!(dev->driver->driver_features & DRIVER_GEM))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
 | |
| 	if (obj == NULL)
 | |
| 		return -EBADF;
 | |
| 
 | |
| again:
 | |
| 	if (idr_pre_get(&dev->object_name_idr, GFP_KERNEL) == 0) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&dev->object_name_lock);
 | |
| 	if (!obj->name) {
 | |
| 		ret = idr_get_new_above(&dev->object_name_idr, obj, 1,
 | |
| 					&obj->name);
 | |
| 		args->name = (uint64_t) obj->name;
 | |
| 		spin_unlock(&dev->object_name_lock);
 | |
| 
 | |
| 		if (ret == -EAGAIN)
 | |
| 			goto again;
 | |
| 
 | |
| 		if (ret != 0)
 | |
| 			goto err;
 | |
| 
 | |
| 		/* Allocate a reference for the name table.  */
 | |
| 		drm_gem_object_reference(obj);
 | |
| 	} else {
 | |
| 		args->name = (uint64_t) obj->name;
 | |
| 		spin_unlock(&dev->object_name_lock);
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| err:
 | |
| 	mutex_lock(&dev->struct_mutex);
 | |
| 	drm_gem_object_unreference(obj);
 | |
| 	mutex_unlock(&dev->struct_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Open an object using the global name, returning a handle and the size.
 | |
|  *
 | |
|  * This handle (of course) holds a reference to the object, so the object
 | |
|  * will not go away until the handle is deleted.
 | |
|  */
 | |
| int
 | |
| drm_gem_open_ioctl(struct drm_device *dev, void *data,
 | |
| 		   struct drm_file *file_priv)
 | |
| {
 | |
| 	struct drm_gem_open *args = data;
 | |
| 	struct drm_gem_object *obj;
 | |
| 	int ret;
 | |
| 	int handle;
 | |
| 
 | |
| 	if (!(dev->driver->driver_features & DRIVER_GEM))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	spin_lock(&dev->object_name_lock);
 | |
| 	obj = idr_find(&dev->object_name_idr, (int) args->name);
 | |
| 	if (obj)
 | |
| 		drm_gem_object_reference(obj);
 | |
| 	spin_unlock(&dev->object_name_lock);
 | |
| 	if (!obj)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	ret = drm_gem_handle_create(file_priv, obj, &handle);
 | |
| 	mutex_lock(&dev->struct_mutex);
 | |
| 	drm_gem_object_unreference(obj);
 | |
| 	mutex_unlock(&dev->struct_mutex);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	args->handle = handle;
 | |
| 	args->size = obj->size;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Called at device open time, sets up the structure for handling refcounting
 | |
|  * of mm objects.
 | |
|  */
 | |
| void
 | |
| drm_gem_open(struct drm_device *dev, struct drm_file *file_private)
 | |
| {
 | |
| 	idr_init(&file_private->object_idr);
 | |
| 	spin_lock_init(&file_private->table_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Called at device close to release the file's
 | |
|  * handle references on objects.
 | |
|  */
 | |
| static int
 | |
| drm_gem_object_release_handle(int id, void *ptr, void *data)
 | |
| {
 | |
| 	struct drm_gem_object *obj = ptr;
 | |
| 
 | |
| 	drm_gem_object_handle_unreference(obj);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Called at close time when the filp is going away.
 | |
|  *
 | |
|  * Releases any remaining references on objects by this filp.
 | |
|  */
 | |
| void
 | |
| drm_gem_release(struct drm_device *dev, struct drm_file *file_private)
 | |
| {
 | |
| 	mutex_lock(&dev->struct_mutex);
 | |
| 	idr_for_each(&file_private->object_idr,
 | |
| 		     &drm_gem_object_release_handle, NULL);
 | |
| 
 | |
| 	idr_destroy(&file_private->object_idr);
 | |
| 	mutex_unlock(&dev->struct_mutex);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Called after the last reference to the object has been lost.
 | |
|  *
 | |
|  * Frees the object
 | |
|  */
 | |
| void
 | |
| drm_gem_object_free(struct kref *kref)
 | |
| {
 | |
| 	struct drm_gem_object *obj = (struct drm_gem_object *) kref;
 | |
| 	struct drm_device *dev = obj->dev;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
 | |
| 
 | |
| 	if (dev->driver->gem_free_object != NULL)
 | |
| 		dev->driver->gem_free_object(obj);
 | |
| 
 | |
| 	fput(obj->filp);
 | |
| 	atomic_dec(&dev->object_count);
 | |
| 	atomic_sub(obj->size, &dev->object_memory);
 | |
| 	kfree(obj);
 | |
| }
 | |
| EXPORT_SYMBOL(drm_gem_object_free);
 | |
| 
 | |
| /**
 | |
|  * Called after the last handle to the object has been closed
 | |
|  *
 | |
|  * Removes any name for the object. Note that this must be
 | |
|  * called before drm_gem_object_free or we'll be touching
 | |
|  * freed memory
 | |
|  */
 | |
| void
 | |
| drm_gem_object_handle_free(struct kref *kref)
 | |
| {
 | |
| 	struct drm_gem_object *obj = container_of(kref,
 | |
| 						  struct drm_gem_object,
 | |
| 						  handlecount);
 | |
| 	struct drm_device *dev = obj->dev;
 | |
| 
 | |
| 	/* Remove any name for this object */
 | |
| 	spin_lock(&dev->object_name_lock);
 | |
| 	if (obj->name) {
 | |
| 		idr_remove(&dev->object_name_idr, obj->name);
 | |
| 		obj->name = 0;
 | |
| 		spin_unlock(&dev->object_name_lock);
 | |
| 		/*
 | |
| 		 * The object name held a reference to this object, drop
 | |
| 		 * that now.
 | |
| 		 */
 | |
| 		drm_gem_object_unreference(obj);
 | |
| 	} else
 | |
| 		spin_unlock(&dev->object_name_lock);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(drm_gem_object_handle_free);
 | |
| 
 | |
| void drm_gem_vm_open(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct drm_gem_object *obj = vma->vm_private_data;
 | |
| 
 | |
| 	drm_gem_object_reference(obj);
 | |
| }
 | |
| EXPORT_SYMBOL(drm_gem_vm_open);
 | |
| 
 | |
| void drm_gem_vm_close(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct drm_gem_object *obj = vma->vm_private_data;
 | |
| 	struct drm_device *dev = obj->dev;
 | |
| 
 | |
| 	mutex_lock(&dev->struct_mutex);
 | |
| 	drm_gem_object_unreference(obj);
 | |
| 	mutex_unlock(&dev->struct_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL(drm_gem_vm_close);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * drm_gem_mmap - memory map routine for GEM objects
 | |
|  * @filp: DRM file pointer
 | |
|  * @vma: VMA for the area to be mapped
 | |
|  *
 | |
|  * If a driver supports GEM object mapping, mmap calls on the DRM file
 | |
|  * descriptor will end up here.
 | |
|  *
 | |
|  * If we find the object based on the offset passed in (vma->vm_pgoff will
 | |
|  * contain the fake offset we created when the GTT map ioctl was called on
 | |
|  * the object), we set up the driver fault handler so that any accesses
 | |
|  * to the object can be trapped, to perform migration, GTT binding, surface
 | |
|  * register allocation, or performance monitoring.
 | |
|  */
 | |
| int drm_gem_mmap(struct file *filp, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct drm_file *priv = filp->private_data;
 | |
| 	struct drm_device *dev = priv->minor->dev;
 | |
| 	struct drm_gem_mm *mm = dev->mm_private;
 | |
| 	struct drm_local_map *map = NULL;
 | |
| 	struct drm_gem_object *obj;
 | |
| 	struct drm_hash_item *hash;
 | |
| 	unsigned long prot;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&dev->struct_mutex);
 | |
| 
 | |
| 	if (drm_ht_find_item(&mm->offset_hash, vma->vm_pgoff, &hash)) {
 | |
| 		mutex_unlock(&dev->struct_mutex);
 | |
| 		return drm_mmap(filp, vma);
 | |
| 	}
 | |
| 
 | |
| 	map = drm_hash_entry(hash, struct drm_map_list, hash)->map;
 | |
| 	if (!map ||
 | |
| 	    ((map->flags & _DRM_RESTRICTED) && !capable(CAP_SYS_ADMIN))) {
 | |
| 		ret =  -EPERM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for valid size. */
 | |
| 	if (map->size < vma->vm_end - vma->vm_start) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	obj = map->handle;
 | |
| 	if (!obj->dev->driver->gem_vm_ops) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	vma->vm_flags |= VM_RESERVED | VM_IO | VM_PFNMAP | VM_DONTEXPAND;
 | |
| 	vma->vm_ops = obj->dev->driver->gem_vm_ops;
 | |
| 	vma->vm_private_data = map->handle;
 | |
| 	/* FIXME: use pgprot_writecombine when available */
 | |
| 	prot = pgprot_val(vma->vm_page_prot);
 | |
| #ifdef CONFIG_X86
 | |
| 	prot |= _PAGE_CACHE_WC;
 | |
| #endif
 | |
| 	vma->vm_page_prot = __pgprot(prot);
 | |
| 
 | |
| 	/* Take a ref for this mapping of the object, so that the fault
 | |
| 	 * handler can dereference the mmap offset's pointer to the object.
 | |
| 	 * This reference is cleaned up by the corresponding vm_close
 | |
| 	 * (which should happen whether the vma was created by this call, or
 | |
| 	 * by a vm_open due to mremap or partial unmap or whatever).
 | |
| 	 */
 | |
| 	drm_gem_object_reference(obj);
 | |
| 
 | |
| 	vma->vm_file = filp;	/* Needed for drm_vm_open() */
 | |
| 	drm_vm_open_locked(vma);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&dev->struct_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(drm_gem_mmap);
 |