mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 09:36:25 +00:00 
			
		
		
		
	 57c44c5f6f
			
		
	
	
		57c44c5f6f
		
	
	
	
	
		
			
			* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (24 commits) trivial: chack -> check typo fix in main Makefile trivial: Add a space (and a comma) to a printk in 8250 driver trivial: Fix misspelling of "firmware" in docs for ncr53c8xx/sym53c8xx trivial: Fix misspelling of "firmware" in powerpc Makefile trivial: Fix misspelling of "firmware" in usb.c trivial: Fix misspelling of "firmware" in qla1280.c trivial: Fix misspelling of "firmware" in a100u2w.c trivial: Fix misspelling of "firmware" in megaraid.c trivial: Fix misspelling of "firmware" in ql4_mbx.c trivial: Fix misspelling of "firmware" in acpi_memhotplug.c trivial: Fix misspelling of "firmware" in ipw2100.c trivial: Fix misspelling of "firmware" in atmel.c trivial: Fix misspelled firmware in Kconfig trivial: fix an -> a typos in documentation and comments trivial: fix then -> than typos in comments and documentation trivial: update Jesper Juhl CREDITS entry with new email trivial: fix singal -> signal typo trivial: Fix incorrect use of "loose" in event.c trivial: printk: fix indentation of new_text_line declaration trivial: rtc-stk17ta8: fix sparse warning ...
		
			
				
	
	
		
			582 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			582 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Kernel Probes (KProbes)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
|  *
 | |
|  * Copyright (C) IBM Corporation, 2002, 2004
 | |
|  *
 | |
|  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 | |
|  *		Probes initial implementation ( includes contributions from
 | |
|  *		Rusty Russell).
 | |
|  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 | |
|  *		interface to access function arguments.
 | |
|  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 | |
|  *		for PPC64
 | |
|  */
 | |
| 
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/sstep.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/system.h>
 | |
| 
 | |
| #ifdef CONFIG_BOOKE
 | |
| #define MSR_SINGLESTEP	(MSR_DE)
 | |
| #else
 | |
| #define MSR_SINGLESTEP	(MSR_SE)
 | |
| #endif
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	kprobe_opcode_t insn = *p->addr;
 | |
| 
 | |
| 	if ((unsigned long)p->addr & 0x03) {
 | |
| 		printk("Attempt to register kprobe at an unaligned address\n");
 | |
| 		ret = -EINVAL;
 | |
| 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
 | |
| 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* insn must be on a special executable page on ppc64.  This is
 | |
| 	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
 | |
| 	if (!ret) {
 | |
| 		p->ainsn.insn = get_insn_slot();
 | |
| 		if (!p->ainsn.insn)
 | |
| 			ret = -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		memcpy(p->ainsn.insn, p->addr,
 | |
| 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 | |
| 		p->opcode = *p->addr;
 | |
| 		flush_icache_range((unsigned long)p->ainsn.insn,
 | |
| 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
 | |
| 	}
 | |
| 
 | |
| 	p->ainsn.boostable = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = BREAKPOINT_INSTRUCTION;
 | |
| 	flush_icache_range((unsigned long) p->addr,
 | |
| 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = p->opcode;
 | |
| 	flush_icache_range((unsigned long) p->addr,
 | |
| 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 | |
| }
 | |
| 
 | |
| void __kprobes arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->ainsn.insn) {
 | |
| 		free_insn_slot(p->ainsn.insn, 0);
 | |
| 		p->ainsn.insn = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	/* We turn off async exceptions to ensure that the single step will
 | |
| 	 * be for the instruction we have the kprobe on, if we dont its
 | |
| 	 * possible we'd get the single step reported for an exception handler
 | |
| 	 * like Decrementer or External Interrupt */
 | |
| 	regs->msr &= ~MSR_EE;
 | |
| 	regs->msr |= MSR_SINGLESTEP;
 | |
| #ifdef CONFIG_BOOKE
 | |
| 	regs->msr &= ~MSR_CE;
 | |
| 	mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * On powerpc we should single step on the original
 | |
| 	 * instruction even if the probed insn is a trap
 | |
| 	 * variant as values in regs could play a part in
 | |
| 	 * if the trap is taken or not
 | |
| 	 */
 | |
| 	regs->nip = (unsigned long)p->ainsn.insn;
 | |
| }
 | |
| 
 | |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	kcb->prev_kprobe.kp = kprobe_running();
 | |
| 	kcb->prev_kprobe.status = kcb->kprobe_status;
 | |
| 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
 | |
| }
 | |
| 
 | |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe.status;
 | |
| 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
 | |
| }
 | |
| 
 | |
| static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 | |
| 				struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = p;
 | |
| 	kcb->kprobe_saved_msr = regs->msr;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 				      struct pt_regs *regs)
 | |
| {
 | |
| 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr */
 | |
| 	regs->link = (unsigned long)kretprobe_trampoline;
 | |
| }
 | |
| 
 | |
| static int __kprobes kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *p;
 | |
| 	int ret = 0;
 | |
| 	unsigned int *addr = (unsigned int *)regs->nip;
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to be preempted for the entire
 | |
| 	 * duration of kprobe processing
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	/* Check we're not actually recursing */
 | |
| 	if (kprobe_running()) {
 | |
| 		p = get_kprobe(addr);
 | |
| 		if (p) {
 | |
| 			kprobe_opcode_t insn = *p->ainsn.insn;
 | |
| 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
 | |
| 					is_trap(insn)) {
 | |
| 				/* Turn off 'trace' bits */
 | |
| 				regs->msr &= ~MSR_SINGLESTEP;
 | |
| 				regs->msr |= kcb->kprobe_saved_msr;
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			/* We have reentered the kprobe_handler(), since
 | |
| 			 * another probe was hit while within the handler.
 | |
| 			 * We here save the original kprobes variables and
 | |
| 			 * just single step on the instruction of the new probe
 | |
| 			 * without calling any user handlers.
 | |
| 			 */
 | |
| 			save_previous_kprobe(kcb);
 | |
| 			set_current_kprobe(p, regs, kcb);
 | |
| 			kcb->kprobe_saved_msr = regs->msr;
 | |
| 			kprobes_inc_nmissed_count(p);
 | |
| 			prepare_singlestep(p, regs);
 | |
| 			kcb->kprobe_status = KPROBE_REENTER;
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			if (*addr != BREAKPOINT_INSTRUCTION) {
 | |
| 				/* If trap variant, then it belongs not to us */
 | |
| 				kprobe_opcode_t cur_insn = *addr;
 | |
| 				if (is_trap(cur_insn))
 | |
| 		       			goto no_kprobe;
 | |
| 				/* The breakpoint instruction was removed by
 | |
| 				 * another cpu right after we hit, no further
 | |
| 				 * handling of this interrupt is appropriate
 | |
| 				 */
 | |
| 				ret = 1;
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			p = __get_cpu_var(current_kprobe);
 | |
| 			if (p->break_handler && p->break_handler(p, regs)) {
 | |
| 				goto ss_probe;
 | |
| 			}
 | |
| 		}
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	p = get_kprobe(addr);
 | |
| 	if (!p) {
 | |
| 		if (*addr != BREAKPOINT_INSTRUCTION) {
 | |
| 			/*
 | |
| 			 * PowerPC has multiple variants of the "trap"
 | |
| 			 * instruction. If the current instruction is a
 | |
| 			 * trap variant, it could belong to someone else
 | |
| 			 */
 | |
| 			kprobe_opcode_t cur_insn = *addr;
 | |
| 			if (is_trap(cur_insn))
 | |
| 		       		goto no_kprobe;
 | |
| 			/*
 | |
| 			 * The breakpoint instruction was removed right
 | |
| 			 * after we hit it.  Another cpu has removed
 | |
| 			 * either a probepoint or a debugger breakpoint
 | |
| 			 * at this address.  In either case, no further
 | |
| 			 * handling of this interrupt is appropriate.
 | |
| 			 */
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 		/* Not one of ours: let kernel handle it */
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 	set_current_kprobe(p, regs, kcb);
 | |
| 	if (p->pre_handler && p->pre_handler(p, regs))
 | |
| 		/* handler has already set things up, so skip ss setup */
 | |
| 		return 1;
 | |
| 
 | |
| ss_probe:
 | |
| 	if (p->ainsn.boostable >= 0) {
 | |
| 		unsigned int insn = *p->ainsn.insn;
 | |
| 
 | |
| 		/* regs->nip is also adjusted if emulate_step returns 1 */
 | |
| 		ret = emulate_step(regs, insn);
 | |
| 		if (ret > 0) {
 | |
| 			/*
 | |
| 			 * Once this instruction has been boosted
 | |
| 			 * successfully, set the boostable flag
 | |
| 			 */
 | |
| 			if (unlikely(p->ainsn.boostable == 0))
 | |
| 				p->ainsn.boostable = 1;
 | |
| 
 | |
| 			if (p->post_handler)
 | |
| 				p->post_handler(p, regs, 0);
 | |
| 
 | |
| 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 			reset_current_kprobe();
 | |
| 			preempt_enable_no_resched();
 | |
| 			return 1;
 | |
| 		} else if (ret < 0) {
 | |
| 			/*
 | |
| 			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
 | |
| 			 * So, we should never get here... but, its still
 | |
| 			 * good to catch them, just in case...
 | |
| 			 */
 | |
| 			printk("Can't step on instruction %x\n", insn);
 | |
| 			BUG();
 | |
| 		} else if (ret == 0)
 | |
| 			/* This instruction can't be boosted */
 | |
| 			p->ainsn.boostable = -1;
 | |
| 	}
 | |
| 	prepare_singlestep(p, regs);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 	return 1;
 | |
| 
 | |
| no_kprobe:
 | |
| 	preempt_enable_no_resched();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function return probe trampoline:
 | |
|  * 	- init_kprobes() establishes a probepoint here
 | |
|  * 	- When the probed function returns, this probe
 | |
|  * 		causes the handlers to fire
 | |
|  */
 | |
| static void __used kretprobe_trampoline_holder(void)
 | |
| {
 | |
| 	asm volatile(".global kretprobe_trampoline\n"
 | |
| 			"kretprobe_trampoline:\n"
 | |
| 			"nop\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the probe at kretprobe trampoline is hit
 | |
|  */
 | |
| static int __kprobes trampoline_probe_handler(struct kprobe *p,
 | |
| 						struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri = NULL;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *node, *tmp;
 | |
| 	unsigned long flags, orig_ret_address = 0;
 | |
| 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	kretprobe_hash_lock(current, &head, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because an multiple functions in the call path
 | |
| 	 * have a return probe installed on them, and/or more than one return
 | |
| 	 * return probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always inserted at the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *       function, the first instance's ret_addr will point to the
 | |
| 	 *       real return address, and all the rest will point to
 | |
| 	 *       kretprobe_trampoline
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler)
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address)
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 	regs->nip = orig_ret_address;
 | |
| 
 | |
| 	reset_current_kprobe();
 | |
| 	kretprobe_hash_unlock(current, &flags);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * By returning a non-zero value, we are telling
 | |
| 	 * kprobe_handler() that we don't want the post_handler
 | |
| 	 * to run (and have re-enabled preemption)
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after single-stepping.  p->addr is the address of the
 | |
|  * instruction whose first byte has been replaced by the "breakpoint"
 | |
|  * instruction.  To avoid the SMP problems that can occur when we
 | |
|  * temporarily put back the original opcode to single-step, we
 | |
|  * single-stepped a copy of the instruction.  The address of this
 | |
|  * copy is p->ainsn.insn.
 | |
|  */
 | |
| static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned int insn = *p->ainsn.insn;
 | |
| 
 | |
| 	regs->nip = (unsigned long)p->addr;
 | |
| 	ret = emulate_step(regs, insn);
 | |
| 	if (ret == 0)
 | |
| 		regs->nip = (unsigned long)p->addr + 4;
 | |
| }
 | |
| 
 | |
| static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (!cur)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* make sure we got here for instruction we have a kprobe on */
 | |
| 	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		cur->post_handler(cur, regs, 0);
 | |
| 	}
 | |
| 
 | |
| 	resume_execution(cur, regs);
 | |
| 	regs->msr |= kcb->kprobe_saved_msr;
 | |
| 
 | |
| 	/*Restore back the original saved kprobes variables and continue. */
 | |
| 	if (kcb->kprobe_status == KPROBE_REENTER) {
 | |
| 		restore_previous_kprobe(kcb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	reset_current_kprobe();
 | |
| out:
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	/*
 | |
| 	 * if somebody else is singlestepping across a probe point, msr
 | |
| 	 * will have DE/SE set, in which case, continue the remaining processing
 | |
| 	 * of do_debug, as if this is not a probe hit.
 | |
| 	 */
 | |
| 	if (regs->msr & MSR_SINGLESTEP)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	const struct exception_table_entry *entry;
 | |
| 
 | |
| 	switch(kcb->kprobe_status) {
 | |
| 	case KPROBE_HIT_SS:
 | |
| 	case KPROBE_REENTER:
 | |
| 		/*
 | |
| 		 * We are here because the instruction being single
 | |
| 		 * stepped caused a page fault. We reset the current
 | |
| 		 * kprobe and the nip points back to the probe address
 | |
| 		 * and allow the page fault handler to continue as a
 | |
| 		 * normal page fault.
 | |
| 		 */
 | |
| 		regs->nip = (unsigned long)cur->addr;
 | |
| 		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
 | |
| 		regs->msr |= kcb->kprobe_saved_msr;
 | |
| 		if (kcb->kprobe_status == KPROBE_REENTER)
 | |
| 			restore_previous_kprobe(kcb);
 | |
| 		else
 | |
| 			reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 		break;
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| 		/*
 | |
| 		 * We increment the nmissed count for accounting,
 | |
| 		 * we can also use npre/npostfault count for accouting
 | |
| 		 * these specific fault cases.
 | |
| 		 */
 | |
| 		kprobes_inc_nmissed_count(cur);
 | |
| 
 | |
| 		/*
 | |
| 		 * We come here because instructions in the pre/post
 | |
| 		 * handler caused the page_fault, this could happen
 | |
| 		 * if handler tries to access user space by
 | |
| 		 * copy_from_user(), get_user() etc. Let the
 | |
| 		 * user-specified handler try to fix it first.
 | |
| 		 */
 | |
| 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case the user-specified fault handler returned
 | |
| 		 * zero, try to fix up.
 | |
| 		 */
 | |
| 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
 | |
| 			regs->nip = entry->fixup;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * fixup_exception() could not handle it,
 | |
| 		 * Let do_page_fault() fix it.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper routine to for handling exceptions.
 | |
|  */
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	struct die_args *args = (struct die_args *)data;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	if (args->regs && user_mode(args->regs))
 | |
| 		return ret;
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case DIE_BPT:
 | |
| 		if (kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_SSTEP:
 | |
| 		if (post_kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| unsigned long arch_deref_entry_point(void *entry)
 | |
| {
 | |
| 	return ((func_descr_t *)entry)->entry;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
 | |
| 
 | |
| 	/* setup return addr to the jprobe handler routine */
 | |
| 	regs->nip = arch_deref_entry_point(jp->entry);
 | |
| #ifdef CONFIG_PPC64
 | |
| 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
 | |
| #endif
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __used __kprobes jprobe_return(void)
 | |
| {
 | |
| 	asm volatile("trap" ::: "memory");
 | |
| }
 | |
| 
 | |
| static void __used __kprobes jprobe_return_end(void)
 | |
| {
 | |
| };
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME - we should ideally be validating that we got here 'cos
 | |
| 	 * of the "trap" in jprobe_return() above, before restoring the
 | |
| 	 * saved regs...
 | |
| 	 */
 | |
| 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 | |
| 	preempt_enable_no_resched();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static struct kprobe trampoline_p = {
 | |
| 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 | |
| 	.pre_handler = trampoline_probe_handler
 | |
| };
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	return register_kprobe(&trampoline_p);
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |