mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 11:03:14 +00:00 
			
		
		
		
	 5e18e2b8b3
			
		
	
	
		5e18e2b8b3
		
	
	
	
	
		
			
			The kmem_cache_create() function in the slob allocator passes the SLAB flags as GFP flags to the slob_alloc() function. The patch changes this call to pass GFP_KERNEL as the other allocators seem to do. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Matt Mackall <mpm@selenic.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			648 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			648 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SLOB Allocator: Simple List Of Blocks
 | |
|  *
 | |
|  * Matt Mackall <mpm@selenic.com> 12/30/03
 | |
|  *
 | |
|  * NUMA support by Paul Mundt, 2007.
 | |
|  *
 | |
|  * How SLOB works:
 | |
|  *
 | |
|  * The core of SLOB is a traditional K&R style heap allocator, with
 | |
|  * support for returning aligned objects. The granularity of this
 | |
|  * allocator is as little as 2 bytes, however typically most architectures
 | |
|  * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
 | |
|  *
 | |
|  * The slob heap is a set of linked list of pages from alloc_pages(),
 | |
|  * and within each page, there is a singly-linked list of free blocks
 | |
|  * (slob_t). The heap is grown on demand. To reduce fragmentation,
 | |
|  * heap pages are segregated into three lists, with objects less than
 | |
|  * 256 bytes, objects less than 1024 bytes, and all other objects.
 | |
|  *
 | |
|  * Allocation from heap involves first searching for a page with
 | |
|  * sufficient free blocks (using a next-fit-like approach) followed by
 | |
|  * a first-fit scan of the page. Deallocation inserts objects back
 | |
|  * into the free list in address order, so this is effectively an
 | |
|  * address-ordered first fit.
 | |
|  *
 | |
|  * Above this is an implementation of kmalloc/kfree. Blocks returned
 | |
|  * from kmalloc are prepended with a 4-byte header with the kmalloc size.
 | |
|  * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
 | |
|  * alloc_pages() directly, allocating compound pages so the page order
 | |
|  * does not have to be separately tracked, and also stores the exact
 | |
|  * allocation size in page->private so that it can be used to accurately
 | |
|  * provide ksize(). These objects are detected in kfree() because slob_page()
 | |
|  * is false for them.
 | |
|  *
 | |
|  * SLAB is emulated on top of SLOB by simply calling constructors and
 | |
|  * destructors for every SLAB allocation. Objects are returned with the
 | |
|  * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
 | |
|  * case the low-level allocator will fragment blocks to create the proper
 | |
|  * alignment. Again, objects of page-size or greater are allocated by
 | |
|  * calling alloc_pages(). As SLAB objects know their size, no separate
 | |
|  * size bookkeeping is necessary and there is essentially no allocation
 | |
|  * space overhead, and compound pages aren't needed for multi-page
 | |
|  * allocations.
 | |
|  *
 | |
|  * NUMA support in SLOB is fairly simplistic, pushing most of the real
 | |
|  * logic down to the page allocator, and simply doing the node accounting
 | |
|  * on the upper levels. In the event that a node id is explicitly
 | |
|  * provided, alloc_pages_node() with the specified node id is used
 | |
|  * instead. The common case (or when the node id isn't explicitly provided)
 | |
|  * will default to the current node, as per numa_node_id().
 | |
|  *
 | |
|  * Node aware pages are still inserted in to the global freelist, and
 | |
|  * these are scanned for by matching against the node id encoded in the
 | |
|  * page flags. As a result, block allocations that can be satisfied from
 | |
|  * the freelist will only be done so on pages residing on the same node,
 | |
|  * in order to prevent random node placement.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/list.h>
 | |
| #include <asm/atomic.h>
 | |
| 
 | |
| /*
 | |
|  * slob_block has a field 'units', which indicates size of block if +ve,
 | |
|  * or offset of next block if -ve (in SLOB_UNITs).
 | |
|  *
 | |
|  * Free blocks of size 1 unit simply contain the offset of the next block.
 | |
|  * Those with larger size contain their size in the first SLOB_UNIT of
 | |
|  * memory, and the offset of the next free block in the second SLOB_UNIT.
 | |
|  */
 | |
| #if PAGE_SIZE <= (32767 * 2)
 | |
| typedef s16 slobidx_t;
 | |
| #else
 | |
| typedef s32 slobidx_t;
 | |
| #endif
 | |
| 
 | |
| struct slob_block {
 | |
| 	slobidx_t units;
 | |
| };
 | |
| typedef struct slob_block slob_t;
 | |
| 
 | |
| /*
 | |
|  * We use struct page fields to manage some slob allocation aspects,
 | |
|  * however to avoid the horrible mess in include/linux/mm_types.h, we'll
 | |
|  * just define our own struct page type variant here.
 | |
|  */
 | |
| struct slob_page {
 | |
| 	union {
 | |
| 		struct {
 | |
| 			unsigned long flags;	/* mandatory */
 | |
| 			atomic_t _count;	/* mandatory */
 | |
| 			slobidx_t units;	/* free units left in page */
 | |
| 			unsigned long pad[2];
 | |
| 			slob_t *free;		/* first free slob_t in page */
 | |
| 			struct list_head list;	/* linked list of free pages */
 | |
| 		};
 | |
| 		struct page page;
 | |
| 	};
 | |
| };
 | |
| static inline void struct_slob_page_wrong_size(void)
 | |
| { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
 | |
| 
 | |
| /*
 | |
|  * free_slob_page: call before a slob_page is returned to the page allocator.
 | |
|  */
 | |
| static inline void free_slob_page(struct slob_page *sp)
 | |
| {
 | |
| 	reset_page_mapcount(&sp->page);
 | |
| 	sp->page.mapping = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * All partially free slob pages go on these lists.
 | |
|  */
 | |
| #define SLOB_BREAK1 256
 | |
| #define SLOB_BREAK2 1024
 | |
| static LIST_HEAD(free_slob_small);
 | |
| static LIST_HEAD(free_slob_medium);
 | |
| static LIST_HEAD(free_slob_large);
 | |
| 
 | |
| /*
 | |
|  * slob_page: True for all slob pages (false for bigblock pages)
 | |
|  */
 | |
| static inline int slob_page(struct slob_page *sp)
 | |
| {
 | |
| 	return PageSlobPage((struct page *)sp);
 | |
| }
 | |
| 
 | |
| static inline void set_slob_page(struct slob_page *sp)
 | |
| {
 | |
| 	__SetPageSlobPage((struct page *)sp);
 | |
| }
 | |
| 
 | |
| static inline void clear_slob_page(struct slob_page *sp)
 | |
| {
 | |
| 	__ClearPageSlobPage((struct page *)sp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * slob_page_free: true for pages on free_slob_pages list.
 | |
|  */
 | |
| static inline int slob_page_free(struct slob_page *sp)
 | |
| {
 | |
| 	return PageSlobFree((struct page *)sp);
 | |
| }
 | |
| 
 | |
| static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
 | |
| {
 | |
| 	list_add(&sp->list, list);
 | |
| 	__SetPageSlobFree((struct page *)sp);
 | |
| }
 | |
| 
 | |
| static inline void clear_slob_page_free(struct slob_page *sp)
 | |
| {
 | |
| 	list_del(&sp->list);
 | |
| 	__ClearPageSlobFree((struct page *)sp);
 | |
| }
 | |
| 
 | |
| #define SLOB_UNIT sizeof(slob_t)
 | |
| #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
 | |
| #define SLOB_ALIGN L1_CACHE_BYTES
 | |
| 
 | |
| /*
 | |
|  * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 | |
|  * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
 | |
|  * the block using call_rcu.
 | |
|  */
 | |
| struct slob_rcu {
 | |
| 	struct rcu_head head;
 | |
| 	int size;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * slob_lock protects all slob allocator structures.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(slob_lock);
 | |
| 
 | |
| /*
 | |
|  * Encode the given size and next info into a free slob block s.
 | |
|  */
 | |
| static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
 | |
| {
 | |
| 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 | |
| 	slobidx_t offset = next - base;
 | |
| 
 | |
| 	if (size > 1) {
 | |
| 		s[0].units = size;
 | |
| 		s[1].units = offset;
 | |
| 	} else
 | |
| 		s[0].units = -offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the size of a slob block.
 | |
|  */
 | |
| static slobidx_t slob_units(slob_t *s)
 | |
| {
 | |
| 	if (s->units > 0)
 | |
| 		return s->units;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the next free slob block pointer after this one.
 | |
|  */
 | |
| static slob_t *slob_next(slob_t *s)
 | |
| {
 | |
| 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 | |
| 	slobidx_t next;
 | |
| 
 | |
| 	if (s[0].units < 0)
 | |
| 		next = -s[0].units;
 | |
| 	else
 | |
| 		next = s[1].units;
 | |
| 	return base+next;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if s is the last free block in its page.
 | |
|  */
 | |
| static int slob_last(slob_t *s)
 | |
| {
 | |
| 	return !((unsigned long)slob_next(s) & ~PAGE_MASK);
 | |
| }
 | |
| 
 | |
| static void *slob_new_page(gfp_t gfp, int order, int node)
 | |
| {
 | |
| 	void *page;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	if (node != -1)
 | |
| 		page = alloc_pages_node(node, gfp, order);
 | |
| 	else
 | |
| #endif
 | |
| 		page = alloc_pages(gfp, order);
 | |
| 
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return page_address(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a slob block within a given slob_page sp.
 | |
|  */
 | |
| static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
 | |
| {
 | |
| 	slob_t *prev, *cur, *aligned = 0;
 | |
| 	int delta = 0, units = SLOB_UNITS(size);
 | |
| 
 | |
| 	for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
 | |
| 		slobidx_t avail = slob_units(cur);
 | |
| 
 | |
| 		if (align) {
 | |
| 			aligned = (slob_t *)ALIGN((unsigned long)cur, align);
 | |
| 			delta = aligned - cur;
 | |
| 		}
 | |
| 		if (avail >= units + delta) { /* room enough? */
 | |
| 			slob_t *next;
 | |
| 
 | |
| 			if (delta) { /* need to fragment head to align? */
 | |
| 				next = slob_next(cur);
 | |
| 				set_slob(aligned, avail - delta, next);
 | |
| 				set_slob(cur, delta, aligned);
 | |
| 				prev = cur;
 | |
| 				cur = aligned;
 | |
| 				avail = slob_units(cur);
 | |
| 			}
 | |
| 
 | |
| 			next = slob_next(cur);
 | |
| 			if (avail == units) { /* exact fit? unlink. */
 | |
| 				if (prev)
 | |
| 					set_slob(prev, slob_units(prev), next);
 | |
| 				else
 | |
| 					sp->free = next;
 | |
| 			} else { /* fragment */
 | |
| 				if (prev)
 | |
| 					set_slob(prev, slob_units(prev), cur + units);
 | |
| 				else
 | |
| 					sp->free = cur + units;
 | |
| 				set_slob(cur + units, avail - units, next);
 | |
| 			}
 | |
| 
 | |
| 			sp->units -= units;
 | |
| 			if (!sp->units)
 | |
| 				clear_slob_page_free(sp);
 | |
| 			return cur;
 | |
| 		}
 | |
| 		if (slob_last(cur))
 | |
| 			return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * slob_alloc: entry point into the slob allocator.
 | |
|  */
 | |
| static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
 | |
| {
 | |
| 	struct slob_page *sp;
 | |
| 	struct list_head *prev;
 | |
| 	struct list_head *slob_list;
 | |
| 	slob_t *b = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (size < SLOB_BREAK1)
 | |
| 		slob_list = &free_slob_small;
 | |
| 	else if (size < SLOB_BREAK2)
 | |
| 		slob_list = &free_slob_medium;
 | |
| 	else
 | |
| 		slob_list = &free_slob_large;
 | |
| 
 | |
| 	spin_lock_irqsave(&slob_lock, flags);
 | |
| 	/* Iterate through each partially free page, try to find room */
 | |
| 	list_for_each_entry(sp, slob_list, list) {
 | |
| #ifdef CONFIG_NUMA
 | |
| 		/*
 | |
| 		 * If there's a node specification, search for a partial
 | |
| 		 * page with a matching node id in the freelist.
 | |
| 		 */
 | |
| 		if (node != -1 && page_to_nid(&sp->page) != node)
 | |
| 			continue;
 | |
| #endif
 | |
| 		/* Enough room on this page? */
 | |
| 		if (sp->units < SLOB_UNITS(size))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Attempt to alloc */
 | |
| 		prev = sp->list.prev;
 | |
| 		b = slob_page_alloc(sp, size, align);
 | |
| 		if (!b)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Improve fragment distribution and reduce our average
 | |
| 		 * search time by starting our next search here. (see
 | |
| 		 * Knuth vol 1, sec 2.5, pg 449) */
 | |
| 		if (prev != slob_list->prev &&
 | |
| 				slob_list->next != prev->next)
 | |
| 			list_move_tail(slob_list, prev->next);
 | |
| 		break;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&slob_lock, flags);
 | |
| 
 | |
| 	/* Not enough space: must allocate a new page */
 | |
| 	if (!b) {
 | |
| 		b = slob_new_page(gfp & ~__GFP_ZERO, 0, node);
 | |
| 		if (!b)
 | |
| 			return 0;
 | |
| 		sp = (struct slob_page *)virt_to_page(b);
 | |
| 		set_slob_page(sp);
 | |
| 
 | |
| 		spin_lock_irqsave(&slob_lock, flags);
 | |
| 		sp->units = SLOB_UNITS(PAGE_SIZE);
 | |
| 		sp->free = b;
 | |
| 		INIT_LIST_HEAD(&sp->list);
 | |
| 		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
 | |
| 		set_slob_page_free(sp, slob_list);
 | |
| 		b = slob_page_alloc(sp, size, align);
 | |
| 		BUG_ON(!b);
 | |
| 		spin_unlock_irqrestore(&slob_lock, flags);
 | |
| 	}
 | |
| 	if (unlikely((gfp & __GFP_ZERO) && b))
 | |
| 		memset(b, 0, size);
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * slob_free: entry point into the slob allocator.
 | |
|  */
 | |
| static void slob_free(void *block, int size)
 | |
| {
 | |
| 	struct slob_page *sp;
 | |
| 	slob_t *prev, *next, *b = (slob_t *)block;
 | |
| 	slobidx_t units;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(block)))
 | |
| 		return;
 | |
| 	BUG_ON(!size);
 | |
| 
 | |
| 	sp = (struct slob_page *)virt_to_page(block);
 | |
| 	units = SLOB_UNITS(size);
 | |
| 
 | |
| 	spin_lock_irqsave(&slob_lock, flags);
 | |
| 
 | |
| 	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
 | |
| 		/* Go directly to page allocator. Do not pass slob allocator */
 | |
| 		if (slob_page_free(sp))
 | |
| 			clear_slob_page_free(sp);
 | |
| 		clear_slob_page(sp);
 | |
| 		free_slob_page(sp);
 | |
| 		free_page((unsigned long)b);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!slob_page_free(sp)) {
 | |
| 		/* This slob page is about to become partially free. Easy! */
 | |
| 		sp->units = units;
 | |
| 		sp->free = b;
 | |
| 		set_slob(b, units,
 | |
| 			(void *)((unsigned long)(b +
 | |
| 					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
 | |
| 		set_slob_page_free(sp, &free_slob_small);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise the page is already partially free, so find reinsertion
 | |
| 	 * point.
 | |
| 	 */
 | |
| 	sp->units += units;
 | |
| 
 | |
| 	if (b < sp->free) {
 | |
| 		if (b + units == sp->free) {
 | |
| 			units += slob_units(sp->free);
 | |
| 			sp->free = slob_next(sp->free);
 | |
| 		}
 | |
| 		set_slob(b, units, sp->free);
 | |
| 		sp->free = b;
 | |
| 	} else {
 | |
| 		prev = sp->free;
 | |
| 		next = slob_next(prev);
 | |
| 		while (b > next) {
 | |
| 			prev = next;
 | |
| 			next = slob_next(prev);
 | |
| 		}
 | |
| 
 | |
| 		if (!slob_last(prev) && b + units == next) {
 | |
| 			units += slob_units(next);
 | |
| 			set_slob(b, units, slob_next(next));
 | |
| 		} else
 | |
| 			set_slob(b, units, next);
 | |
| 
 | |
| 		if (prev + slob_units(prev) == b) {
 | |
| 			units = slob_units(b) + slob_units(prev);
 | |
| 			set_slob(prev, units, slob_next(b));
 | |
| 		} else
 | |
| 			set_slob(prev, slob_units(prev), b);
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&slob_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 | |
|  */
 | |
| 
 | |
| #ifndef ARCH_KMALLOC_MINALIGN
 | |
| #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
 | |
| #endif
 | |
| 
 | |
| #ifndef ARCH_SLAB_MINALIGN
 | |
| #define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
 | |
| #endif
 | |
| 
 | |
| void *__kmalloc_node(size_t size, gfp_t gfp, int node)
 | |
| {
 | |
| 	unsigned int *m;
 | |
| 	int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 | |
| 
 | |
| 	if (size < PAGE_SIZE - align) {
 | |
| 		if (!size)
 | |
| 			return ZERO_SIZE_PTR;
 | |
| 
 | |
| 		m = slob_alloc(size + align, gfp, align, node);
 | |
| 		if (!m)
 | |
| 			return NULL;
 | |
| 		*m = size;
 | |
| 		return (void *)m + align;
 | |
| 	} else {
 | |
| 		void *ret;
 | |
| 
 | |
| 		ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node);
 | |
| 		if (ret) {
 | |
| 			struct page *page;
 | |
| 			page = virt_to_page(ret);
 | |
| 			page->private = size;
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc_node);
 | |
| 
 | |
| void kfree(const void *block)
 | |
| {
 | |
| 	struct slob_page *sp;
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(block)))
 | |
| 		return;
 | |
| 
 | |
| 	sp = (struct slob_page *)virt_to_page(block);
 | |
| 	if (slob_page(sp)) {
 | |
| 		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 | |
| 		unsigned int *m = (unsigned int *)(block - align);
 | |
| 		slob_free(m, *m + align);
 | |
| 	} else
 | |
| 		put_page(&sp->page);
 | |
| }
 | |
| EXPORT_SYMBOL(kfree);
 | |
| 
 | |
| /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
 | |
| size_t ksize(const void *block)
 | |
| {
 | |
| 	struct slob_page *sp;
 | |
| 
 | |
| 	BUG_ON(!block);
 | |
| 	if (unlikely(block == ZERO_SIZE_PTR))
 | |
| 		return 0;
 | |
| 
 | |
| 	sp = (struct slob_page *)virt_to_page(block);
 | |
| 	if (slob_page(sp)) {
 | |
| 		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 | |
| 		unsigned int *m = (unsigned int *)(block - align);
 | |
| 		return SLOB_UNITS(*m) * SLOB_UNIT;
 | |
| 	} else
 | |
| 		return sp->page.private;
 | |
| }
 | |
| 
 | |
| struct kmem_cache {
 | |
| 	unsigned int size, align;
 | |
| 	unsigned long flags;
 | |
| 	const char *name;
 | |
| 	void (*ctor)(void *);
 | |
| };
 | |
| 
 | |
| struct kmem_cache *kmem_cache_create(const char *name, size_t size,
 | |
| 	size_t align, unsigned long flags, void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *c;
 | |
| 
 | |
| 	c = slob_alloc(sizeof(struct kmem_cache),
 | |
| 		GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
 | |
| 
 | |
| 	if (c) {
 | |
| 		c->name = name;
 | |
| 		c->size = size;
 | |
| 		if (flags & SLAB_DESTROY_BY_RCU) {
 | |
| 			/* leave room for rcu footer at the end of object */
 | |
| 			c->size += sizeof(struct slob_rcu);
 | |
| 		}
 | |
| 		c->flags = flags;
 | |
| 		c->ctor = ctor;
 | |
| 		/* ignore alignment unless it's forced */
 | |
| 		c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
 | |
| 		if (c->align < ARCH_SLAB_MINALIGN)
 | |
| 			c->align = ARCH_SLAB_MINALIGN;
 | |
| 		if (c->align < align)
 | |
| 			c->align = align;
 | |
| 	} else if (flags & SLAB_PANIC)
 | |
| 		panic("Cannot create slab cache %s\n", name);
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_create);
 | |
| 
 | |
| void kmem_cache_destroy(struct kmem_cache *c)
 | |
| {
 | |
| 	slob_free(c, sizeof(struct kmem_cache));
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_destroy);
 | |
| 
 | |
| void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
 | |
| {
 | |
| 	void *b;
 | |
| 
 | |
| 	if (c->size < PAGE_SIZE)
 | |
| 		b = slob_alloc(c->size, flags, c->align, node);
 | |
| 	else
 | |
| 		b = slob_new_page(flags, get_order(c->size), node);
 | |
| 
 | |
| 	if (c->ctor)
 | |
| 		c->ctor(b);
 | |
| 
 | |
| 	return b;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_node);
 | |
| 
 | |
| static void __kmem_cache_free(void *b, int size)
 | |
| {
 | |
| 	if (size < PAGE_SIZE)
 | |
| 		slob_free(b, size);
 | |
| 	else
 | |
| 		free_pages((unsigned long)b, get_order(size));
 | |
| }
 | |
| 
 | |
| static void kmem_rcu_free(struct rcu_head *head)
 | |
| {
 | |
| 	struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
 | |
| 	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
 | |
| 
 | |
| 	__kmem_cache_free(b, slob_rcu->size);
 | |
| }
 | |
| 
 | |
| void kmem_cache_free(struct kmem_cache *c, void *b)
 | |
| {
 | |
| 	if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
 | |
| 		struct slob_rcu *slob_rcu;
 | |
| 		slob_rcu = b + (c->size - sizeof(struct slob_rcu));
 | |
| 		INIT_RCU_HEAD(&slob_rcu->head);
 | |
| 		slob_rcu->size = c->size;
 | |
| 		call_rcu(&slob_rcu->head, kmem_rcu_free);
 | |
| 	} else {
 | |
| 		__kmem_cache_free(b, c->size);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free);
 | |
| 
 | |
| unsigned int kmem_cache_size(struct kmem_cache *c)
 | |
| {
 | |
| 	return c->size;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_size);
 | |
| 
 | |
| const char *kmem_cache_name(struct kmem_cache *c)
 | |
| {
 | |
| 	return c->name;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_name);
 | |
| 
 | |
| int kmem_cache_shrink(struct kmem_cache *d)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_shrink);
 | |
| 
 | |
| int kmem_ptr_validate(struct kmem_cache *a, const void *b)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int slob_ready __read_mostly;
 | |
| 
 | |
| int slab_is_available(void)
 | |
| {
 | |
| 	return slob_ready;
 | |
| }
 | |
| 
 | |
| void __init kmem_cache_init(void)
 | |
| {
 | |
| 	slob_ready = 1;
 | |
| }
 |