mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 00:01:35 +00:00 
			
		
		
		
	 ae2d9fb18e
			
		
	
	
		ae2d9fb18e
		
	
	
	
	
		
			
			If we try to free a block which is already freed, the code was returning without first unlocking the group. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
		
			
				
	
	
		
			4658 lines
		
	
	
		
			126 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4658 lines
		
	
	
		
			126 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 | |
|  * Written by Alex Tomas <alex@clusterfs.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public Licens
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * mballoc.c contains the multiblocks allocation routines
 | |
|  */
 | |
| 
 | |
| #include "mballoc.h"
 | |
| /*
 | |
|  * MUSTDO:
 | |
|  *   - test ext4_ext_search_left() and ext4_ext_search_right()
 | |
|  *   - search for metadata in few groups
 | |
|  *
 | |
|  * TODO v4:
 | |
|  *   - normalization should take into account whether file is still open
 | |
|  *   - discard preallocations if no free space left (policy?)
 | |
|  *   - don't normalize tails
 | |
|  *   - quota
 | |
|  *   - reservation for superuser
 | |
|  *
 | |
|  * TODO v3:
 | |
|  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 | |
|  *   - track min/max extents in each group for better group selection
 | |
|  *   - mb_mark_used() may allocate chunk right after splitting buddy
 | |
|  *   - tree of groups sorted by number of free blocks
 | |
|  *   - error handling
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The allocation request involve request for multiple number of blocks
 | |
|  * near to the goal(block) value specified.
 | |
|  *
 | |
|  * During initialization phase of the allocator we decide to use the group
 | |
|  * preallocation or inode preallocation depending on the size file. The
 | |
|  * size of the file could be the resulting file size we would have after
 | |
|  * allocation or the current file size which ever is larger. If the size is
 | |
|  * less that sbi->s_mb_stream_request we select the group
 | |
|  * preallocation. The default value of s_mb_stream_request is 16
 | |
|  * blocks. This can also be tuned via
 | |
|  * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
 | |
|  * of number of blocks.
 | |
|  *
 | |
|  * The main motivation for having small file use group preallocation is to
 | |
|  * ensure that we have small file closer in the disk.
 | |
|  *
 | |
|  * First stage the allocator looks at the inode prealloc list
 | |
|  * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
 | |
|  * this particular inode. The inode prealloc space is represented as:
 | |
|  *
 | |
|  * pa_lstart -> the logical start block for this prealloc space
 | |
|  * pa_pstart -> the physical start block for this prealloc space
 | |
|  * pa_len    -> lenght for this prealloc space
 | |
|  * pa_free   ->  free space available in this prealloc space
 | |
|  *
 | |
|  * The inode preallocation space is used looking at the _logical_ start
 | |
|  * block. If only the logical file block falls within the range of prealloc
 | |
|  * space we will consume the particular prealloc space. This make sure that
 | |
|  * that the we have contiguous physical blocks representing the file blocks
 | |
|  *
 | |
|  * The important thing to be noted in case of inode prealloc space is that
 | |
|  * we don't modify the values associated to inode prealloc space except
 | |
|  * pa_free.
 | |
|  *
 | |
|  * If we are not able to find blocks in the inode prealloc space and if we
 | |
|  * have the group allocation flag set then we look at the locality group
 | |
|  * prealloc space. These are per CPU prealloc list repreasented as
 | |
|  *
 | |
|  * ext4_sb_info.s_locality_groups[smp_processor_id()]
 | |
|  *
 | |
|  * The reason for having a per cpu locality group is to reduce the contention
 | |
|  * between CPUs. It is possible to get scheduled at this point.
 | |
|  *
 | |
|  * The locality group prealloc space is used looking at whether we have
 | |
|  * enough free space (pa_free) withing the prealloc space.
 | |
|  *
 | |
|  * If we can't allocate blocks via inode prealloc or/and locality group
 | |
|  * prealloc then we look at the buddy cache. The buddy cache is represented
 | |
|  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 | |
|  * mapped to the buddy and bitmap information regarding different
 | |
|  * groups. The buddy information is attached to buddy cache inode so that
 | |
|  * we can access them through the page cache. The information regarding
 | |
|  * each group is loaded via ext4_mb_load_buddy.  The information involve
 | |
|  * block bitmap and buddy information. The information are stored in the
 | |
|  * inode as:
 | |
|  *
 | |
|  *  {                        page                        }
 | |
|  *  [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
 | |
|  *
 | |
|  *
 | |
|  * one block each for bitmap and buddy information.  So for each group we
 | |
|  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
 | |
|  * blocksize) blocks.  So it can have information regarding groups_per_page
 | |
|  * which is blocks_per_page/2
 | |
|  *
 | |
|  * The buddy cache inode is not stored on disk. The inode is thrown
 | |
|  * away when the filesystem is unmounted.
 | |
|  *
 | |
|  * We look for count number of blocks in the buddy cache. If we were able
 | |
|  * to locate that many free blocks we return with additional information
 | |
|  * regarding rest of the contiguous physical block available
 | |
|  *
 | |
|  * Before allocating blocks via buddy cache we normalize the request
 | |
|  * blocks. This ensure we ask for more blocks that we needed. The extra
 | |
|  * blocks that we get after allocation is added to the respective prealloc
 | |
|  * list. In case of inode preallocation we follow a list of heuristics
 | |
|  * based on file size. This can be found in ext4_mb_normalize_request. If
 | |
|  * we are doing a group prealloc we try to normalize the request to
 | |
|  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
 | |
|  * 512 blocks. This can be tuned via
 | |
|  * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
 | |
|  * terms of number of blocks. If we have mounted the file system with -O
 | |
|  * stripe=<value> option the group prealloc request is normalized to the
 | |
|  * stripe value (sbi->s_stripe)
 | |
|  *
 | |
|  * The regular allocator(using the buddy cache) support few tunables.
 | |
|  *
 | |
|  * /proc/fs/ext4/<partition>/min_to_scan
 | |
|  * /proc/fs/ext4/<partition>/max_to_scan
 | |
|  * /proc/fs/ext4/<partition>/order2_req
 | |
|  *
 | |
|  * The regular allocator use buddy scan only if the request len is power of
 | |
|  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 | |
|  * value of s_mb_order2_reqs can be tuned via
 | |
|  * /proc/fs/ext4/<partition>/order2_req.  If the request len is equal to
 | |
|  * stripe size (sbi->s_stripe), we try to search for contigous block in
 | |
|  * stripe size. This should result in better allocation on RAID setup. If
 | |
|  * not we search in the specific group using bitmap for best extents. The
 | |
|  * tunable min_to_scan and max_to_scan controll the behaviour here.
 | |
|  * min_to_scan indicate how long the mballoc __must__ look for a best
 | |
|  * extent and max_to_scanindicate how long the mballoc __can__ look for a
 | |
|  * best extent in the found extents. Searching for the blocks starts with
 | |
|  * the group specified as the goal value in allocation context via
 | |
|  * ac_g_ex. Each group is first checked based on the criteria whether it
 | |
|  * can used for allocation. ext4_mb_good_group explains how the groups are
 | |
|  * checked.
 | |
|  *
 | |
|  * Both the prealloc space are getting populated as above. So for the first
 | |
|  * request we will hit the buddy cache which will result in this prealloc
 | |
|  * space getting filled. The prealloc space is then later used for the
 | |
|  * subsequent request.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * mballoc operates on the following data:
 | |
|  *  - on-disk bitmap
 | |
|  *  - in-core buddy (actually includes buddy and bitmap)
 | |
|  *  - preallocation descriptors (PAs)
 | |
|  *
 | |
|  * there are two types of preallocations:
 | |
|  *  - inode
 | |
|  *    assiged to specific inode and can be used for this inode only.
 | |
|  *    it describes part of inode's space preallocated to specific
 | |
|  *    physical blocks. any block from that preallocated can be used
 | |
|  *    independent. the descriptor just tracks number of blocks left
 | |
|  *    unused. so, before taking some block from descriptor, one must
 | |
|  *    make sure corresponded logical block isn't allocated yet. this
 | |
|  *    also means that freeing any block within descriptor's range
 | |
|  *    must discard all preallocated blocks.
 | |
|  *  - locality group
 | |
|  *    assigned to specific locality group which does not translate to
 | |
|  *    permanent set of inodes: inode can join and leave group. space
 | |
|  *    from this type of preallocation can be used for any inode. thus
 | |
|  *    it's consumed from the beginning to the end.
 | |
|  *
 | |
|  * relation between them can be expressed as:
 | |
|  *    in-core buddy = on-disk bitmap + preallocation descriptors
 | |
|  *
 | |
|  * this mean blocks mballoc considers used are:
 | |
|  *  - allocated blocks (persistent)
 | |
|  *  - preallocated blocks (non-persistent)
 | |
|  *
 | |
|  * consistency in mballoc world means that at any time a block is either
 | |
|  * free or used in ALL structures. notice: "any time" should not be read
 | |
|  * literally -- time is discrete and delimited by locks.
 | |
|  *
 | |
|  *  to keep it simple, we don't use block numbers, instead we count number of
 | |
|  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 | |
|  *
 | |
|  * all operations can be expressed as:
 | |
|  *  - init buddy:			buddy = on-disk + PAs
 | |
|  *  - new PA:				buddy += N; PA = N
 | |
|  *  - use inode PA:			on-disk += N; PA -= N
 | |
|  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 | |
|  *  - use locality group PA		on-disk += N; PA -= N
 | |
|  *  - discard locality group PA		buddy -= PA; PA = 0
 | |
|  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 | |
|  *        is used in real operation because we can't know actual used
 | |
|  *        bits from PA, only from on-disk bitmap
 | |
|  *
 | |
|  * if we follow this strict logic, then all operations above should be atomic.
 | |
|  * given some of them can block, we'd have to use something like semaphores
 | |
|  * killing performance on high-end SMP hardware. let's try to relax it using
 | |
|  * the following knowledge:
 | |
|  *  1) if buddy is referenced, it's already initialized
 | |
|  *  2) while block is used in buddy and the buddy is referenced,
 | |
|  *     nobody can re-allocate that block
 | |
|  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 | |
|  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 | |
|  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 | |
|  *     block
 | |
|  *
 | |
|  * so, now we're building a concurrency table:
 | |
|  *  - init buddy vs.
 | |
|  *    - new PA
 | |
|  *      blocks for PA are allocated in the buddy, buddy must be referenced
 | |
|  *      until PA is linked to allocation group to avoid concurrent buddy init
 | |
|  *    - use inode PA
 | |
|  *      we need to make sure that either on-disk bitmap or PA has uptodate data
 | |
|  *      given (3) we care that PA-=N operation doesn't interfere with init
 | |
|  *    - discard inode PA
 | |
|  *      the simplest way would be to have buddy initialized by the discard
 | |
|  *    - use locality group PA
 | |
|  *      again PA-=N must be serialized with init
 | |
|  *    - discard locality group PA
 | |
|  *      the simplest way would be to have buddy initialized by the discard
 | |
|  *  - new PA vs.
 | |
|  *    - use inode PA
 | |
|  *      i_data_sem serializes them
 | |
|  *    - discard inode PA
 | |
|  *      discard process must wait until PA isn't used by another process
 | |
|  *    - use locality group PA
 | |
|  *      some mutex should serialize them
 | |
|  *    - discard locality group PA
 | |
|  *      discard process must wait until PA isn't used by another process
 | |
|  *  - use inode PA
 | |
|  *    - use inode PA
 | |
|  *      i_data_sem or another mutex should serializes them
 | |
|  *    - discard inode PA
 | |
|  *      discard process must wait until PA isn't used by another process
 | |
|  *    - use locality group PA
 | |
|  *      nothing wrong here -- they're different PAs covering different blocks
 | |
|  *    - discard locality group PA
 | |
|  *      discard process must wait until PA isn't used by another process
 | |
|  *
 | |
|  * now we're ready to make few consequences:
 | |
|  *  - PA is referenced and while it is no discard is possible
 | |
|  *  - PA is referenced until block isn't marked in on-disk bitmap
 | |
|  *  - PA changes only after on-disk bitmap
 | |
|  *  - discard must not compete with init. either init is done before
 | |
|  *    any discard or they're serialized somehow
 | |
|  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 | |
|  *
 | |
|  * a special case when we've used PA to emptiness. no need to modify buddy
 | |
|  * in this case, but we should care about concurrent init
 | |
|  *
 | |
|  */
 | |
| 
 | |
|  /*
 | |
|  * Logic in few words:
 | |
|  *
 | |
|  *  - allocation:
 | |
|  *    load group
 | |
|  *    find blocks
 | |
|  *    mark bits in on-disk bitmap
 | |
|  *    release group
 | |
|  *
 | |
|  *  - use preallocation:
 | |
|  *    find proper PA (per-inode or group)
 | |
|  *    load group
 | |
|  *    mark bits in on-disk bitmap
 | |
|  *    release group
 | |
|  *    release PA
 | |
|  *
 | |
|  *  - free:
 | |
|  *    load group
 | |
|  *    mark bits in on-disk bitmap
 | |
|  *    release group
 | |
|  *
 | |
|  *  - discard preallocations in group:
 | |
|  *    mark PAs deleted
 | |
|  *    move them onto local list
 | |
|  *    load on-disk bitmap
 | |
|  *    load group
 | |
|  *    remove PA from object (inode or locality group)
 | |
|  *    mark free blocks in-core
 | |
|  *
 | |
|  *  - discard inode's preallocations:
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Locking rules
 | |
|  *
 | |
|  * Locks:
 | |
|  *  - bitlock on a group	(group)
 | |
|  *  - object (inode/locality)	(object)
 | |
|  *  - per-pa lock		(pa)
 | |
|  *
 | |
|  * Paths:
 | |
|  *  - new pa
 | |
|  *    object
 | |
|  *    group
 | |
|  *
 | |
|  *  - find and use pa:
 | |
|  *    pa
 | |
|  *
 | |
|  *  - release consumed pa:
 | |
|  *    pa
 | |
|  *    group
 | |
|  *    object
 | |
|  *
 | |
|  *  - generate in-core bitmap:
 | |
|  *    group
 | |
|  *        pa
 | |
|  *
 | |
|  *  - discard all for given object (inode, locality group):
 | |
|  *    object
 | |
|  *        pa
 | |
|  *    group
 | |
|  *
 | |
|  *  - discard all for given group:
 | |
|  *    group
 | |
|  *        pa
 | |
|  *    group
 | |
|  *        object
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
 | |
| {
 | |
| #if BITS_PER_LONG == 64
 | |
| 	*bit += ((unsigned long) addr & 7UL) << 3;
 | |
| 	addr = (void *) ((unsigned long) addr & ~7UL);
 | |
| #elif BITS_PER_LONG == 32
 | |
| 	*bit += ((unsigned long) addr & 3UL) << 3;
 | |
| 	addr = (void *) ((unsigned long) addr & ~3UL);
 | |
| #else
 | |
| #error "how many bits you are?!"
 | |
| #endif
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static inline int mb_test_bit(int bit, void *addr)
 | |
| {
 | |
| 	/*
 | |
| 	 * ext4_test_bit on architecture like powerpc
 | |
| 	 * needs unsigned long aligned address
 | |
| 	 */
 | |
| 	addr = mb_correct_addr_and_bit(&bit, addr);
 | |
| 	return ext4_test_bit(bit, addr);
 | |
| }
 | |
| 
 | |
| static inline void mb_set_bit(int bit, void *addr)
 | |
| {
 | |
| 	addr = mb_correct_addr_and_bit(&bit, addr);
 | |
| 	ext4_set_bit(bit, addr);
 | |
| }
 | |
| 
 | |
| static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
 | |
| {
 | |
| 	addr = mb_correct_addr_and_bit(&bit, addr);
 | |
| 	ext4_set_bit_atomic(lock, bit, addr);
 | |
| }
 | |
| 
 | |
| static inline void mb_clear_bit(int bit, void *addr)
 | |
| {
 | |
| 	addr = mb_correct_addr_and_bit(&bit, addr);
 | |
| 	ext4_clear_bit(bit, addr);
 | |
| }
 | |
| 
 | |
| static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
 | |
| {
 | |
| 	addr = mb_correct_addr_and_bit(&bit, addr);
 | |
| 	ext4_clear_bit_atomic(lock, bit, addr);
 | |
| }
 | |
| 
 | |
| static inline int mb_find_next_zero_bit(void *addr, int max, int start)
 | |
| {
 | |
| 	int fix = 0, ret, tmpmax;
 | |
| 	addr = mb_correct_addr_and_bit(&fix, addr);
 | |
| 	tmpmax = max + fix;
 | |
| 	start += fix;
 | |
| 
 | |
| 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
 | |
| 	if (ret > max)
 | |
| 		return max;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int mb_find_next_bit(void *addr, int max, int start)
 | |
| {
 | |
| 	int fix = 0, ret, tmpmax;
 | |
| 	addr = mb_correct_addr_and_bit(&fix, addr);
 | |
| 	tmpmax = max + fix;
 | |
| 	start += fix;
 | |
| 
 | |
| 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
 | |
| 	if (ret > max)
 | |
| 		return max;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
 | |
| {
 | |
| 	char *bb;
 | |
| 
 | |
| 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
 | |
| 	BUG_ON(max == NULL);
 | |
| 
 | |
| 	if (order > e4b->bd_blkbits + 1) {
 | |
| 		*max = 0;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* at order 0 we see each particular block */
 | |
| 	*max = 1 << (e4b->bd_blkbits + 3);
 | |
| 	if (order == 0)
 | |
| 		return EXT4_MB_BITMAP(e4b);
 | |
| 
 | |
| 	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
 | |
| 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
 | |
| 
 | |
| 	return bb;
 | |
| }
 | |
| 
 | |
| #ifdef DOUBLE_CHECK
 | |
| static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
 | |
| 			   int first, int count)
 | |
| {
 | |
| 	int i;
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 
 | |
| 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 | |
| 		return;
 | |
| 	BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
 | |
| 			ext4_fsblk_t blocknr;
 | |
| 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
 | |
| 			blocknr += first + i;
 | |
| 			blocknr +=
 | |
| 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
 | |
| 
 | |
| 			ext4_error(sb, __func__, "double-free of inode"
 | |
| 				   " %lu's block %llu(bit %u in group %lu)\n",
 | |
| 				   inode ? inode->i_ino : 0, blocknr,
 | |
| 				   first + i, e4b->bd_group);
 | |
| 		}
 | |
| 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 | |
| 		return;
 | |
| 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
 | |
| 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 | |
| {
 | |
| 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
 | |
| 		unsigned char *b1, *b2;
 | |
| 		int i;
 | |
| 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
 | |
| 		b2 = (unsigned char *) bitmap;
 | |
| 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
 | |
| 			if (b1[i] != b2[i]) {
 | |
| 				printk(KERN_ERR "corruption in group %lu "
 | |
| 				       "at byte %u(%u): %x in copy != %x "
 | |
| 				       "on disk/prealloc\n",
 | |
| 				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
 | |
| 				BUG();
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void mb_free_blocks_double(struct inode *inode,
 | |
| 				struct ext4_buddy *e4b, int first, int count)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| static inline void mb_mark_used_double(struct ext4_buddy *e4b,
 | |
| 						int first, int count)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef AGGRESSIVE_CHECK
 | |
| 
 | |
| #define MB_CHECK_ASSERT(assert)						\
 | |
| do {									\
 | |
| 	if (!(assert)) {						\
 | |
| 		printk(KERN_EMERG					\
 | |
| 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
 | |
| 			function, file, line, # assert);		\
 | |
| 		BUG();							\
 | |
| 	}								\
 | |
| } while (0)
 | |
| 
 | |
| static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
 | |
| 				const char *function, int line)
 | |
| {
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 	int order = e4b->bd_blkbits + 1;
 | |
| 	int max;
 | |
| 	int max2;
 | |
| 	int i;
 | |
| 	int j;
 | |
| 	int k;
 | |
| 	int count;
 | |
| 	struct ext4_group_info *grp;
 | |
| 	int fragments = 0;
 | |
| 	int fstart;
 | |
| 	struct list_head *cur;
 | |
| 	void *buddy;
 | |
| 	void *buddy2;
 | |
| 
 | |
| 	{
 | |
| 		static int mb_check_counter;
 | |
| 		if (mb_check_counter++ % 100 != 0)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	while (order > 1) {
 | |
| 		buddy = mb_find_buddy(e4b, order, &max);
 | |
| 		MB_CHECK_ASSERT(buddy);
 | |
| 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
 | |
| 		MB_CHECK_ASSERT(buddy2);
 | |
| 		MB_CHECK_ASSERT(buddy != buddy2);
 | |
| 		MB_CHECK_ASSERT(max * 2 == max2);
 | |
| 
 | |
| 		count = 0;
 | |
| 		for (i = 0; i < max; i++) {
 | |
| 
 | |
| 			if (mb_test_bit(i, buddy)) {
 | |
| 				/* only single bit in buddy2 may be 1 */
 | |
| 				if (!mb_test_bit(i << 1, buddy2)) {
 | |
| 					MB_CHECK_ASSERT(
 | |
| 						mb_test_bit((i<<1)+1, buddy2));
 | |
| 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
 | |
| 					MB_CHECK_ASSERT(
 | |
| 						mb_test_bit(i << 1, buddy2));
 | |
| 				}
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* both bits in buddy2 must be 0 */
 | |
| 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
 | |
| 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
 | |
| 
 | |
| 			for (j = 0; j < (1 << order); j++) {
 | |
| 				k = (i * (1 << order)) + j;
 | |
| 				MB_CHECK_ASSERT(
 | |
| 					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
 | |
| 			}
 | |
| 			count++;
 | |
| 		}
 | |
| 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
 | |
| 		order--;
 | |
| 	}
 | |
| 
 | |
| 	fstart = -1;
 | |
| 	buddy = mb_find_buddy(e4b, 0, &max);
 | |
| 	for (i = 0; i < max; i++) {
 | |
| 		if (!mb_test_bit(i, buddy)) {
 | |
| 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
 | |
| 			if (fstart == -1) {
 | |
| 				fragments++;
 | |
| 				fstart = i;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 		fstart = -1;
 | |
| 		/* check used bits only */
 | |
| 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
 | |
| 			buddy2 = mb_find_buddy(e4b, j, &max2);
 | |
| 			k = i >> j;
 | |
| 			MB_CHECK_ASSERT(k < max2);
 | |
| 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
 | |
| 		}
 | |
| 	}
 | |
| 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
 | |
| 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
 | |
| 
 | |
| 	grp = ext4_get_group_info(sb, e4b->bd_group);
 | |
| 	buddy = mb_find_buddy(e4b, 0, &max);
 | |
| 	list_for_each(cur, &grp->bb_prealloc_list) {
 | |
| 		ext4_group_t groupnr;
 | |
| 		struct ext4_prealloc_space *pa;
 | |
| 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 | |
| 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
 | |
| 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
 | |
| 		for (i = 0; i < pa->pa_len; i++)
 | |
| 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #undef MB_CHECK_ASSERT
 | |
| #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
 | |
| 					__FILE__, __func__, __LINE__)
 | |
| #else
 | |
| #define mb_check_buddy(e4b)
 | |
| #endif
 | |
| 
 | |
| /* FIXME!! need more doc */
 | |
| static void ext4_mb_mark_free_simple(struct super_block *sb,
 | |
| 				void *buddy, unsigned first, int len,
 | |
| 					struct ext4_group_info *grp)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	unsigned short min;
 | |
| 	unsigned short max;
 | |
| 	unsigned short chunk;
 | |
| 	unsigned short border;
 | |
| 
 | |
| 	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
 | |
| 
 | |
| 	border = 2 << sb->s_blocksize_bits;
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		/* find how many blocks can be covered since this position */
 | |
| 		max = ffs(first | border) - 1;
 | |
| 
 | |
| 		/* find how many blocks of power 2 we need to mark */
 | |
| 		min = fls(len) - 1;
 | |
| 
 | |
| 		if (max < min)
 | |
| 			min = max;
 | |
| 		chunk = 1 << min;
 | |
| 
 | |
| 		/* mark multiblock chunks only */
 | |
| 		grp->bb_counters[min]++;
 | |
| 		if (min > 0)
 | |
| 			mb_clear_bit(first >> min,
 | |
| 				     buddy + sbi->s_mb_offsets[min]);
 | |
| 
 | |
| 		len -= chunk;
 | |
| 		first += chunk;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ext4_mb_generate_buddy(struct super_block *sb,
 | |
| 				void *buddy, void *bitmap, ext4_group_t group)
 | |
| {
 | |
| 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 | |
| 	unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
 | |
| 	unsigned short i = 0;
 | |
| 	unsigned short first;
 | |
| 	unsigned short len;
 | |
| 	unsigned free = 0;
 | |
| 	unsigned fragments = 0;
 | |
| 	unsigned long long period = get_cycles();
 | |
| 
 | |
| 	/* initialize buddy from bitmap which is aggregation
 | |
| 	 * of on-disk bitmap and preallocations */
 | |
| 	i = mb_find_next_zero_bit(bitmap, max, 0);
 | |
| 	grp->bb_first_free = i;
 | |
| 	while (i < max) {
 | |
| 		fragments++;
 | |
| 		first = i;
 | |
| 		i = mb_find_next_bit(bitmap, max, i);
 | |
| 		len = i - first;
 | |
| 		free += len;
 | |
| 		if (len > 1)
 | |
| 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
 | |
| 		else
 | |
| 			grp->bb_counters[0]++;
 | |
| 		if (i < max)
 | |
| 			i = mb_find_next_zero_bit(bitmap, max, i);
 | |
| 	}
 | |
| 	grp->bb_fragments = fragments;
 | |
| 
 | |
| 	if (free != grp->bb_free) {
 | |
| 		ext4_error(sb, __func__,
 | |
| 			"EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n",
 | |
| 			group, free, grp->bb_free);
 | |
| 		/*
 | |
| 		 * If we intent to continue, we consider group descritor
 | |
| 		 * corrupt and update bb_free using bitmap value
 | |
| 		 */
 | |
| 		grp->bb_free = free;
 | |
| 	}
 | |
| 
 | |
| 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
 | |
| 
 | |
| 	period = get_cycles() - period;
 | |
| 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
 | |
| 	EXT4_SB(sb)->s_mb_buddies_generated++;
 | |
| 	EXT4_SB(sb)->s_mb_generation_time += period;
 | |
| 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
 | |
| }
 | |
| 
 | |
| /* The buddy information is attached the buddy cache inode
 | |
|  * for convenience. The information regarding each group
 | |
|  * is loaded via ext4_mb_load_buddy. The information involve
 | |
|  * block bitmap and buddy information. The information are
 | |
|  * stored in the inode as
 | |
|  *
 | |
|  * {                        page                        }
 | |
|  * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
 | |
|  *
 | |
|  *
 | |
|  * one block each for bitmap and buddy information.
 | |
|  * So for each group we take up 2 blocks. A page can
 | |
|  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
 | |
|  * So it can have information regarding groups_per_page which
 | |
|  * is blocks_per_page/2
 | |
|  */
 | |
| 
 | |
| static int ext4_mb_init_cache(struct page *page, char *incore)
 | |
| {
 | |
| 	int blocksize;
 | |
| 	int blocks_per_page;
 | |
| 	int groups_per_page;
 | |
| 	int err = 0;
 | |
| 	int i;
 | |
| 	ext4_group_t first_group;
 | |
| 	int first_block;
 | |
| 	struct super_block *sb;
 | |
| 	struct buffer_head *bhs;
 | |
| 	struct buffer_head **bh;
 | |
| 	struct inode *inode;
 | |
| 	char *data;
 | |
| 	char *bitmap;
 | |
| 
 | |
| 	mb_debug("init page %lu\n", page->index);
 | |
| 
 | |
| 	inode = page->mapping->host;
 | |
| 	sb = inode->i_sb;
 | |
| 	blocksize = 1 << inode->i_blkbits;
 | |
| 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
 | |
| 
 | |
| 	groups_per_page = blocks_per_page >> 1;
 | |
| 	if (groups_per_page == 0)
 | |
| 		groups_per_page = 1;
 | |
| 
 | |
| 	/* allocate buffer_heads to read bitmaps */
 | |
| 	if (groups_per_page > 1) {
 | |
| 		err = -ENOMEM;
 | |
| 		i = sizeof(struct buffer_head *) * groups_per_page;
 | |
| 		bh = kzalloc(i, GFP_NOFS);
 | |
| 		if (bh == NULL)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		bh = &bhs;
 | |
| 
 | |
| 	first_group = page->index * blocks_per_page / 2;
 | |
| 
 | |
| 	/* read all groups the page covers into the cache */
 | |
| 	for (i = 0; i < groups_per_page; i++) {
 | |
| 		struct ext4_group_desc *desc;
 | |
| 
 | |
| 		if (first_group + i >= EXT4_SB(sb)->s_groups_count)
 | |
| 			break;
 | |
| 
 | |
| 		err = -EIO;
 | |
| 		desc = ext4_get_group_desc(sb, first_group + i, NULL);
 | |
| 		if (desc == NULL)
 | |
| 			goto out;
 | |
| 
 | |
| 		err = -ENOMEM;
 | |
| 		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
 | |
| 		if (bh[i] == NULL)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (buffer_uptodate(bh[i]) &&
 | |
| 		    !(desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))
 | |
| 			continue;
 | |
| 
 | |
| 		lock_buffer(bh[i]);
 | |
| 		spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
 | |
| 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 | |
| 			ext4_init_block_bitmap(sb, bh[i],
 | |
| 						first_group + i, desc);
 | |
| 			set_buffer_uptodate(bh[i]);
 | |
| 			unlock_buffer(bh[i]);
 | |
| 			spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
 | |
| 			continue;
 | |
| 		}
 | |
| 		spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
 | |
| 		get_bh(bh[i]);
 | |
| 		bh[i]->b_end_io = end_buffer_read_sync;
 | |
| 		submit_bh(READ, bh[i]);
 | |
| 		mb_debug("read bitmap for group %lu\n", first_group + i);
 | |
| 	}
 | |
| 
 | |
| 	/* wait for I/O completion */
 | |
| 	for (i = 0; i < groups_per_page && bh[i]; i++)
 | |
| 		wait_on_buffer(bh[i]);
 | |
| 
 | |
| 	err = -EIO;
 | |
| 	for (i = 0; i < groups_per_page && bh[i]; i++)
 | |
| 		if (!buffer_uptodate(bh[i]))
 | |
| 			goto out;
 | |
| 
 | |
| 	err = 0;
 | |
| 	first_block = page->index * blocks_per_page;
 | |
| 	for (i = 0; i < blocks_per_page; i++) {
 | |
| 		int group;
 | |
| 		struct ext4_group_info *grinfo;
 | |
| 
 | |
| 		group = (first_block + i) >> 1;
 | |
| 		if (group >= EXT4_SB(sb)->s_groups_count)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * data carry information regarding this
 | |
| 		 * particular group in the format specified
 | |
| 		 * above
 | |
| 		 *
 | |
| 		 */
 | |
| 		data = page_address(page) + (i * blocksize);
 | |
| 		bitmap = bh[group - first_group]->b_data;
 | |
| 
 | |
| 		/*
 | |
| 		 * We place the buddy block and bitmap block
 | |
| 		 * close together
 | |
| 		 */
 | |
| 		if ((first_block + i) & 1) {
 | |
| 			/* this is block of buddy */
 | |
| 			BUG_ON(incore == NULL);
 | |
| 			mb_debug("put buddy for group %u in page %lu/%x\n",
 | |
| 				group, page->index, i * blocksize);
 | |
| 			memset(data, 0xff, blocksize);
 | |
| 			grinfo = ext4_get_group_info(sb, group);
 | |
| 			grinfo->bb_fragments = 0;
 | |
| 			memset(grinfo->bb_counters, 0,
 | |
| 			       sizeof(unsigned short)*(sb->s_blocksize_bits+2));
 | |
| 			/*
 | |
| 			 * incore got set to the group block bitmap below
 | |
| 			 */
 | |
| 			ext4_mb_generate_buddy(sb, data, incore, group);
 | |
| 			incore = NULL;
 | |
| 		} else {
 | |
| 			/* this is block of bitmap */
 | |
| 			BUG_ON(incore != NULL);
 | |
| 			mb_debug("put bitmap for group %u in page %lu/%x\n",
 | |
| 				group, page->index, i * blocksize);
 | |
| 
 | |
| 			/* see comments in ext4_mb_put_pa() */
 | |
| 			ext4_lock_group(sb, group);
 | |
| 			memcpy(data, bitmap, blocksize);
 | |
| 
 | |
| 			/* mark all preallocated blks used in in-core bitmap */
 | |
| 			ext4_mb_generate_from_pa(sb, data, group);
 | |
| 			ext4_unlock_group(sb, group);
 | |
| 
 | |
| 			/* set incore so that the buddy information can be
 | |
| 			 * generated using this
 | |
| 			 */
 | |
| 			incore = data;
 | |
| 		}
 | |
| 	}
 | |
| 	SetPageUptodate(page);
 | |
| 
 | |
| out:
 | |
| 	if (bh) {
 | |
| 		for (i = 0; i < groups_per_page && bh[i]; i++)
 | |
| 			brelse(bh[i]);
 | |
| 		if (bh != &bhs)
 | |
| 			kfree(bh);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct inode *inode = sbi->s_buddy_cache;
 | |
| 	int blocks_per_page;
 | |
| 	int block;
 | |
| 	int pnum;
 | |
| 	int poff;
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 
 | |
| 	mb_debug("load group %lu\n", group);
 | |
| 
 | |
| 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
 | |
| 
 | |
| 	e4b->bd_blkbits = sb->s_blocksize_bits;
 | |
| 	e4b->bd_info = ext4_get_group_info(sb, group);
 | |
| 	e4b->bd_sb = sb;
 | |
| 	e4b->bd_group = group;
 | |
| 	e4b->bd_buddy_page = NULL;
 | |
| 	e4b->bd_bitmap_page = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * the buddy cache inode stores the block bitmap
 | |
| 	 * and buddy information in consecutive blocks.
 | |
| 	 * So for each group we need two blocks.
 | |
| 	 */
 | |
| 	block = group * 2;
 | |
| 	pnum = block / blocks_per_page;
 | |
| 	poff = block % blocks_per_page;
 | |
| 
 | |
| 	/* we could use find_or_create_page(), but it locks page
 | |
| 	 * what we'd like to avoid in fast path ... */
 | |
| 	page = find_get_page(inode->i_mapping, pnum);
 | |
| 	if (page == NULL || !PageUptodate(page)) {
 | |
| 		if (page)
 | |
| 			page_cache_release(page);
 | |
| 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
 | |
| 		if (page) {
 | |
| 			BUG_ON(page->mapping != inode->i_mapping);
 | |
| 			if (!PageUptodate(page)) {
 | |
| 				ret = ext4_mb_init_cache(page, NULL);
 | |
| 				if (ret) {
 | |
| 					unlock_page(page);
 | |
| 					goto err;
 | |
| 				}
 | |
| 				mb_cmp_bitmaps(e4b, page_address(page) +
 | |
| 					       (poff * sb->s_blocksize));
 | |
| 			}
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 	}
 | |
| 	if (page == NULL || !PageUptodate(page)) {
 | |
| 		ret = -EIO;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	e4b->bd_bitmap_page = page;
 | |
| 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
 | |
| 	mark_page_accessed(page);
 | |
| 
 | |
| 	block++;
 | |
| 	pnum = block / blocks_per_page;
 | |
| 	poff = block % blocks_per_page;
 | |
| 
 | |
| 	page = find_get_page(inode->i_mapping, pnum);
 | |
| 	if (page == NULL || !PageUptodate(page)) {
 | |
| 		if (page)
 | |
| 			page_cache_release(page);
 | |
| 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
 | |
| 		if (page) {
 | |
| 			BUG_ON(page->mapping != inode->i_mapping);
 | |
| 			if (!PageUptodate(page)) {
 | |
| 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
 | |
| 				if (ret) {
 | |
| 					unlock_page(page);
 | |
| 					goto err;
 | |
| 				}
 | |
| 			}
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 	}
 | |
| 	if (page == NULL || !PageUptodate(page)) {
 | |
| 		ret = -EIO;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	e4b->bd_buddy_page = page;
 | |
| 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
 | |
| 	mark_page_accessed(page);
 | |
| 
 | |
| 	BUG_ON(e4b->bd_bitmap_page == NULL);
 | |
| 	BUG_ON(e4b->bd_buddy_page == NULL);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	if (e4b->bd_bitmap_page)
 | |
| 		page_cache_release(e4b->bd_bitmap_page);
 | |
| 	if (e4b->bd_buddy_page)
 | |
| 		page_cache_release(e4b->bd_buddy_page);
 | |
| 	e4b->bd_buddy = NULL;
 | |
| 	e4b->bd_bitmap = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ext4_mb_release_desc(struct ext4_buddy *e4b)
 | |
| {
 | |
| 	if (e4b->bd_bitmap_page)
 | |
| 		page_cache_release(e4b->bd_bitmap_page);
 | |
| 	if (e4b->bd_buddy_page)
 | |
| 		page_cache_release(e4b->bd_buddy_page);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
 | |
| {
 | |
| 	int order = 1;
 | |
| 	void *bb;
 | |
| 
 | |
| 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
 | |
| 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
 | |
| 
 | |
| 	bb = EXT4_MB_BUDDY(e4b);
 | |
| 	while (order <= e4b->bd_blkbits + 1) {
 | |
| 		block = block >> 1;
 | |
| 		if (!mb_test_bit(block, bb)) {
 | |
| 			/* this block is part of buddy of order 'order' */
 | |
| 			return order;
 | |
| 		}
 | |
| 		bb += 1 << (e4b->bd_blkbits - order);
 | |
| 		order++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
 | |
| {
 | |
| 	__u32 *addr;
 | |
| 
 | |
| 	len = cur + len;
 | |
| 	while (cur < len) {
 | |
| 		if ((cur & 31) == 0 && (len - cur) >= 32) {
 | |
| 			/* fast path: clear whole word at once */
 | |
| 			addr = bm + (cur >> 3);
 | |
| 			*addr = 0;
 | |
| 			cur += 32;
 | |
| 			continue;
 | |
| 		}
 | |
| 		mb_clear_bit_atomic(lock, cur, bm);
 | |
| 		cur++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
 | |
| {
 | |
| 	__u32 *addr;
 | |
| 
 | |
| 	len = cur + len;
 | |
| 	while (cur < len) {
 | |
| 		if ((cur & 31) == 0 && (len - cur) >= 32) {
 | |
| 			/* fast path: set whole word at once */
 | |
| 			addr = bm + (cur >> 3);
 | |
| 			*addr = 0xffffffff;
 | |
| 			cur += 32;
 | |
| 			continue;
 | |
| 		}
 | |
| 		mb_set_bit_atomic(lock, cur, bm);
 | |
| 		cur++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
 | |
| 			  int first, int count)
 | |
| {
 | |
| 	int block = 0;
 | |
| 	int max = 0;
 | |
| 	int order;
 | |
| 	void *buddy;
 | |
| 	void *buddy2;
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 
 | |
| 	BUG_ON(first + count > (sb->s_blocksize << 3));
 | |
| 	BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
 | |
| 	mb_check_buddy(e4b);
 | |
| 	mb_free_blocks_double(inode, e4b, first, count);
 | |
| 
 | |
| 	e4b->bd_info->bb_free += count;
 | |
| 	if (first < e4b->bd_info->bb_first_free)
 | |
| 		e4b->bd_info->bb_first_free = first;
 | |
| 
 | |
| 	/* let's maintain fragments counter */
 | |
| 	if (first != 0)
 | |
| 		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
 | |
| 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
 | |
| 		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
 | |
| 	if (block && max)
 | |
| 		e4b->bd_info->bb_fragments--;
 | |
| 	else if (!block && !max)
 | |
| 		e4b->bd_info->bb_fragments++;
 | |
| 
 | |
| 	/* let's maintain buddy itself */
 | |
| 	while (count-- > 0) {
 | |
| 		block = first++;
 | |
| 		order = 0;
 | |
| 
 | |
| 		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
 | |
| 			ext4_fsblk_t blocknr;
 | |
| 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
 | |
| 			blocknr += block;
 | |
| 			blocknr +=
 | |
| 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
 | |
| 			ext4_unlock_group(sb, e4b->bd_group);
 | |
| 			ext4_error(sb, __func__, "double-free of inode"
 | |
| 				   " %lu's block %llu(bit %u in group %lu)\n",
 | |
| 				   inode ? inode->i_ino : 0, blocknr, block,
 | |
| 				   e4b->bd_group);
 | |
| 			ext4_lock_group(sb, e4b->bd_group);
 | |
| 		}
 | |
| 		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
 | |
| 		e4b->bd_info->bb_counters[order]++;
 | |
| 
 | |
| 		/* start of the buddy */
 | |
| 		buddy = mb_find_buddy(e4b, order, &max);
 | |
| 
 | |
| 		do {
 | |
| 			block &= ~1UL;
 | |
| 			if (mb_test_bit(block, buddy) ||
 | |
| 					mb_test_bit(block + 1, buddy))
 | |
| 				break;
 | |
| 
 | |
| 			/* both the buddies are free, try to coalesce them */
 | |
| 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
 | |
| 
 | |
| 			if (!buddy2)
 | |
| 				break;
 | |
| 
 | |
| 			if (order > 0) {
 | |
| 				/* for special purposes, we don't set
 | |
| 				 * free bits in bitmap */
 | |
| 				mb_set_bit(block, buddy);
 | |
| 				mb_set_bit(block + 1, buddy);
 | |
| 			}
 | |
| 			e4b->bd_info->bb_counters[order]--;
 | |
| 			e4b->bd_info->bb_counters[order]--;
 | |
| 
 | |
| 			block = block >> 1;
 | |
| 			order++;
 | |
| 			e4b->bd_info->bb_counters[order]++;
 | |
| 
 | |
| 			mb_clear_bit(block, buddy2);
 | |
| 			buddy = buddy2;
 | |
| 		} while (1);
 | |
| 	}
 | |
| 	mb_check_buddy(e4b);
 | |
| }
 | |
| 
 | |
| static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
 | |
| 				int needed, struct ext4_free_extent *ex)
 | |
| {
 | |
| 	int next = block;
 | |
| 	int max;
 | |
| 	int ord;
 | |
| 	void *buddy;
 | |
| 
 | |
| 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
 | |
| 	BUG_ON(ex == NULL);
 | |
| 
 | |
| 	buddy = mb_find_buddy(e4b, order, &max);
 | |
| 	BUG_ON(buddy == NULL);
 | |
| 	BUG_ON(block >= max);
 | |
| 	if (mb_test_bit(block, buddy)) {
 | |
| 		ex->fe_len = 0;
 | |
| 		ex->fe_start = 0;
 | |
| 		ex->fe_group = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* FIXME dorp order completely ? */
 | |
| 	if (likely(order == 0)) {
 | |
| 		/* find actual order */
 | |
| 		order = mb_find_order_for_block(e4b, block);
 | |
| 		block = block >> order;
 | |
| 	}
 | |
| 
 | |
| 	ex->fe_len = 1 << order;
 | |
| 	ex->fe_start = block << order;
 | |
| 	ex->fe_group = e4b->bd_group;
 | |
| 
 | |
| 	/* calc difference from given start */
 | |
| 	next = next - ex->fe_start;
 | |
| 	ex->fe_len -= next;
 | |
| 	ex->fe_start += next;
 | |
| 
 | |
| 	while (needed > ex->fe_len &&
 | |
| 	       (buddy = mb_find_buddy(e4b, order, &max))) {
 | |
| 
 | |
| 		if (block + 1 >= max)
 | |
| 			break;
 | |
| 
 | |
| 		next = (block + 1) * (1 << order);
 | |
| 		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
 | |
| 			break;
 | |
| 
 | |
| 		ord = mb_find_order_for_block(e4b, next);
 | |
| 
 | |
| 		order = ord;
 | |
| 		block = next >> order;
 | |
| 		ex->fe_len += 1 << order;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
 | |
| 	return ex->fe_len;
 | |
| }
 | |
| 
 | |
| static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
 | |
| {
 | |
| 	int ord;
 | |
| 	int mlen = 0;
 | |
| 	int max = 0;
 | |
| 	int cur;
 | |
| 	int start = ex->fe_start;
 | |
| 	int len = ex->fe_len;
 | |
| 	unsigned ret = 0;
 | |
| 	int len0 = len;
 | |
| 	void *buddy;
 | |
| 
 | |
| 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
 | |
| 	BUG_ON(e4b->bd_group != ex->fe_group);
 | |
| 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
 | |
| 	mb_check_buddy(e4b);
 | |
| 	mb_mark_used_double(e4b, start, len);
 | |
| 
 | |
| 	e4b->bd_info->bb_free -= len;
 | |
| 	if (e4b->bd_info->bb_first_free == start)
 | |
| 		e4b->bd_info->bb_first_free += len;
 | |
| 
 | |
| 	/* let's maintain fragments counter */
 | |
| 	if (start != 0)
 | |
| 		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
 | |
| 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
 | |
| 		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
 | |
| 	if (mlen && max)
 | |
| 		e4b->bd_info->bb_fragments++;
 | |
| 	else if (!mlen && !max)
 | |
| 		e4b->bd_info->bb_fragments--;
 | |
| 
 | |
| 	/* let's maintain buddy itself */
 | |
| 	while (len) {
 | |
| 		ord = mb_find_order_for_block(e4b, start);
 | |
| 
 | |
| 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
 | |
| 			/* the whole chunk may be allocated at once! */
 | |
| 			mlen = 1 << ord;
 | |
| 			buddy = mb_find_buddy(e4b, ord, &max);
 | |
| 			BUG_ON((start >> ord) >= max);
 | |
| 			mb_set_bit(start >> ord, buddy);
 | |
| 			e4b->bd_info->bb_counters[ord]--;
 | |
| 			start += mlen;
 | |
| 			len -= mlen;
 | |
| 			BUG_ON(len < 0);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* store for history */
 | |
| 		if (ret == 0)
 | |
| 			ret = len | (ord << 16);
 | |
| 
 | |
| 		/* we have to split large buddy */
 | |
| 		BUG_ON(ord <= 0);
 | |
| 		buddy = mb_find_buddy(e4b, ord, &max);
 | |
| 		mb_set_bit(start >> ord, buddy);
 | |
| 		e4b->bd_info->bb_counters[ord]--;
 | |
| 
 | |
| 		ord--;
 | |
| 		cur = (start >> ord) & ~1U;
 | |
| 		buddy = mb_find_buddy(e4b, ord, &max);
 | |
| 		mb_clear_bit(cur, buddy);
 | |
| 		mb_clear_bit(cur + 1, buddy);
 | |
| 		e4b->bd_info->bb_counters[ord]++;
 | |
| 		e4b->bd_info->bb_counters[ord]++;
 | |
| 	}
 | |
| 
 | |
| 	mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
 | |
| 			EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
 | |
| 	mb_check_buddy(e4b);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called under group lock!
 | |
|  */
 | |
| static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
 | |
| 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
 | |
| 
 | |
| 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
 | |
| 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
 | |
| 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
 | |
| 
 | |
| 	/* preallocation can change ac_b_ex, thus we store actually
 | |
| 	 * allocated blocks for history */
 | |
| 	ac->ac_f_ex = ac->ac_b_ex;
 | |
| 
 | |
| 	ac->ac_status = AC_STATUS_FOUND;
 | |
| 	ac->ac_tail = ret & 0xffff;
 | |
| 	ac->ac_buddy = ret >> 16;
 | |
| 
 | |
| 	/* XXXXXXX: SUCH A HORRIBLE **CK */
 | |
| 	/*FIXME!! Why ? */
 | |
| 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
 | |
| 	get_page(ac->ac_bitmap_page);
 | |
| 	ac->ac_buddy_page = e4b->bd_buddy_page;
 | |
| 	get_page(ac->ac_buddy_page);
 | |
| 
 | |
| 	/* store last allocated for subsequent stream allocation */
 | |
| 	if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
 | |
| 		spin_lock(&sbi->s_md_lock);
 | |
| 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
 | |
| 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
 | |
| 		spin_unlock(&sbi->s_md_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * regular allocator, for general purposes allocation
 | |
|  */
 | |
| 
 | |
| static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_buddy *e4b,
 | |
| 					int finish_group)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	struct ext4_free_extent *bex = &ac->ac_b_ex;
 | |
| 	struct ext4_free_extent *gex = &ac->ac_g_ex;
 | |
| 	struct ext4_free_extent ex;
 | |
| 	int max;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to scan for a whole year
 | |
| 	 */
 | |
| 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
 | |
| 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
 | |
| 		ac->ac_status = AC_STATUS_BREAK;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Haven't found good chunk so far, let's continue
 | |
| 	 */
 | |
| 	if (bex->fe_len < gex->fe_len)
 | |
| 		return;
 | |
| 
 | |
| 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
 | |
| 			&& bex->fe_group == e4b->bd_group) {
 | |
| 		/* recheck chunk's availability - we don't know
 | |
| 		 * when it was found (within this lock-unlock
 | |
| 		 * period or not) */
 | |
| 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
 | |
| 		if (max >= gex->fe_len) {
 | |
| 			ext4_mb_use_best_found(ac, e4b);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The routine checks whether found extent is good enough. If it is,
 | |
|  * then the extent gets marked used and flag is set to the context
 | |
|  * to stop scanning. Otherwise, the extent is compared with the
 | |
|  * previous found extent and if new one is better, then it's stored
 | |
|  * in the context. Later, the best found extent will be used, if
 | |
|  * mballoc can't find good enough extent.
 | |
|  *
 | |
|  * FIXME: real allocation policy is to be designed yet!
 | |
|  */
 | |
| static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_free_extent *ex,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct ext4_free_extent *bex = &ac->ac_b_ex;
 | |
| 	struct ext4_free_extent *gex = &ac->ac_g_ex;
 | |
| 
 | |
| 	BUG_ON(ex->fe_len <= 0);
 | |
| 	BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
 | |
| 	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
 | |
| 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
 | |
| 
 | |
| 	ac->ac_found++;
 | |
| 
 | |
| 	/*
 | |
| 	 * The special case - take what you catch first
 | |
| 	 */
 | |
| 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
 | |
| 		*bex = *ex;
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's check whether the chuck is good enough
 | |
| 	 */
 | |
| 	if (ex->fe_len == gex->fe_len) {
 | |
| 		*bex = *ex;
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is first found extent, just store it in the context
 | |
| 	 */
 | |
| 	if (bex->fe_len == 0) {
 | |
| 		*bex = *ex;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If new found extent is better, store it in the context
 | |
| 	 */
 | |
| 	if (bex->fe_len < gex->fe_len) {
 | |
| 		/* if the request isn't satisfied, any found extent
 | |
| 		 * larger than previous best one is better */
 | |
| 		if (ex->fe_len > bex->fe_len)
 | |
| 			*bex = *ex;
 | |
| 	} else if (ex->fe_len > gex->fe_len) {
 | |
| 		/* if the request is satisfied, then we try to find
 | |
| 		 * an extent that still satisfy the request, but is
 | |
| 		 * smaller than previous one */
 | |
| 		if (ex->fe_len < bex->fe_len)
 | |
| 			*bex = *ex;
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_check_limits(ac, e4b, 0);
 | |
| }
 | |
| 
 | |
| static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct ext4_free_extent ex = ac->ac_b_ex;
 | |
| 	ext4_group_t group = ex.fe_group;
 | |
| 	int max;
 | |
| 	int err;
 | |
| 
 | |
| 	BUG_ON(ex.fe_len <= 0);
 | |
| 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ext4_lock_group(ac->ac_sb, group);
 | |
| 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
 | |
| 
 | |
| 	if (max > 0) {
 | |
| 		ac->ac_b_ex = ex;
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 	}
 | |
| 
 | |
| 	ext4_unlock_group(ac->ac_sb, group);
 | |
| 	ext4_mb_release_desc(e4b);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
 | |
| 				struct ext4_buddy *e4b)
 | |
| {
 | |
| 	ext4_group_t group = ac->ac_g_ex.fe_group;
 | |
| 	int max;
 | |
| 	int err;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	struct ext4_super_block *es = sbi->s_es;
 | |
| 	struct ext4_free_extent ex;
 | |
| 
 | |
| 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
 | |
| 		return 0;
 | |
| 
 | |
| 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ext4_lock_group(ac->ac_sb, group);
 | |
| 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
 | |
| 			     ac->ac_g_ex.fe_len, &ex);
 | |
| 
 | |
| 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
 | |
| 		ext4_fsblk_t start;
 | |
| 
 | |
| 		start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
 | |
| 			ex.fe_start + le32_to_cpu(es->s_first_data_block);
 | |
| 		/* use do_div to get remainder (would be 64-bit modulo) */
 | |
| 		if (do_div(start, sbi->s_stripe) == 0) {
 | |
| 			ac->ac_found++;
 | |
| 			ac->ac_b_ex = ex;
 | |
| 			ext4_mb_use_best_found(ac, e4b);
 | |
| 		}
 | |
| 	} else if (max >= ac->ac_g_ex.fe_len) {
 | |
| 		BUG_ON(ex.fe_len <= 0);
 | |
| 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
 | |
| 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
 | |
| 		ac->ac_found++;
 | |
| 		ac->ac_b_ex = ex;
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
 | |
| 		/* Sometimes, caller may want to merge even small
 | |
| 		 * number of blocks to an existing extent */
 | |
| 		BUG_ON(ex.fe_len <= 0);
 | |
| 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
 | |
| 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
 | |
| 		ac->ac_found++;
 | |
| 		ac->ac_b_ex = ex;
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 	}
 | |
| 	ext4_unlock_group(ac->ac_sb, group);
 | |
| 	ext4_mb_release_desc(e4b);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The routine scans buddy structures (not bitmap!) from given order
 | |
|  * to max order and tries to find big enough chunk to satisfy the req
 | |
|  */
 | |
| static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_group_info *grp = e4b->bd_info;
 | |
| 	void *buddy;
 | |
| 	int i;
 | |
| 	int k;
 | |
| 	int max;
 | |
| 
 | |
| 	BUG_ON(ac->ac_2order <= 0);
 | |
| 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
 | |
| 		if (grp->bb_counters[i] == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		buddy = mb_find_buddy(e4b, i, &max);
 | |
| 		BUG_ON(buddy == NULL);
 | |
| 
 | |
| 		k = mb_find_next_zero_bit(buddy, max, 0);
 | |
| 		BUG_ON(k >= max);
 | |
| 
 | |
| 		ac->ac_found++;
 | |
| 
 | |
| 		ac->ac_b_ex.fe_len = 1 << i;
 | |
| 		ac->ac_b_ex.fe_start = k << i;
 | |
| 		ac->ac_b_ex.fe_group = e4b->bd_group;
 | |
| 
 | |
| 		ext4_mb_use_best_found(ac, e4b);
 | |
| 
 | |
| 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
 | |
| 
 | |
| 		if (EXT4_SB(sb)->s_mb_stats)
 | |
| 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The routine scans the group and measures all found extents.
 | |
|  * In order to optimize scanning, caller must pass number of
 | |
|  * free blocks in the group, so the routine can know upper limit.
 | |
|  */
 | |
| static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
 | |
| 					struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	void *bitmap = EXT4_MB_BITMAP(e4b);
 | |
| 	struct ext4_free_extent ex;
 | |
| 	int i;
 | |
| 	int free;
 | |
| 
 | |
| 	free = e4b->bd_info->bb_free;
 | |
| 	BUG_ON(free <= 0);
 | |
| 
 | |
| 	i = e4b->bd_info->bb_first_free;
 | |
| 
 | |
| 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
 | |
| 		i = mb_find_next_zero_bit(bitmap,
 | |
| 						EXT4_BLOCKS_PER_GROUP(sb), i);
 | |
| 		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
 | |
| 			/*
 | |
| 			 * IF we have corrupt bitmap, we won't find any
 | |
| 			 * free blocks even though group info says we
 | |
| 			 * we have free blocks
 | |
| 			 */
 | |
| 			ext4_error(sb, __func__, "%d free blocks as per "
 | |
| 					"group info. But bitmap says 0\n",
 | |
| 					free);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
 | |
| 		BUG_ON(ex.fe_len <= 0);
 | |
| 		if (free < ex.fe_len) {
 | |
| 			ext4_error(sb, __func__, "%d free blocks as per "
 | |
| 					"group info. But got %d blocks\n",
 | |
| 					free, ex.fe_len);
 | |
| 			/*
 | |
| 			 * The number of free blocks differs. This mostly
 | |
| 			 * indicate that the bitmap is corrupt. So exit
 | |
| 			 * without claiming the space.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ext4_mb_measure_extent(ac, &ex, e4b);
 | |
| 
 | |
| 		i += ex.fe_len;
 | |
| 		free -= ex.fe_len;
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_check_limits(ac, e4b, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a special case for storages like raid5
 | |
|  * we try to find stripe-aligned chunks for stripe-size requests
 | |
|  * XXX should do so at least for multiples of stripe size as well
 | |
|  */
 | |
| static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
 | |
| 				 struct ext4_buddy *e4b)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	void *bitmap = EXT4_MB_BITMAP(e4b);
 | |
| 	struct ext4_free_extent ex;
 | |
| 	ext4_fsblk_t first_group_block;
 | |
| 	ext4_fsblk_t a;
 | |
| 	ext4_grpblk_t i;
 | |
| 	int max;
 | |
| 
 | |
| 	BUG_ON(sbi->s_stripe == 0);
 | |
| 
 | |
| 	/* find first stripe-aligned block in group */
 | |
| 	first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
 | |
| 		+ le32_to_cpu(sbi->s_es->s_first_data_block);
 | |
| 	a = first_group_block + sbi->s_stripe - 1;
 | |
| 	do_div(a, sbi->s_stripe);
 | |
| 	i = (a * sbi->s_stripe) - first_group_block;
 | |
| 
 | |
| 	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
 | |
| 		if (!mb_test_bit(i, bitmap)) {
 | |
| 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
 | |
| 			if (max >= sbi->s_stripe) {
 | |
| 				ac->ac_found++;
 | |
| 				ac->ac_b_ex = ex;
 | |
| 				ext4_mb_use_best_found(ac, e4b);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		i += sbi->s_stripe;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ext4_mb_good_group(struct ext4_allocation_context *ac,
 | |
| 				ext4_group_t group, int cr)
 | |
| {
 | |
| 	unsigned free, fragments;
 | |
| 	unsigned i, bits;
 | |
| 	struct ext4_group_desc *desc;
 | |
| 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
 | |
| 
 | |
| 	BUG_ON(cr < 0 || cr >= 4);
 | |
| 	BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
 | |
| 
 | |
| 	free = grp->bb_free;
 | |
| 	fragments = grp->bb_fragments;
 | |
| 	if (free == 0)
 | |
| 		return 0;
 | |
| 	if (fragments == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		BUG_ON(ac->ac_2order == 0);
 | |
| 		/* If this group is uninitialized, skip it initially */
 | |
| 		desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
 | |
| 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
 | |
| 			return 0;
 | |
| 
 | |
| 		bits = ac->ac_sb->s_blocksize_bits + 1;
 | |
| 		for (i = ac->ac_2order; i <= bits; i++)
 | |
| 			if (grp->bb_counters[i] > 0)
 | |
| 				return 1;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
 | |
| 			return 1;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		if (free >= ac->ac_g_ex.fe_len)
 | |
| 			return 1;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	ext4_group_t group;
 | |
| 	ext4_group_t i;
 | |
| 	int cr;
 | |
| 	int err = 0;
 | |
| 	int bsbits;
 | |
| 	struct ext4_sb_info *sbi;
 | |
| 	struct super_block *sb;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	loff_t size, isize;
 | |
| 
 | |
| 	sb = ac->ac_sb;
 | |
| 	sbi = EXT4_SB(sb);
 | |
| 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
 | |
| 
 | |
| 	/* first, try the goal */
 | |
| 	err = ext4_mb_find_by_goal(ac, &e4b);
 | |
| 	if (err || ac->ac_status == AC_STATUS_FOUND)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * ac->ac2_order is set only if the fe_len is a power of 2
 | |
| 	 * if ac2_order is set we also set criteria to 0 so that we
 | |
| 	 * try exact allocation using buddy.
 | |
| 	 */
 | |
| 	i = fls(ac->ac_g_ex.fe_len);
 | |
| 	ac->ac_2order = 0;
 | |
| 	/*
 | |
| 	 * We search using buddy data only if the order of the request
 | |
| 	 * is greater than equal to the sbi_s_mb_order2_reqs
 | |
| 	 * You can tune it via /proc/fs/ext4/<partition>/order2_req
 | |
| 	 */
 | |
| 	if (i >= sbi->s_mb_order2_reqs) {
 | |
| 		/*
 | |
| 		 * This should tell if fe_len is exactly power of 2
 | |
| 		 */
 | |
| 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
 | |
| 			ac->ac_2order = i - 1;
 | |
| 	}
 | |
| 
 | |
| 	bsbits = ac->ac_sb->s_blocksize_bits;
 | |
| 	/* if stream allocation is enabled, use global goal */
 | |
| 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
 | |
| 	isize = i_size_read(ac->ac_inode) >> bsbits;
 | |
| 	if (size < isize)
 | |
| 		size = isize;
 | |
| 
 | |
| 	if (size < sbi->s_mb_stream_request &&
 | |
| 			(ac->ac_flags & EXT4_MB_HINT_DATA)) {
 | |
| 		/* TBD: may be hot point */
 | |
| 		spin_lock(&sbi->s_md_lock);
 | |
| 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
 | |
| 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
 | |
| 		spin_unlock(&sbi->s_md_lock);
 | |
| 	}
 | |
| 	/* Let's just scan groups to find more-less suitable blocks */
 | |
| 	cr = ac->ac_2order ? 0 : 1;
 | |
| 	/*
 | |
| 	 * cr == 0 try to get exact allocation,
 | |
| 	 * cr == 3  try to get anything
 | |
| 	 */
 | |
| repeat:
 | |
| 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
 | |
| 		ac->ac_criteria = cr;
 | |
| 		/*
 | |
| 		 * searching for the right group start
 | |
| 		 * from the goal value specified
 | |
| 		 */
 | |
| 		group = ac->ac_g_ex.fe_group;
 | |
| 
 | |
| 		for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
 | |
| 			struct ext4_group_info *grp;
 | |
| 			struct ext4_group_desc *desc;
 | |
| 
 | |
| 			if (group == EXT4_SB(sb)->s_groups_count)
 | |
| 				group = 0;
 | |
| 
 | |
| 			/* quick check to skip empty groups */
 | |
| 			grp = ext4_get_group_info(ac->ac_sb, group);
 | |
| 			if (grp->bb_free == 0)
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * if the group is already init we check whether it is
 | |
| 			 * a good group and if not we don't load the buddy
 | |
| 			 */
 | |
| 			if (EXT4_MB_GRP_NEED_INIT(grp)) {
 | |
| 				/*
 | |
| 				 * we need full data about the group
 | |
| 				 * to make a good selection
 | |
| 				 */
 | |
| 				err = ext4_mb_load_buddy(sb, group, &e4b);
 | |
| 				if (err)
 | |
| 					goto out;
 | |
| 				ext4_mb_release_desc(&e4b);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If the particular group doesn't satisfy our
 | |
| 			 * criteria we continue with the next group
 | |
| 			 */
 | |
| 			if (!ext4_mb_good_group(ac, group, cr))
 | |
| 				continue;
 | |
| 
 | |
| 			err = ext4_mb_load_buddy(sb, group, &e4b);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 
 | |
| 			ext4_lock_group(sb, group);
 | |
| 			if (!ext4_mb_good_group(ac, group, cr)) {
 | |
| 				/* someone did allocation from this group */
 | |
| 				ext4_unlock_group(sb, group);
 | |
| 				ext4_mb_release_desc(&e4b);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ac->ac_groups_scanned++;
 | |
| 			desc = ext4_get_group_desc(sb, group, NULL);
 | |
| 			if (cr == 0 || (desc->bg_flags &
 | |
| 					cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
 | |
| 					ac->ac_2order != 0))
 | |
| 				ext4_mb_simple_scan_group(ac, &e4b);
 | |
| 			else if (cr == 1 &&
 | |
| 					ac->ac_g_ex.fe_len == sbi->s_stripe)
 | |
| 				ext4_mb_scan_aligned(ac, &e4b);
 | |
| 			else
 | |
| 				ext4_mb_complex_scan_group(ac, &e4b);
 | |
| 
 | |
| 			ext4_unlock_group(sb, group);
 | |
| 			ext4_mb_release_desc(&e4b);
 | |
| 
 | |
| 			if (ac->ac_status != AC_STATUS_CONTINUE)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
 | |
| 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
 | |
| 		/*
 | |
| 		 * We've been searching too long. Let's try to allocate
 | |
| 		 * the best chunk we've found so far
 | |
| 		 */
 | |
| 
 | |
| 		ext4_mb_try_best_found(ac, &e4b);
 | |
| 		if (ac->ac_status != AC_STATUS_FOUND) {
 | |
| 			/*
 | |
| 			 * Someone more lucky has already allocated it.
 | |
| 			 * The only thing we can do is just take first
 | |
| 			 * found block(s)
 | |
| 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
 | |
| 			 */
 | |
| 			ac->ac_b_ex.fe_group = 0;
 | |
| 			ac->ac_b_ex.fe_start = 0;
 | |
| 			ac->ac_b_ex.fe_len = 0;
 | |
| 			ac->ac_status = AC_STATUS_CONTINUE;
 | |
| 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
 | |
| 			cr = 3;
 | |
| 			atomic_inc(&sbi->s_mb_lost_chunks);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef EXT4_MB_HISTORY
 | |
| struct ext4_mb_proc_session {
 | |
| 	struct ext4_mb_history *history;
 | |
| 	struct super_block *sb;
 | |
| 	int start;
 | |
| 	int max;
 | |
| };
 | |
| 
 | |
| static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
 | |
| 					struct ext4_mb_history *hs,
 | |
| 					int first)
 | |
| {
 | |
| 	if (hs == s->history + s->max)
 | |
| 		hs = s->history;
 | |
| 	if (!first && hs == s->history + s->start)
 | |
| 		return NULL;
 | |
| 	while (hs->orig.fe_len == 0) {
 | |
| 		hs++;
 | |
| 		if (hs == s->history + s->max)
 | |
| 			hs = s->history;
 | |
| 		if (hs == s->history + s->start)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	return hs;
 | |
| }
 | |
| 
 | |
| static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
 | |
| {
 | |
| 	struct ext4_mb_proc_session *s = seq->private;
 | |
| 	struct ext4_mb_history *hs;
 | |
| 	int l = *pos;
 | |
| 
 | |
| 	if (l == 0)
 | |
| 		return SEQ_START_TOKEN;
 | |
| 	hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
 | |
| 	if (!hs)
 | |
| 		return NULL;
 | |
| 	while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
 | |
| 	return hs;
 | |
| }
 | |
| 
 | |
| static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
 | |
| 				      loff_t *pos)
 | |
| {
 | |
| 	struct ext4_mb_proc_session *s = seq->private;
 | |
| 	struct ext4_mb_history *hs = v;
 | |
| 
 | |
| 	++*pos;
 | |
| 	if (v == SEQ_START_TOKEN)
 | |
| 		return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
 | |
| 	else
 | |
| 		return ext4_mb_history_skip_empty(s, ++hs, 0);
 | |
| }
 | |
| 
 | |
| static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	char buf[25], buf2[25], buf3[25], *fmt;
 | |
| 	struct ext4_mb_history *hs = v;
 | |
| 
 | |
| 	if (v == SEQ_START_TOKEN) {
 | |
| 		seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
 | |
| 				"%-5s %-2s %-5s %-5s %-5s %-6s\n",
 | |
| 			  "pid", "inode", "original", "goal", "result", "found",
 | |
| 			   "grps", "cr", "flags", "merge", "tail", "broken");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (hs->op == EXT4_MB_HISTORY_ALLOC) {
 | |
| 		fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
 | |
| 			"%-5u %-5s %-5u %-6u\n";
 | |
| 		sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
 | |
| 			hs->result.fe_start, hs->result.fe_len,
 | |
| 			hs->result.fe_logical);
 | |
| 		sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
 | |
| 			hs->orig.fe_start, hs->orig.fe_len,
 | |
| 			hs->orig.fe_logical);
 | |
| 		sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group,
 | |
| 			hs->goal.fe_start, hs->goal.fe_len,
 | |
| 			hs->goal.fe_logical);
 | |
| 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
 | |
| 				hs->found, hs->groups, hs->cr, hs->flags,
 | |
| 				hs->merged ? "M" : "", hs->tail,
 | |
| 				hs->buddy ? 1 << hs->buddy : 0);
 | |
| 	} else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
 | |
| 		fmt = "%-5u %-8u %-23s %-23s %-23s\n";
 | |
| 		sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
 | |
| 			hs->result.fe_start, hs->result.fe_len,
 | |
| 			hs->result.fe_logical);
 | |
| 		sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
 | |
| 			hs->orig.fe_start, hs->orig.fe_len,
 | |
| 			hs->orig.fe_logical);
 | |
| 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
 | |
| 	} else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
 | |
| 		sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
 | |
| 			hs->result.fe_start, hs->result.fe_len);
 | |
| 		seq_printf(seq, "%-5u %-8u %-23s discard\n",
 | |
| 				hs->pid, hs->ino, buf2);
 | |
| 	} else if (hs->op == EXT4_MB_HISTORY_FREE) {
 | |
| 		sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
 | |
| 			hs->result.fe_start, hs->result.fe_len);
 | |
| 		seq_printf(seq, "%-5u %-8u %-23s free\n",
 | |
| 				hs->pid, hs->ino, buf2);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| }
 | |
| 
 | |
| static struct seq_operations ext4_mb_seq_history_ops = {
 | |
| 	.start  = ext4_mb_seq_history_start,
 | |
| 	.next   = ext4_mb_seq_history_next,
 | |
| 	.stop   = ext4_mb_seq_history_stop,
 | |
| 	.show   = ext4_mb_seq_history_show,
 | |
| };
 | |
| 
 | |
| static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct super_block *sb = PDE(inode)->data;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_mb_proc_session *s;
 | |
| 	int rc;
 | |
| 	int size;
 | |
| 
 | |
| 	if (unlikely(sbi->s_mb_history == NULL))
 | |
| 		return -ENOMEM;
 | |
| 	s = kmalloc(sizeof(*s), GFP_KERNEL);
 | |
| 	if (s == NULL)
 | |
| 		return -ENOMEM;
 | |
| 	s->sb = sb;
 | |
| 	size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
 | |
| 	s->history = kmalloc(size, GFP_KERNEL);
 | |
| 	if (s->history == NULL) {
 | |
| 		kfree(s);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&sbi->s_mb_history_lock);
 | |
| 	memcpy(s->history, sbi->s_mb_history, size);
 | |
| 	s->max = sbi->s_mb_history_max;
 | |
| 	s->start = sbi->s_mb_history_cur % s->max;
 | |
| 	spin_unlock(&sbi->s_mb_history_lock);
 | |
| 
 | |
| 	rc = seq_open(file, &ext4_mb_seq_history_ops);
 | |
| 	if (rc == 0) {
 | |
| 		struct seq_file *m = (struct seq_file *)file->private_data;
 | |
| 		m->private = s;
 | |
| 	} else {
 | |
| 		kfree(s->history);
 | |
| 		kfree(s);
 | |
| 	}
 | |
| 	return rc;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct seq_file *seq = (struct seq_file *)file->private_data;
 | |
| 	struct ext4_mb_proc_session *s = seq->private;
 | |
| 	kfree(s->history);
 | |
| 	kfree(s);
 | |
| 	return seq_release(inode, file);
 | |
| }
 | |
| 
 | |
| static ssize_t ext4_mb_seq_history_write(struct file *file,
 | |
| 				const char __user *buffer,
 | |
| 				size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct seq_file *seq = (struct seq_file *)file->private_data;
 | |
| 	struct ext4_mb_proc_session *s = seq->private;
 | |
| 	struct super_block *sb = s->sb;
 | |
| 	char str[32];
 | |
| 	int value;
 | |
| 
 | |
| 	if (count >= sizeof(str)) {
 | |
| 		printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
 | |
| 				"mb_history", (int)sizeof(str));
 | |
| 		return -EOVERFLOW;
 | |
| 	}
 | |
| 
 | |
| 	if (copy_from_user(str, buffer, count))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	value = simple_strtol(str, NULL, 0);
 | |
| 	if (value < 0)
 | |
| 		return -ERANGE;
 | |
| 	EXT4_SB(sb)->s_mb_history_filter = value;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static struct file_operations ext4_mb_seq_history_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.open		= ext4_mb_seq_history_open,
 | |
| 	.read		= seq_read,
 | |
| 	.write		= ext4_mb_seq_history_write,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= ext4_mb_seq_history_release,
 | |
| };
 | |
| 
 | |
| static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
 | |
| {
 | |
| 	struct super_block *sb = seq->private;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	ext4_group_t group;
 | |
| 
 | |
| 	if (*pos < 0 || *pos >= sbi->s_groups_count)
 | |
| 		return NULL;
 | |
| 
 | |
| 	group = *pos + 1;
 | |
| 	return (void *) group;
 | |
| }
 | |
| 
 | |
| static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct super_block *sb = seq->private;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	ext4_group_t group;
 | |
| 
 | |
| 	++*pos;
 | |
| 	if (*pos < 0 || *pos >= sbi->s_groups_count)
 | |
| 		return NULL;
 | |
| 	group = *pos + 1;
 | |
| 	return (void *) group;;
 | |
| }
 | |
| 
 | |
| static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct super_block *sb = seq->private;
 | |
| 	long group = (long) v;
 | |
| 	int i;
 | |
| 	int err;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	struct sg {
 | |
| 		struct ext4_group_info info;
 | |
| 		unsigned short counters[16];
 | |
| 	} sg;
 | |
| 
 | |
| 	group--;
 | |
| 	if (group == 0)
 | |
| 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
 | |
| 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
 | |
| 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
 | |
| 			   "group", "free", "frags", "first",
 | |
| 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
 | |
| 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
 | |
| 
 | |
| 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
 | |
| 		sizeof(struct ext4_group_info);
 | |
| 	err = ext4_mb_load_buddy(sb, group, &e4b);
 | |
| 	if (err) {
 | |
| 		seq_printf(seq, "#%-5lu: I/O error\n", group);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	ext4_lock_group(sb, group);
 | |
| 	memcpy(&sg, ext4_get_group_info(sb, group), i);
 | |
| 	ext4_unlock_group(sb, group);
 | |
| 	ext4_mb_release_desc(&e4b);
 | |
| 
 | |
| 	seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free,
 | |
| 			sg.info.bb_fragments, sg.info.bb_first_free);
 | |
| 	for (i = 0; i <= 13; i++)
 | |
| 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
 | |
| 				sg.info.bb_counters[i] : 0);
 | |
| 	seq_printf(seq, " ]\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| }
 | |
| 
 | |
| static struct seq_operations ext4_mb_seq_groups_ops = {
 | |
| 	.start  = ext4_mb_seq_groups_start,
 | |
| 	.next   = ext4_mb_seq_groups_next,
 | |
| 	.stop   = ext4_mb_seq_groups_stop,
 | |
| 	.show   = ext4_mb_seq_groups_show,
 | |
| };
 | |
| 
 | |
| static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct super_block *sb = PDE(inode)->data;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
 | |
| 	if (rc == 0) {
 | |
| 		struct seq_file *m = (struct seq_file *)file->private_data;
 | |
| 		m->private = sb;
 | |
| 	}
 | |
| 	return rc;
 | |
| 
 | |
| }
 | |
| 
 | |
| static struct file_operations ext4_mb_seq_groups_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.open		= ext4_mb_seq_groups_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release,
 | |
| };
 | |
| 
 | |
| static void ext4_mb_history_release(struct super_block *sb)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	if (sbi->s_proc != NULL) {
 | |
| 		remove_proc_entry("mb_groups", sbi->s_proc);
 | |
| 		remove_proc_entry("mb_history", sbi->s_proc);
 | |
| 	}
 | |
| 	kfree(sbi->s_mb_history);
 | |
| }
 | |
| 
 | |
| static void ext4_mb_history_init(struct super_block *sb)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	int i;
 | |
| 
 | |
| 	if (sbi->s_proc != NULL) {
 | |
| 		proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
 | |
| 				 &ext4_mb_seq_history_fops, sb);
 | |
| 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
 | |
| 				 &ext4_mb_seq_groups_fops, sb);
 | |
| 	}
 | |
| 
 | |
| 	sbi->s_mb_history_max = 1000;
 | |
| 	sbi->s_mb_history_cur = 0;
 | |
| 	spin_lock_init(&sbi->s_mb_history_lock);
 | |
| 	i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
 | |
| 	sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
 | |
| 	/* if we can't allocate history, then we simple won't use it */
 | |
| }
 | |
| 
 | |
| static noinline_for_stack void
 | |
| ext4_mb_store_history(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	struct ext4_mb_history h;
 | |
| 
 | |
| 	if (unlikely(sbi->s_mb_history == NULL))
 | |
| 		return;
 | |
| 
 | |
| 	if (!(ac->ac_op & sbi->s_mb_history_filter))
 | |
| 		return;
 | |
| 
 | |
| 	h.op = ac->ac_op;
 | |
| 	h.pid = current->pid;
 | |
| 	h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
 | |
| 	h.orig = ac->ac_o_ex;
 | |
| 	h.result = ac->ac_b_ex;
 | |
| 	h.flags = ac->ac_flags;
 | |
| 	h.found = ac->ac_found;
 | |
| 	h.groups = ac->ac_groups_scanned;
 | |
| 	h.cr = ac->ac_criteria;
 | |
| 	h.tail = ac->ac_tail;
 | |
| 	h.buddy = ac->ac_buddy;
 | |
| 	h.merged = 0;
 | |
| 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
 | |
| 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
 | |
| 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
 | |
| 			h.merged = 1;
 | |
| 		h.goal = ac->ac_g_ex;
 | |
| 		h.result = ac->ac_f_ex;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&sbi->s_mb_history_lock);
 | |
| 	memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
 | |
| 	if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
 | |
| 		sbi->s_mb_history_cur = 0;
 | |
| 	spin_unlock(&sbi->s_mb_history_lock);
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define ext4_mb_history_release(sb)
 | |
| #define ext4_mb_history_init(sb)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Create and initialize ext4_group_info data for the given group. */
 | |
| int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
 | |
| 			  struct ext4_group_desc *desc)
 | |
| {
 | |
| 	int i, len;
 | |
| 	int metalen = 0;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_group_info **meta_group_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * First check if this group is the first of a reserved block.
 | |
| 	 * If it's true, we have to allocate a new table of pointers
 | |
| 	 * to ext4_group_info structures
 | |
| 	 */
 | |
| 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
 | |
| 		metalen = sizeof(*meta_group_info) <<
 | |
| 			EXT4_DESC_PER_BLOCK_BITS(sb);
 | |
| 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
 | |
| 		if (meta_group_info == NULL) {
 | |
| 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
 | |
| 			       "buddy group\n");
 | |
| 			goto exit_meta_group_info;
 | |
| 		}
 | |
| 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
 | |
| 			meta_group_info;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * calculate needed size. if change bb_counters size,
 | |
| 	 * don't forget about ext4_mb_generate_buddy()
 | |
| 	 */
 | |
| 	len = offsetof(typeof(**meta_group_info),
 | |
| 		       bb_counters[sb->s_blocksize_bits + 2]);
 | |
| 
 | |
| 	meta_group_info =
 | |
| 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
 | |
| 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
 | |
| 
 | |
| 	meta_group_info[i] = kzalloc(len, GFP_KERNEL);
 | |
| 	if (meta_group_info[i] == NULL) {
 | |
| 		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
 | |
| 		goto exit_group_info;
 | |
| 	}
 | |
| 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
 | |
| 		&(meta_group_info[i]->bb_state));
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize bb_free to be able to skip
 | |
| 	 * empty groups without initialization
 | |
| 	 */
 | |
| 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 | |
| 		meta_group_info[i]->bb_free =
 | |
| 			ext4_free_blocks_after_init(sb, group, desc);
 | |
| 	} else {
 | |
| 		meta_group_info[i]->bb_free =
 | |
| 			le16_to_cpu(desc->bg_free_blocks_count);
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
 | |
| 	meta_group_info[i]->bb_free_root.rb_node = NULL;;
 | |
| 
 | |
| #ifdef DOUBLE_CHECK
 | |
| 	{
 | |
| 		struct buffer_head *bh;
 | |
| 		meta_group_info[i]->bb_bitmap =
 | |
| 			kmalloc(sb->s_blocksize, GFP_KERNEL);
 | |
| 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
 | |
| 		bh = ext4_read_block_bitmap(sb, group);
 | |
| 		BUG_ON(bh == NULL);
 | |
| 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
 | |
| 			sb->s_blocksize);
 | |
| 		put_bh(bh);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| exit_group_info:
 | |
| 	/* If a meta_group_info table has been allocated, release it now */
 | |
| 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
 | |
| 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
 | |
| exit_meta_group_info:
 | |
| 	return -ENOMEM;
 | |
| } /* ext4_mb_add_groupinfo */
 | |
| 
 | |
| /*
 | |
|  * Add a group to the existing groups.
 | |
|  * This function is used for online resize
 | |
|  */
 | |
| int ext4_mb_add_more_groupinfo(struct super_block *sb, ext4_group_t group,
 | |
| 			       struct ext4_group_desc *desc)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct inode *inode = sbi->s_buddy_cache;
 | |
| 	int blocks_per_page;
 | |
| 	int block;
 | |
| 	int pnum;
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Add group based on group descriptor*/
 | |
| 	err = ext4_mb_add_groupinfo(sb, group, desc);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cache pages containing dynamic mb_alloc datas (buddy and bitmap
 | |
| 	 * datas) are set not up to date so that they will be re-initilaized
 | |
| 	 * during the next call to ext4_mb_load_buddy
 | |
| 	 */
 | |
| 
 | |
| 	/* Set buddy page as not up to date */
 | |
| 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
 | |
| 	block = group * 2;
 | |
| 	pnum = block / blocks_per_page;
 | |
| 	page = find_get_page(inode->i_mapping, pnum);
 | |
| 	if (page != NULL) {
 | |
| 		ClearPageUptodate(page);
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 
 | |
| 	/* Set bitmap page as not up to date */
 | |
| 	block++;
 | |
| 	pnum = block / blocks_per_page;
 | |
| 	page = find_get_page(inode->i_mapping, pnum);
 | |
| 	if (page != NULL) {
 | |
| 		ClearPageUptodate(page);
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update an existing group.
 | |
|  * This function is used for online resize
 | |
|  */
 | |
| void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
 | |
| {
 | |
| 	grp->bb_free += add;
 | |
| }
 | |
| 
 | |
| static int ext4_mb_init_backend(struct super_block *sb)
 | |
| {
 | |
| 	ext4_group_t i;
 | |
| 	int metalen;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_super_block *es = sbi->s_es;
 | |
| 	int num_meta_group_infos;
 | |
| 	int num_meta_group_infos_max;
 | |
| 	int array_size;
 | |
| 	struct ext4_group_info **meta_group_info;
 | |
| 	struct ext4_group_desc *desc;
 | |
| 
 | |
| 	/* This is the number of blocks used by GDT */
 | |
| 	num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
 | |
| 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is the total number of blocks used by GDT including
 | |
| 	 * the number of reserved blocks for GDT.
 | |
| 	 * The s_group_info array is allocated with this value
 | |
| 	 * to allow a clean online resize without a complex
 | |
| 	 * manipulation of pointer.
 | |
| 	 * The drawback is the unused memory when no resize
 | |
| 	 * occurs but it's very low in terms of pages
 | |
| 	 * (see comments below)
 | |
| 	 * Need to handle this properly when META_BG resizing is allowed
 | |
| 	 */
 | |
| 	num_meta_group_infos_max = num_meta_group_infos +
 | |
| 				le16_to_cpu(es->s_reserved_gdt_blocks);
 | |
| 
 | |
| 	/*
 | |
| 	 * array_size is the size of s_group_info array. We round it
 | |
| 	 * to the next power of two because this approximation is done
 | |
| 	 * internally by kmalloc so we can have some more memory
 | |
| 	 * for free here (e.g. may be used for META_BG resize).
 | |
| 	 */
 | |
| 	array_size = 1;
 | |
| 	while (array_size < sizeof(*sbi->s_group_info) *
 | |
| 	       num_meta_group_infos_max)
 | |
| 		array_size = array_size << 1;
 | |
| 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
 | |
| 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
 | |
| 	 * So a two level scheme suffices for now. */
 | |
| 	sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
 | |
| 	if (sbi->s_group_info == NULL) {
 | |
| 		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	sbi->s_buddy_cache = new_inode(sb);
 | |
| 	if (sbi->s_buddy_cache == NULL) {
 | |
| 		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
 | |
| 		goto err_freesgi;
 | |
| 	}
 | |
| 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
 | |
| 
 | |
| 	metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
 | |
| 	for (i = 0; i < num_meta_group_infos; i++) {
 | |
| 		if ((i + 1) == num_meta_group_infos)
 | |
| 			metalen = sizeof(*meta_group_info) *
 | |
| 				(sbi->s_groups_count -
 | |
| 					(i << EXT4_DESC_PER_BLOCK_BITS(sb)));
 | |
| 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
 | |
| 		if (meta_group_info == NULL) {
 | |
| 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
 | |
| 			       "buddy group\n");
 | |
| 			goto err_freemeta;
 | |
| 		}
 | |
| 		sbi->s_group_info[i] = meta_group_info;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < sbi->s_groups_count; i++) {
 | |
| 		desc = ext4_get_group_desc(sb, i, NULL);
 | |
| 		if (desc == NULL) {
 | |
| 			printk(KERN_ERR
 | |
| 				"EXT4-fs: can't read descriptor %lu\n", i);
 | |
| 			goto err_freebuddy;
 | |
| 		}
 | |
| 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
 | |
| 			goto err_freebuddy;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_freebuddy:
 | |
| 	while (i-- > 0)
 | |
| 		kfree(ext4_get_group_info(sb, i));
 | |
| 	i = num_meta_group_infos;
 | |
| err_freemeta:
 | |
| 	while (i-- > 0)
 | |
| 		kfree(sbi->s_group_info[i]);
 | |
| 	iput(sbi->s_buddy_cache);
 | |
| err_freesgi:
 | |
| 	kfree(sbi->s_group_info);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| int ext4_mb_init(struct super_block *sb, int needs_recovery)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	unsigned i, j;
 | |
| 	unsigned offset;
 | |
| 	unsigned max;
 | |
| 	int ret;
 | |
| 
 | |
| 	i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
 | |
| 
 | |
| 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
 | |
| 	if (sbi->s_mb_offsets == NULL) {
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
 | |
| 	if (sbi->s_mb_maxs == NULL) {
 | |
| 		kfree(sbi->s_mb_maxs);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* order 0 is regular bitmap */
 | |
| 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
 | |
| 	sbi->s_mb_offsets[0] = 0;
 | |
| 
 | |
| 	i = 1;
 | |
| 	offset = 0;
 | |
| 	max = sb->s_blocksize << 2;
 | |
| 	do {
 | |
| 		sbi->s_mb_offsets[i] = offset;
 | |
| 		sbi->s_mb_maxs[i] = max;
 | |
| 		offset += 1 << (sb->s_blocksize_bits - i);
 | |
| 		max = max >> 1;
 | |
| 		i++;
 | |
| 	} while (i <= sb->s_blocksize_bits + 1);
 | |
| 
 | |
| 	/* init file for buddy data */
 | |
| 	ret = ext4_mb_init_backend(sb);
 | |
| 	if (ret != 0) {
 | |
| 		kfree(sbi->s_mb_offsets);
 | |
| 		kfree(sbi->s_mb_maxs);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&sbi->s_md_lock);
 | |
| 	spin_lock_init(&sbi->s_bal_lock);
 | |
| 
 | |
| 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
 | |
| 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
 | |
| 	sbi->s_mb_stats = MB_DEFAULT_STATS;
 | |
| 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
 | |
| 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
 | |
| 	sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
 | |
| 	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
 | |
| 
 | |
| 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
 | |
| 	if (sbi->s_locality_groups == NULL) {
 | |
| 		kfree(sbi->s_mb_offsets);
 | |
| 		kfree(sbi->s_mb_maxs);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct ext4_locality_group *lg;
 | |
| 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
 | |
| 		mutex_init(&lg->lg_mutex);
 | |
| 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
 | |
| 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
 | |
| 		spin_lock_init(&lg->lg_prealloc_lock);
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_init_per_dev_proc(sb);
 | |
| 	ext4_mb_history_init(sb);
 | |
| 
 | |
| 	sbi->s_journal->j_commit_callback = release_blocks_on_commit;
 | |
| 
 | |
| 	printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* need to called with ext4 group lock (ext4_lock_group) */
 | |
| static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
 | |
| {
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 	struct list_head *cur, *tmp;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
 | |
| 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 | |
| 		list_del(&pa->pa_group_list);
 | |
| 		count++;
 | |
| 		kmem_cache_free(ext4_pspace_cachep, pa);
 | |
| 	}
 | |
| 	if (count)
 | |
| 		mb_debug("mballoc: %u PAs left\n", count);
 | |
| 
 | |
| }
 | |
| 
 | |
| int ext4_mb_release(struct super_block *sb)
 | |
| {
 | |
| 	ext4_group_t i;
 | |
| 	int num_meta_group_infos;
 | |
| 	struct ext4_group_info *grinfo;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	if (sbi->s_group_info) {
 | |
| 		for (i = 0; i < sbi->s_groups_count; i++) {
 | |
| 			grinfo = ext4_get_group_info(sb, i);
 | |
| #ifdef DOUBLE_CHECK
 | |
| 			kfree(grinfo->bb_bitmap);
 | |
| #endif
 | |
| 			ext4_lock_group(sb, i);
 | |
| 			ext4_mb_cleanup_pa(grinfo);
 | |
| 			ext4_unlock_group(sb, i);
 | |
| 			kfree(grinfo);
 | |
| 		}
 | |
| 		num_meta_group_infos = (sbi->s_groups_count +
 | |
| 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
 | |
| 			EXT4_DESC_PER_BLOCK_BITS(sb);
 | |
| 		for (i = 0; i < num_meta_group_infos; i++)
 | |
| 			kfree(sbi->s_group_info[i]);
 | |
| 		kfree(sbi->s_group_info);
 | |
| 	}
 | |
| 	kfree(sbi->s_mb_offsets);
 | |
| 	kfree(sbi->s_mb_maxs);
 | |
| 	if (sbi->s_buddy_cache)
 | |
| 		iput(sbi->s_buddy_cache);
 | |
| 	if (sbi->s_mb_stats) {
 | |
| 		printk(KERN_INFO
 | |
| 		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
 | |
| 				atomic_read(&sbi->s_bal_allocated),
 | |
| 				atomic_read(&sbi->s_bal_reqs),
 | |
| 				atomic_read(&sbi->s_bal_success));
 | |
| 		printk(KERN_INFO
 | |
| 		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
 | |
| 				"%u 2^N hits, %u breaks, %u lost\n",
 | |
| 				atomic_read(&sbi->s_bal_ex_scanned),
 | |
| 				atomic_read(&sbi->s_bal_goals),
 | |
| 				atomic_read(&sbi->s_bal_2orders),
 | |
| 				atomic_read(&sbi->s_bal_breaks),
 | |
| 				atomic_read(&sbi->s_mb_lost_chunks));
 | |
| 		printk(KERN_INFO
 | |
| 		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
 | |
| 				sbi->s_mb_buddies_generated++,
 | |
| 				sbi->s_mb_generation_time);
 | |
| 		printk(KERN_INFO
 | |
| 		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
 | |
| 				atomic_read(&sbi->s_mb_preallocated),
 | |
| 				atomic_read(&sbi->s_mb_discarded));
 | |
| 	}
 | |
| 
 | |
| 	free_percpu(sbi->s_locality_groups);
 | |
| 	ext4_mb_history_release(sb);
 | |
| 	ext4_mb_destroy_per_dev_proc(sb);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called by the jbd2 layer once the commit has finished,
 | |
|  * so we know we can free the blocks that were released with that commit.
 | |
|  */
 | |
| static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
 | |
| {
 | |
| 	struct super_block *sb = journal->j_private;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	struct ext4_group_info *db;
 | |
| 	int err, count = 0, count2 = 0;
 | |
| 	struct ext4_free_data *entry;
 | |
| 	ext4_fsblk_t discard_block;
 | |
| 	struct list_head *l, *ltmp;
 | |
| 
 | |
| 	list_for_each_safe(l, ltmp, &txn->t_private_list) {
 | |
| 		entry = list_entry(l, struct ext4_free_data, list);
 | |
| 
 | |
| 		mb_debug("gonna free %u blocks in group %lu (0x%p):",
 | |
| 			 entry->count, entry->group, entry);
 | |
| 
 | |
| 		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
 | |
| 		/* we expect to find existing buddy because it's pinned */
 | |
| 		BUG_ON(err != 0);
 | |
| 
 | |
| 		db = e4b.bd_info;
 | |
| 		/* there are blocks to put in buddy to make them really free */
 | |
| 		count += entry->count;
 | |
| 		count2++;
 | |
| 		ext4_lock_group(sb, entry->group);
 | |
| 		/* Take it out of per group rb tree */
 | |
| 		rb_erase(&entry->node, &(db->bb_free_root));
 | |
| 		mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
 | |
| 
 | |
| 		if (!db->bb_free_root.rb_node) {
 | |
| 			/* No more items in the per group rb tree
 | |
| 			 * balance refcounts from ext4_mb_free_metadata()
 | |
| 			 */
 | |
| 			page_cache_release(e4b.bd_buddy_page);
 | |
| 			page_cache_release(e4b.bd_bitmap_page);
 | |
| 		}
 | |
| 		ext4_unlock_group(sb, entry->group);
 | |
| 		discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
 | |
| 			+ entry->start_blk
 | |
| 			+ le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
 | |
| 		trace_mark(ext4_discard_blocks, "dev %s blk %llu count %u", sb->s_id,
 | |
| 			   (unsigned long long) discard_block, entry->count);
 | |
| 		sb_issue_discard(sb, discard_block, entry->count);
 | |
| 
 | |
| 		kmem_cache_free(ext4_free_ext_cachep, entry);
 | |
| 		ext4_mb_release_desc(&e4b);
 | |
| 	}
 | |
| 
 | |
| 	mb_debug("freed %u blocks in %u structures\n", count, count2);
 | |
| }
 | |
| 
 | |
| #define EXT4_MB_STATS_NAME		"stats"
 | |
| #define EXT4_MB_MAX_TO_SCAN_NAME	"max_to_scan"
 | |
| #define EXT4_MB_MIN_TO_SCAN_NAME	"min_to_scan"
 | |
| #define EXT4_MB_ORDER2_REQ		"order2_req"
 | |
| #define EXT4_MB_STREAM_REQ		"stream_req"
 | |
| #define EXT4_MB_GROUP_PREALLOC		"group_prealloc"
 | |
| 
 | |
| static int ext4_mb_init_per_dev_proc(struct super_block *sb)
 | |
| {
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 	mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct proc_dir_entry *proc;
 | |
| 
 | |
| 	if (sbi->s_proc == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME, mb_stats);
 | |
| 	EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, mb_max_to_scan);
 | |
| 	EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, mb_min_to_scan);
 | |
| 	EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ, mb_order2_reqs);
 | |
| 	EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ, mb_stream_request);
 | |
| 	EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, mb_group_prealloc);
 | |
| 	return 0;
 | |
| 
 | |
| err_out:
 | |
| 	remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
 | |
| 	remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
 | |
| 	remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
 | |
| 	remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
 | |
| 	remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
 | |
| 	remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
 | |
| 	return -ENOMEM;
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
 | |
| {
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	if (sbi->s_proc == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
 | |
| 	remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
 | |
| 	remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
 | |
| 	remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
 | |
| 	remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
 | |
| 	remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __init init_ext4_mballoc(void)
 | |
| {
 | |
| 	ext4_pspace_cachep =
 | |
| 		kmem_cache_create("ext4_prealloc_space",
 | |
| 				     sizeof(struct ext4_prealloc_space),
 | |
| 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
 | |
| 	if (ext4_pspace_cachep == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ext4_ac_cachep =
 | |
| 		kmem_cache_create("ext4_alloc_context",
 | |
| 				     sizeof(struct ext4_allocation_context),
 | |
| 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
 | |
| 	if (ext4_ac_cachep == NULL) {
 | |
| 		kmem_cache_destroy(ext4_pspace_cachep);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ext4_free_ext_cachep =
 | |
| 		kmem_cache_create("ext4_free_block_extents",
 | |
| 				     sizeof(struct ext4_free_data),
 | |
| 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
 | |
| 	if (ext4_free_ext_cachep == NULL) {
 | |
| 		kmem_cache_destroy(ext4_pspace_cachep);
 | |
| 		kmem_cache_destroy(ext4_ac_cachep);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void exit_ext4_mballoc(void)
 | |
| {
 | |
| 	/* XXX: synchronize_rcu(); */
 | |
| 	kmem_cache_destroy(ext4_pspace_cachep);
 | |
| 	kmem_cache_destroy(ext4_ac_cachep);
 | |
| 	kmem_cache_destroy(ext4_free_ext_cachep);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
 | |
|  * Returns 0 if success or error code
 | |
|  */
 | |
| static noinline_for_stack int
 | |
| ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
 | |
| 				handle_t *handle, unsigned long reserv_blks)
 | |
| {
 | |
| 	struct buffer_head *bitmap_bh = NULL;
 | |
| 	struct ext4_super_block *es;
 | |
| 	struct ext4_group_desc *gdp;
 | |
| 	struct buffer_head *gdp_bh;
 | |
| 	struct ext4_sb_info *sbi;
 | |
| 	struct super_block *sb;
 | |
| 	ext4_fsblk_t block;
 | |
| 	int err, len;
 | |
| 
 | |
| 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
 | |
| 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
 | |
| 
 | |
| 	sb = ac->ac_sb;
 | |
| 	sbi = EXT4_SB(sb);
 | |
| 	es = sbi->s_es;
 | |
| 
 | |
| 
 | |
| 	err = -EIO;
 | |
| 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
 | |
| 	if (!bitmap_bh)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	err = ext4_journal_get_write_access(handle, bitmap_bh);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	err = -EIO;
 | |
| 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
 | |
| 	if (!gdp)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group,
 | |
| 			gdp->bg_free_blocks_count);
 | |
| 
 | |
| 	err = ext4_journal_get_write_access(handle, gdp_bh);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
 | |
| 		+ ac->ac_b_ex.fe_start
 | |
| 		+ le32_to_cpu(es->s_first_data_block);
 | |
| 
 | |
| 	len = ac->ac_b_ex.fe_len;
 | |
| 	if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
 | |
| 	    in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
 | |
| 	    in_range(block, ext4_inode_table(sb, gdp),
 | |
| 		     EXT4_SB(sb)->s_itb_per_group) ||
 | |
| 	    in_range(block + len - 1, ext4_inode_table(sb, gdp),
 | |
| 		     EXT4_SB(sb)->s_itb_per_group)) {
 | |
| 		ext4_error(sb, __func__,
 | |
| 			   "Allocating block in system zone - block = %llu",
 | |
| 			   block);
 | |
| 		/* File system mounted not to panic on error
 | |
| 		 * Fix the bitmap and repeat the block allocation
 | |
| 		 * We leak some of the blocks here.
 | |
| 		 */
 | |
| 		mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
 | |
| 				bitmap_bh->b_data, ac->ac_b_ex.fe_start,
 | |
| 				ac->ac_b_ex.fe_len);
 | |
| 		err = ext4_journal_dirty_metadata(handle, bitmap_bh);
 | |
| 		if (!err)
 | |
| 			err = -EAGAIN;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| #ifdef AGGRESSIVE_CHECK
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
 | |
| 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
 | |
| 						bitmap_bh->b_data));
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data,
 | |
| 				ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
 | |
| 
 | |
| 	spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
 | |
| 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 | |
| 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
 | |
| 		gdp->bg_free_blocks_count =
 | |
| 			cpu_to_le16(ext4_free_blocks_after_init(sb,
 | |
| 						ac->ac_b_ex.fe_group,
 | |
| 						gdp));
 | |
| 	}
 | |
| 	le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len);
 | |
| 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
 | |
| 	spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
 | |
| 	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
 | |
| 	/*
 | |
| 	 * Now reduce the dirty block count also. Should not go negative
 | |
| 	 */
 | |
| 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
 | |
| 		/* release all the reserved blocks if non delalloc */
 | |
| 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
 | |
| 	else
 | |
| 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
 | |
| 						ac->ac_b_ex.fe_len);
 | |
| 
 | |
| 	if (sbi->s_log_groups_per_flex) {
 | |
| 		ext4_group_t flex_group = ext4_flex_group(sbi,
 | |
| 							  ac->ac_b_ex.fe_group);
 | |
| 		spin_lock(sb_bgl_lock(sbi, flex_group));
 | |
| 		sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
 | |
| 		spin_unlock(sb_bgl_lock(sbi, flex_group));
 | |
| 	}
 | |
| 
 | |
| 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
 | |
| 	if (err)
 | |
| 		goto out_err;
 | |
| 	err = ext4_journal_dirty_metadata(handle, gdp_bh);
 | |
| 
 | |
| out_err:
 | |
| 	sb->s_dirt = 1;
 | |
| 	brelse(bitmap_bh);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * here we normalize request for locality group
 | |
|  * Group request are normalized to s_strip size if we set the same via mount
 | |
|  * option. If not we set it to s_mb_group_prealloc which can be configured via
 | |
|  * /proc/fs/ext4/<partition>/group_prealloc
 | |
|  *
 | |
|  * XXX: should we try to preallocate more than the group has now?
 | |
|  */
 | |
| static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_locality_group *lg = ac->ac_lg;
 | |
| 
 | |
| 	BUG_ON(lg == NULL);
 | |
| 	if (EXT4_SB(sb)->s_stripe)
 | |
| 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
 | |
| 	else
 | |
| 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
 | |
| 	mb_debug("#%u: goal %u blocks for locality group\n",
 | |
| 		current->pid, ac->ac_g_ex.fe_len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Normalization means making request better in terms of
 | |
|  * size and alignment
 | |
|  */
 | |
| static noinline_for_stack void
 | |
| ext4_mb_normalize_request(struct ext4_allocation_context *ac,
 | |
| 				struct ext4_allocation_request *ar)
 | |
| {
 | |
| 	int bsbits, max;
 | |
| 	ext4_lblk_t end;
 | |
| 	loff_t size, orig_size, start_off;
 | |
| 	ext4_lblk_t start, orig_start;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 
 | |
| 	/* do normalize only data requests, metadata requests
 | |
| 	   do not need preallocation */
 | |
| 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
 | |
| 		return;
 | |
| 
 | |
| 	/* sometime caller may want exact blocks */
 | |
| 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
 | |
| 		return;
 | |
| 
 | |
| 	/* caller may indicate that preallocation isn't
 | |
| 	 * required (it's a tail, for example) */
 | |
| 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
 | |
| 		return;
 | |
| 
 | |
| 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
 | |
| 		ext4_mb_normalize_group_request(ac);
 | |
| 		return ;
 | |
| 	}
 | |
| 
 | |
| 	bsbits = ac->ac_sb->s_blocksize_bits;
 | |
| 
 | |
| 	/* first, let's learn actual file size
 | |
| 	 * given current request is allocated */
 | |
| 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
 | |
| 	size = size << bsbits;
 | |
| 	if (size < i_size_read(ac->ac_inode))
 | |
| 		size = i_size_read(ac->ac_inode);
 | |
| 
 | |
| 	/* max size of free chunks */
 | |
| 	max = 2 << bsbits;
 | |
| 
 | |
| #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
 | |
| 		(req <= (size) || max <= (chunk_size))
 | |
| 
 | |
| 	/* first, try to predict filesize */
 | |
| 	/* XXX: should this table be tunable? */
 | |
| 	start_off = 0;
 | |
| 	if (size <= 16 * 1024) {
 | |
| 		size = 16 * 1024;
 | |
| 	} else if (size <= 32 * 1024) {
 | |
| 		size = 32 * 1024;
 | |
| 	} else if (size <= 64 * 1024) {
 | |
| 		size = 64 * 1024;
 | |
| 	} else if (size <= 128 * 1024) {
 | |
| 		size = 128 * 1024;
 | |
| 	} else if (size <= 256 * 1024) {
 | |
| 		size = 256 * 1024;
 | |
| 	} else if (size <= 512 * 1024) {
 | |
| 		size = 512 * 1024;
 | |
| 	} else if (size <= 1024 * 1024) {
 | |
| 		size = 1024 * 1024;
 | |
| 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
 | |
| 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
 | |
| 						(21 - bsbits)) << 21;
 | |
| 		size = 2 * 1024 * 1024;
 | |
| 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
 | |
| 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
 | |
| 							(22 - bsbits)) << 22;
 | |
| 		size = 4 * 1024 * 1024;
 | |
| 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
 | |
| 					(8<<20)>>bsbits, max, 8 * 1024)) {
 | |
| 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
 | |
| 							(23 - bsbits)) << 23;
 | |
| 		size = 8 * 1024 * 1024;
 | |
| 	} else {
 | |
| 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
 | |
| 		size	  = ac->ac_o_ex.fe_len << bsbits;
 | |
| 	}
 | |
| 	orig_size = size = size >> bsbits;
 | |
| 	orig_start = start = start_off >> bsbits;
 | |
| 
 | |
| 	/* don't cover already allocated blocks in selected range */
 | |
| 	if (ar->pleft && start <= ar->lleft) {
 | |
| 		size -= ar->lleft + 1 - start;
 | |
| 		start = ar->lleft + 1;
 | |
| 	}
 | |
| 	if (ar->pright && start + size - 1 >= ar->lright)
 | |
| 		size -= start + size - ar->lright;
 | |
| 
 | |
| 	end = start + size;
 | |
| 
 | |
| 	/* check we don't cross already preallocated blocks */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
 | |
| 		unsigned long pa_end;
 | |
| 
 | |
| 		if (pa->pa_deleted)
 | |
| 			continue;
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (pa->pa_deleted) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pa_end = pa->pa_lstart + pa->pa_len;
 | |
| 
 | |
| 		/* PA must not overlap original request */
 | |
| 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
 | |
| 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
 | |
| 
 | |
| 		/* skip PA normalized request doesn't overlap with */
 | |
| 		if (pa->pa_lstart >= end) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pa_end <= start) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
 | |
| 
 | |
| 		if (pa_end <= ac->ac_o_ex.fe_logical) {
 | |
| 			BUG_ON(pa_end < start);
 | |
| 			start = pa_end;
 | |
| 		}
 | |
| 
 | |
| 		if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
 | |
| 			BUG_ON(pa->pa_lstart > end);
 | |
| 			end = pa->pa_lstart;
 | |
| 		}
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	size = end - start;
 | |
| 
 | |
| 	/* XXX: extra loop to check we really don't overlap preallocations */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
 | |
| 		unsigned long pa_end;
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (pa->pa_deleted == 0) {
 | |
| 			pa_end = pa->pa_lstart + pa->pa_len;
 | |
| 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
 | |
| 		}
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (start + size <= ac->ac_o_ex.fe_logical &&
 | |
| 			start > ac->ac_o_ex.fe_logical) {
 | |
| 		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
 | |
| 			(unsigned long) start, (unsigned long) size,
 | |
| 			(unsigned long) ac->ac_o_ex.fe_logical);
 | |
| 	}
 | |
| 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
 | |
| 			start > ac->ac_o_ex.fe_logical);
 | |
| 	BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
 | |
| 
 | |
| 	/* now prepare goal request */
 | |
| 
 | |
| 	/* XXX: is it better to align blocks WRT to logical
 | |
| 	 * placement or satisfy big request as is */
 | |
| 	ac->ac_g_ex.fe_logical = start;
 | |
| 	ac->ac_g_ex.fe_len = size;
 | |
| 
 | |
| 	/* define goal start in order to merge */
 | |
| 	if (ar->pright && (ar->lright == (start + size))) {
 | |
| 		/* merge to the right */
 | |
| 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
 | |
| 						&ac->ac_f_ex.fe_group,
 | |
| 						&ac->ac_f_ex.fe_start);
 | |
| 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
 | |
| 	}
 | |
| 	if (ar->pleft && (ar->lleft + 1 == start)) {
 | |
| 		/* merge to the left */
 | |
| 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
 | |
| 						&ac->ac_f_ex.fe_group,
 | |
| 						&ac->ac_f_ex.fe_start);
 | |
| 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
 | |
| 	}
 | |
| 
 | |
| 	mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
 | |
| 		(unsigned) orig_size, (unsigned) start);
 | |
| }
 | |
| 
 | |
| static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 
 | |
| 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
 | |
| 		atomic_inc(&sbi->s_bal_reqs);
 | |
| 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
 | |
| 		if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
 | |
| 			atomic_inc(&sbi->s_bal_success);
 | |
| 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
 | |
| 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
 | |
| 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
 | |
| 			atomic_inc(&sbi->s_bal_goals);
 | |
| 		if (ac->ac_found > sbi->s_mb_max_to_scan)
 | |
| 			atomic_inc(&sbi->s_bal_breaks);
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_store_history(ac);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * use blocks preallocated to inode
 | |
|  */
 | |
| static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
 | |
| 				struct ext4_prealloc_space *pa)
 | |
| {
 | |
| 	ext4_fsblk_t start;
 | |
| 	ext4_fsblk_t end;
 | |
| 	int len;
 | |
| 
 | |
| 	/* found preallocated blocks, use them */
 | |
| 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
 | |
| 	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
 | |
| 	len = end - start;
 | |
| 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
 | |
| 					&ac->ac_b_ex.fe_start);
 | |
| 	ac->ac_b_ex.fe_len = len;
 | |
| 	ac->ac_status = AC_STATUS_FOUND;
 | |
| 	ac->ac_pa = pa;
 | |
| 
 | |
| 	BUG_ON(start < pa->pa_pstart);
 | |
| 	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
 | |
| 	BUG_ON(pa->pa_free < len);
 | |
| 	pa->pa_free -= len;
 | |
| 
 | |
| 	mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * use blocks preallocated to locality group
 | |
|  */
 | |
| static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
 | |
| 				struct ext4_prealloc_space *pa)
 | |
| {
 | |
| 	unsigned int len = ac->ac_o_ex.fe_len;
 | |
| 
 | |
| 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
 | |
| 					&ac->ac_b_ex.fe_group,
 | |
| 					&ac->ac_b_ex.fe_start);
 | |
| 	ac->ac_b_ex.fe_len = len;
 | |
| 	ac->ac_status = AC_STATUS_FOUND;
 | |
| 	ac->ac_pa = pa;
 | |
| 
 | |
| 	/* we don't correct pa_pstart or pa_plen here to avoid
 | |
| 	 * possible race when the group is being loaded concurrently
 | |
| 	 * instead we correct pa later, after blocks are marked
 | |
| 	 * in on-disk bitmap -- see ext4_mb_release_context()
 | |
| 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
 | |
| 	 */
 | |
| 	mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the prealloc space that have minimal distance
 | |
|  * from the goal block. @cpa is the prealloc
 | |
|  * space that is having currently known minimal distance
 | |
|  * from the goal block.
 | |
|  */
 | |
| static struct ext4_prealloc_space *
 | |
| ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
 | |
| 			struct ext4_prealloc_space *pa,
 | |
| 			struct ext4_prealloc_space *cpa)
 | |
| {
 | |
| 	ext4_fsblk_t cur_distance, new_distance;
 | |
| 
 | |
| 	if (cpa == NULL) {
 | |
| 		atomic_inc(&pa->pa_count);
 | |
| 		return pa;
 | |
| 	}
 | |
| 	cur_distance = abs(goal_block - cpa->pa_pstart);
 | |
| 	new_distance = abs(goal_block - pa->pa_pstart);
 | |
| 
 | |
| 	if (cur_distance < new_distance)
 | |
| 		return cpa;
 | |
| 
 | |
| 	/* drop the previous reference */
 | |
| 	atomic_dec(&cpa->pa_count);
 | |
| 	atomic_inc(&pa->pa_count);
 | |
| 	return pa;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search goal blocks in preallocated space
 | |
|  */
 | |
| static noinline_for_stack int
 | |
| ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	int order, i;
 | |
| 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
 | |
| 	struct ext4_locality_group *lg;
 | |
| 	struct ext4_prealloc_space *pa, *cpa = NULL;
 | |
| 	ext4_fsblk_t goal_block;
 | |
| 
 | |
| 	/* only data can be preallocated */
 | |
| 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* first, try per-file preallocation */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
 | |
| 
 | |
| 		/* all fields in this condition don't change,
 | |
| 		 * so we can skip locking for them */
 | |
| 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
 | |
| 			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
 | |
| 			continue;
 | |
| 
 | |
| 		/* found preallocated blocks, use them */
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (pa->pa_deleted == 0 && pa->pa_free) {
 | |
| 			atomic_inc(&pa->pa_count);
 | |
| 			ext4_mb_use_inode_pa(ac, pa);
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			ac->ac_criteria = 10;
 | |
| 			rcu_read_unlock();
 | |
| 			return 1;
 | |
| 		}
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* can we use group allocation? */
 | |
| 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* inode may have no locality group for some reason */
 | |
| 	lg = ac->ac_lg;
 | |
| 	if (lg == NULL)
 | |
| 		return 0;
 | |
| 	order  = fls(ac->ac_o_ex.fe_len) - 1;
 | |
| 	if (order > PREALLOC_TB_SIZE - 1)
 | |
| 		/* The max size of hash table is PREALLOC_TB_SIZE */
 | |
| 		order = PREALLOC_TB_SIZE - 1;
 | |
| 
 | |
| 	goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
 | |
| 		     ac->ac_g_ex.fe_start +
 | |
| 		     le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
 | |
| 	/*
 | |
| 	 * search for the prealloc space that is having
 | |
| 	 * minimal distance from the goal block.
 | |
| 	 */
 | |
| 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
 | |
| 		rcu_read_lock();
 | |
| 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
 | |
| 					pa_inode_list) {
 | |
| 			spin_lock(&pa->pa_lock);
 | |
| 			if (pa->pa_deleted == 0 &&
 | |
| 					pa->pa_free >= ac->ac_o_ex.fe_len) {
 | |
| 
 | |
| 				cpa = ext4_mb_check_group_pa(goal_block,
 | |
| 								pa, cpa);
 | |
| 			}
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	if (cpa) {
 | |
| 		ext4_mb_use_group_pa(ac, cpa);
 | |
| 		ac->ac_criteria = 20;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the function goes through all preallocation in this group and marks them
 | |
|  * used in in-core bitmap. buddy must be generated from this bitmap
 | |
|  * Need to be called with ext4 group lock (ext4_lock_group)
 | |
|  */
 | |
| static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
 | |
| 					ext4_group_t group)
 | |
| {
 | |
| 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 	struct list_head *cur;
 | |
| 	ext4_group_t groupnr;
 | |
| 	ext4_grpblk_t start;
 | |
| 	int preallocated = 0;
 | |
| 	int count = 0;
 | |
| 	int len;
 | |
| 
 | |
| 	/* all form of preallocation discards first load group,
 | |
| 	 * so the only competing code is preallocation use.
 | |
| 	 * we don't need any locking here
 | |
| 	 * notice we do NOT ignore preallocations with pa_deleted
 | |
| 	 * otherwise we could leave used blocks available for
 | |
| 	 * allocation in buddy when concurrent ext4_mb_put_pa()
 | |
| 	 * is dropping preallocation
 | |
| 	 */
 | |
| 	list_for_each(cur, &grp->bb_prealloc_list) {
 | |
| 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
 | |
| 					     &groupnr, &start);
 | |
| 		len = pa->pa_len;
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 		if (unlikely(len == 0))
 | |
| 			continue;
 | |
| 		BUG_ON(groupnr != group);
 | |
| 		mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
 | |
| 						bitmap, start, len);
 | |
| 		preallocated += len;
 | |
| 		count++;
 | |
| 	}
 | |
| 	mb_debug("prellocated %u for group %lu\n", preallocated, group);
 | |
| }
 | |
| 
 | |
| static void ext4_mb_pa_callback(struct rcu_head *head)
 | |
| {
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
 | |
| 	kmem_cache_free(ext4_pspace_cachep, pa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * drops a reference to preallocated space descriptor
 | |
|  * if this was the last reference and the space is consumed
 | |
|  */
 | |
| static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
 | |
| 			struct super_block *sb, struct ext4_prealloc_space *pa)
 | |
| {
 | |
| 	unsigned long grp;
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* in this short window concurrent discard can set pa_deleted */
 | |
| 	spin_lock(&pa->pa_lock);
 | |
| 	if (pa->pa_deleted == 1) {
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pa->pa_deleted = 1;
 | |
| 	spin_unlock(&pa->pa_lock);
 | |
| 
 | |
| 	/* -1 is to protect from crossing allocation group */
 | |
| 	ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * possible race:
 | |
| 	 *
 | |
| 	 *  P1 (buddy init)			P2 (regular allocation)
 | |
| 	 *					find block B in PA
 | |
| 	 *  copy on-disk bitmap to buddy
 | |
| 	 *  					mark B in on-disk bitmap
 | |
| 	 *					drop PA from group
 | |
| 	 *  mark all PAs in buddy
 | |
| 	 *
 | |
| 	 * thus, P1 initializes buddy with B available. to prevent this
 | |
| 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
 | |
| 	 * against that pair
 | |
| 	 */
 | |
| 	ext4_lock_group(sb, grp);
 | |
| 	list_del(&pa->pa_group_list);
 | |
| 	ext4_unlock_group(sb, grp);
 | |
| 
 | |
| 	spin_lock(pa->pa_obj_lock);
 | |
| 	list_del_rcu(&pa->pa_inode_list);
 | |
| 	spin_unlock(pa->pa_obj_lock);
 | |
| 
 | |
| 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * creates new preallocated space for given inode
 | |
|  */
 | |
| static noinline_for_stack int
 | |
| ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 	struct ext4_group_info *grp;
 | |
| 	struct ext4_inode_info *ei;
 | |
| 
 | |
| 	/* preallocate only when found space is larger then requested */
 | |
| 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
 | |
| 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
 | |
| 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
 | |
| 
 | |
| 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
 | |
| 	if (pa == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
 | |
| 		int winl;
 | |
| 		int wins;
 | |
| 		int win;
 | |
| 		int offs;
 | |
| 
 | |
| 		/* we can't allocate as much as normalizer wants.
 | |
| 		 * so, found space must get proper lstart
 | |
| 		 * to cover original request */
 | |
| 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
 | |
| 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
 | |
| 
 | |
| 		/* we're limited by original request in that
 | |
| 		 * logical block must be covered any way
 | |
| 		 * winl is window we can move our chunk within */
 | |
| 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
 | |
| 
 | |
| 		/* also, we should cover whole original request */
 | |
| 		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
 | |
| 
 | |
| 		/* the smallest one defines real window */
 | |
| 		win = min(winl, wins);
 | |
| 
 | |
| 		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
 | |
| 		if (offs && offs < win)
 | |
| 			win = offs;
 | |
| 
 | |
| 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
 | |
| 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
 | |
| 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
 | |
| 	}
 | |
| 
 | |
| 	/* preallocation can change ac_b_ex, thus we store actually
 | |
| 	 * allocated blocks for history */
 | |
| 	ac->ac_f_ex = ac->ac_b_ex;
 | |
| 
 | |
| 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
 | |
| 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
 | |
| 	pa->pa_len = ac->ac_b_ex.fe_len;
 | |
| 	pa->pa_free = pa->pa_len;
 | |
| 	atomic_set(&pa->pa_count, 1);
 | |
| 	spin_lock_init(&pa->pa_lock);
 | |
| 	pa->pa_deleted = 0;
 | |
| 	pa->pa_linear = 0;
 | |
| 
 | |
| 	mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
 | |
| 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
 | |
| 
 | |
| 	ext4_mb_use_inode_pa(ac, pa);
 | |
| 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
 | |
| 
 | |
| 	ei = EXT4_I(ac->ac_inode);
 | |
| 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
 | |
| 
 | |
| 	pa->pa_obj_lock = &ei->i_prealloc_lock;
 | |
| 	pa->pa_inode = ac->ac_inode;
 | |
| 
 | |
| 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
 | |
| 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
 | |
| 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
 | |
| 
 | |
| 	spin_lock(pa->pa_obj_lock);
 | |
| 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
 | |
| 	spin_unlock(pa->pa_obj_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * creates new preallocated space for locality group inodes belongs to
 | |
|  */
 | |
| static noinline_for_stack int
 | |
| ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_locality_group *lg;
 | |
| 	struct ext4_prealloc_space *pa;
 | |
| 	struct ext4_group_info *grp;
 | |
| 
 | |
| 	/* preallocate only when found space is larger then requested */
 | |
| 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
 | |
| 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
 | |
| 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
 | |
| 
 | |
| 	BUG_ON(ext4_pspace_cachep == NULL);
 | |
| 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
 | |
| 	if (pa == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* preallocation can change ac_b_ex, thus we store actually
 | |
| 	 * allocated blocks for history */
 | |
| 	ac->ac_f_ex = ac->ac_b_ex;
 | |
| 
 | |
| 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
 | |
| 	pa->pa_lstart = pa->pa_pstart;
 | |
| 	pa->pa_len = ac->ac_b_ex.fe_len;
 | |
| 	pa->pa_free = pa->pa_len;
 | |
| 	atomic_set(&pa->pa_count, 1);
 | |
| 	spin_lock_init(&pa->pa_lock);
 | |
| 	INIT_LIST_HEAD(&pa->pa_inode_list);
 | |
| 	pa->pa_deleted = 0;
 | |
| 	pa->pa_linear = 1;
 | |
| 
 | |
| 	mb_debug("new group pa %p: %llu/%u for %u\n", pa,
 | |
| 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
 | |
| 
 | |
| 	ext4_mb_use_group_pa(ac, pa);
 | |
| 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
 | |
| 
 | |
| 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
 | |
| 	lg = ac->ac_lg;
 | |
| 	BUG_ON(lg == NULL);
 | |
| 
 | |
| 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
 | |
| 	pa->pa_inode = NULL;
 | |
| 
 | |
| 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
 | |
| 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
 | |
| 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
 | |
| 
 | |
| 	/*
 | |
| 	 * We will later add the new pa to the right bucket
 | |
| 	 * after updating the pa_free in ext4_mb_release_context
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
 | |
| 		err = ext4_mb_new_group_pa(ac);
 | |
| 	else
 | |
| 		err = ext4_mb_new_inode_pa(ac);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * finds all unused blocks in on-disk bitmap, frees them in
 | |
|  * in-core bitmap and buddy.
 | |
|  * @pa must be unlinked from inode and group lists, so that
 | |
|  * nobody else can find/use it.
 | |
|  * the caller MUST hold group/inode locks.
 | |
|  * TODO: optimize the case when there are no in-core structures yet
 | |
|  */
 | |
| static noinline_for_stack int
 | |
| ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
 | |
| 			struct ext4_prealloc_space *pa,
 | |
| 			struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	unsigned long end;
 | |
| 	unsigned long next;
 | |
| 	ext4_group_t group;
 | |
| 	ext4_grpblk_t bit;
 | |
| 	sector_t start;
 | |
| 	int err = 0;
 | |
| 	int free = 0;
 | |
| 
 | |
| 	BUG_ON(pa->pa_deleted == 0);
 | |
| 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
 | |
| 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
 | |
| 	end = bit + pa->pa_len;
 | |
| 
 | |
| 	if (ac) {
 | |
| 		ac->ac_sb = sb;
 | |
| 		ac->ac_inode = pa->pa_inode;
 | |
| 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
 | |
| 	}
 | |
| 
 | |
| 	while (bit < end) {
 | |
| 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
 | |
| 		if (bit >= end)
 | |
| 			break;
 | |
| 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
 | |
| 		start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
 | |
| 				le32_to_cpu(sbi->s_es->s_first_data_block);
 | |
| 		mb_debug("    free preallocated %u/%u in group %u\n",
 | |
| 				(unsigned) start, (unsigned) next - bit,
 | |
| 				(unsigned) group);
 | |
| 		free += next - bit;
 | |
| 
 | |
| 		if (ac) {
 | |
| 			ac->ac_b_ex.fe_group = group;
 | |
| 			ac->ac_b_ex.fe_start = bit;
 | |
| 			ac->ac_b_ex.fe_len = next - bit;
 | |
| 			ac->ac_b_ex.fe_logical = 0;
 | |
| 			ext4_mb_store_history(ac);
 | |
| 		}
 | |
| 
 | |
| 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
 | |
| 		bit = next + 1;
 | |
| 	}
 | |
| 	if (free != pa->pa_free) {
 | |
| 		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
 | |
| 			pa, (unsigned long) pa->pa_lstart,
 | |
| 			(unsigned long) pa->pa_pstart,
 | |
| 			(unsigned long) pa->pa_len);
 | |
| 		ext4_error(sb, __func__, "free %u, pa_free %u\n",
 | |
| 						free, pa->pa_free);
 | |
| 		/*
 | |
| 		 * pa is already deleted so we use the value obtained
 | |
| 		 * from the bitmap and continue.
 | |
| 		 */
 | |
| 	}
 | |
| 	atomic_add(free, &sbi->s_mb_discarded);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| ext4_mb_release_group_pa(struct ext4_buddy *e4b,
 | |
| 				struct ext4_prealloc_space *pa,
 | |
| 				struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 	ext4_group_t group;
 | |
| 	ext4_grpblk_t bit;
 | |
| 
 | |
| 	if (ac)
 | |
| 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
 | |
| 
 | |
| 	BUG_ON(pa->pa_deleted == 0);
 | |
| 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
 | |
| 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
 | |
| 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
 | |
| 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
 | |
| 
 | |
| 	if (ac) {
 | |
| 		ac->ac_sb = sb;
 | |
| 		ac->ac_inode = NULL;
 | |
| 		ac->ac_b_ex.fe_group = group;
 | |
| 		ac->ac_b_ex.fe_start = bit;
 | |
| 		ac->ac_b_ex.fe_len = pa->pa_len;
 | |
| 		ac->ac_b_ex.fe_logical = 0;
 | |
| 		ext4_mb_store_history(ac);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * releases all preallocations in given group
 | |
|  *
 | |
|  * first, we need to decide discard policy:
 | |
|  * - when do we discard
 | |
|  *   1) ENOSPC
 | |
|  * - how many do we discard
 | |
|  *   1) how many requested
 | |
|  */
 | |
| static noinline_for_stack int
 | |
| ext4_mb_discard_group_preallocations(struct super_block *sb,
 | |
| 					ext4_group_t group, int needed)
 | |
| {
 | |
| 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 | |
| 	struct buffer_head *bitmap_bh = NULL;
 | |
| 	struct ext4_prealloc_space *pa, *tmp;
 | |
| 	struct ext4_allocation_context *ac;
 | |
| 	struct list_head list;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	int err;
 | |
| 	int busy = 0;
 | |
| 	int free = 0;
 | |
| 
 | |
| 	mb_debug("discard preallocation for group %lu\n", group);
 | |
| 
 | |
| 	if (list_empty(&grp->bb_prealloc_list))
 | |
| 		return 0;
 | |
| 
 | |
| 	bitmap_bh = ext4_read_block_bitmap(sb, group);
 | |
| 	if (bitmap_bh == NULL) {
 | |
| 		ext4_error(sb, __func__, "Error in reading block "
 | |
| 				"bitmap for %lu\n", group);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	err = ext4_mb_load_buddy(sb, group, &e4b);
 | |
| 	if (err) {
 | |
| 		ext4_error(sb, __func__, "Error in loading buddy "
 | |
| 				"information for %lu\n", group);
 | |
| 		put_bh(bitmap_bh);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (needed == 0)
 | |
| 		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&list);
 | |
| 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
 | |
| repeat:
 | |
| 	ext4_lock_group(sb, group);
 | |
| 	list_for_each_entry_safe(pa, tmp,
 | |
| 				&grp->bb_prealloc_list, pa_group_list) {
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (atomic_read(&pa->pa_count)) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			busy = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pa->pa_deleted) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* seems this one can be freed ... */
 | |
| 		pa->pa_deleted = 1;
 | |
| 
 | |
| 		/* we can trust pa_free ... */
 | |
| 		free += pa->pa_free;
 | |
| 
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 
 | |
| 		list_del(&pa->pa_group_list);
 | |
| 		list_add(&pa->u.pa_tmp_list, &list);
 | |
| 	}
 | |
| 
 | |
| 	/* if we still need more blocks and some PAs were used, try again */
 | |
| 	if (free < needed && busy) {
 | |
| 		busy = 0;
 | |
| 		ext4_unlock_group(sb, group);
 | |
| 		/*
 | |
| 		 * Yield the CPU here so that we don't get soft lockup
 | |
| 		 * in non preempt case.
 | |
| 		 */
 | |
| 		yield();
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	/* found anything to free? */
 | |
| 	if (list_empty(&list)) {
 | |
| 		BUG_ON(free != 0);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* now free all selected PAs */
 | |
| 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
 | |
| 
 | |
| 		/* remove from object (inode or locality group) */
 | |
| 		spin_lock(pa->pa_obj_lock);
 | |
| 		list_del_rcu(&pa->pa_inode_list);
 | |
| 		spin_unlock(pa->pa_obj_lock);
 | |
| 
 | |
| 		if (pa->pa_linear)
 | |
| 			ext4_mb_release_group_pa(&e4b, pa, ac);
 | |
| 		else
 | |
| 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
 | |
| 
 | |
| 		list_del(&pa->u.pa_tmp_list);
 | |
| 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	ext4_unlock_group(sb, group);
 | |
| 	if (ac)
 | |
| 		kmem_cache_free(ext4_ac_cachep, ac);
 | |
| 	ext4_mb_release_desc(&e4b);
 | |
| 	put_bh(bitmap_bh);
 | |
| 	return free;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * releases all non-used preallocated blocks for given inode
 | |
|  *
 | |
|  * It's important to discard preallocations under i_data_sem
 | |
|  * We don't want another block to be served from the prealloc
 | |
|  * space when we are discarding the inode prealloc space.
 | |
|  *
 | |
|  * FIXME!! Make sure it is valid at all the call sites
 | |
|  */
 | |
| void ext4_discard_preallocations(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	struct buffer_head *bitmap_bh = NULL;
 | |
| 	struct ext4_prealloc_space *pa, *tmp;
 | |
| 	struct ext4_allocation_context *ac;
 | |
| 	ext4_group_t group = 0;
 | |
| 	struct list_head list;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!S_ISREG(inode->i_mode)) {
 | |
| 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&list);
 | |
| 
 | |
| 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
 | |
| repeat:
 | |
| 	/* first, collect all pa's in the inode */
 | |
| 	spin_lock(&ei->i_prealloc_lock);
 | |
| 	while (!list_empty(&ei->i_prealloc_list)) {
 | |
| 		pa = list_entry(ei->i_prealloc_list.next,
 | |
| 				struct ext4_prealloc_space, pa_inode_list);
 | |
| 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (atomic_read(&pa->pa_count)) {
 | |
| 			/* this shouldn't happen often - nobody should
 | |
| 			 * use preallocation while we're discarding it */
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			spin_unlock(&ei->i_prealloc_lock);
 | |
| 			printk(KERN_ERR "uh-oh! used pa while discarding\n");
 | |
| 			WARN_ON(1);
 | |
| 			schedule_timeout_uninterruptible(HZ);
 | |
| 			goto repeat;
 | |
| 
 | |
| 		}
 | |
| 		if (pa->pa_deleted == 0) {
 | |
| 			pa->pa_deleted = 1;
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			list_del_rcu(&pa->pa_inode_list);
 | |
| 			list_add(&pa->u.pa_tmp_list, &list);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* someone is deleting pa right now */
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 		spin_unlock(&ei->i_prealloc_lock);
 | |
| 
 | |
| 		/* we have to wait here because pa_deleted
 | |
| 		 * doesn't mean pa is already unlinked from
 | |
| 		 * the list. as we might be called from
 | |
| 		 * ->clear_inode() the inode will get freed
 | |
| 		 * and concurrent thread which is unlinking
 | |
| 		 * pa from inode's list may access already
 | |
| 		 * freed memory, bad-bad-bad */
 | |
| 
 | |
| 		/* XXX: if this happens too often, we can
 | |
| 		 * add a flag to force wait only in case
 | |
| 		 * of ->clear_inode(), but not in case of
 | |
| 		 * regular truncate */
 | |
| 		schedule_timeout_uninterruptible(HZ);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 	spin_unlock(&ei->i_prealloc_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
 | |
| 		BUG_ON(pa->pa_linear != 0);
 | |
| 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
 | |
| 
 | |
| 		err = ext4_mb_load_buddy(sb, group, &e4b);
 | |
| 		if (err) {
 | |
| 			ext4_error(sb, __func__, "Error in loading buddy "
 | |
| 					"information for %lu\n", group);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		bitmap_bh = ext4_read_block_bitmap(sb, group);
 | |
| 		if (bitmap_bh == NULL) {
 | |
| 			ext4_error(sb, __func__, "Error in reading block "
 | |
| 					"bitmap for %lu\n", group);
 | |
| 			ext4_mb_release_desc(&e4b);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ext4_lock_group(sb, group);
 | |
| 		list_del(&pa->pa_group_list);
 | |
| 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
 | |
| 		ext4_unlock_group(sb, group);
 | |
| 
 | |
| 		ext4_mb_release_desc(&e4b);
 | |
| 		put_bh(bitmap_bh);
 | |
| 
 | |
| 		list_del(&pa->u.pa_tmp_list);
 | |
| 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
 | |
| 	}
 | |
| 	if (ac)
 | |
| 		kmem_cache_free(ext4_ac_cachep, ac);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * finds all preallocated spaces and return blocks being freed to them
 | |
|  * if preallocated space becomes full (no block is used from the space)
 | |
|  * then the function frees space in buddy
 | |
|  * XXX: at the moment, truncate (which is the only way to free blocks)
 | |
|  * discards all preallocations
 | |
|  */
 | |
| static void ext4_mb_return_to_preallocation(struct inode *inode,
 | |
| 					struct ext4_buddy *e4b,
 | |
| 					sector_t block, int count)
 | |
| {
 | |
| 	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
 | |
| }
 | |
| #ifdef MB_DEBUG
 | |
| static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	ext4_group_t i;
 | |
| 
 | |
| 	printk(KERN_ERR "EXT4-fs: Can't allocate:"
 | |
| 			" Allocation context details:\n");
 | |
| 	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
 | |
| 			ac->ac_status, ac->ac_flags);
 | |
| 	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
 | |
| 			"best %lu/%lu/%lu@%lu cr %d\n",
 | |
| 			(unsigned long)ac->ac_o_ex.fe_group,
 | |
| 			(unsigned long)ac->ac_o_ex.fe_start,
 | |
| 			(unsigned long)ac->ac_o_ex.fe_len,
 | |
| 			(unsigned long)ac->ac_o_ex.fe_logical,
 | |
| 			(unsigned long)ac->ac_g_ex.fe_group,
 | |
| 			(unsigned long)ac->ac_g_ex.fe_start,
 | |
| 			(unsigned long)ac->ac_g_ex.fe_len,
 | |
| 			(unsigned long)ac->ac_g_ex.fe_logical,
 | |
| 			(unsigned long)ac->ac_b_ex.fe_group,
 | |
| 			(unsigned long)ac->ac_b_ex.fe_start,
 | |
| 			(unsigned long)ac->ac_b_ex.fe_len,
 | |
| 			(unsigned long)ac->ac_b_ex.fe_logical,
 | |
| 			(int)ac->ac_criteria);
 | |
| 	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
 | |
| 		ac->ac_found);
 | |
| 	printk(KERN_ERR "EXT4-fs: groups: \n");
 | |
| 	for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
 | |
| 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
 | |
| 		struct ext4_prealloc_space *pa;
 | |
| 		ext4_grpblk_t start;
 | |
| 		struct list_head *cur;
 | |
| 		ext4_lock_group(sb, i);
 | |
| 		list_for_each(cur, &grp->bb_prealloc_list) {
 | |
| 			pa = list_entry(cur, struct ext4_prealloc_space,
 | |
| 					pa_group_list);
 | |
| 			spin_lock(&pa->pa_lock);
 | |
| 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
 | |
| 						     NULL, &start);
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			printk(KERN_ERR "PA:%lu:%d:%u \n", i,
 | |
| 							start, pa->pa_len);
 | |
| 		}
 | |
| 		ext4_unlock_group(sb, i);
 | |
| 
 | |
| 		if (grp->bb_free == 0)
 | |
| 			continue;
 | |
| 		printk(KERN_ERR "%lu: %d/%d \n",
 | |
| 		       i, grp->bb_free, grp->bb_fragments);
 | |
| 	}
 | |
| 	printk(KERN_ERR "\n");
 | |
| }
 | |
| #else
 | |
| static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * We use locality group preallocation for small size file. The size of the
 | |
|  * file is determined by the current size or the resulting size after
 | |
|  * allocation which ever is larger
 | |
|  *
 | |
|  * One can tune this size via /proc/fs/ext4/<partition>/stream_req
 | |
|  */
 | |
| static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 | |
| 	int bsbits = ac->ac_sb->s_blocksize_bits;
 | |
| 	loff_t size, isize;
 | |
| 
 | |
| 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
 | |
| 		return;
 | |
| 
 | |
| 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
 | |
| 	isize = i_size_read(ac->ac_inode) >> bsbits;
 | |
| 	size = max(size, isize);
 | |
| 
 | |
| 	/* don't use group allocation for large files */
 | |
| 	if (size >= sbi->s_mb_stream_request)
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
 | |
| 		return;
 | |
| 
 | |
| 	BUG_ON(ac->ac_lg != NULL);
 | |
| 	/*
 | |
| 	 * locality group prealloc space are per cpu. The reason for having
 | |
| 	 * per cpu locality group is to reduce the contention between block
 | |
| 	 * request from multiple CPUs.
 | |
| 	 */
 | |
| 	ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
 | |
| 
 | |
| 	/* we're going to use group allocation */
 | |
| 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
 | |
| 
 | |
| 	/* serialize all allocations in the group */
 | |
| 	mutex_lock(&ac->ac_lg->lg_mutex);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| ext4_mb_initialize_context(struct ext4_allocation_context *ac,
 | |
| 				struct ext4_allocation_request *ar)
 | |
| {
 | |
| 	struct super_block *sb = ar->inode->i_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_super_block *es = sbi->s_es;
 | |
| 	ext4_group_t group;
 | |
| 	unsigned long len;
 | |
| 	unsigned long goal;
 | |
| 	ext4_grpblk_t block;
 | |
| 
 | |
| 	/* we can't allocate > group size */
 | |
| 	len = ar->len;
 | |
| 
 | |
| 	/* just a dirty hack to filter too big requests  */
 | |
| 	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
 | |
| 		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
 | |
| 
 | |
| 	/* start searching from the goal */
 | |
| 	goal = ar->goal;
 | |
| 	if (goal < le32_to_cpu(es->s_first_data_block) ||
 | |
| 			goal >= ext4_blocks_count(es))
 | |
| 		goal = le32_to_cpu(es->s_first_data_block);
 | |
| 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
 | |
| 
 | |
| 	/* set up allocation goals */
 | |
| 	ac->ac_b_ex.fe_logical = ar->logical;
 | |
| 	ac->ac_b_ex.fe_group = 0;
 | |
| 	ac->ac_b_ex.fe_start = 0;
 | |
| 	ac->ac_b_ex.fe_len = 0;
 | |
| 	ac->ac_status = AC_STATUS_CONTINUE;
 | |
| 	ac->ac_groups_scanned = 0;
 | |
| 	ac->ac_ex_scanned = 0;
 | |
| 	ac->ac_found = 0;
 | |
| 	ac->ac_sb = sb;
 | |
| 	ac->ac_inode = ar->inode;
 | |
| 	ac->ac_o_ex.fe_logical = ar->logical;
 | |
| 	ac->ac_o_ex.fe_group = group;
 | |
| 	ac->ac_o_ex.fe_start = block;
 | |
| 	ac->ac_o_ex.fe_len = len;
 | |
| 	ac->ac_g_ex.fe_logical = ar->logical;
 | |
| 	ac->ac_g_ex.fe_group = group;
 | |
| 	ac->ac_g_ex.fe_start = block;
 | |
| 	ac->ac_g_ex.fe_len = len;
 | |
| 	ac->ac_f_ex.fe_len = 0;
 | |
| 	ac->ac_flags = ar->flags;
 | |
| 	ac->ac_2order = 0;
 | |
| 	ac->ac_criteria = 0;
 | |
| 	ac->ac_pa = NULL;
 | |
| 	ac->ac_bitmap_page = NULL;
 | |
| 	ac->ac_buddy_page = NULL;
 | |
| 	ac->ac_lg = NULL;
 | |
| 
 | |
| 	/* we have to define context: we'll we work with a file or
 | |
| 	 * locality group. this is a policy, actually */
 | |
| 	ext4_mb_group_or_file(ac);
 | |
| 
 | |
| 	mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
 | |
| 			"left: %u/%u, right %u/%u to %swritable\n",
 | |
| 			(unsigned) ar->len, (unsigned) ar->logical,
 | |
| 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
 | |
| 			(unsigned) ar->lleft, (unsigned) ar->pleft,
 | |
| 			(unsigned) ar->lright, (unsigned) ar->pright,
 | |
| 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static noinline_for_stack void
 | |
| ext4_mb_discard_lg_preallocations(struct super_block *sb,
 | |
| 					struct ext4_locality_group *lg,
 | |
| 					int order, int total_entries)
 | |
| {
 | |
| 	ext4_group_t group = 0;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	struct list_head discard_list;
 | |
| 	struct ext4_prealloc_space *pa, *tmp;
 | |
| 	struct ext4_allocation_context *ac;
 | |
| 
 | |
| 	mb_debug("discard locality group preallocation\n");
 | |
| 
 | |
| 	INIT_LIST_HEAD(&discard_list);
 | |
| 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
 | |
| 
 | |
| 	spin_lock(&lg->lg_prealloc_lock);
 | |
| 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
 | |
| 						pa_inode_list) {
 | |
| 		spin_lock(&pa->pa_lock);
 | |
| 		if (atomic_read(&pa->pa_count)) {
 | |
| 			/*
 | |
| 			 * This is the pa that we just used
 | |
| 			 * for block allocation. So don't
 | |
| 			 * free that
 | |
| 			 */
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pa->pa_deleted) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* only lg prealloc space */
 | |
| 		BUG_ON(!pa->pa_linear);
 | |
| 
 | |
| 		/* seems this one can be freed ... */
 | |
| 		pa->pa_deleted = 1;
 | |
| 		spin_unlock(&pa->pa_lock);
 | |
| 
 | |
| 		list_del_rcu(&pa->pa_inode_list);
 | |
| 		list_add(&pa->u.pa_tmp_list, &discard_list);
 | |
| 
 | |
| 		total_entries--;
 | |
| 		if (total_entries <= 5) {
 | |
| 			/*
 | |
| 			 * we want to keep only 5 entries
 | |
| 			 * allowing it to grow to 8. This
 | |
| 			 * mak sure we don't call discard
 | |
| 			 * soon for this list.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&lg->lg_prealloc_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
 | |
| 
 | |
| 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
 | |
| 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
 | |
| 			ext4_error(sb, __func__, "Error in loading buddy "
 | |
| 					"information for %lu\n", group);
 | |
| 			continue;
 | |
| 		}
 | |
| 		ext4_lock_group(sb, group);
 | |
| 		list_del(&pa->pa_group_list);
 | |
| 		ext4_mb_release_group_pa(&e4b, pa, ac);
 | |
| 		ext4_unlock_group(sb, group);
 | |
| 
 | |
| 		ext4_mb_release_desc(&e4b);
 | |
| 		list_del(&pa->u.pa_tmp_list);
 | |
| 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
 | |
| 	}
 | |
| 	if (ac)
 | |
| 		kmem_cache_free(ext4_ac_cachep, ac);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We have incremented pa_count. So it cannot be freed at this
 | |
|  * point. Also we hold lg_mutex. So no parallel allocation is
 | |
|  * possible from this lg. That means pa_free cannot be updated.
 | |
|  *
 | |
|  * A parallel ext4_mb_discard_group_preallocations is possible.
 | |
|  * which can cause the lg_prealloc_list to be updated.
 | |
|  */
 | |
| 
 | |
| static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	int order, added = 0, lg_prealloc_count = 1;
 | |
| 	struct super_block *sb = ac->ac_sb;
 | |
| 	struct ext4_locality_group *lg = ac->ac_lg;
 | |
| 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
 | |
| 
 | |
| 	order = fls(pa->pa_free) - 1;
 | |
| 	if (order > PREALLOC_TB_SIZE - 1)
 | |
| 		/* The max size of hash table is PREALLOC_TB_SIZE */
 | |
| 		order = PREALLOC_TB_SIZE - 1;
 | |
| 	/* Add the prealloc space to lg */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
 | |
| 						pa_inode_list) {
 | |
| 		spin_lock(&tmp_pa->pa_lock);
 | |
| 		if (tmp_pa->pa_deleted) {
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!added && pa->pa_free < tmp_pa->pa_free) {
 | |
| 			/* Add to the tail of the previous entry */
 | |
| 			list_add_tail_rcu(&pa->pa_inode_list,
 | |
| 						&tmp_pa->pa_inode_list);
 | |
| 			added = 1;
 | |
| 			/*
 | |
| 			 * we want to count the total
 | |
| 			 * number of entries in the list
 | |
| 			 */
 | |
| 		}
 | |
| 		spin_unlock(&tmp_pa->pa_lock);
 | |
| 		lg_prealloc_count++;
 | |
| 	}
 | |
| 	if (!added)
 | |
| 		list_add_tail_rcu(&pa->pa_inode_list,
 | |
| 					&lg->lg_prealloc_list[order]);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* Now trim the list to be not more than 8 elements */
 | |
| 	if (lg_prealloc_count > 8) {
 | |
| 		ext4_mb_discard_lg_preallocations(sb, lg,
 | |
| 						order, lg_prealloc_count);
 | |
| 		return;
 | |
| 	}
 | |
| 	return ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * release all resource we used in allocation
 | |
|  */
 | |
| static int ext4_mb_release_context(struct ext4_allocation_context *ac)
 | |
| {
 | |
| 	struct ext4_prealloc_space *pa = ac->ac_pa;
 | |
| 	if (pa) {
 | |
| 		if (pa->pa_linear) {
 | |
| 			/* see comment in ext4_mb_use_group_pa() */
 | |
| 			spin_lock(&pa->pa_lock);
 | |
| 			pa->pa_pstart += ac->ac_b_ex.fe_len;
 | |
| 			pa->pa_lstart += ac->ac_b_ex.fe_len;
 | |
| 			pa->pa_free -= ac->ac_b_ex.fe_len;
 | |
| 			pa->pa_len -= ac->ac_b_ex.fe_len;
 | |
| 			spin_unlock(&pa->pa_lock);
 | |
| 			/*
 | |
| 			 * We want to add the pa to the right bucket.
 | |
| 			 * Remove it from the list and while adding
 | |
| 			 * make sure the list to which we are adding
 | |
| 			 * doesn't grow big.
 | |
| 			 */
 | |
| 			if (likely(pa->pa_free)) {
 | |
| 				spin_lock(pa->pa_obj_lock);
 | |
| 				list_del_rcu(&pa->pa_inode_list);
 | |
| 				spin_unlock(pa->pa_obj_lock);
 | |
| 				ext4_mb_add_n_trim(ac);
 | |
| 			}
 | |
| 		}
 | |
| 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
 | |
| 	}
 | |
| 	if (ac->ac_bitmap_page)
 | |
| 		page_cache_release(ac->ac_bitmap_page);
 | |
| 	if (ac->ac_buddy_page)
 | |
| 		page_cache_release(ac->ac_buddy_page);
 | |
| 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
 | |
| 		mutex_unlock(&ac->ac_lg->lg_mutex);
 | |
| 	ext4_mb_collect_stats(ac);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
 | |
| {
 | |
| 	ext4_group_t i;
 | |
| 	int ret;
 | |
| 	int freed = 0;
 | |
| 
 | |
| 	for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
 | |
| 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
 | |
| 		freed += ret;
 | |
| 		needed -= ret;
 | |
| 	}
 | |
| 
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Main entry point into mballoc to allocate blocks
 | |
|  * it tries to use preallocation first, then falls back
 | |
|  * to usual allocation
 | |
|  */
 | |
| ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
 | |
| 				 struct ext4_allocation_request *ar, int *errp)
 | |
| {
 | |
| 	int freed;
 | |
| 	struct ext4_allocation_context *ac = NULL;
 | |
| 	struct ext4_sb_info *sbi;
 | |
| 	struct super_block *sb;
 | |
| 	ext4_fsblk_t block = 0;
 | |
| 	unsigned long inquota;
 | |
| 	unsigned long reserv_blks = 0;
 | |
| 
 | |
| 	sb = ar->inode->i_sb;
 | |
| 	sbi = EXT4_SB(sb);
 | |
| 
 | |
| 	if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
 | |
| 		/*
 | |
| 		 * With delalloc we already reserved the blocks
 | |
| 		 */
 | |
| 		while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
 | |
| 			/* let others to free the space */
 | |
| 			yield();
 | |
| 			ar->len = ar->len >> 1;
 | |
| 		}
 | |
| 		if (!ar->len) {
 | |
| 			*errp = -ENOSPC;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		reserv_blks = ar->len;
 | |
| 	}
 | |
| 	while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
 | |
| 		ar->flags |= EXT4_MB_HINT_NOPREALLOC;
 | |
| 		ar->len--;
 | |
| 	}
 | |
| 	if (ar->len == 0) {
 | |
| 		*errp = -EDQUOT;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	inquota = ar->len;
 | |
| 
 | |
| 	if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
 | |
| 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
 | |
| 
 | |
| 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
 | |
| 	if (!ac) {
 | |
| 		ar->len = 0;
 | |
| 		*errp = -ENOMEM;
 | |
| 		goto out1;
 | |
| 	}
 | |
| 
 | |
| 	*errp = ext4_mb_initialize_context(ac, ar);
 | |
| 	if (*errp) {
 | |
| 		ar->len = 0;
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
 | |
| 	if (!ext4_mb_use_preallocated(ac)) {
 | |
| 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
 | |
| 		ext4_mb_normalize_request(ac, ar);
 | |
| repeat:
 | |
| 		/* allocate space in core */
 | |
| 		ext4_mb_regular_allocator(ac);
 | |
| 
 | |
| 		/* as we've just preallocated more space than
 | |
| 		 * user requested orinally, we store allocated
 | |
| 		 * space in a special descriptor */
 | |
| 		if (ac->ac_status == AC_STATUS_FOUND &&
 | |
| 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
 | |
| 			ext4_mb_new_preallocation(ac);
 | |
| 	}
 | |
| 
 | |
| 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
 | |
| 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
 | |
| 		if (*errp ==  -EAGAIN) {
 | |
| 			ac->ac_b_ex.fe_group = 0;
 | |
| 			ac->ac_b_ex.fe_start = 0;
 | |
| 			ac->ac_b_ex.fe_len = 0;
 | |
| 			ac->ac_status = AC_STATUS_CONTINUE;
 | |
| 			goto repeat;
 | |
| 		} else if (*errp) {
 | |
| 			ac->ac_b_ex.fe_len = 0;
 | |
| 			ar->len = 0;
 | |
| 			ext4_mb_show_ac(ac);
 | |
| 		} else {
 | |
| 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
 | |
| 			ar->len = ac->ac_b_ex.fe_len;
 | |
| 		}
 | |
| 	} else {
 | |
| 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
 | |
| 		if (freed)
 | |
| 			goto repeat;
 | |
| 		*errp = -ENOSPC;
 | |
| 		ac->ac_b_ex.fe_len = 0;
 | |
| 		ar->len = 0;
 | |
| 		ext4_mb_show_ac(ac);
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_release_context(ac);
 | |
| 
 | |
| out2:
 | |
| 	kmem_cache_free(ext4_ac_cachep, ac);
 | |
| out1:
 | |
| 	if (ar->len < inquota)
 | |
| 		DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
 | |
| 
 | |
| 	return block;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We can merge two free data extents only if the physical blocks
 | |
|  * are contiguous, AND the extents were freed by the same transaction,
 | |
|  * AND the blocks are associated with the same group.
 | |
|  */
 | |
| static int can_merge(struct ext4_free_data *entry1,
 | |
| 			struct ext4_free_data *entry2)
 | |
| {
 | |
| 	if ((entry1->t_tid == entry2->t_tid) &&
 | |
| 	    (entry1->group == entry2->group) &&
 | |
| 	    ((entry1->start_blk + entry1->count) == entry2->start_blk))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
 | |
| 			  ext4_group_t group, ext4_grpblk_t block, int count)
 | |
| {
 | |
| 	struct ext4_group_info *db = e4b->bd_info;
 | |
| 	struct super_block *sb = e4b->bd_sb;
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(sb);
 | |
| 	struct ext4_free_data *entry, *new_entry;
 | |
| 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
 | |
| 	struct rb_node *parent = NULL, *new_node;
 | |
| 
 | |
| 
 | |
| 	BUG_ON(e4b->bd_bitmap_page == NULL);
 | |
| 	BUG_ON(e4b->bd_buddy_page == NULL);
 | |
| 
 | |
| 	new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
 | |
| 	new_entry->start_blk = block;
 | |
| 	new_entry->group  = group;
 | |
| 	new_entry->count = count;
 | |
| 	new_entry->t_tid = handle->h_transaction->t_tid;
 | |
| 	new_node = &new_entry->node;
 | |
| 
 | |
| 	ext4_lock_group(sb, group);
 | |
| 	if (!*n) {
 | |
| 		/* first free block exent. We need to
 | |
| 		   protect buddy cache from being freed,
 | |
| 		 * otherwise we'll refresh it from
 | |
| 		 * on-disk bitmap and lose not-yet-available
 | |
| 		 * blocks */
 | |
| 		page_cache_get(e4b->bd_buddy_page);
 | |
| 		page_cache_get(e4b->bd_bitmap_page);
 | |
| 	}
 | |
| 	while (*n) {
 | |
| 		parent = *n;
 | |
| 		entry = rb_entry(parent, struct ext4_free_data, node);
 | |
| 		if (block < entry->start_blk)
 | |
| 			n = &(*n)->rb_left;
 | |
| 		else if (block >= (entry->start_blk + entry->count))
 | |
| 			n = &(*n)->rb_right;
 | |
| 		else {
 | |
| 			ext4_unlock_group(sb, group);
 | |
| 			ext4_error(sb, __func__,
 | |
| 			    "Double free of blocks %d (%d %d)\n",
 | |
| 			    block, entry->start_blk, entry->count);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(new_node, parent, n);
 | |
| 	rb_insert_color(new_node, &db->bb_free_root);
 | |
| 
 | |
| 	/* Now try to see the extent can be merged to left and right */
 | |
| 	node = rb_prev(new_node);
 | |
| 	if (node) {
 | |
| 		entry = rb_entry(node, struct ext4_free_data, node);
 | |
| 		if (can_merge(entry, new_entry)) {
 | |
| 			new_entry->start_blk = entry->start_blk;
 | |
| 			new_entry->count += entry->count;
 | |
| 			rb_erase(node, &(db->bb_free_root));
 | |
| 			spin_lock(&sbi->s_md_lock);
 | |
| 			list_del(&entry->list);
 | |
| 			spin_unlock(&sbi->s_md_lock);
 | |
| 			kmem_cache_free(ext4_free_ext_cachep, entry);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	node = rb_next(new_node);
 | |
| 	if (node) {
 | |
| 		entry = rb_entry(node, struct ext4_free_data, node);
 | |
| 		if (can_merge(new_entry, entry)) {
 | |
| 			new_entry->count += entry->count;
 | |
| 			rb_erase(node, &(db->bb_free_root));
 | |
| 			spin_lock(&sbi->s_md_lock);
 | |
| 			list_del(&entry->list);
 | |
| 			spin_unlock(&sbi->s_md_lock);
 | |
| 			kmem_cache_free(ext4_free_ext_cachep, entry);
 | |
| 		}
 | |
| 	}
 | |
| 	/* Add the extent to transaction's private list */
 | |
| 	spin_lock(&sbi->s_md_lock);
 | |
| 	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
 | |
| 	spin_unlock(&sbi->s_md_lock);
 | |
| 	ext4_unlock_group(sb, group);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Main entry point into mballoc to free blocks
 | |
|  */
 | |
| void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
 | |
| 			unsigned long block, unsigned long count,
 | |
| 			int metadata, unsigned long *freed)
 | |
| {
 | |
| 	struct buffer_head *bitmap_bh = NULL;
 | |
| 	struct super_block *sb = inode->i_sb;
 | |
| 	struct ext4_allocation_context *ac = NULL;
 | |
| 	struct ext4_group_desc *gdp;
 | |
| 	struct ext4_super_block *es;
 | |
| 	unsigned long overflow;
 | |
| 	ext4_grpblk_t bit;
 | |
| 	struct buffer_head *gd_bh;
 | |
| 	ext4_group_t block_group;
 | |
| 	struct ext4_sb_info *sbi;
 | |
| 	struct ext4_buddy e4b;
 | |
| 	int err = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	*freed = 0;
 | |
| 
 | |
| 	sbi = EXT4_SB(sb);
 | |
| 	es = EXT4_SB(sb)->s_es;
 | |
| 	if (block < le32_to_cpu(es->s_first_data_block) ||
 | |
| 	    block + count < block ||
 | |
| 	    block + count > ext4_blocks_count(es)) {
 | |
| 		ext4_error(sb, __func__,
 | |
| 			    "Freeing blocks not in datazone - "
 | |
| 			    "block = %lu, count = %lu", block, count);
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	ext4_debug("freeing block %lu\n", block);
 | |
| 
 | |
| 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
 | |
| 	if (ac) {
 | |
| 		ac->ac_op = EXT4_MB_HISTORY_FREE;
 | |
| 		ac->ac_inode = inode;
 | |
| 		ac->ac_sb = sb;
 | |
| 	}
 | |
| 
 | |
| do_more:
 | |
| 	overflow = 0;
 | |
| 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if we are freeing blocks across a group
 | |
| 	 * boundary.
 | |
| 	 */
 | |
| 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
 | |
| 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
 | |
| 		count -= overflow;
 | |
| 	}
 | |
| 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
 | |
| 	if (!bitmap_bh) {
 | |
| 		err = -EIO;
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
 | |
| 	if (!gdp) {
 | |
| 		err = -EIO;
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
 | |
| 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
 | |
| 	    in_range(block, ext4_inode_table(sb, gdp),
 | |
| 		      EXT4_SB(sb)->s_itb_per_group) ||
 | |
| 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
 | |
| 		      EXT4_SB(sb)->s_itb_per_group)) {
 | |
| 
 | |
| 		ext4_error(sb, __func__,
 | |
| 			   "Freeing blocks in system zone - "
 | |
| 			   "Block = %lu, count = %lu", block, count);
 | |
| 		/* err = 0. ext4_std_error should be a no op */
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	BUFFER_TRACE(bitmap_bh, "getting write access");
 | |
| 	err = ext4_journal_get_write_access(handle, bitmap_bh);
 | |
| 	if (err)
 | |
| 		goto error_return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are about to modify some metadata.  Call the journal APIs
 | |
| 	 * to unshare ->b_data if a currently-committing transaction is
 | |
| 	 * using it
 | |
| 	 */
 | |
| 	BUFFER_TRACE(gd_bh, "get_write_access");
 | |
| 	err = ext4_journal_get_write_access(handle, gd_bh);
 | |
| 	if (err)
 | |
| 		goto error_return;
 | |
| 
 | |
| 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
 | |
| 	if (err)
 | |
| 		goto error_return;
 | |
| 
 | |
| #ifdef AGGRESSIVE_CHECK
 | |
| 	{
 | |
| 		int i;
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
 | |
| 	}
 | |
| #endif
 | |
| 	mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
 | |
| 			bit, count);
 | |
| 
 | |
| 	/* We dirtied the bitmap block */
 | |
| 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
 | |
| 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
 | |
| 
 | |
| 	if (ac) {
 | |
| 		ac->ac_b_ex.fe_group = block_group;
 | |
| 		ac->ac_b_ex.fe_start = bit;
 | |
| 		ac->ac_b_ex.fe_len = count;
 | |
| 		ext4_mb_store_history(ac);
 | |
| 	}
 | |
| 
 | |
| 	if (metadata) {
 | |
| 		/* blocks being freed are metadata. these blocks shouldn't
 | |
| 		 * be used until this transaction is committed */
 | |
| 		ext4_mb_free_metadata(handle, &e4b, block_group, bit, count);
 | |
| 	} else {
 | |
| 		ext4_lock_group(sb, block_group);
 | |
| 		mb_free_blocks(inode, &e4b, bit, count);
 | |
| 		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
 | |
| 		ext4_unlock_group(sb, block_group);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(sb_bgl_lock(sbi, block_group));
 | |
| 	le16_add_cpu(&gdp->bg_free_blocks_count, count);
 | |
| 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
 | |
| 	spin_unlock(sb_bgl_lock(sbi, block_group));
 | |
| 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
 | |
| 
 | |
| 	if (sbi->s_log_groups_per_flex) {
 | |
| 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
 | |
| 		spin_lock(sb_bgl_lock(sbi, flex_group));
 | |
| 		sbi->s_flex_groups[flex_group].free_blocks += count;
 | |
| 		spin_unlock(sb_bgl_lock(sbi, flex_group));
 | |
| 	}
 | |
| 
 | |
| 	ext4_mb_release_desc(&e4b);
 | |
| 
 | |
| 	*freed += count;
 | |
| 
 | |
| 	/* And the group descriptor block */
 | |
| 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
 | |
| 	ret = ext4_journal_dirty_metadata(handle, gd_bh);
 | |
| 	if (!err)
 | |
| 		err = ret;
 | |
| 
 | |
| 	if (overflow && !err) {
 | |
| 		block += count;
 | |
| 		count = overflow;
 | |
| 		put_bh(bitmap_bh);
 | |
| 		goto do_more;
 | |
| 	}
 | |
| 	sb->s_dirt = 1;
 | |
| error_return:
 | |
| 	brelse(bitmap_bh);
 | |
| 	ext4_std_error(sb, err);
 | |
| 	if (ac)
 | |
| 		kmem_cache_free(ext4_ac_cachep, ac);
 | |
| 	return;
 | |
| }
 |