mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 08:14:06 +00:00 
			
		
		
		
	 87b811c3f9
			
		
	
	
		87b811c3f9
		
	
	
	
	
		
			
			When ecryptfs allocates space to write crypto headers into, before copying
it out to file headers or to xattrs, it looks at the value of
crypt_stat->num_header_bytes_at_front to determine how much space it
needs.  This is also used as the file offset to the actual encrypted data,
so for xattr-stored crypto info, the value was zero.
So, we kzalloc'd 0 bytes, and then ran off to write to that memory.
(Which returned as ZERO_SIZE_PTR, so we explode quickly).
The right answer is to always allocate a page to write into; the current
code won't ever write more than that (this is enforced by the
(PAGE_CACHE_SIZE - offset) length in the call to
ecryptfs_generate_key_packet_set).  To be explicit about this, we now send
in a "max" parameter, rather than magically using PAGE_CACHE_SIZE there.
Also, since the pointer we pass down the callchain eventually gets the
virt_to_page() treatment, we should be using a alloc_page variant, not
kzalloc (see also 7fcba05437)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			1913 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1913 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * eCryptfs: Linux filesystem encryption layer
 | |
|  *
 | |
|  * Copyright (C) 1997-2004 Erez Zadok
 | |
|  * Copyright (C) 2001-2004 Stony Brook University
 | |
|  * Copyright (C) 2004-2007 International Business Machines Corp.
 | |
|  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 | |
|  *   		Michael C. Thompson <mcthomps@us.ibm.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation; either version 2 of the
 | |
|  * License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 | |
|  * 02111-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include "ecryptfs_kernel.h"
 | |
| 
 | |
| static int
 | |
| ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			     struct page *dst_page, int dst_offset,
 | |
| 			     struct page *src_page, int src_offset, int size,
 | |
| 			     unsigned char *iv);
 | |
| static int
 | |
| ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			     struct page *dst_page, int dst_offset,
 | |
| 			     struct page *src_page, int src_offset, int size,
 | |
| 			     unsigned char *iv);
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_to_hex
 | |
|  * @dst: Buffer to take hex character representation of contents of
 | |
|  *       src; must be at least of size (src_size * 2)
 | |
|  * @src: Buffer to be converted to a hex string respresentation
 | |
|  * @src_size: number of bytes to convert
 | |
|  */
 | |
| void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
 | |
| {
 | |
| 	int x;
 | |
| 
 | |
| 	for (x = 0; x < src_size; x++)
 | |
| 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_from_hex
 | |
|  * @dst: Buffer to take the bytes from src hex; must be at least of
 | |
|  *       size (src_size / 2)
 | |
|  * @src: Buffer to be converted from a hex string respresentation to raw value
 | |
|  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 | |
|  */
 | |
| void ecryptfs_from_hex(char *dst, char *src, int dst_size)
 | |
| {
 | |
| 	int x;
 | |
| 	char tmp[3] = { 0, };
 | |
| 
 | |
| 	for (x = 0; x < dst_size; x++) {
 | |
| 		tmp[0] = src[x * 2];
 | |
| 		tmp[1] = src[x * 2 + 1];
 | |
| 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_calculate_md5 - calculates the md5 of @src
 | |
|  * @dst: Pointer to 16 bytes of allocated memory
 | |
|  * @crypt_stat: Pointer to crypt_stat struct for the current inode
 | |
|  * @src: Data to be md5'd
 | |
|  * @len: Length of @src
 | |
|  *
 | |
|  * Uses the allocated crypto context that crypt_stat references to
 | |
|  * generate the MD5 sum of the contents of src.
 | |
|  */
 | |
| static int ecryptfs_calculate_md5(char *dst,
 | |
| 				  struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				  char *src, int len)
 | |
| {
 | |
| 	struct scatterlist sg;
 | |
| 	struct hash_desc desc = {
 | |
| 		.tfm = crypt_stat->hash_tfm,
 | |
| 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 | |
| 	};
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
 | |
| 	sg_init_one(&sg, (u8 *)src, len);
 | |
| 	if (!desc.tfm) {
 | |
| 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
 | |
| 					     CRYPTO_ALG_ASYNC);
 | |
| 		if (IS_ERR(desc.tfm)) {
 | |
| 			rc = PTR_ERR(desc.tfm);
 | |
| 			ecryptfs_printk(KERN_ERR, "Error attempting to "
 | |
| 					"allocate crypto context; rc = [%d]\n",
 | |
| 					rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		crypt_stat->hash_tfm = desc.tfm;
 | |
| 	}
 | |
| 	rc = crypto_hash_init(&desc);
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "%s: Error initializing crypto hash; rc = [%d]\n",
 | |
| 		       __func__, rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = crypto_hash_update(&desc, &sg, len);
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "%s: Error updating crypto hash; rc = [%d]\n",
 | |
| 		       __func__, rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = crypto_hash_final(&desc, dst);
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
 | |
| 		       __func__, rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
 | |
| 						  char *cipher_name,
 | |
| 						  char *chaining_modifier)
 | |
| {
 | |
| 	int cipher_name_len = strlen(cipher_name);
 | |
| 	int chaining_modifier_len = strlen(chaining_modifier);
 | |
| 	int algified_name_len;
 | |
| 	int rc;
 | |
| 
 | |
| 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 | |
| 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 | |
| 	if (!(*algified_name)) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	snprintf((*algified_name), algified_name_len, "%s(%s)",
 | |
| 		 chaining_modifier, cipher_name);
 | |
| 	rc = 0;
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_derive_iv
 | |
|  * @iv: destination for the derived iv vale
 | |
|  * @crypt_stat: Pointer to crypt_stat struct for the current inode
 | |
|  * @offset: Offset of the extent whose IV we are to derive
 | |
|  *
 | |
|  * Generate the initialization vector from the given root IV and page
 | |
|  * offset.
 | |
|  *
 | |
|  * Returns zero on success; non-zero on error.
 | |
|  */
 | |
| static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			      loff_t offset)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	char dst[MD5_DIGEST_SIZE];
 | |
| 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
 | |
| 
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 | |
| 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 | |
| 	}
 | |
| 	/* TODO: It is probably secure to just cast the least
 | |
| 	 * significant bits of the root IV into an unsigned long and
 | |
| 	 * add the offset to that rather than go through all this
 | |
| 	 * hashing business. -Halcrow */
 | |
| 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 | |
| 	memset((src + crypt_stat->iv_bytes), 0, 16);
 | |
| 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "source:\n");
 | |
| 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 | |
| 	}
 | |
| 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 | |
| 				    (crypt_stat->iv_bytes + 16));
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 | |
| 				"MD5 while generating IV for a page\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	memcpy(iv, dst, crypt_stat->iv_bytes);
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 | |
| 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_init_crypt_stat
 | |
|  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 | |
|  *
 | |
|  * Initialize the crypt_stat structure.
 | |
|  */
 | |
| void
 | |
| ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 | |
| 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
 | |
| 	mutex_init(&crypt_stat->keysig_list_mutex);
 | |
| 	mutex_init(&crypt_stat->cs_mutex);
 | |
| 	mutex_init(&crypt_stat->cs_tfm_mutex);
 | |
| 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
 | |
| 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_destroy_crypt_stat
 | |
|  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 | |
|  *
 | |
|  * Releases all memory associated with a crypt_stat struct.
 | |
|  */
 | |
| void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 | |
| 
 | |
| 	if (crypt_stat->tfm)
 | |
| 		crypto_free_blkcipher(crypt_stat->tfm);
 | |
| 	if (crypt_stat->hash_tfm)
 | |
| 		crypto_free_hash(crypt_stat->hash_tfm);
 | |
| 	mutex_lock(&crypt_stat->keysig_list_mutex);
 | |
| 	list_for_each_entry_safe(key_sig, key_sig_tmp,
 | |
| 				 &crypt_stat->keysig_list, crypt_stat_list) {
 | |
| 		list_del(&key_sig->crypt_stat_list);
 | |
| 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 | |
| 	}
 | |
| 	mutex_unlock(&crypt_stat->keysig_list_mutex);
 | |
| 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 | |
| }
 | |
| 
 | |
| void ecryptfs_destroy_mount_crypt_stat(
 | |
| 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | |
| {
 | |
| 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 | |
| 
 | |
| 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 | |
| 		return;
 | |
| 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 | |
| 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 | |
| 				 &mount_crypt_stat->global_auth_tok_list,
 | |
| 				 mount_crypt_stat_list) {
 | |
| 		list_del(&auth_tok->mount_crypt_stat_list);
 | |
| 		mount_crypt_stat->num_global_auth_toks--;
 | |
| 		if (auth_tok->global_auth_tok_key
 | |
| 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 | |
| 			key_put(auth_tok->global_auth_tok_key);
 | |
| 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 | |
| 	}
 | |
| 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 | |
| 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * virt_to_scatterlist
 | |
|  * @addr: Virtual address
 | |
|  * @size: Size of data; should be an even multiple of the block size
 | |
|  * @sg: Pointer to scatterlist array; set to NULL to obtain only
 | |
|  *      the number of scatterlist structs required in array
 | |
|  * @sg_size: Max array size
 | |
|  *
 | |
|  * Fills in a scatterlist array with page references for a passed
 | |
|  * virtual address.
 | |
|  *
 | |
|  * Returns the number of scatterlist structs in array used
 | |
|  */
 | |
| int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 | |
| 			int sg_size)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	struct page *pg;
 | |
| 	int offset;
 | |
| 	int remainder_of_page;
 | |
| 
 | |
| 	sg_init_table(sg, sg_size);
 | |
| 
 | |
| 	while (size > 0 && i < sg_size) {
 | |
| 		pg = virt_to_page(addr);
 | |
| 		offset = offset_in_page(addr);
 | |
| 		if (sg)
 | |
| 			sg_set_page(&sg[i], pg, 0, offset);
 | |
| 		remainder_of_page = PAGE_CACHE_SIZE - offset;
 | |
| 		if (size >= remainder_of_page) {
 | |
| 			if (sg)
 | |
| 				sg[i].length = remainder_of_page;
 | |
| 			addr += remainder_of_page;
 | |
| 			size -= remainder_of_page;
 | |
| 		} else {
 | |
| 			if (sg)
 | |
| 				sg[i].length = size;
 | |
| 			addr += size;
 | |
| 			size = 0;
 | |
| 		}
 | |
| 		i++;
 | |
| 	}
 | |
| 	if (size > 0)
 | |
| 		return -ENOMEM;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * encrypt_scatterlist
 | |
|  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 | |
|  * @dest_sg: Destination of encrypted data
 | |
|  * @src_sg: Data to be encrypted
 | |
|  * @size: Length of data to be encrypted
 | |
|  * @iv: iv to use during encryption
 | |
|  *
 | |
|  * Returns the number of bytes encrypted; negative value on error
 | |
|  */
 | |
| static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			       struct scatterlist *dest_sg,
 | |
| 			       struct scatterlist *src_sg, int size,
 | |
| 			       unsigned char *iv)
 | |
| {
 | |
| 	struct blkcipher_desc desc = {
 | |
| 		.tfm = crypt_stat->tfm,
 | |
| 		.info = iv,
 | |
| 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 | |
| 	};
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	BUG_ON(!crypt_stat || !crypt_stat->tfm
 | |
| 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
 | |
| 				crypt_stat->key_size);
 | |
| 		ecryptfs_dump_hex(crypt_stat->key,
 | |
| 				  crypt_stat->key_size);
 | |
| 	}
 | |
| 	/* Consider doing this once, when the file is opened */
 | |
| 	mutex_lock(&crypt_stat->cs_tfm_mutex);
 | |
| 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 | |
| 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 | |
| 					     crypt_stat->key_size);
 | |
| 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
 | |
| 	}
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
 | |
| 				rc);
 | |
| 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
 | |
| 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
 | |
| 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_lower_offset_for_extent
 | |
|  *
 | |
|  * Convert an eCryptfs page index into a lower byte offset
 | |
|  */
 | |
| static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
 | |
| 					     struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	(*offset) = (crypt_stat->num_header_bytes_at_front
 | |
| 		     + (crypt_stat->extent_size * extent_num));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_encrypt_extent
 | |
|  * @enc_extent_page: Allocated page into which to encrypt the data in
 | |
|  *                   @page
 | |
|  * @crypt_stat: crypt_stat containing cryptographic context for the
 | |
|  *              encryption operation
 | |
|  * @page: Page containing plaintext data extent to encrypt
 | |
|  * @extent_offset: Page extent offset for use in generating IV
 | |
|  *
 | |
|  * Encrypts one extent of data.
 | |
|  *
 | |
|  * Return zero on success; non-zero otherwise
 | |
|  */
 | |
| static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
 | |
| 				   struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				   struct page *page,
 | |
| 				   unsigned long extent_offset)
 | |
| {
 | |
| 	loff_t extent_base;
 | |
| 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 | |
| 	int rc;
 | |
| 
 | |
| 	extent_base = (((loff_t)page->index)
 | |
| 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
 | |
| 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 | |
| 				(extent_base + extent_offset));
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Error attempting to "
 | |
| 				"derive IV for extent [0x%.16x]; "
 | |
| 				"rc = [%d]\n", (extent_base + extent_offset),
 | |
| 				rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
 | |
| 				"with iv:\n");
 | |
| 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
 | |
| 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
 | |
| 				"encryption:\n");
 | |
| 		ecryptfs_dump_hex((char *)
 | |
| 				  (page_address(page)
 | |
| 				   + (extent_offset * crypt_stat->extent_size)),
 | |
| 				  8);
 | |
| 	}
 | |
| 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
 | |
| 					  page, (extent_offset
 | |
| 						 * crypt_stat->extent_size),
 | |
| 					  crypt_stat->extent_size, extent_iv);
 | |
| 	if (rc < 0) {
 | |
| 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
 | |
| 		       "page->index = [%ld], extent_offset = [%ld]; "
 | |
| 		       "rc = [%d]\n", __func__, page->index, extent_offset,
 | |
| 		       rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = 0;
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
 | |
| 				"rc = [%d]\n", (extent_base + extent_offset),
 | |
| 				rc);
 | |
| 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
 | |
| 				"encryption:\n");
 | |
| 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_encrypt_page
 | |
|  * @page: Page mapped from the eCryptfs inode for the file; contains
 | |
|  *        decrypted content that needs to be encrypted (to a temporary
 | |
|  *        page; not in place) and written out to the lower file
 | |
|  *
 | |
|  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 | |
|  * that eCryptfs pages may straddle the lower pages -- for instance,
 | |
|  * if the file was created on a machine with an 8K page size
 | |
|  * (resulting in an 8K header), and then the file is copied onto a
 | |
|  * host with a 32K page size, then when reading page 0 of the eCryptfs
 | |
|  * file, 24K of page 0 of the lower file will be read and decrypted,
 | |
|  * and then 8K of page 1 of the lower file will be read and decrypted.
 | |
|  *
 | |
|  * Returns zero on success; negative on error
 | |
|  */
 | |
| int ecryptfs_encrypt_page(struct page *page)
 | |
| {
 | |
| 	struct inode *ecryptfs_inode;
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat;
 | |
| 	char *enc_extent_virt;
 | |
| 	struct page *enc_extent_page = NULL;
 | |
| 	loff_t extent_offset;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	ecryptfs_inode = page->mapping->host;
 | |
| 	crypt_stat =
 | |
| 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 | |
| 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
 | |
| 		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
 | |
| 						       0, PAGE_CACHE_SIZE);
 | |
| 		if (rc)
 | |
| 			printk(KERN_ERR "%s: Error attempting to copy "
 | |
| 			       "page at index [%ld]\n", __func__,
 | |
| 			       page->index);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	enc_extent_page = alloc_page(GFP_USER);
 | |
| 	if (!enc_extent_page) {
 | |
| 		rc = -ENOMEM;
 | |
| 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 | |
| 				"encrypted extent\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	enc_extent_virt = kmap(enc_extent_page);
 | |
| 	for (extent_offset = 0;
 | |
| 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 | |
| 	     extent_offset++) {
 | |
| 		loff_t offset;
 | |
| 
 | |
| 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
 | |
| 					     extent_offset);
 | |
| 		if (rc) {
 | |
| 			printk(KERN_ERR "%s: Error encrypting extent; "
 | |
| 			       "rc = [%d]\n", __func__, rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ecryptfs_lower_offset_for_extent(
 | |
| 			&offset, ((((loff_t)page->index)
 | |
| 				   * (PAGE_CACHE_SIZE
 | |
| 				      / crypt_stat->extent_size))
 | |
| 				  + extent_offset), crypt_stat);
 | |
| 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
 | |
| 					  offset, crypt_stat->extent_size);
 | |
| 		if (rc) {
 | |
| 			ecryptfs_printk(KERN_ERR, "Error attempting "
 | |
| 					"to write lower page; rc = [%d]"
 | |
| 					"\n", rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	if (enc_extent_page) {
 | |
| 		kunmap(enc_extent_page);
 | |
| 		__free_page(enc_extent_page);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ecryptfs_decrypt_extent(struct page *page,
 | |
| 				   struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				   struct page *enc_extent_page,
 | |
| 				   unsigned long extent_offset)
 | |
| {
 | |
| 	loff_t extent_base;
 | |
| 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 | |
| 	int rc;
 | |
| 
 | |
| 	extent_base = (((loff_t)page->index)
 | |
| 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
 | |
| 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 | |
| 				(extent_base + extent_offset));
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Error attempting to "
 | |
| 				"derive IV for extent [0x%.16x]; "
 | |
| 				"rc = [%d]\n", (extent_base + extent_offset),
 | |
| 				rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
 | |
| 				"with iv:\n");
 | |
| 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
 | |
| 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
 | |
| 				"decryption:\n");
 | |
| 		ecryptfs_dump_hex((char *)
 | |
| 				  (page_address(enc_extent_page)
 | |
| 				   + (extent_offset * crypt_stat->extent_size)),
 | |
| 				  8);
 | |
| 	}
 | |
| 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
 | |
| 					  (extent_offset
 | |
| 					   * crypt_stat->extent_size),
 | |
| 					  enc_extent_page, 0,
 | |
| 					  crypt_stat->extent_size, extent_iv);
 | |
| 	if (rc < 0) {
 | |
| 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
 | |
| 		       "page->index = [%ld], extent_offset = [%ld]; "
 | |
| 		       "rc = [%d]\n", __func__, page->index, extent_offset,
 | |
| 		       rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = 0;
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
 | |
| 				"rc = [%d]\n", (extent_base + extent_offset),
 | |
| 				rc);
 | |
| 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
 | |
| 				"decryption:\n");
 | |
| 		ecryptfs_dump_hex((char *)(page_address(page)
 | |
| 					   + (extent_offset
 | |
| 					      * crypt_stat->extent_size)), 8);
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_decrypt_page
 | |
|  * @page: Page mapped from the eCryptfs inode for the file; data read
 | |
|  *        and decrypted from the lower file will be written into this
 | |
|  *        page
 | |
|  *
 | |
|  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 | |
|  * that eCryptfs pages may straddle the lower pages -- for instance,
 | |
|  * if the file was created on a machine with an 8K page size
 | |
|  * (resulting in an 8K header), and then the file is copied onto a
 | |
|  * host with a 32K page size, then when reading page 0 of the eCryptfs
 | |
|  * file, 24K of page 0 of the lower file will be read and decrypted,
 | |
|  * and then 8K of page 1 of the lower file will be read and decrypted.
 | |
|  *
 | |
|  * Returns zero on success; negative on error
 | |
|  */
 | |
| int ecryptfs_decrypt_page(struct page *page)
 | |
| {
 | |
| 	struct inode *ecryptfs_inode;
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat;
 | |
| 	char *enc_extent_virt;
 | |
| 	struct page *enc_extent_page = NULL;
 | |
| 	unsigned long extent_offset;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	ecryptfs_inode = page->mapping->host;
 | |
| 	crypt_stat =
 | |
| 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 | |
| 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
 | |
| 		rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
 | |
| 						      PAGE_CACHE_SIZE,
 | |
| 						      ecryptfs_inode);
 | |
| 		if (rc)
 | |
| 			printk(KERN_ERR "%s: Error attempting to copy "
 | |
| 			       "page at index [%ld]\n", __func__,
 | |
| 			       page->index);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	enc_extent_page = alloc_page(GFP_USER);
 | |
| 	if (!enc_extent_page) {
 | |
| 		rc = -ENOMEM;
 | |
| 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 | |
| 				"encrypted extent\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	enc_extent_virt = kmap(enc_extent_page);
 | |
| 	for (extent_offset = 0;
 | |
| 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 | |
| 	     extent_offset++) {
 | |
| 		loff_t offset;
 | |
| 
 | |
| 		ecryptfs_lower_offset_for_extent(
 | |
| 			&offset, ((page->index * (PAGE_CACHE_SIZE
 | |
| 						  / crypt_stat->extent_size))
 | |
| 				  + extent_offset), crypt_stat);
 | |
| 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
 | |
| 					 crypt_stat->extent_size,
 | |
| 					 ecryptfs_inode);
 | |
| 		if (rc) {
 | |
| 			ecryptfs_printk(KERN_ERR, "Error attempting "
 | |
| 					"to read lower page; rc = [%d]"
 | |
| 					"\n", rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
 | |
| 					     extent_offset);
 | |
| 		if (rc) {
 | |
| 			printk(KERN_ERR "%s: Error encrypting extent; "
 | |
| 			       "rc = [%d]\n", __func__, rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	if (enc_extent_page) {
 | |
| 		kunmap(enc_extent_page);
 | |
| 		__free_page(enc_extent_page);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * decrypt_scatterlist
 | |
|  * @crypt_stat: Cryptographic context
 | |
|  * @dest_sg: The destination scatterlist to decrypt into
 | |
|  * @src_sg: The source scatterlist to decrypt from
 | |
|  * @size: The number of bytes to decrypt
 | |
|  * @iv: The initialization vector to use for the decryption
 | |
|  *
 | |
|  * Returns the number of bytes decrypted; negative value on error
 | |
|  */
 | |
| static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			       struct scatterlist *dest_sg,
 | |
| 			       struct scatterlist *src_sg, int size,
 | |
| 			       unsigned char *iv)
 | |
| {
 | |
| 	struct blkcipher_desc desc = {
 | |
| 		.tfm = crypt_stat->tfm,
 | |
| 		.info = iv,
 | |
| 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 | |
| 	};
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	/* Consider doing this once, when the file is opened */
 | |
| 	mutex_lock(&crypt_stat->cs_tfm_mutex);
 | |
| 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 | |
| 				     crypt_stat->key_size);
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
 | |
| 				rc);
 | |
| 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
 | |
| 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
 | |
| 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
 | |
| 				rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = size;
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_encrypt_page_offset
 | |
|  * @crypt_stat: The cryptographic context
 | |
|  * @dst_page: The page to encrypt into
 | |
|  * @dst_offset: The offset in the page to encrypt into
 | |
|  * @src_page: The page to encrypt from
 | |
|  * @src_offset: The offset in the page to encrypt from
 | |
|  * @size: The number of bytes to encrypt
 | |
|  * @iv: The initialization vector to use for the encryption
 | |
|  *
 | |
|  * Returns the number of bytes encrypted
 | |
|  */
 | |
| static int
 | |
| ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			     struct page *dst_page, int dst_offset,
 | |
| 			     struct page *src_page, int src_offset, int size,
 | |
| 			     unsigned char *iv)
 | |
| {
 | |
| 	struct scatterlist src_sg, dst_sg;
 | |
| 
 | |
| 	sg_init_table(&src_sg, 1);
 | |
| 	sg_init_table(&dst_sg, 1);
 | |
| 
 | |
| 	sg_set_page(&src_sg, src_page, size, src_offset);
 | |
| 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
 | |
| 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_decrypt_page_offset
 | |
|  * @crypt_stat: The cryptographic context
 | |
|  * @dst_page: The page to decrypt into
 | |
|  * @dst_offset: The offset in the page to decrypt into
 | |
|  * @src_page: The page to decrypt from
 | |
|  * @src_offset: The offset in the page to decrypt from
 | |
|  * @size: The number of bytes to decrypt
 | |
|  * @iv: The initialization vector to use for the decryption
 | |
|  *
 | |
|  * Returns the number of bytes decrypted
 | |
|  */
 | |
| static int
 | |
| ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			     struct page *dst_page, int dst_offset,
 | |
| 			     struct page *src_page, int src_offset, int size,
 | |
| 			     unsigned char *iv)
 | |
| {
 | |
| 	struct scatterlist src_sg, dst_sg;
 | |
| 
 | |
| 	sg_init_table(&src_sg, 1);
 | |
| 	sg_set_page(&src_sg, src_page, size, src_offset);
 | |
| 
 | |
| 	sg_init_table(&dst_sg, 1);
 | |
| 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
 | |
| 
 | |
| 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
 | |
| }
 | |
| 
 | |
| #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_init_crypt_ctx
 | |
|  * @crypt_stat: Uninitilized crypt stats structure
 | |
|  *
 | |
|  * Initialize the crypto context.
 | |
|  *
 | |
|  * TODO: Performance: Keep a cache of initialized cipher contexts;
 | |
|  * only init if needed
 | |
|  */
 | |
| int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	char *full_alg_name;
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	if (!crypt_stat->cipher) {
 | |
| 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ecryptfs_printk(KERN_DEBUG,
 | |
| 			"Initializing cipher [%s]; strlen = [%d]; "
 | |
| 			"key_size_bits = [%d]\n",
 | |
| 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 | |
| 			crypt_stat->key_size << 3);
 | |
| 	if (crypt_stat->tfm) {
 | |
| 		rc = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	mutex_lock(&crypt_stat->cs_tfm_mutex);
 | |
| 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 | |
| 						    crypt_stat->cipher, "cbc");
 | |
| 	if (rc)
 | |
| 		goto out_unlock;
 | |
| 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
 | |
| 						 CRYPTO_ALG_ASYNC);
 | |
| 	kfree(full_alg_name);
 | |
| 	if (IS_ERR(crypt_stat->tfm)) {
 | |
| 		rc = PTR_ERR(crypt_stat->tfm);
 | |
| 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 | |
| 				"Error initializing cipher [%s]\n",
 | |
| 				crypt_stat->cipher);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 | |
| 	rc = 0;
 | |
| out_unlock:
 | |
| 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	int extent_size_tmp;
 | |
| 
 | |
| 	crypt_stat->extent_mask = 0xFFFFFFFF;
 | |
| 	crypt_stat->extent_shift = 0;
 | |
| 	if (crypt_stat->extent_size == 0)
 | |
| 		return;
 | |
| 	extent_size_tmp = crypt_stat->extent_size;
 | |
| 	while ((extent_size_tmp & 0x01) == 0) {
 | |
| 		extent_size_tmp >>= 1;
 | |
| 		crypt_stat->extent_mask <<= 1;
 | |
| 		crypt_stat->extent_shift++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	/* Default values; may be overwritten as we are parsing the
 | |
| 	 * packets. */
 | |
| 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 | |
| 	set_extent_mask_and_shift(crypt_stat);
 | |
| 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 | |
| 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 | |
| 		crypt_stat->num_header_bytes_at_front = 0;
 | |
| 	else {
 | |
| 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 | |
| 			crypt_stat->num_header_bytes_at_front =
 | |
| 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 | |
| 		else
 | |
| 			crypt_stat->num_header_bytes_at_front =	PAGE_CACHE_SIZE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_compute_root_iv
 | |
|  * @crypt_stats
 | |
|  *
 | |
|  * On error, sets the root IV to all 0's.
 | |
|  */
 | |
| int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	char dst[MD5_DIGEST_SIZE];
 | |
| 
 | |
| 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 | |
| 	BUG_ON(crypt_stat->iv_bytes <= 0);
 | |
| 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 | |
| 		rc = -EINVAL;
 | |
| 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 | |
| 				"cannot generate root IV\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 | |
| 				    crypt_stat->key_size);
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 | |
| 				"MD5 while generating root IV\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 | |
| out:
 | |
| 	if (rc) {
 | |
| 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 | |
| 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 | |
| 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 | |
| 	ecryptfs_compute_root_iv(crypt_stat);
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 | |
| 		ecryptfs_dump_hex(crypt_stat->key,
 | |
| 				  crypt_stat->key_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_copy_mount_wide_flags_to_inode_flags
 | |
|  * @crypt_stat: The inode's cryptographic context
 | |
|  * @mount_crypt_stat: The mount point's cryptographic context
 | |
|  *
 | |
|  * This function propagates the mount-wide flags to individual inode
 | |
|  * flags.
 | |
|  */
 | |
| static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | |
| {
 | |
| 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 | |
| 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 | |
| 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 | |
| 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 | |
| }
 | |
| 
 | |
| static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | |
| {
 | |
| 	struct ecryptfs_global_auth_tok *global_auth_tok;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 | |
| 	list_for_each_entry(global_auth_tok,
 | |
| 			    &mount_crypt_stat->global_auth_tok_list,
 | |
| 			    mount_crypt_stat_list) {
 | |
| 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 | |
| 		if (rc) {
 | |
| 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 | |
| 			mutex_unlock(
 | |
| 				&mount_crypt_stat->global_auth_tok_list_mutex);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_set_default_crypt_stat_vals
 | |
|  * @crypt_stat: The inode's cryptographic context
 | |
|  * @mount_crypt_stat: The mount point's cryptographic context
 | |
|  *
 | |
|  * Default values in the event that policy does not override them.
 | |
|  */
 | |
| static void ecryptfs_set_default_crypt_stat_vals(
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | |
| {
 | |
| 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 | |
| 						      mount_crypt_stat);
 | |
| 	ecryptfs_set_default_sizes(crypt_stat);
 | |
| 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 | |
| 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 | |
| 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 | |
| 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 | |
| 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_new_file_context
 | |
|  * @ecryptfs_dentry: The eCryptfs dentry
 | |
|  *
 | |
|  * If the crypto context for the file has not yet been established,
 | |
|  * this is where we do that.  Establishing a new crypto context
 | |
|  * involves the following decisions:
 | |
|  *  - What cipher to use?
 | |
|  *  - What set of authentication tokens to use?
 | |
|  * Here we just worry about getting enough information into the
 | |
|  * authentication tokens so that we know that they are available.
 | |
|  * We associate the available authentication tokens with the new file
 | |
|  * via the set of signatures in the crypt_stat struct.  Later, when
 | |
|  * the headers are actually written out, we may again defer to
 | |
|  * userspace to perform the encryption of the session key; for the
 | |
|  * foreseeable future, this will be the case with public key packets.
 | |
|  *
 | |
|  * Returns zero on success; non-zero otherwise
 | |
|  */
 | |
| int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
 | |
| {
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat =
 | |
| 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
 | |
| 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 | |
| 	    &ecryptfs_superblock_to_private(
 | |
| 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
 | |
| 	int cipher_name_len;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 | |
| 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 | |
| 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 | |
| 						      mount_crypt_stat);
 | |
| 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 | |
| 							 mount_crypt_stat);
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 | |
| 		       "to the inode key sigs; rc = [%d]\n", rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	cipher_name_len =
 | |
| 		strlen(mount_crypt_stat->global_default_cipher_name);
 | |
| 	memcpy(crypt_stat->cipher,
 | |
| 	       mount_crypt_stat->global_default_cipher_name,
 | |
| 	       cipher_name_len);
 | |
| 	crypt_stat->cipher[cipher_name_len] = '\0';
 | |
| 	crypt_stat->key_size =
 | |
| 		mount_crypt_stat->global_default_cipher_key_size;
 | |
| 	ecryptfs_generate_new_key(crypt_stat);
 | |
| 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
 | |
| 	if (rc)
 | |
| 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 | |
| 				"context for cipher [%s]: rc = [%d]\n",
 | |
| 				crypt_stat->cipher, rc);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * contains_ecryptfs_marker - check for the ecryptfs marker
 | |
|  * @data: The data block in which to check
 | |
|  *
 | |
|  * Returns one if marker found; zero if not found
 | |
|  */
 | |
| static int contains_ecryptfs_marker(char *data)
 | |
| {
 | |
| 	u32 m_1, m_2;
 | |
| 
 | |
| 	m_1 = get_unaligned_be32(data);
 | |
| 	m_2 = get_unaligned_be32(data + 4);
 | |
| 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 | |
| 		return 1;
 | |
| 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 | |
| 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 | |
| 			MAGIC_ECRYPTFS_MARKER);
 | |
| 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 | |
| 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct ecryptfs_flag_map_elem {
 | |
| 	u32 file_flag;
 | |
| 	u32 local_flag;
 | |
| };
 | |
| 
 | |
| /* Add support for additional flags by adding elements here. */
 | |
| static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 | |
| 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
 | |
| 	{0x00000002, ECRYPTFS_ENCRYPTED},
 | |
| 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR}
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_process_flags
 | |
|  * @crypt_stat: The cryptographic context
 | |
|  * @page_virt: Source data to be parsed
 | |
|  * @bytes_read: Updated with the number of bytes read
 | |
|  *
 | |
|  * Returns zero on success; non-zero if the flag set is invalid
 | |
|  */
 | |
| static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				  char *page_virt, int *bytes_read)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	int i;
 | |
| 	u32 flags;
 | |
| 
 | |
| 	flags = get_unaligned_be32(page_virt);
 | |
| 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 | |
| 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
 | |
| 		if (flags & ecryptfs_flag_map[i].file_flag) {
 | |
| 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
 | |
| 		} else
 | |
| 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
 | |
| 	/* Version is in top 8 bits of the 32-bit flag vector */
 | |
| 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
 | |
| 	(*bytes_read) = 4;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_ecryptfs_marker
 | |
|  * @page_virt: The pointer to in a page to begin writing the marker
 | |
|  * @written: Number of bytes written
 | |
|  *
 | |
|  * Marker = 0x3c81b7f5
 | |
|  */
 | |
| static void write_ecryptfs_marker(char *page_virt, size_t *written)
 | |
| {
 | |
| 	u32 m_1, m_2;
 | |
| 
 | |
| 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 | |
| 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 | |
| 	put_unaligned_be32(m_1, page_virt);
 | |
| 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
 | |
| 	put_unaligned_be32(m_2, page_virt);
 | |
| 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 | |
| }
 | |
| 
 | |
| static void
 | |
| write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 		     size_t *written)
 | |
| {
 | |
| 	u32 flags = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 | |
| 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
 | |
| 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
 | |
| 			flags |= ecryptfs_flag_map[i].file_flag;
 | |
| 	/* Version is in top 8 bits of the 32-bit flag vector */
 | |
| 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 | |
| 	put_unaligned_be32(flags, page_virt);
 | |
| 	(*written) = 4;
 | |
| }
 | |
| 
 | |
| struct ecryptfs_cipher_code_str_map_elem {
 | |
| 	char cipher_str[16];
 | |
| 	u8 cipher_code;
 | |
| };
 | |
| 
 | |
| /* Add support for additional ciphers by adding elements here. The
 | |
|  * cipher_code is whatever OpenPGP applicatoins use to identify the
 | |
|  * ciphers. List in order of probability. */
 | |
| static struct ecryptfs_cipher_code_str_map_elem
 | |
| ecryptfs_cipher_code_str_map[] = {
 | |
| 	{"aes",RFC2440_CIPHER_AES_128 },
 | |
| 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
 | |
| 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
 | |
| 	{"cast5", RFC2440_CIPHER_CAST_5},
 | |
| 	{"twofish", RFC2440_CIPHER_TWOFISH},
 | |
| 	{"cast6", RFC2440_CIPHER_CAST_6},
 | |
| 	{"aes", RFC2440_CIPHER_AES_192},
 | |
| 	{"aes", RFC2440_CIPHER_AES_256}
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_code_for_cipher_string
 | |
|  * @crypt_stat: The cryptographic context
 | |
|  *
 | |
|  * Returns zero on no match, or the cipher code on match
 | |
|  */
 | |
| u8 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	int i;
 | |
| 	u8 code = 0;
 | |
| 	struct ecryptfs_cipher_code_str_map_elem *map =
 | |
| 		ecryptfs_cipher_code_str_map;
 | |
| 
 | |
| 	if (strcmp(crypt_stat->cipher, "aes") == 0) {
 | |
| 		switch (crypt_stat->key_size) {
 | |
| 		case 16:
 | |
| 			code = RFC2440_CIPHER_AES_128;
 | |
| 			break;
 | |
| 		case 24:
 | |
| 			code = RFC2440_CIPHER_AES_192;
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			code = RFC2440_CIPHER_AES_256;
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 | |
| 			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
 | |
| 				code = map[i].cipher_code;
 | |
| 				break;
 | |
| 			}
 | |
| 	}
 | |
| 	return code;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_cipher_code_to_string
 | |
|  * @str: Destination to write out the cipher name
 | |
|  * @cipher_code: The code to convert to cipher name string
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  */
 | |
| int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	str[0] = '\0';
 | |
| 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 | |
| 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
 | |
| 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
 | |
| 	if (str[0] == '\0') {
 | |
| 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
 | |
| 				"[%d]\n", cipher_code);
 | |
| 		rc = -EINVAL;
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int ecryptfs_read_and_validate_header_region(char *data,
 | |
| 					     struct inode *ecryptfs_inode)
 | |
| {
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat =
 | |
| 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
 | |
| 				 ecryptfs_inode);
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
 | |
| 		       __func__, rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
 | |
| 		rc = -EINVAL;
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void
 | |
| ecryptfs_write_header_metadata(char *virt,
 | |
| 			       struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			       size_t *written)
 | |
| {
 | |
| 	u32 header_extent_size;
 | |
| 	u16 num_header_extents_at_front;
 | |
| 
 | |
| 	header_extent_size = (u32)crypt_stat->extent_size;
 | |
| 	num_header_extents_at_front =
 | |
| 		(u16)(crypt_stat->num_header_bytes_at_front
 | |
| 		      / crypt_stat->extent_size);
 | |
| 	put_unaligned_be32(header_extent_size, virt);
 | |
| 	virt += 4;
 | |
| 	put_unaligned_be16(num_header_extents_at_front, virt);
 | |
| 	(*written) = 6;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *ecryptfs_header_cache_1;
 | |
| struct kmem_cache *ecryptfs_header_cache_2;
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_write_headers_virt
 | |
|  * @page_virt: The virtual address to write the headers to
 | |
|  * @max: The size of memory allocated at page_virt
 | |
|  * @size: Set to the number of bytes written by this function
 | |
|  * @crypt_stat: The cryptographic context
 | |
|  * @ecryptfs_dentry: The eCryptfs dentry
 | |
|  *
 | |
|  * Format version: 1
 | |
|  *
 | |
|  *   Header Extent:
 | |
|  *     Octets 0-7:        Unencrypted file size (big-endian)
 | |
|  *     Octets 8-15:       eCryptfs special marker
 | |
|  *     Octets 16-19:      Flags
 | |
|  *      Octet 16:         File format version number (between 0 and 255)
 | |
|  *      Octets 17-18:     Reserved
 | |
|  *      Octet 19:         Bit 1 (lsb): Reserved
 | |
|  *                        Bit 2: Encrypted?
 | |
|  *                        Bits 3-8: Reserved
 | |
|  *     Octets 20-23:      Header extent size (big-endian)
 | |
|  *     Octets 24-25:      Number of header extents at front of file
 | |
|  *                        (big-endian)
 | |
|  *     Octet  26:         Begin RFC 2440 authentication token packet set
 | |
|  *   Data Extent 0:
 | |
|  *     Lower data (CBC encrypted)
 | |
|  *   Data Extent 1:
 | |
|  *     Lower data (CBC encrypted)
 | |
|  *   ...
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  */
 | |
| static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
 | |
| 				       size_t *size,
 | |
| 				       struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				       struct dentry *ecryptfs_dentry)
 | |
| {
 | |
| 	int rc;
 | |
| 	size_t written;
 | |
| 	size_t offset;
 | |
| 
 | |
| 	offset = ECRYPTFS_FILE_SIZE_BYTES;
 | |
| 	write_ecryptfs_marker((page_virt + offset), &written);
 | |
| 	offset += written;
 | |
| 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
 | |
| 	offset += written;
 | |
| 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
 | |
| 				       &written);
 | |
| 	offset += written;
 | |
| 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
 | |
| 					      ecryptfs_dentry, &written,
 | |
| 					      max - offset);
 | |
| 	if (rc)
 | |
| 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
 | |
| 				"set; rc = [%d]\n", rc);
 | |
| 	if (size) {
 | |
| 		offset += written;
 | |
| 		*size = offset;
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				    struct dentry *ecryptfs_dentry,
 | |
| 				    char *virt)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
 | |
| 				  0, crypt_stat->num_header_bytes_at_front);
 | |
| 	if (rc)
 | |
| 		printk(KERN_ERR "%s: Error attempting to write header "
 | |
| 		       "information to lower file; rc = [%d]\n", __func__,
 | |
| 		       rc);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
 | |
| 				 struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				 char *page_virt, size_t size)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
 | |
| 			       size, 0);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_write_metadata
 | |
|  * @ecryptfs_dentry: The eCryptfs dentry
 | |
|  *
 | |
|  * Write the file headers out.  This will likely involve a userspace
 | |
|  * callout, in which the session key is encrypted with one or more
 | |
|  * public keys and/or the passphrase necessary to do the encryption is
 | |
|  * retrieved via a prompt.  Exactly what happens at this point should
 | |
|  * be policy-dependent.
 | |
|  *
 | |
|  * Returns zero on success; non-zero on error
 | |
|  */
 | |
| int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
 | |
| {
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat =
 | |
| 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
 | |
| 	char *virt;
 | |
| 	size_t size = 0;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
 | |
| 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 | |
| 			printk(KERN_ERR "Key is invalid; bailing out\n");
 | |
| 			rc = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
 | |
| 		       __func__);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* Released in this function */
 | |
| 	virt = (char *)get_zeroed_page(GFP_KERNEL);
 | |
| 	if (!virt) {
 | |
| 		printk(KERN_ERR "%s: Out of memory\n", __func__);
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = ecryptfs_write_headers_virt(virt, PAGE_CACHE_SIZE, &size,
 | |
| 					 crypt_stat, ecryptfs_dentry);
 | |
| 	if (unlikely(rc)) {
 | |
| 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
 | |
| 		       __func__, rc);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 | |
| 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
 | |
| 						      crypt_stat, virt, size);
 | |
| 	else
 | |
| 		rc = ecryptfs_write_metadata_to_contents(crypt_stat,
 | |
| 							 ecryptfs_dentry, virt);
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
 | |
| 		       "rc = [%d]\n", __func__, rc);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| out_free:
 | |
| 	free_page((unsigned long)virt);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
 | |
| #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
 | |
| static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				 char *virt, int *bytes_read,
 | |
| 				 int validate_header_size)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	u32 header_extent_size;
 | |
| 	u16 num_header_extents_at_front;
 | |
| 
 | |
| 	header_extent_size = get_unaligned_be32(virt);
 | |
| 	virt += sizeof(__be32);
 | |
| 	num_header_extents_at_front = get_unaligned_be16(virt);
 | |
| 	crypt_stat->num_header_bytes_at_front =
 | |
| 		(((size_t)num_header_extents_at_front
 | |
| 		  * (size_t)header_extent_size));
 | |
| 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
 | |
| 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
 | |
| 	    && (crypt_stat->num_header_bytes_at_front
 | |
| 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
 | |
| 		rc = -EINVAL;
 | |
| 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
 | |
| 		       crypt_stat->num_header_bytes_at_front);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_default_header_data
 | |
|  * @crypt_stat: The cryptographic context
 | |
|  *
 | |
|  * For version 0 file format; this function is only for backwards
 | |
|  * compatibility for files created with the prior versions of
 | |
|  * eCryptfs.
 | |
|  */
 | |
| static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	crypt_stat->num_header_bytes_at_front =
 | |
| 		ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_read_headers_virt
 | |
|  * @page_virt: The virtual address into which to read the headers
 | |
|  * @crypt_stat: The cryptographic context
 | |
|  * @ecryptfs_dentry: The eCryptfs dentry
 | |
|  * @validate_header_size: Whether to validate the header size while reading
 | |
|  *
 | |
|  * Read/parse the header data. The header format is detailed in the
 | |
|  * comment block for the ecryptfs_write_headers_virt() function.
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  */
 | |
| static int ecryptfs_read_headers_virt(char *page_virt,
 | |
| 				      struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				      struct dentry *ecryptfs_dentry,
 | |
| 				      int validate_header_size)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	int offset;
 | |
| 	int bytes_read;
 | |
| 
 | |
| 	ecryptfs_set_default_sizes(crypt_stat);
 | |
| 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
 | |
| 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
 | |
| 	offset = ECRYPTFS_FILE_SIZE_BYTES;
 | |
| 	rc = contains_ecryptfs_marker(page_virt + offset);
 | |
| 	if (rc == 0) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 | |
| 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
 | |
| 				    &bytes_read);
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
 | |
| 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
 | |
| 				"file version [%d] is supported by this "
 | |
| 				"version of eCryptfs\n",
 | |
| 				crypt_stat->file_version,
 | |
| 				ECRYPTFS_SUPPORTED_FILE_VERSION);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	offset += bytes_read;
 | |
| 	if (crypt_stat->file_version >= 1) {
 | |
| 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
 | |
| 					   &bytes_read, validate_header_size);
 | |
| 		if (rc) {
 | |
| 			ecryptfs_printk(KERN_WARNING, "Error reading header "
 | |
| 					"metadata; rc = [%d]\n", rc);
 | |
| 		}
 | |
| 		offset += bytes_read;
 | |
| 	} else
 | |
| 		set_default_header_data(crypt_stat);
 | |
| 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
 | |
| 				       ecryptfs_dentry);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_read_xattr_region
 | |
|  * @page_virt: The vitual address into which to read the xattr data
 | |
|  * @ecryptfs_inode: The eCryptfs inode
 | |
|  *
 | |
|  * Attempts to read the crypto metadata from the extended attribute
 | |
|  * region of the lower file.
 | |
|  *
 | |
|  * Returns zero on success; non-zero on error
 | |
|  */
 | |
| int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
 | |
| {
 | |
| 	struct dentry *lower_dentry =
 | |
| 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
 | |
| 	ssize_t size;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
 | |
| 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
 | |
| 	if (size < 0) {
 | |
| 		if (unlikely(ecryptfs_verbosity > 0))
 | |
| 			printk(KERN_INFO "Error attempting to read the [%s] "
 | |
| 			       "xattr from the lower file; return value = "
 | |
| 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int ecryptfs_read_and_validate_xattr_region(char *page_virt,
 | |
| 					    struct dentry *ecryptfs_dentry)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
 | |
| 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
 | |
| 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
 | |
| 		rc = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_read_metadata
 | |
|  *
 | |
|  * Common entry point for reading file metadata. From here, we could
 | |
|  * retrieve the header information from the header region of the file,
 | |
|  * the xattr region of the file, or some other repostory that is
 | |
|  * stored separately from the file itself. The current implementation
 | |
|  * supports retrieving the metadata information from the file contents
 | |
|  * and from the xattr region.
 | |
|  *
 | |
|  * Returns zero if valid headers found and parsed; non-zero otherwise
 | |
|  */
 | |
| int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	char *page_virt = NULL;
 | |
| 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat =
 | |
| 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 | |
| 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 | |
| 		&ecryptfs_superblock_to_private(
 | |
| 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
 | |
| 
 | |
| 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 | |
| 						      mount_crypt_stat);
 | |
| 	/* Read the first page from the underlying file */
 | |
| 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
 | |
| 	if (!page_virt) {
 | |
| 		rc = -ENOMEM;
 | |
| 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
 | |
| 		       __func__);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
 | |
| 				 ecryptfs_inode);
 | |
| 	if (!rc)
 | |
| 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
 | |
| 						ecryptfs_dentry,
 | |
| 						ECRYPTFS_VALIDATE_HEADER_SIZE);
 | |
| 	if (rc) {
 | |
| 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
 | |
| 		if (rc) {
 | |
| 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
 | |
| 			       "file header region or xattr region\n");
 | |
| 			rc = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
 | |
| 						ecryptfs_dentry,
 | |
| 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
 | |
| 		if (rc) {
 | |
| 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
 | |
| 			       "file xattr region either\n");
 | |
| 			rc = -EINVAL;
 | |
| 		}
 | |
| 		if (crypt_stat->mount_crypt_stat->flags
 | |
| 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
 | |
| 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 | |
| 		} else {
 | |
| 			printk(KERN_WARNING "Attempt to access file with "
 | |
| 			       "crypto metadata only in the extended attribute "
 | |
| 			       "region, but eCryptfs was mounted without "
 | |
| 			       "xattr support enabled. eCryptfs will not treat "
 | |
| 			       "this like an encrypted file.\n");
 | |
| 			rc = -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	if (page_virt) {
 | |
| 		memset(page_virt, 0, PAGE_CACHE_SIZE);
 | |
| 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_encode_filename - converts a plaintext file name to cipher text
 | |
|  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 | |
|  * @name: The plaintext name
 | |
|  * @length: The length of the plaintext
 | |
|  * @encoded_name: The encypted name
 | |
|  *
 | |
|  * Encrypts and encodes a filename into something that constitutes a
 | |
|  * valid filename for a filesystem, with printable characters.
 | |
|  *
 | |
|  * We assume that we have a properly initialized crypto context,
 | |
|  * pointed to by crypt_stat->tfm.
 | |
|  *
 | |
|  * TODO: Implement filename decoding and decryption here, in place of
 | |
|  * memcpy. We are keeping the framework around for now to (1)
 | |
|  * facilitate testing of the components needed to implement filename
 | |
|  * encryption and (2) to provide a code base from which other
 | |
|  * developers in the community can easily implement this feature.
 | |
|  *
 | |
|  * Returns the length of encoded filename; negative if error
 | |
|  */
 | |
| int
 | |
| ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			 const char *name, int length, char **encoded_name)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
 | |
| 	if (!(*encoded_name)) {
 | |
| 		error = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* TODO: Filename encryption is a scheduled feature for a
 | |
| 	 * future version of eCryptfs. This function is here only for
 | |
| 	 * the purpose of providing a framework for other developers
 | |
| 	 * to easily implement filename encryption. Hint: Replace this
 | |
| 	 * memcpy() with a call to encrypt and encode the
 | |
| 	 * filename, the set the length accordingly. */
 | |
| 	memcpy((void *)(*encoded_name), (void *)name, length);
 | |
| 	(*encoded_name)[length] = '\0';
 | |
| 	error = length + 1;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_decode_filename - converts the cipher text name to plaintext
 | |
|  * @crypt_stat: The crypt_stat struct associated with the file
 | |
|  * @name: The filename in cipher text
 | |
|  * @length: The length of the cipher text name
 | |
|  * @decrypted_name: The plaintext name
 | |
|  *
 | |
|  * Decodes and decrypts the filename.
 | |
|  *
 | |
|  * We assume that we have a properly initialized crypto context,
 | |
|  * pointed to by crypt_stat->tfm.
 | |
|  *
 | |
|  * TODO: Implement filename decoding and decryption here, in place of
 | |
|  * memcpy. We are keeping the framework around for now to (1)
 | |
|  * facilitate testing of the components needed to implement filename
 | |
|  * encryption and (2) to provide a code base from which other
 | |
|  * developers in the community can easily implement this feature.
 | |
|  *
 | |
|  * Returns the length of decoded filename; negative if error
 | |
|  */
 | |
| int
 | |
| ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			 const char *name, int length, char **decrypted_name)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
 | |
| 	if (!(*decrypted_name)) {
 | |
| 		error = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* TODO: Filename encryption is a scheduled feature for a
 | |
| 	 * future version of eCryptfs. This function is here only for
 | |
| 	 * the purpose of providing a framework for other developers
 | |
| 	 * to easily implement filename encryption. Hint: Replace this
 | |
| 	 * memcpy() with a call to decode and decrypt the
 | |
| 	 * filename, the set the length accordingly. */
 | |
| 	memcpy((void *)(*decrypted_name), (void *)name, length);
 | |
| 	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
 | |
| 						 * in printing out the
 | |
| 						 * string in debug
 | |
| 						 * messages */
 | |
| 	error = length;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_process_key_cipher - Perform key cipher initialization.
 | |
|  * @key_tfm: Crypto context for key material, set by this function
 | |
|  * @cipher_name: Name of the cipher
 | |
|  * @key_size: Size of the key in bytes
 | |
|  *
 | |
|  * Returns zero on success. Any crypto_tfm structs allocated here
 | |
|  * should be released by other functions, such as on a superblock put
 | |
|  * event, regardless of whether this function succeeds for fails.
 | |
|  */
 | |
| static int
 | |
| ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
 | |
| 			    char *cipher_name, size_t *key_size)
 | |
| {
 | |
| 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
 | |
| 	char *full_alg_name;
 | |
| 	int rc;
 | |
| 
 | |
| 	*key_tfm = NULL;
 | |
| 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
 | |
| 		rc = -EINVAL;
 | |
| 		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
 | |
| 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
 | |
| 						    "ecb");
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
 | |
| 	kfree(full_alg_name);
 | |
| 	if (IS_ERR(*key_tfm)) {
 | |
| 		rc = PTR_ERR(*key_tfm);
 | |
| 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
 | |
| 		       "[%s]; rc = [%d]\n", cipher_name, rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 | |
| 	if (*key_size == 0) {
 | |
| 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
 | |
| 
 | |
| 		*key_size = alg->max_keysize;
 | |
| 	}
 | |
| 	get_random_bytes(dummy_key, *key_size);
 | |
| 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
 | |
| 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *ecryptfs_key_tfm_cache;
 | |
| static struct list_head key_tfm_list;
 | |
| struct mutex key_tfm_list_mutex;
 | |
| 
 | |
| int ecryptfs_init_crypto(void)
 | |
| {
 | |
| 	mutex_init(&key_tfm_list_mutex);
 | |
| 	INIT_LIST_HEAD(&key_tfm_list);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
 | |
|  *
 | |
|  * Called only at module unload time
 | |
|  */
 | |
| int ecryptfs_destroy_crypto(void)
 | |
| {
 | |
| 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
 | |
| 
 | |
| 	mutex_lock(&key_tfm_list_mutex);
 | |
| 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
 | |
| 				 key_tfm_list) {
 | |
| 		list_del(&key_tfm->key_tfm_list);
 | |
| 		if (key_tfm->key_tfm)
 | |
| 			crypto_free_blkcipher(key_tfm->key_tfm);
 | |
| 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
 | |
| 	}
 | |
| 	mutex_unlock(&key_tfm_list_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
 | |
| 			 size_t key_size)
 | |
| {
 | |
| 	struct ecryptfs_key_tfm *tmp_tfm;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
 | |
| 
 | |
| 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
 | |
| 	if (key_tfm != NULL)
 | |
| 		(*key_tfm) = tmp_tfm;
 | |
| 	if (!tmp_tfm) {
 | |
| 		rc = -ENOMEM;
 | |
| 		printk(KERN_ERR "Error attempting to allocate from "
 | |
| 		       "ecryptfs_key_tfm_cache\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	mutex_init(&tmp_tfm->key_tfm_mutex);
 | |
| 	strncpy(tmp_tfm->cipher_name, cipher_name,
 | |
| 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
 | |
| 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
 | |
| 	tmp_tfm->key_size = key_size;
 | |
| 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
 | |
| 					 tmp_tfm->cipher_name,
 | |
| 					 &tmp_tfm->key_size);
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR "Error attempting to initialize key TFM "
 | |
| 		       "cipher with name = [%s]; rc = [%d]\n",
 | |
| 		       tmp_tfm->cipher_name, rc);
 | |
| 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
 | |
| 		if (key_tfm != NULL)
 | |
| 			(*key_tfm) = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
 | |
|  * @cipher_name: the name of the cipher to search for
 | |
|  * @key_tfm: set to corresponding tfm if found
 | |
|  *
 | |
|  * Searches for cached key_tfm matching @cipher_name
 | |
|  * Must be called with &key_tfm_list_mutex held
 | |
|  * Returns 1 if found, with @key_tfm set
 | |
|  * Returns 0 if not found, with @key_tfm set to NULL
 | |
|  */
 | |
| int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
 | |
| {
 | |
| 	struct ecryptfs_key_tfm *tmp_key_tfm;
 | |
| 
 | |
| 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
 | |
| 
 | |
| 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
 | |
| 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
 | |
| 			if (key_tfm)
 | |
| 				(*key_tfm) = tmp_key_tfm;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (key_tfm)
 | |
| 		(*key_tfm) = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_get_tfm_and_mutex_for_cipher_name
 | |
|  *
 | |
|  * @tfm: set to cached tfm found, or new tfm created
 | |
|  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
 | |
|  * @cipher_name: the name of the cipher to search for and/or add
 | |
|  *
 | |
|  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
 | |
|  * Searches for cached item first, and creates new if not found.
 | |
|  * Returns 0 on success, non-zero if adding new cipher failed
 | |
|  */
 | |
| int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
 | |
| 					       struct mutex **tfm_mutex,
 | |
| 					       char *cipher_name)
 | |
| {
 | |
| 	struct ecryptfs_key_tfm *key_tfm;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	(*tfm) = NULL;
 | |
| 	(*tfm_mutex) = NULL;
 | |
| 
 | |
| 	mutex_lock(&key_tfm_list_mutex);
 | |
| 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
 | |
| 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
 | |
| 		if (rc) {
 | |
| 			printk(KERN_ERR "Error adding new key_tfm to list; "
 | |
| 					"rc = [%d]\n", rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	(*tfm) = key_tfm->key_tfm;
 | |
| 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
 | |
| out:
 | |
| 	mutex_unlock(&key_tfm_list_mutex);
 | |
| 	return rc;
 | |
| }
 |