mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-26 05:15:31 +00:00 
			
		
		
		
	 c061b18df0
			
		
	
	
		c061b18df0
		
	
	
	
	
		
			
			"foo = &function" is more commonly written "foo = function"
Done with coccinelle script:
// <smpl>
@r@
identifier f;
@@
f(...) { ... }
@@
identifier r.f;
@@
- &f
+ f
// </smpl>
drivers/net/tehuti.c used a function and struct with the
same name, the function was renamed.
Compile tested x86 only.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			3366 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3366 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
 | |
| /*
 | |
| 	Written/copyright 1999-2001 by Donald Becker.
 | |
| 	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
 | |
| 	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
 | |
| 	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
 | |
| 
 | |
| 	This software may be used and distributed according to the terms of
 | |
| 	the GNU General Public License (GPL), incorporated herein by reference.
 | |
| 	Drivers based on or derived from this code fall under the GPL and must
 | |
| 	retain the authorship, copyright and license notice.  This file is not
 | |
| 	a complete program and may only be used when the entire operating
 | |
| 	system is licensed under the GPL.  License for under other terms may be
 | |
| 	available.  Contact the original author for details.
 | |
| 
 | |
| 	The original author may be reached as becker@scyld.com, or at
 | |
| 	Scyld Computing Corporation
 | |
| 	410 Severn Ave., Suite 210
 | |
| 	Annapolis MD 21403
 | |
| 
 | |
| 	Support information and updates available at
 | |
| 	http://www.scyld.com/network/netsemi.html
 | |
| 	[link no longer provides useful info -jgarzik]
 | |
| 
 | |
| 
 | |
| 	TODO:
 | |
| 	* big endian support with CFG:BEM instead of cpu_to_le32
 | |
| */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/rtnetlink.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <asm/processor.h>	/* Processor type for cache alignment. */
 | |
| #include <asm/io.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| #define DRV_NAME	"natsemi"
 | |
| #define DRV_VERSION	"2.1"
 | |
| #define DRV_RELDATE	"Sept 11, 2006"
 | |
| 
 | |
| #define RX_OFFSET	2
 | |
| 
 | |
| /* Updated to recommendations in pci-skeleton v2.03. */
 | |
| 
 | |
| /* The user-configurable values.
 | |
|    These may be modified when a driver module is loaded.*/
 | |
| 
 | |
| #define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
 | |
| 				 NETIF_MSG_LINK		| \
 | |
| 				 NETIF_MSG_WOL		| \
 | |
| 				 NETIF_MSG_RX_ERR	| \
 | |
| 				 NETIF_MSG_TX_ERR)
 | |
| static int debug = -1;
 | |
| 
 | |
| static int mtu;
 | |
| 
 | |
| /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
 | |
|    This chip uses a 512 element hash table based on the Ethernet CRC.  */
 | |
| static const int multicast_filter_limit = 100;
 | |
| 
 | |
| /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
 | |
|    Setting to > 1518 effectively disables this feature. */
 | |
| static int rx_copybreak;
 | |
| 
 | |
| static int dspcfg_workaround = 1;
 | |
| 
 | |
| /* Used to pass the media type, etc.
 | |
|    Both 'options[]' and 'full_duplex[]' should exist for driver
 | |
|    interoperability.
 | |
|    The media type is usually passed in 'options[]'.
 | |
| */
 | |
| #define MAX_UNITS 8		/* More are supported, limit only on options */
 | |
| static int options[MAX_UNITS];
 | |
| static int full_duplex[MAX_UNITS];
 | |
| 
 | |
| /* Operational parameters that are set at compile time. */
 | |
| 
 | |
| /* Keep the ring sizes a power of two for compile efficiency.
 | |
|    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
 | |
|    Making the Tx ring too large decreases the effectiveness of channel
 | |
|    bonding and packet priority.
 | |
|    There are no ill effects from too-large receive rings. */
 | |
| #define TX_RING_SIZE	16
 | |
| #define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
 | |
| #define RX_RING_SIZE	32
 | |
| 
 | |
| /* Operational parameters that usually are not changed. */
 | |
| /* Time in jiffies before concluding the transmitter is hung. */
 | |
| #define TX_TIMEOUT  (2*HZ)
 | |
| 
 | |
| #define NATSEMI_HW_TIMEOUT	400
 | |
| #define NATSEMI_TIMER_FREQ	5*HZ
 | |
| #define NATSEMI_PG0_NREGS	64
 | |
| #define NATSEMI_RFDR_NREGS	8
 | |
| #define NATSEMI_PG1_NREGS	4
 | |
| #define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
 | |
| 				 NATSEMI_PG1_NREGS)
 | |
| #define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
 | |
| #define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
 | |
| 
 | |
| /* Buffer sizes:
 | |
|  * The nic writes 32-bit values, even if the upper bytes of
 | |
|  * a 32-bit value are beyond the end of the buffer.
 | |
|  */
 | |
| #define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
 | |
| #define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
 | |
| #define NATSEMI_LONGPKT		1518	/* limit for normal packets */
 | |
| #define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
 | |
| 
 | |
| /* These identify the driver base version and may not be removed. */
 | |
| static const char version[] __devinitconst =
 | |
|   KERN_INFO DRV_NAME " dp8381x driver, version "
 | |
|       DRV_VERSION ", " DRV_RELDATE "\n"
 | |
|   "  originally by Donald Becker <becker@scyld.com>\n"
 | |
|   "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
 | |
| 
 | |
| MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 | |
| MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| module_param(mtu, int, 0);
 | |
| module_param(debug, int, 0);
 | |
| module_param(rx_copybreak, int, 0);
 | |
| module_param(dspcfg_workaround, int, 1);
 | |
| module_param_array(options, int, NULL, 0);
 | |
| module_param_array(full_duplex, int, NULL, 0);
 | |
| MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
 | |
| MODULE_PARM_DESC(debug, "DP8381x default debug level");
 | |
| MODULE_PARM_DESC(rx_copybreak,
 | |
| 	"DP8381x copy breakpoint for copy-only-tiny-frames");
 | |
| MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
 | |
| MODULE_PARM_DESC(options,
 | |
| 	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
 | |
| MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
 | |
| 
 | |
| /*
 | |
| 				Theory of Operation
 | |
| 
 | |
| I. Board Compatibility
 | |
| 
 | |
| This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
 | |
| It also works with other chips in in the DP83810 series.
 | |
| 
 | |
| II. Board-specific settings
 | |
| 
 | |
| This driver requires the PCI interrupt line to be valid.
 | |
| It honors the EEPROM-set values.
 | |
| 
 | |
| III. Driver operation
 | |
| 
 | |
| IIIa. Ring buffers
 | |
| 
 | |
| This driver uses two statically allocated fixed-size descriptor lists
 | |
| formed into rings by a branch from the final descriptor to the beginning of
 | |
| the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 | |
| The NatSemi design uses a 'next descriptor' pointer that the driver forms
 | |
| into a list.
 | |
| 
 | |
| IIIb/c. Transmit/Receive Structure
 | |
| 
 | |
| This driver uses a zero-copy receive and transmit scheme.
 | |
| The driver allocates full frame size skbuffs for the Rx ring buffers at
 | |
| open() time and passes the skb->data field to the chip as receive data
 | |
| buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 | |
| a fresh skbuff is allocated and the frame is copied to the new skbuff.
 | |
| When the incoming frame is larger, the skbuff is passed directly up the
 | |
| protocol stack.  Buffers consumed this way are replaced by newly allocated
 | |
| skbuffs in a later phase of receives.
 | |
| 
 | |
| The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 | |
| using a full-sized skbuff for small frames vs. the copying costs of larger
 | |
| frames.  New boards are typically used in generously configured machines
 | |
| and the underfilled buffers have negligible impact compared to the benefit of
 | |
| a single allocation size, so the default value of zero results in never
 | |
| copying packets.  When copying is done, the cost is usually mitigated by using
 | |
| a combined copy/checksum routine.  Copying also preloads the cache, which is
 | |
| most useful with small frames.
 | |
| 
 | |
| A subtle aspect of the operation is that unaligned buffers are not permitted
 | |
| by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
 | |
| longword aligned for further processing.  On copies frames are put into the
 | |
| skbuff at an offset of "+2", 16-byte aligning the IP header.
 | |
| 
 | |
| IIId. Synchronization
 | |
| 
 | |
| Most operations are synchronized on the np->lock irq spinlock, except the
 | |
| recieve and transmit paths which are synchronised using a combination of
 | |
| hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
 | |
| 
 | |
| IVb. References
 | |
| 
 | |
| http://www.scyld.com/expert/100mbps.html
 | |
| http://www.scyld.com/expert/NWay.html
 | |
| Datasheet is available from:
 | |
| http://www.national.com/pf/DP/DP83815.html
 | |
| 
 | |
| IVc. Errata
 | |
| 
 | |
| None characterised.
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Support for fibre connections on Am79C874:
 | |
|  * This phy needs a special setup when connected to a fibre cable.
 | |
|  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 | |
|  */
 | |
| #define PHYID_AM79C874	0x0022561b
 | |
| 
 | |
| enum {
 | |
| 	MII_MCTRL	= 0x15,		/* mode control register */
 | |
| 	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
 | |
| 	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
 | |
| };
 | |
| 
 | |
| /* array of board data directly indexed by pci_tbl[x].driver_data */
 | |
| static struct {
 | |
| 	const char *name;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int eeprom_size;
 | |
| } natsemi_pci_info[] __devinitdata = {
 | |
| 	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
 | |
| 	{ "NatSemi DP8381[56]", 0, 24 },
 | |
| };
 | |
| 
 | |
| static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
 | |
| 	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
 | |
| 	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 | |
| 	{ }	/* terminate list */
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
 | |
| 
 | |
| /* Offsets to the device registers.
 | |
|    Unlike software-only systems, device drivers interact with complex hardware.
 | |
|    It's not useful to define symbolic names for every register bit in the
 | |
|    device.
 | |
| */
 | |
| enum register_offsets {
 | |
| 	ChipCmd			= 0x00,
 | |
| 	ChipConfig		= 0x04,
 | |
| 	EECtrl			= 0x08,
 | |
| 	PCIBusCfg		= 0x0C,
 | |
| 	IntrStatus		= 0x10,
 | |
| 	IntrMask		= 0x14,
 | |
| 	IntrEnable		= 0x18,
 | |
| 	IntrHoldoff		= 0x1C, /* DP83816 only */
 | |
| 	TxRingPtr		= 0x20,
 | |
| 	TxConfig		= 0x24,
 | |
| 	RxRingPtr		= 0x30,
 | |
| 	RxConfig		= 0x34,
 | |
| 	ClkRun			= 0x3C,
 | |
| 	WOLCmd			= 0x40,
 | |
| 	PauseCmd		= 0x44,
 | |
| 	RxFilterAddr		= 0x48,
 | |
| 	RxFilterData		= 0x4C,
 | |
| 	BootRomAddr		= 0x50,
 | |
| 	BootRomData		= 0x54,
 | |
| 	SiliconRev		= 0x58,
 | |
| 	StatsCtrl		= 0x5C,
 | |
| 	StatsData		= 0x60,
 | |
| 	RxPktErrs		= 0x60,
 | |
| 	RxMissed		= 0x68,
 | |
| 	RxCRCErrs		= 0x64,
 | |
| 	BasicControl		= 0x80,
 | |
| 	BasicStatus		= 0x84,
 | |
| 	AnegAdv			= 0x90,
 | |
| 	AnegPeer		= 0x94,
 | |
| 	PhyStatus		= 0xC0,
 | |
| 	MIntrCtrl		= 0xC4,
 | |
| 	MIntrStatus		= 0xC8,
 | |
| 	PhyCtrl			= 0xE4,
 | |
| 
 | |
| 	/* These are from the spec, around page 78... on a separate table.
 | |
| 	 * The meaning of these registers depend on the value of PGSEL. */
 | |
| 	PGSEL			= 0xCC,
 | |
| 	PMDCSR			= 0xE4,
 | |
| 	TSTDAT			= 0xFC,
 | |
| 	DSPCFG			= 0xF4,
 | |
| 	SDCFG			= 0xF8
 | |
| };
 | |
| /* the values for the 'magic' registers above (PGSEL=1) */
 | |
| #define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
 | |
| #define TSTDAT_VAL	0x0
 | |
| #define DSPCFG_VAL	0x5040
 | |
| #define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
 | |
| #define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
 | |
| #define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
 | |
| #define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
 | |
| 
 | |
| /* misc PCI space registers */
 | |
| enum pci_register_offsets {
 | |
| 	PCIPM			= 0x44,
 | |
| };
 | |
| 
 | |
| enum ChipCmd_bits {
 | |
| 	ChipReset		= 0x100,
 | |
| 	RxReset			= 0x20,
 | |
| 	TxReset			= 0x10,
 | |
| 	RxOff			= 0x08,
 | |
| 	RxOn			= 0x04,
 | |
| 	TxOff			= 0x02,
 | |
| 	TxOn			= 0x01,
 | |
| };
 | |
| 
 | |
| enum ChipConfig_bits {
 | |
| 	CfgPhyDis		= 0x200,
 | |
| 	CfgPhyRst		= 0x400,
 | |
| 	CfgExtPhy		= 0x1000,
 | |
| 	CfgAnegEnable		= 0x2000,
 | |
| 	CfgAneg100		= 0x4000,
 | |
| 	CfgAnegFull		= 0x8000,
 | |
| 	CfgAnegDone		= 0x8000000,
 | |
| 	CfgFullDuplex		= 0x20000000,
 | |
| 	CfgSpeed100		= 0x40000000,
 | |
| 	CfgLink			= 0x80000000,
 | |
| };
 | |
| 
 | |
| enum EECtrl_bits {
 | |
| 	EE_ShiftClk		= 0x04,
 | |
| 	EE_DataIn		= 0x01,
 | |
| 	EE_ChipSelect		= 0x08,
 | |
| 	EE_DataOut		= 0x02,
 | |
| 	MII_Data 		= 0x10,
 | |
| 	MII_Write		= 0x20,
 | |
| 	MII_ShiftClk		= 0x40,
 | |
| };
 | |
| 
 | |
| enum PCIBusCfg_bits {
 | |
| 	EepromReload		= 0x4,
 | |
| };
 | |
| 
 | |
| /* Bits in the interrupt status/mask registers. */
 | |
| enum IntrStatus_bits {
 | |
| 	IntrRxDone		= 0x0001,
 | |
| 	IntrRxIntr		= 0x0002,
 | |
| 	IntrRxErr		= 0x0004,
 | |
| 	IntrRxEarly		= 0x0008,
 | |
| 	IntrRxIdle		= 0x0010,
 | |
| 	IntrRxOverrun		= 0x0020,
 | |
| 	IntrTxDone		= 0x0040,
 | |
| 	IntrTxIntr		= 0x0080,
 | |
| 	IntrTxErr		= 0x0100,
 | |
| 	IntrTxIdle		= 0x0200,
 | |
| 	IntrTxUnderrun		= 0x0400,
 | |
| 	StatsMax		= 0x0800,
 | |
| 	SWInt			= 0x1000,
 | |
| 	WOLPkt			= 0x2000,
 | |
| 	LinkChange		= 0x4000,
 | |
| 	IntrHighBits		= 0x8000,
 | |
| 	RxStatusFIFOOver	= 0x10000,
 | |
| 	IntrPCIErr		= 0xf00000,
 | |
| 	RxResetDone		= 0x1000000,
 | |
| 	TxResetDone		= 0x2000000,
 | |
| 	IntrAbnormalSummary	= 0xCD20,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Default Interrupts:
 | |
|  * Rx OK, Rx Packet Error, Rx Overrun,
 | |
|  * Tx OK, Tx Packet Error, Tx Underrun,
 | |
|  * MIB Service, Phy Interrupt, High Bits,
 | |
|  * Rx Status FIFO overrun,
 | |
|  * Received Target Abort, Received Master Abort,
 | |
|  * Signalled System Error, Received Parity Error
 | |
|  */
 | |
| #define DEFAULT_INTR 0x00f1cd65
 | |
| 
 | |
| enum TxConfig_bits {
 | |
| 	TxDrthMask		= 0x3f,
 | |
| 	TxFlthMask		= 0x3f00,
 | |
| 	TxMxdmaMask		= 0x700000,
 | |
| 	TxMxdma_512		= 0x0,
 | |
| 	TxMxdma_4		= 0x100000,
 | |
| 	TxMxdma_8		= 0x200000,
 | |
| 	TxMxdma_16		= 0x300000,
 | |
| 	TxMxdma_32		= 0x400000,
 | |
| 	TxMxdma_64		= 0x500000,
 | |
| 	TxMxdma_128		= 0x600000,
 | |
| 	TxMxdma_256		= 0x700000,
 | |
| 	TxCollRetry		= 0x800000,
 | |
| 	TxAutoPad		= 0x10000000,
 | |
| 	TxMacLoop		= 0x20000000,
 | |
| 	TxHeartIgn		= 0x40000000,
 | |
| 	TxCarrierIgn		= 0x80000000
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Tx Configuration:
 | |
|  * - 256 byte DMA burst length
 | |
|  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 | |
|  * - 64 bytes initial drain threshold (i.e. begin actual transmission
 | |
|  *   when 64 byte are in the fifo)
 | |
|  * - on tx underruns, increase drain threshold by 64.
 | |
|  * - at most use a drain threshold of 1472 bytes: The sum of the fill
 | |
|  *   threshold and the drain threshold must be less than 2016 bytes.
 | |
|  *
 | |
|  */
 | |
| #define TX_FLTH_VAL		((512/32) << 8)
 | |
| #define TX_DRTH_VAL_START	(64/32)
 | |
| #define TX_DRTH_VAL_INC		2
 | |
| #define TX_DRTH_VAL_LIMIT	(1472/32)
 | |
| 
 | |
| enum RxConfig_bits {
 | |
| 	RxDrthMask		= 0x3e,
 | |
| 	RxMxdmaMask		= 0x700000,
 | |
| 	RxMxdma_512		= 0x0,
 | |
| 	RxMxdma_4		= 0x100000,
 | |
| 	RxMxdma_8		= 0x200000,
 | |
| 	RxMxdma_16		= 0x300000,
 | |
| 	RxMxdma_32		= 0x400000,
 | |
| 	RxMxdma_64		= 0x500000,
 | |
| 	RxMxdma_128		= 0x600000,
 | |
| 	RxMxdma_256		= 0x700000,
 | |
| 	RxAcceptLong		= 0x8000000,
 | |
| 	RxAcceptTx		= 0x10000000,
 | |
| 	RxAcceptRunt		= 0x40000000,
 | |
| 	RxAcceptErr		= 0x80000000
 | |
| };
 | |
| #define RX_DRTH_VAL		(128/8)
 | |
| 
 | |
| enum ClkRun_bits {
 | |
| 	PMEEnable		= 0x100,
 | |
| 	PMEStatus		= 0x8000,
 | |
| };
 | |
| 
 | |
| enum WolCmd_bits {
 | |
| 	WakePhy			= 0x1,
 | |
| 	WakeUnicast		= 0x2,
 | |
| 	WakeMulticast		= 0x4,
 | |
| 	WakeBroadcast		= 0x8,
 | |
| 	WakeArp			= 0x10,
 | |
| 	WakePMatch0		= 0x20,
 | |
| 	WakePMatch1		= 0x40,
 | |
| 	WakePMatch2		= 0x80,
 | |
| 	WakePMatch3		= 0x100,
 | |
| 	WakeMagic		= 0x200,
 | |
| 	WakeMagicSecure		= 0x400,
 | |
| 	SecureHack		= 0x100000,
 | |
| 	WokePhy			= 0x400000,
 | |
| 	WokeUnicast		= 0x800000,
 | |
| 	WokeMulticast		= 0x1000000,
 | |
| 	WokeBroadcast		= 0x2000000,
 | |
| 	WokeArp			= 0x4000000,
 | |
| 	WokePMatch0		= 0x8000000,
 | |
| 	WokePMatch1		= 0x10000000,
 | |
| 	WokePMatch2		= 0x20000000,
 | |
| 	WokePMatch3		= 0x40000000,
 | |
| 	WokeMagic		= 0x80000000,
 | |
| 	WakeOptsSummary		= 0x7ff
 | |
| };
 | |
| 
 | |
| enum RxFilterAddr_bits {
 | |
| 	RFCRAddressMask		= 0x3ff,
 | |
| 	AcceptMulticast		= 0x00200000,
 | |
| 	AcceptMyPhys		= 0x08000000,
 | |
| 	AcceptAllPhys		= 0x10000000,
 | |
| 	AcceptAllMulticast	= 0x20000000,
 | |
| 	AcceptBroadcast		= 0x40000000,
 | |
| 	RxFilterEnable		= 0x80000000
 | |
| };
 | |
| 
 | |
| enum StatsCtrl_bits {
 | |
| 	StatsWarn		= 0x1,
 | |
| 	StatsFreeze		= 0x2,
 | |
| 	StatsClear		= 0x4,
 | |
| 	StatsStrobe		= 0x8,
 | |
| };
 | |
| 
 | |
| enum MIntrCtrl_bits {
 | |
| 	MICRIntEn		= 0x2,
 | |
| };
 | |
| 
 | |
| enum PhyCtrl_bits {
 | |
| 	PhyAddrMask		= 0x1f,
 | |
| };
 | |
| 
 | |
| #define PHY_ADDR_NONE		32
 | |
| #define PHY_ADDR_INTERNAL	1
 | |
| 
 | |
| /* values we might find in the silicon revision register */
 | |
| #define SRR_DP83815_C	0x0302
 | |
| #define SRR_DP83815_D	0x0403
 | |
| #define SRR_DP83816_A4	0x0504
 | |
| #define SRR_DP83816_A5	0x0505
 | |
| 
 | |
| /* The Rx and Tx buffer descriptors. */
 | |
| /* Note that using only 32 bit fields simplifies conversion to big-endian
 | |
|    architectures. */
 | |
| struct netdev_desc {
 | |
| 	__le32 next_desc;
 | |
| 	__le32 cmd_status;
 | |
| 	__le32 addr;
 | |
| 	__le32 software_use;
 | |
| };
 | |
| 
 | |
| /* Bits in network_desc.status */
 | |
| enum desc_status_bits {
 | |
| 	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
 | |
| 	DescNoCRC=0x10000000, DescPktOK=0x08000000,
 | |
| 	DescSizeMask=0xfff,
 | |
| 
 | |
| 	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
 | |
| 	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
 | |
| 	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
 | |
| 	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
 | |
| 
 | |
| 	DescRxAbort=0x04000000, DescRxOver=0x02000000,
 | |
| 	DescRxDest=0x01800000, DescRxLong=0x00400000,
 | |
| 	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
 | |
| 	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
 | |
| 	DescRxLoop=0x00020000, DesRxColl=0x00010000,
 | |
| };
 | |
| 
 | |
| struct netdev_private {
 | |
| 	/* Descriptor rings first for alignment */
 | |
| 	dma_addr_t ring_dma;
 | |
| 	struct netdev_desc *rx_ring;
 | |
| 	struct netdev_desc *tx_ring;
 | |
| 	/* The addresses of receive-in-place skbuffs */
 | |
| 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
 | |
| 	dma_addr_t rx_dma[RX_RING_SIZE];
 | |
| 	/* address of a sent-in-place packet/buffer, for later free() */
 | |
| 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
 | |
| 	dma_addr_t tx_dma[TX_RING_SIZE];
 | |
| 	struct net_device *dev;
 | |
| 	struct napi_struct napi;
 | |
| 	/* Media monitoring timer */
 | |
| 	struct timer_list timer;
 | |
| 	/* Frequently used values: keep some adjacent for cache effect */
 | |
| 	struct pci_dev *pci_dev;
 | |
| 	struct netdev_desc *rx_head_desc;
 | |
| 	/* Producer/consumer ring indices */
 | |
| 	unsigned int cur_rx, dirty_rx;
 | |
| 	unsigned int cur_tx, dirty_tx;
 | |
| 	/* Based on MTU+slack. */
 | |
| 	unsigned int rx_buf_sz;
 | |
| 	int oom;
 | |
| 	/* Interrupt status */
 | |
| 	u32 intr_status;
 | |
| 	/* Do not touch the nic registers */
 | |
| 	int hands_off;
 | |
| 	/* Don't pay attention to the reported link state. */
 | |
| 	int ignore_phy;
 | |
| 	/* external phy that is used: only valid if dev->if_port != PORT_TP */
 | |
| 	int mii;
 | |
| 	int phy_addr_external;
 | |
| 	unsigned int full_duplex;
 | |
| 	/* Rx filter */
 | |
| 	u32 cur_rx_mode;
 | |
| 	u32 rx_filter[16];
 | |
| 	/* FIFO and PCI burst thresholds */
 | |
| 	u32 tx_config, rx_config;
 | |
| 	/* original contents of ClkRun register */
 | |
| 	u32 SavedClkRun;
 | |
| 	/* silicon revision */
 | |
| 	u32 srr;
 | |
| 	/* expected DSPCFG value */
 | |
| 	u16 dspcfg;
 | |
| 	int dspcfg_workaround;
 | |
| 	/* parms saved in ethtool format */
 | |
| 	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
 | |
| 	u8	duplex;		/* Duplex, half or full */
 | |
| 	u8	autoneg;	/* Autonegotiation enabled */
 | |
| 	/* MII transceiver section */
 | |
| 	u16 advertising;
 | |
| 	unsigned int iosize;
 | |
| 	spinlock_t lock;
 | |
| 	u32 msg_enable;
 | |
| 	/* EEPROM data */
 | |
| 	int eeprom_size;
 | |
| };
 | |
| 
 | |
| static void move_int_phy(struct net_device *dev, int addr);
 | |
| static int eeprom_read(void __iomem *ioaddr, int location);
 | |
| static int mdio_read(struct net_device *dev, int reg);
 | |
| static void mdio_write(struct net_device *dev, int reg, u16 data);
 | |
| static void init_phy_fixup(struct net_device *dev);
 | |
| static int miiport_read(struct net_device *dev, int phy_id, int reg);
 | |
| static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
 | |
| static int find_mii(struct net_device *dev);
 | |
| static void natsemi_reset(struct net_device *dev);
 | |
| static void natsemi_reload_eeprom(struct net_device *dev);
 | |
| static void natsemi_stop_rxtx(struct net_device *dev);
 | |
| static int netdev_open(struct net_device *dev);
 | |
| static void do_cable_magic(struct net_device *dev);
 | |
| static void undo_cable_magic(struct net_device *dev);
 | |
| static void check_link(struct net_device *dev);
 | |
| static void netdev_timer(unsigned long data);
 | |
| static void dump_ring(struct net_device *dev);
 | |
| static void ns_tx_timeout(struct net_device *dev);
 | |
| static int alloc_ring(struct net_device *dev);
 | |
| static void refill_rx(struct net_device *dev);
 | |
| static void init_ring(struct net_device *dev);
 | |
| static void drain_tx(struct net_device *dev);
 | |
| static void drain_ring(struct net_device *dev);
 | |
| static void free_ring(struct net_device *dev);
 | |
| static void reinit_ring(struct net_device *dev);
 | |
| static void init_registers(struct net_device *dev);
 | |
| static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 | |
| static irqreturn_t intr_handler(int irq, void *dev_instance);
 | |
| static void netdev_error(struct net_device *dev, int intr_status);
 | |
| static int natsemi_poll(struct napi_struct *napi, int budget);
 | |
| static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
 | |
| static void netdev_tx_done(struct net_device *dev);
 | |
| static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| static void natsemi_poll_controller(struct net_device *dev);
 | |
| #endif
 | |
| static void __set_rx_mode(struct net_device *dev);
 | |
| static void set_rx_mode(struct net_device *dev);
 | |
| static void __get_stats(struct net_device *dev);
 | |
| static struct net_device_stats *get_stats(struct net_device *dev);
 | |
| static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 | |
| static int netdev_set_wol(struct net_device *dev, u32 newval);
 | |
| static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
 | |
| static int netdev_set_sopass(struct net_device *dev, u8 *newval);
 | |
| static int netdev_get_sopass(struct net_device *dev, u8 *data);
 | |
| static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
 | |
| static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
 | |
| static void enable_wol_mode(struct net_device *dev, int enable_intr);
 | |
| static int netdev_close(struct net_device *dev);
 | |
| static int netdev_get_regs(struct net_device *dev, u8 *buf);
 | |
| static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
 | |
| static const struct ethtool_ops ethtool_ops;
 | |
| 
 | |
| #define NATSEMI_ATTR(_name) \
 | |
| static ssize_t natsemi_show_##_name(struct device *dev, \
 | |
|          struct device_attribute *attr, char *buf); \
 | |
| 	 static ssize_t natsemi_set_##_name(struct device *dev, \
 | |
| 		struct device_attribute *attr, \
 | |
| 	        const char *buf, size_t count); \
 | |
| 	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
 | |
| 
 | |
| #define NATSEMI_CREATE_FILE(_dev, _name) \
 | |
|          device_create_file(&_dev->dev, &dev_attr_##_name)
 | |
| #define NATSEMI_REMOVE_FILE(_dev, _name) \
 | |
|          device_remove_file(&_dev->dev, &dev_attr_##_name)
 | |
| 
 | |
| NATSEMI_ATTR(dspcfg_workaround);
 | |
| 
 | |
| static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
 | |
| 				  	      struct device_attribute *attr,
 | |
| 					      char *buf)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
 | |
| 
 | |
| 	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
 | |
| }
 | |
| 
 | |
| static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
 | |
| 					     struct device_attribute *attr,
 | |
| 					     const char *buf, size_t count)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
 | |
| 	int new_setting;
 | |
| 	unsigned long flags;
 | |
| 
 | |
|         /* Find out the new setting */
 | |
|         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
 | |
|                 new_setting = 1;
 | |
|         else if (!strncmp("off", buf, count - 1) ||
 | |
|                  !strncmp("0", buf, count - 1))
 | |
| 		new_setting = 0;
 | |
| 	else
 | |
|                  return count;
 | |
| 
 | |
| 	spin_lock_irqsave(&np->lock, flags);
 | |
| 
 | |
| 	np->dspcfg_workaround = new_setting;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&np->lock, flags);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static inline void __iomem *ns_ioaddr(struct net_device *dev)
 | |
| {
 | |
| 	return (void __iomem *) dev->base_addr;
 | |
| }
 | |
| 
 | |
| static inline void natsemi_irq_enable(struct net_device *dev)
 | |
| {
 | |
| 	writel(1, ns_ioaddr(dev) + IntrEnable);
 | |
| 	readl(ns_ioaddr(dev) + IntrEnable);
 | |
| }
 | |
| 
 | |
| static inline void natsemi_irq_disable(struct net_device *dev)
 | |
| {
 | |
| 	writel(0, ns_ioaddr(dev) + IntrEnable);
 | |
| 	readl(ns_ioaddr(dev) + IntrEnable);
 | |
| }
 | |
| 
 | |
| static void move_int_phy(struct net_device *dev, int addr)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 	int target = 31;
 | |
| 
 | |
| 	/*
 | |
| 	 * The internal phy is visible on the external mii bus. Therefore we must
 | |
| 	 * move it away before we can send commands to an external phy.
 | |
| 	 * There are two addresses we must avoid:
 | |
| 	 * - the address on the external phy that is used for transmission.
 | |
| 	 * - the address that we want to access. User space can access phys
 | |
| 	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
 | |
| 	 *   phy that is used for transmission.
 | |
| 	 */
 | |
| 
 | |
| 	if (target == addr)
 | |
| 		target--;
 | |
| 	if (target == np->phy_addr_external)
 | |
| 		target--;
 | |
| 	writew(target, ioaddr + PhyCtrl);
 | |
| 	readw(ioaddr + PhyCtrl);
 | |
| 	udelay(1);
 | |
| }
 | |
| 
 | |
| static void __devinit natsemi_init_media (struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	if (np->ignore_phy)
 | |
| 		netif_carrier_on(dev);
 | |
| 	else
 | |
| 		netif_carrier_off(dev);
 | |
| 
 | |
| 	/* get the initial settings from hardware */
 | |
| 	tmp            = mdio_read(dev, MII_BMCR);
 | |
| 	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
 | |
| 	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
 | |
| 	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
 | |
| 	np->advertising= mdio_read(dev, MII_ADVERTISE);
 | |
| 
 | |
| 	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
 | |
| 	    netif_msg_probe(np)) {
 | |
| 		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
 | |
| 			"10%s %s duplex.\n",
 | |
| 			pci_name(np->pci_dev),
 | |
| 			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
 | |
| 			  "enabled, advertise" : "disabled, force",
 | |
| 			(np->advertising &
 | |
| 			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
 | |
| 			    "0" : "",
 | |
| 			(np->advertising &
 | |
| 			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
 | |
| 			    "full" : "half");
 | |
| 	}
 | |
| 	if (netif_msg_probe(np))
 | |
| 		printk(KERN_INFO
 | |
| 			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
 | |
| 			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
 | |
| 			np->advertising);
 | |
| 
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops natsemi_netdev_ops = {
 | |
| 	.ndo_open		= netdev_open,
 | |
| 	.ndo_stop		= netdev_close,
 | |
| 	.ndo_start_xmit		= start_tx,
 | |
| 	.ndo_get_stats		= get_stats,
 | |
| 	.ndo_set_multicast_list = set_rx_mode,
 | |
| 	.ndo_change_mtu		= natsemi_change_mtu,
 | |
| 	.ndo_do_ioctl		= netdev_ioctl,
 | |
| 	.ndo_tx_timeout 	= ns_tx_timeout,
 | |
| 	.ndo_set_mac_address 	= eth_mac_addr,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller	= natsemi_poll_controller,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int __devinit natsemi_probe1 (struct pci_dev *pdev,
 | |
| 	const struct pci_device_id *ent)
 | |
| {
 | |
| 	struct net_device *dev;
 | |
| 	struct netdev_private *np;
 | |
| 	int i, option, irq, chip_idx = ent->driver_data;
 | |
| 	static int find_cnt = -1;
 | |
| 	resource_size_t iostart;
 | |
| 	unsigned long iosize;
 | |
| 	void __iomem *ioaddr;
 | |
| 	const int pcibar = 1; /* PCI base address register */
 | |
| 	int prev_eedata;
 | |
| 	u32 tmp;
 | |
| 
 | |
| /* when built into the kernel, we only print version if device is found */
 | |
| #ifndef MODULE
 | |
| 	static int printed_version;
 | |
| 	if (!printed_version++)
 | |
| 		printk(version);
 | |
| #endif
 | |
| 
 | |
| 	i = pci_enable_device(pdev);
 | |
| 	if (i) return i;
 | |
| 
 | |
| 	/* natsemi has a non-standard PM control register
 | |
| 	 * in PCI config space.  Some boards apparently need
 | |
| 	 * to be brought to D0 in this manner.
 | |
| 	 */
 | |
| 	pci_read_config_dword(pdev, PCIPM, &tmp);
 | |
| 	if (tmp & PCI_PM_CTRL_STATE_MASK) {
 | |
| 		/* D0 state, disable PME assertion */
 | |
| 		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
 | |
| 		pci_write_config_dword(pdev, PCIPM, newtmp);
 | |
| 	}
 | |
| 
 | |
| 	find_cnt++;
 | |
| 	iostart = pci_resource_start(pdev, pcibar);
 | |
| 	iosize = pci_resource_len(pdev, pcibar);
 | |
| 	irq = pdev->irq;
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	dev = alloc_etherdev(sizeof (struct netdev_private));
 | |
| 	if (!dev)
 | |
| 		return -ENOMEM;
 | |
| 	SET_NETDEV_DEV(dev, &pdev->dev);
 | |
| 
 | |
| 	i = pci_request_regions(pdev, DRV_NAME);
 | |
| 	if (i)
 | |
| 		goto err_pci_request_regions;
 | |
| 
 | |
| 	ioaddr = ioremap(iostart, iosize);
 | |
| 	if (!ioaddr) {
 | |
| 		i = -ENOMEM;
 | |
| 		goto err_ioremap;
 | |
| 	}
 | |
| 
 | |
| 	/* Work around the dropped serial bit. */
 | |
| 	prev_eedata = eeprom_read(ioaddr, 6);
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		int eedata = eeprom_read(ioaddr, i + 7);
 | |
| 		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
 | |
| 		dev->dev_addr[i*2+1] = eedata >> 7;
 | |
| 		prev_eedata = eedata;
 | |
| 	}
 | |
| 
 | |
| 	dev->base_addr = (unsigned long __force) ioaddr;
 | |
| 	dev->irq = irq;
 | |
| 
 | |
| 	np = netdev_priv(dev);
 | |
| 	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
 | |
| 	np->dev = dev;
 | |
| 
 | |
| 	np->pci_dev = pdev;
 | |
| 	pci_set_drvdata(pdev, dev);
 | |
| 	np->iosize = iosize;
 | |
| 	spin_lock_init(&np->lock);
 | |
| 	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
 | |
| 	np->hands_off = 0;
 | |
| 	np->intr_status = 0;
 | |
| 	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
 | |
| 	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
 | |
| 		np->ignore_phy = 1;
 | |
| 	else
 | |
| 		np->ignore_phy = 0;
 | |
| 	np->dspcfg_workaround = dspcfg_workaround;
 | |
| 
 | |
| 	/* Initial port:
 | |
| 	 * - If configured to ignore the PHY set up for external.
 | |
| 	 * - If the nic was configured to use an external phy and if find_mii
 | |
| 	 *   finds a phy: use external port, first phy that replies.
 | |
| 	 * - Otherwise: internal port.
 | |
| 	 * Note that the phy address for the internal phy doesn't matter:
 | |
| 	 * The address would be used to access a phy over the mii bus, but
 | |
| 	 * the internal phy is accessed through mapped registers.
 | |
| 	 */
 | |
| 	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
 | |
| 		dev->if_port = PORT_MII;
 | |
| 	else
 | |
| 		dev->if_port = PORT_TP;
 | |
| 	/* Reset the chip to erase previous misconfiguration. */
 | |
| 	natsemi_reload_eeprom(dev);
 | |
| 	natsemi_reset(dev);
 | |
| 
 | |
| 	if (dev->if_port != PORT_TP) {
 | |
| 		np->phy_addr_external = find_mii(dev);
 | |
| 		/* If we're ignoring the PHY it doesn't matter if we can't
 | |
| 		 * find one. */
 | |
| 		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
 | |
| 			dev->if_port = PORT_TP;
 | |
| 			np->phy_addr_external = PHY_ADDR_INTERNAL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		np->phy_addr_external = PHY_ADDR_INTERNAL;
 | |
| 	}
 | |
| 
 | |
| 	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 | |
| 	if (dev->mem_start)
 | |
| 		option = dev->mem_start;
 | |
| 
 | |
| 	/* The lower four bits are the media type. */
 | |
| 	if (option) {
 | |
| 		if (option & 0x200)
 | |
| 			np->full_duplex = 1;
 | |
| 		if (option & 15)
 | |
| 			printk(KERN_INFO
 | |
| 				"natsemi %s: ignoring user supplied media type %d",
 | |
| 				pci_name(np->pci_dev), option & 15);
 | |
| 	}
 | |
| 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
 | |
| 		np->full_duplex = 1;
 | |
| 
 | |
| 	dev->netdev_ops = &natsemi_netdev_ops;
 | |
| 	dev->watchdog_timeo = TX_TIMEOUT;
 | |
| 
 | |
| 	SET_ETHTOOL_OPS(dev, ðtool_ops);
 | |
| 
 | |
| 	if (mtu)
 | |
| 		dev->mtu = mtu;
 | |
| 
 | |
| 	natsemi_init_media(dev);
 | |
| 
 | |
| 	/* save the silicon revision for later querying */
 | |
| 	np->srr = readl(ioaddr + SiliconRev);
 | |
| 	if (netif_msg_hw(np))
 | |
| 		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
 | |
| 				pci_name(np->pci_dev), np->srr);
 | |
| 
 | |
| 	i = register_netdev(dev);
 | |
| 	if (i)
 | |
| 		goto err_register_netdev;
 | |
| 
 | |
| 	if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
 | |
| 		goto err_create_file;
 | |
| 
 | |
| 	if (netif_msg_drv(np)) {
 | |
| 		printk(KERN_INFO "natsemi %s: %s at %#08llx "
 | |
| 		       "(%s), %pM, IRQ %d",
 | |
| 		       dev->name, natsemi_pci_info[chip_idx].name,
 | |
| 		       (unsigned long long)iostart, pci_name(np->pci_dev),
 | |
| 		       dev->dev_addr, irq);
 | |
| 		if (dev->if_port == PORT_TP)
 | |
| 			printk(", port TP.\n");
 | |
| 		else if (np->ignore_phy)
 | |
| 			printk(", port MII, ignoring PHY\n");
 | |
| 		else
 | |
| 			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
|  err_create_file:
 | |
|  	unregister_netdev(dev);
 | |
| 
 | |
|  err_register_netdev:
 | |
| 	iounmap(ioaddr);
 | |
| 
 | |
|  err_ioremap:
 | |
| 	pci_release_regions(pdev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| 
 | |
|  err_pci_request_regions:
 | |
| 	free_netdev(dev);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
 | |
|    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
 | |
| 
 | |
| /* Delay between EEPROM clock transitions.
 | |
|    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 | |
|    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 | |
|    made udelay() unreliable.
 | |
|    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
 | |
|    deprecated.
 | |
| */
 | |
| #define eeprom_delay(ee_addr)	readl(ee_addr)
 | |
| 
 | |
| #define EE_Write0 (EE_ChipSelect)
 | |
| #define EE_Write1 (EE_ChipSelect | EE_DataIn)
 | |
| 
 | |
| /* The EEPROM commands include the alway-set leading bit. */
 | |
| enum EEPROM_Cmds {
 | |
| 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
 | |
| };
 | |
| 
 | |
| static int eeprom_read(void __iomem *addr, int location)
 | |
| {
 | |
| 	int i;
 | |
| 	int retval = 0;
 | |
| 	void __iomem *ee_addr = addr + EECtrl;
 | |
| 	int read_cmd = location | EE_ReadCmd;
 | |
| 
 | |
| 	writel(EE_Write0, ee_addr);
 | |
| 
 | |
| 	/* Shift the read command bits out. */
 | |
| 	for (i = 10; i >= 0; i--) {
 | |
| 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
 | |
| 		writel(dataval, ee_addr);
 | |
| 		eeprom_delay(ee_addr);
 | |
| 		writel(dataval | EE_ShiftClk, ee_addr);
 | |
| 		eeprom_delay(ee_addr);
 | |
| 	}
 | |
| 	writel(EE_ChipSelect, ee_addr);
 | |
| 	eeprom_delay(ee_addr);
 | |
| 
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
 | |
| 		eeprom_delay(ee_addr);
 | |
| 		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
 | |
| 		writel(EE_ChipSelect, ee_addr);
 | |
| 		eeprom_delay(ee_addr);
 | |
| 	}
 | |
| 
 | |
| 	/* Terminate the EEPROM access. */
 | |
| 	writel(EE_Write0, ee_addr);
 | |
| 	writel(0, ee_addr);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /* MII transceiver control section.
 | |
|  * The 83815 series has an internal transceiver, and we present the
 | |
|  * internal management registers as if they were MII connected.
 | |
|  * External Phy registers are referenced through the MII interface.
 | |
|  */
 | |
| 
 | |
| /* clock transitions >= 20ns (25MHz)
 | |
|  * One readl should be good to PCI @ 100MHz
 | |
|  */
 | |
| #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
 | |
| 
 | |
| static int mii_getbit (struct net_device *dev)
 | |
| {
 | |
| 	int data;
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	writel(MII_ShiftClk, ioaddr + EECtrl);
 | |
| 	data = readl(ioaddr + EECtrl);
 | |
| 	writel(0, ioaddr + EECtrl);
 | |
| 	mii_delay(ioaddr);
 | |
| 	return (data & MII_Data)? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void mii_send_bits (struct net_device *dev, u32 data, int len)
 | |
| {
 | |
| 	u32 i;
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	for (i = (1 << (len-1)); i; i >>= 1)
 | |
| 	{
 | |
| 		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
 | |
| 		writel(mdio_val, ioaddr + EECtrl);
 | |
| 		mii_delay(ioaddr);
 | |
| 		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
 | |
| 		mii_delay(ioaddr);
 | |
| 	}
 | |
| 	writel(0, ioaddr + EECtrl);
 | |
| 	mii_delay(ioaddr);
 | |
| }
 | |
| 
 | |
| static int miiport_read(struct net_device *dev, int phy_id, int reg)
 | |
| {
 | |
| 	u32 cmd;
 | |
| 	int i;
 | |
| 	u32 retval = 0;
 | |
| 
 | |
| 	/* Ensure sync */
 | |
| 	mii_send_bits (dev, 0xffffffff, 32);
 | |
| 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
 | |
| 	/* ST,OP = 0110'b for read operation */
 | |
| 	cmd = (0x06 << 10) | (phy_id << 5) | reg;
 | |
| 	mii_send_bits (dev, cmd, 14);
 | |
| 	/* Turnaround */
 | |
| 	if (mii_getbit (dev))
 | |
| 		return 0;
 | |
| 	/* Read data */
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		retval <<= 1;
 | |
| 		retval |= mii_getbit (dev);
 | |
| 	}
 | |
| 	/* End cycle */
 | |
| 	mii_getbit (dev);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
 | |
| {
 | |
| 	u32 cmd;
 | |
| 
 | |
| 	/* Ensure sync */
 | |
| 	mii_send_bits (dev, 0xffffffff, 32);
 | |
| 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
 | |
| 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
 | |
| 	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
 | |
| 	mii_send_bits (dev, cmd, 32);
 | |
| 	/* End cycle */
 | |
| 	mii_getbit (dev);
 | |
| }
 | |
| 
 | |
| static int mdio_read(struct net_device *dev, int reg)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	/* The 83815 series has two ports:
 | |
| 	 * - an internal transceiver
 | |
| 	 * - an external mii bus
 | |
| 	 */
 | |
| 	if (dev->if_port == PORT_TP)
 | |
| 		return readw(ioaddr+BasicControl+(reg<<2));
 | |
| 	else
 | |
| 		return miiport_read(dev, np->phy_addr_external, reg);
 | |
| }
 | |
| 
 | |
| static void mdio_write(struct net_device *dev, int reg, u16 data)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	/* The 83815 series has an internal transceiver; handle separately */
 | |
| 	if (dev->if_port == PORT_TP)
 | |
| 		writew(data, ioaddr+BasicControl+(reg<<2));
 | |
| 	else
 | |
| 		miiport_write(dev, np->phy_addr_external, reg, data);
 | |
| }
 | |
| 
 | |
| static void init_phy_fixup(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 	int i;
 | |
| 	u32 cfg;
 | |
| 	u16 tmp;
 | |
| 
 | |
| 	/* restore stuff lost when power was out */
 | |
| 	tmp = mdio_read(dev, MII_BMCR);
 | |
| 	if (np->autoneg == AUTONEG_ENABLE) {
 | |
| 		/* renegotiate if something changed */
 | |
| 		if ((tmp & BMCR_ANENABLE) == 0 ||
 | |
| 		    np->advertising != mdio_read(dev, MII_ADVERTISE))
 | |
| 		{
 | |
| 			/* turn on autonegotiation and force negotiation */
 | |
| 			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
 | |
| 			mdio_write(dev, MII_ADVERTISE, np->advertising);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* turn off auto negotiation, set speed and duplexity */
 | |
| 		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
 | |
| 		if (np->speed == SPEED_100)
 | |
| 			tmp |= BMCR_SPEED100;
 | |
| 		if (np->duplex == DUPLEX_FULL)
 | |
| 			tmp |= BMCR_FULLDPLX;
 | |
| 		/*
 | |
| 		 * Note: there is no good way to inform the link partner
 | |
| 		 * that our capabilities changed. The user has to unplug
 | |
| 		 * and replug the network cable after some changes, e.g.
 | |
| 		 * after switching from 10HD, autoneg off to 100 HD,
 | |
| 		 * autoneg off.
 | |
| 		 */
 | |
| 	}
 | |
| 	mdio_write(dev, MII_BMCR, tmp);
 | |
| 	readl(ioaddr + ChipConfig);
 | |
| 	udelay(1);
 | |
| 
 | |
| 	/* find out what phy this is */
 | |
| 	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
 | |
| 				+ mdio_read(dev, MII_PHYSID2);
 | |
| 
 | |
| 	/* handle external phys here */
 | |
| 	switch (np->mii) {
 | |
| 	case PHYID_AM79C874:
 | |
| 		/* phy specific configuration for fibre/tp operation */
 | |
| 		tmp = mdio_read(dev, MII_MCTRL);
 | |
| 		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
 | |
| 		if (dev->if_port == PORT_FIBRE)
 | |
| 			tmp |= MII_FX_SEL;
 | |
| 		else
 | |
| 			tmp |= MII_EN_SCRM;
 | |
| 		mdio_write(dev, MII_MCTRL, tmp);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	cfg = readl(ioaddr + ChipConfig);
 | |
| 	if (cfg & CfgExtPhy)
 | |
| 		return;
 | |
| 
 | |
| 	/* On page 78 of the spec, they recommend some settings for "optimum
 | |
| 	   performance" to be done in sequence.  These settings optimize some
 | |
| 	   of the 100Mbit autodetection circuitry.  They say we only want to
 | |
| 	   do this for rev C of the chip, but engineers at NSC (Bradley
 | |
| 	   Kennedy) recommends always setting them.  If you don't, you get
 | |
| 	   errors on some autonegotiations that make the device unusable.
 | |
| 
 | |
| 	   It seems that the DSP needs a few usec to reinitialize after
 | |
| 	   the start of the phy. Just retry writing these values until they
 | |
| 	   stick.
 | |
| 	*/
 | |
| 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
 | |
| 
 | |
| 		int dspcfg;
 | |
| 		writew(1, ioaddr + PGSEL);
 | |
| 		writew(PMDCSR_VAL, ioaddr + PMDCSR);
 | |
| 		writew(TSTDAT_VAL, ioaddr + TSTDAT);
 | |
| 		np->dspcfg = (np->srr <= SRR_DP83815_C)?
 | |
| 			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
 | |
| 		writew(np->dspcfg, ioaddr + DSPCFG);
 | |
| 		writew(SDCFG_VAL, ioaddr + SDCFG);
 | |
| 		writew(0, ioaddr + PGSEL);
 | |
| 		readl(ioaddr + ChipConfig);
 | |
| 		udelay(10);
 | |
| 
 | |
| 		writew(1, ioaddr + PGSEL);
 | |
| 		dspcfg = readw(ioaddr + DSPCFG);
 | |
| 		writew(0, ioaddr + PGSEL);
 | |
| 		if (np->dspcfg == dspcfg)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (netif_msg_link(np)) {
 | |
| 		if (i==NATSEMI_HW_TIMEOUT) {
 | |
| 			printk(KERN_INFO
 | |
| 				"%s: DSPCFG mismatch after retrying for %d usec.\n",
 | |
| 				dev->name, i*10);
 | |
| 		} else {
 | |
| 			printk(KERN_INFO
 | |
| 				"%s: DSPCFG accepted after %d usec.\n",
 | |
| 				dev->name, i*10);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Enable PHY Specific event based interrupts.  Link state change
 | |
| 	 * and Auto-Negotiation Completion are among the affected.
 | |
| 	 * Read the intr status to clear it (needed for wake events).
 | |
| 	 */
 | |
| 	readw(ioaddr + MIntrStatus);
 | |
| 	writew(MICRIntEn, ioaddr + MIntrCtrl);
 | |
| }
 | |
| 
 | |
| static int switch_port_external(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 	u32 cfg;
 | |
| 
 | |
| 	cfg = readl(ioaddr + ChipConfig);
 | |
| 	if (cfg & CfgExtPhy)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (netif_msg_link(np)) {
 | |
| 		printk(KERN_INFO "%s: switching to external transceiver.\n",
 | |
| 				dev->name);
 | |
| 	}
 | |
| 
 | |
| 	/* 1) switch back to external phy */
 | |
| 	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
 | |
| 	readl(ioaddr + ChipConfig);
 | |
| 	udelay(1);
 | |
| 
 | |
| 	/* 2) reset the external phy: */
 | |
| 	/* resetting the external PHY has been known to cause a hub supplying
 | |
| 	 * power over Ethernet to kill the power.  We don't want to kill
 | |
| 	 * power to this computer, so we avoid resetting the phy.
 | |
| 	 */
 | |
| 
 | |
| 	/* 3) reinit the phy fixup, it got lost during power down. */
 | |
| 	move_int_phy(dev, np->phy_addr_external);
 | |
| 	init_phy_fixup(dev);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int switch_port_internal(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 	int i;
 | |
| 	u32 cfg;
 | |
| 	u16 bmcr;
 | |
| 
 | |
| 	cfg = readl(ioaddr + ChipConfig);
 | |
| 	if (!(cfg &CfgExtPhy))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (netif_msg_link(np)) {
 | |
| 		printk(KERN_INFO "%s: switching to internal transceiver.\n",
 | |
| 				dev->name);
 | |
| 	}
 | |
| 	/* 1) switch back to internal phy: */
 | |
| 	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
 | |
| 	writel(cfg, ioaddr + ChipConfig);
 | |
| 	readl(ioaddr + ChipConfig);
 | |
| 	udelay(1);
 | |
| 
 | |
| 	/* 2) reset the internal phy: */
 | |
| 	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
 | |
| 	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
 | |
| 	readl(ioaddr + ChipConfig);
 | |
| 	udelay(10);
 | |
| 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
 | |
| 		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
 | |
| 		if (!(bmcr & BMCR_RESET))
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
 | |
| 		printk(KERN_INFO
 | |
| 			"%s: phy reset did not complete in %d usec.\n",
 | |
| 			dev->name, i*10);
 | |
| 	}
 | |
| 	/* 3) reinit the phy fixup, it got lost during power down. */
 | |
| 	init_phy_fixup(dev);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Scan for a PHY on the external mii bus.
 | |
|  * There are two tricky points:
 | |
|  * - Do not scan while the internal phy is enabled. The internal phy will
 | |
|  *   crash: e.g. reads from the DSPCFG register will return odd values and
 | |
|  *   the nasty random phy reset code will reset the nic every few seconds.
 | |
|  * - The internal phy must be moved around, an external phy could
 | |
|  *   have the same address as the internal phy.
 | |
|  */
 | |
| static int find_mii(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int tmp;
 | |
| 	int i;
 | |
| 	int did_switch;
 | |
| 
 | |
| 	/* Switch to external phy */
 | |
| 	did_switch = switch_port_external(dev);
 | |
| 
 | |
| 	/* Scan the possible phy addresses:
 | |
| 	 *
 | |
| 	 * PHY address 0 means that the phy is in isolate mode. Not yet
 | |
| 	 * supported due to lack of test hardware. User space should
 | |
| 	 * handle it through ethtool.
 | |
| 	 */
 | |
| 	for (i = 1; i <= 31; i++) {
 | |
| 		move_int_phy(dev, i);
 | |
| 		tmp = miiport_read(dev, i, MII_BMSR);
 | |
| 		if (tmp != 0xffff && tmp != 0x0000) {
 | |
| 			/* found something! */
 | |
| 			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
 | |
| 					+ mdio_read(dev, MII_PHYSID2);
 | |
| 	 		if (netif_msg_probe(np)) {
 | |
| 				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
 | |
| 						pci_name(np->pci_dev), np->mii, i);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	/* And switch back to internal phy: */
 | |
| 	if (did_switch)
 | |
| 		switch_port_internal(dev);
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /* CFG bits [13:16] [18:23] */
 | |
| #define CFG_RESET_SAVE 0xfde000
 | |
| /* WCSR bits [0:4] [9:10] */
 | |
| #define WCSR_RESET_SAVE 0x61f
 | |
| /* RFCR bits [20] [22] [27:31] */
 | |
| #define RFCR_RESET_SAVE 0xf8500000;
 | |
| 
 | |
| static void natsemi_reset(struct net_device *dev)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 cfg;
 | |
| 	u32 wcsr;
 | |
| 	u32 rfcr;
 | |
| 	u16 pmatch[3];
 | |
| 	u16 sopass[3];
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Resetting the chip causes some registers to be lost.
 | |
| 	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
 | |
| 	 * we save the state that would have been loaded from EEPROM
 | |
| 	 * on a normal power-up (see the spec EEPROM map).  This assumes
 | |
| 	 * whoever calls this will follow up with init_registers() eventually.
 | |
| 	 */
 | |
| 
 | |
| 	/* CFG */
 | |
| 	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
 | |
| 	/* WCSR */
 | |
| 	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
 | |
| 	/* RFCR */
 | |
| 	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
 | |
| 	/* PMATCH */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		writel(i*2, ioaddr + RxFilterAddr);
 | |
| 		pmatch[i] = readw(ioaddr + RxFilterData);
 | |
| 	}
 | |
| 	/* SOPAS */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
 | |
| 		sopass[i] = readw(ioaddr + RxFilterData);
 | |
| 	}
 | |
| 
 | |
| 	/* now whack the chip */
 | |
| 	writel(ChipReset, ioaddr + ChipCmd);
 | |
| 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
 | |
| 		if (!(readl(ioaddr + ChipCmd) & ChipReset))
 | |
| 			break;
 | |
| 		udelay(5);
 | |
| 	}
 | |
| 	if (i==NATSEMI_HW_TIMEOUT) {
 | |
| 		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
 | |
| 			dev->name, i*5);
 | |
| 	} else if (netif_msg_hw(np)) {
 | |
| 		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
 | |
| 			dev->name, i*5);
 | |
| 	}
 | |
| 
 | |
| 	/* restore CFG */
 | |
| 	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
 | |
| 	/* turn on external phy if it was selected */
 | |
| 	if (dev->if_port == PORT_TP)
 | |
| 		cfg &= ~(CfgExtPhy | CfgPhyDis);
 | |
| 	else
 | |
| 		cfg |= (CfgExtPhy | CfgPhyDis);
 | |
| 	writel(cfg, ioaddr + ChipConfig);
 | |
| 	/* restore WCSR */
 | |
| 	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
 | |
| 	writel(wcsr, ioaddr + WOLCmd);
 | |
| 	/* read RFCR */
 | |
| 	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
 | |
| 	/* restore PMATCH */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		writel(i*2, ioaddr + RxFilterAddr);
 | |
| 		writew(pmatch[i], ioaddr + RxFilterData);
 | |
| 	}
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
 | |
| 		writew(sopass[i], ioaddr + RxFilterData);
 | |
| 	}
 | |
| 	/* restore RFCR */
 | |
| 	writel(rfcr, ioaddr + RxFilterAddr);
 | |
| }
 | |
| 
 | |
| static void reset_rx(struct net_device *dev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	np->intr_status &= ~RxResetDone;
 | |
| 
 | |
| 	writel(RxReset, ioaddr + ChipCmd);
 | |
| 
 | |
| 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
 | |
| 		np->intr_status |= readl(ioaddr + IntrStatus);
 | |
| 		if (np->intr_status & RxResetDone)
 | |
| 			break;
 | |
| 		udelay(15);
 | |
| 	}
 | |
| 	if (i==NATSEMI_HW_TIMEOUT) {
 | |
| 		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
 | |
| 		       dev->name, i*15);
 | |
| 	} else if (netif_msg_hw(np)) {
 | |
| 		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
 | |
| 		       dev->name, i*15);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void natsemi_reload_eeprom(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	writel(EepromReload, ioaddr + PCIBusCfg);
 | |
| 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
 | |
| 		udelay(50);
 | |
| 		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i==NATSEMI_HW_TIMEOUT) {
 | |
| 		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
 | |
| 			pci_name(np->pci_dev), i*50);
 | |
| 	} else if (netif_msg_hw(np)) {
 | |
| 		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
 | |
| 			pci_name(np->pci_dev), i*50);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void natsemi_stop_rxtx(struct net_device *dev)
 | |
| {
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	writel(RxOff | TxOff, ioaddr + ChipCmd);
 | |
| 	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
 | |
| 		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
 | |
| 			break;
 | |
| 		udelay(5);
 | |
| 	}
 | |
| 	if (i==NATSEMI_HW_TIMEOUT) {
 | |
| 		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
 | |
| 			dev->name, i*5);
 | |
| 	} else if (netif_msg_hw(np)) {
 | |
| 		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
 | |
| 			dev->name, i*5);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int netdev_open(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	/* Reset the chip, just in case. */
 | |
| 	natsemi_reset(dev);
 | |
| 
 | |
| 	i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
 | |
| 	if (i) return i;
 | |
| 
 | |
| 	if (netif_msg_ifup(np))
 | |
| 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
 | |
| 			dev->name, dev->irq);
 | |
| 	i = alloc_ring(dev);
 | |
| 	if (i < 0) {
 | |
| 		free_irq(dev->irq, dev);
 | |
| 		return i;
 | |
| 	}
 | |
| 	napi_enable(&np->napi);
 | |
| 
 | |
| 	init_ring(dev);
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	init_registers(dev);
 | |
| 	/* now set the MAC address according to dev->dev_addr */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
 | |
| 
 | |
| 		writel(i*2, ioaddr + RxFilterAddr);
 | |
| 		writew(mac, ioaddr + RxFilterData);
 | |
| 	}
 | |
| 	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| 
 | |
| 	netif_start_queue(dev);
 | |
| 
 | |
| 	if (netif_msg_ifup(np))
 | |
| 		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
 | |
| 			dev->name, (int)readl(ioaddr + ChipCmd));
 | |
| 
 | |
| 	/* Set the timer to check for link beat. */
 | |
| 	init_timer(&np->timer);
 | |
| 	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
 | |
| 	np->timer.data = (unsigned long)dev;
 | |
| 	np->timer.function = netdev_timer; /* timer handler */
 | |
| 	add_timer(&np->timer);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void do_cable_magic(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	if (dev->if_port != PORT_TP)
 | |
| 		return;
 | |
| 
 | |
| 	if (np->srr >= SRR_DP83816_A5)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * 100 MBit links with short cables can trip an issue with the chip.
 | |
| 	 * The problem manifests as lots of CRC errors and/or flickering
 | |
| 	 * activity LED while idle.  This process is based on instructions
 | |
| 	 * from engineers at National.
 | |
| 	 */
 | |
| 	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
 | |
| 		u16 data;
 | |
| 
 | |
| 		writew(1, ioaddr + PGSEL);
 | |
| 		/*
 | |
| 		 * coefficient visibility should already be enabled via
 | |
| 		 * DSPCFG | 0x1000
 | |
| 		 */
 | |
| 		data = readw(ioaddr + TSTDAT) & 0xff;
 | |
| 		/*
 | |
| 		 * the value must be negative, and within certain values
 | |
| 		 * (these values all come from National)
 | |
| 		 */
 | |
| 		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
 | |
| 			np = netdev_priv(dev);
 | |
| 
 | |
| 			/* the bug has been triggered - fix the coefficient */
 | |
| 			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
 | |
| 			/* lock the value */
 | |
| 			data = readw(ioaddr + DSPCFG);
 | |
| 			np->dspcfg = data | DSPCFG_LOCK;
 | |
| 			writew(np->dspcfg, ioaddr + DSPCFG);
 | |
| 		}
 | |
| 		writew(0, ioaddr + PGSEL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void undo_cable_magic(struct net_device *dev)
 | |
| {
 | |
| 	u16 data;
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	if (dev->if_port != PORT_TP)
 | |
| 		return;
 | |
| 
 | |
| 	if (np->srr >= SRR_DP83816_A5)
 | |
| 		return;
 | |
| 
 | |
| 	writew(1, ioaddr + PGSEL);
 | |
| 	/* make sure the lock bit is clear */
 | |
| 	data = readw(ioaddr + DSPCFG);
 | |
| 	np->dspcfg = data & ~DSPCFG_LOCK;
 | |
| 	writew(np->dspcfg, ioaddr + DSPCFG);
 | |
| 	writew(0, ioaddr + PGSEL);
 | |
| }
 | |
| 
 | |
| static void check_link(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	int duplex = np->duplex;
 | |
| 	u16 bmsr;
 | |
| 
 | |
| 	/* If we are ignoring the PHY then don't try reading it. */
 | |
| 	if (np->ignore_phy)
 | |
| 		goto propagate_state;
 | |
| 
 | |
| 	/* The link status field is latched: it remains low after a temporary
 | |
| 	 * link failure until it's read. We need the current link status,
 | |
| 	 * thus read twice.
 | |
| 	 */
 | |
| 	mdio_read(dev, MII_BMSR);
 | |
| 	bmsr = mdio_read(dev, MII_BMSR);
 | |
| 
 | |
| 	if (!(bmsr & BMSR_LSTATUS)) {
 | |
| 		if (netif_carrier_ok(dev)) {
 | |
| 			if (netif_msg_link(np))
 | |
| 				printk(KERN_NOTICE "%s: link down.\n",
 | |
| 				       dev->name);
 | |
| 			netif_carrier_off(dev);
 | |
| 			undo_cable_magic(dev);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!netif_carrier_ok(dev)) {
 | |
| 		if (netif_msg_link(np))
 | |
| 			printk(KERN_NOTICE "%s: link up.\n", dev->name);
 | |
| 		netif_carrier_on(dev);
 | |
| 		do_cable_magic(dev);
 | |
| 	}
 | |
| 
 | |
| 	duplex = np->full_duplex;
 | |
| 	if (!duplex) {
 | |
| 		if (bmsr & BMSR_ANEGCOMPLETE) {
 | |
| 			int tmp = mii_nway_result(
 | |
| 				np->advertising & mdio_read(dev, MII_LPA));
 | |
| 			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
 | |
| 				duplex = 1;
 | |
| 		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
 | |
| 			duplex = 1;
 | |
| 	}
 | |
| 
 | |
| propagate_state:
 | |
| 	/* if duplex is set then bit 28 must be set, too */
 | |
| 	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
 | |
| 		if (netif_msg_link(np))
 | |
| 			printk(KERN_INFO
 | |
| 				"%s: Setting %s-duplex based on negotiated "
 | |
| 				"link capability.\n", dev->name,
 | |
| 				duplex ? "full" : "half");
 | |
| 		if (duplex) {
 | |
| 			np->rx_config |= RxAcceptTx;
 | |
| 			np->tx_config |= TxCarrierIgn | TxHeartIgn;
 | |
| 		} else {
 | |
| 			np->rx_config &= ~RxAcceptTx;
 | |
| 			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
 | |
| 		}
 | |
| 		writel(np->tx_config, ioaddr + TxConfig);
 | |
| 		writel(np->rx_config, ioaddr + RxConfig);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void init_registers(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	init_phy_fixup(dev);
 | |
| 
 | |
| 	/* clear any interrupts that are pending, such as wake events */
 | |
| 	readl(ioaddr + IntrStatus);
 | |
| 
 | |
| 	writel(np->ring_dma, ioaddr + RxRingPtr);
 | |
| 	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
 | |
| 		ioaddr + TxRingPtr);
 | |
| 
 | |
| 	/* Initialize other registers.
 | |
| 	 * Configure the PCI bus bursts and FIFO thresholds.
 | |
| 	 * Configure for standard, in-spec Ethernet.
 | |
| 	 * Start with half-duplex. check_link will update
 | |
| 	 * to the correct settings.
 | |
| 	 */
 | |
| 
 | |
| 	/* DRTH: 2: start tx if 64 bytes are in the fifo
 | |
| 	 * FLTH: 0x10: refill with next packet if 512 bytes are free
 | |
| 	 * MXDMA: 0: up to 256 byte bursts.
 | |
| 	 * 	MXDMA must be <= FLTH
 | |
| 	 * ECRETRY=1
 | |
| 	 * ATP=1
 | |
| 	 */
 | |
| 	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
 | |
| 				TX_FLTH_VAL | TX_DRTH_VAL_START;
 | |
| 	writel(np->tx_config, ioaddr + TxConfig);
 | |
| 
 | |
| 	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
 | |
| 	 * MXDMA 0: up to 256 byte bursts
 | |
| 	 */
 | |
| 	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
 | |
| 	/* if receive ring now has bigger buffers than normal, enable jumbo */
 | |
| 	if (np->rx_buf_sz > NATSEMI_LONGPKT)
 | |
| 		np->rx_config |= RxAcceptLong;
 | |
| 
 | |
| 	writel(np->rx_config, ioaddr + RxConfig);
 | |
| 
 | |
| 	/* Disable PME:
 | |
| 	 * The PME bit is initialized from the EEPROM contents.
 | |
| 	 * PCI cards probably have PME disabled, but motherboard
 | |
| 	 * implementations may have PME set to enable WakeOnLan.
 | |
| 	 * With PME set the chip will scan incoming packets but
 | |
| 	 * nothing will be written to memory. */
 | |
| 	np->SavedClkRun = readl(ioaddr + ClkRun);
 | |
| 	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
 | |
| 	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
 | |
| 		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
 | |
| 			dev->name, readl(ioaddr + WOLCmd));
 | |
| 	}
 | |
| 
 | |
| 	check_link(dev);
 | |
| 	__set_rx_mode(dev);
 | |
| 
 | |
| 	/* Enable interrupts by setting the interrupt mask. */
 | |
| 	writel(DEFAULT_INTR, ioaddr + IntrMask);
 | |
| 	natsemi_irq_enable(dev);
 | |
| 
 | |
| 	writel(RxOn | TxOn, ioaddr + ChipCmd);
 | |
| 	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * netdev_timer:
 | |
|  * Purpose:
 | |
|  * 1) check for link changes. Usually they are handled by the MII interrupt
 | |
|  *    but it doesn't hurt to check twice.
 | |
|  * 2) check for sudden death of the NIC:
 | |
|  *    It seems that a reference set for this chip went out with incorrect info,
 | |
|  *    and there exist boards that aren't quite right.  An unexpected voltage
 | |
|  *    drop can cause the PHY to get itself in a weird state (basically reset).
 | |
|  *    NOTE: this only seems to affect revC chips.  The user can disable
 | |
|  *    this check via dspcfg_workaround sysfs option.
 | |
|  * 3) check of death of the RX path due to OOM
 | |
|  */
 | |
| static void netdev_timer(unsigned long data)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)data;
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	int next_tick = NATSEMI_TIMER_FREQ;
 | |
| 
 | |
| 	if (netif_msg_timer(np)) {
 | |
| 		/* DO NOT read the IntrStatus register,
 | |
| 		 * a read clears any pending interrupts.
 | |
| 		 */
 | |
| 		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
 | |
| 			dev->name);
 | |
| 	}
 | |
| 
 | |
| 	if (dev->if_port == PORT_TP) {
 | |
| 		u16 dspcfg;
 | |
| 
 | |
| 		spin_lock_irq(&np->lock);
 | |
| 		/* check for a nasty random phy-reset - use dspcfg as a flag */
 | |
| 		writew(1, ioaddr+PGSEL);
 | |
| 		dspcfg = readw(ioaddr+DSPCFG);
 | |
| 		writew(0, ioaddr+PGSEL);
 | |
| 		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
 | |
| 			if (!netif_queue_stopped(dev)) {
 | |
| 				spin_unlock_irq(&np->lock);
 | |
| 				if (netif_msg_drv(np))
 | |
| 					printk(KERN_NOTICE "%s: possible phy reset: "
 | |
| 						"re-initializing\n", dev->name);
 | |
| 				disable_irq(dev->irq);
 | |
| 				spin_lock_irq(&np->lock);
 | |
| 				natsemi_stop_rxtx(dev);
 | |
| 				dump_ring(dev);
 | |
| 				reinit_ring(dev);
 | |
| 				init_registers(dev);
 | |
| 				spin_unlock_irq(&np->lock);
 | |
| 				enable_irq(dev->irq);
 | |
| 			} else {
 | |
| 				/* hurry back */
 | |
| 				next_tick = HZ;
 | |
| 				spin_unlock_irq(&np->lock);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* init_registers() calls check_link() for the above case */
 | |
| 			check_link(dev);
 | |
| 			spin_unlock_irq(&np->lock);
 | |
| 		}
 | |
| 	} else {
 | |
| 		spin_lock_irq(&np->lock);
 | |
| 		check_link(dev);
 | |
| 		spin_unlock_irq(&np->lock);
 | |
| 	}
 | |
| 	if (np->oom) {
 | |
| 		disable_irq(dev->irq);
 | |
| 		np->oom = 0;
 | |
| 		refill_rx(dev);
 | |
| 		enable_irq(dev->irq);
 | |
| 		if (!np->oom) {
 | |
| 			writel(RxOn, ioaddr + ChipCmd);
 | |
| 		} else {
 | |
| 			next_tick = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (next_tick > 1)
 | |
| 		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
 | |
| 	else
 | |
| 		mod_timer(&np->timer, jiffies + next_tick);
 | |
| }
 | |
| 
 | |
| static void dump_ring(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	if (netif_msg_pktdata(np)) {
 | |
| 		int i;
 | |
| 		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
 | |
| 		for (i = 0; i < TX_RING_SIZE; i++) {
 | |
| 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
 | |
| 				i, np->tx_ring[i].next_desc,
 | |
| 				np->tx_ring[i].cmd_status,
 | |
| 				np->tx_ring[i].addr);
 | |
| 		}
 | |
| 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
 | |
| 		for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
 | |
| 				i, np->rx_ring[i].next_desc,
 | |
| 				np->rx_ring[i].cmd_status,
 | |
| 				np->rx_ring[i].addr);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ns_tx_timeout(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	disable_irq(dev->irq);
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	if (!np->hands_off) {
 | |
| 		if (netif_msg_tx_err(np))
 | |
| 			printk(KERN_WARNING
 | |
| 				"%s: Transmit timed out, status %#08x,"
 | |
| 				" resetting...\n",
 | |
| 				dev->name, readl(ioaddr + IntrStatus));
 | |
| 		dump_ring(dev);
 | |
| 
 | |
| 		natsemi_reset(dev);
 | |
| 		reinit_ring(dev);
 | |
| 		init_registers(dev);
 | |
| 	} else {
 | |
| 		printk(KERN_WARNING
 | |
| 			"%s: tx_timeout while in hands_off state?\n",
 | |
| 			dev->name);
 | |
| 	}
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| 	enable_irq(dev->irq);
 | |
| 
 | |
| 	dev->trans_start = jiffies; /* prevent tx timeout */
 | |
| 	dev->stats.tx_errors++;
 | |
| 	netif_wake_queue(dev);
 | |
| }
 | |
| 
 | |
| static int alloc_ring(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	np->rx_ring = pci_alloc_consistent(np->pci_dev,
 | |
| 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
 | |
| 		&np->ring_dma);
 | |
| 	if (!np->rx_ring)
 | |
| 		return -ENOMEM;
 | |
| 	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void refill_rx(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	/* Refill the Rx ring buffers. */
 | |
| 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
 | |
| 		struct sk_buff *skb;
 | |
| 		int entry = np->dirty_rx % RX_RING_SIZE;
 | |
| 		if (np->rx_skbuff[entry] == NULL) {
 | |
| 			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
 | |
| 			skb = dev_alloc_skb(buflen);
 | |
| 			np->rx_skbuff[entry] = skb;
 | |
| 			if (skb == NULL)
 | |
| 				break; /* Better luck next round. */
 | |
| 			skb->dev = dev; /* Mark as being used by this device. */
 | |
| 			np->rx_dma[entry] = pci_map_single(np->pci_dev,
 | |
| 				skb->data, buflen, PCI_DMA_FROMDEVICE);
 | |
| 			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
 | |
| 		}
 | |
| 		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
 | |
| 	}
 | |
| 	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
 | |
| 		if (netif_msg_rx_err(np))
 | |
| 			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
 | |
| 		np->oom = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_bufsize(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	if (dev->mtu <= ETH_DATA_LEN)
 | |
| 		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
 | |
| 	else
 | |
| 		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
 | |
| }
 | |
| 
 | |
| /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
 | |
| static void init_ring(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	/* 1) TX ring */
 | |
| 	np->dirty_tx = np->cur_tx = 0;
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++) {
 | |
| 		np->tx_skbuff[i] = NULL;
 | |
| 		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
 | |
| 			+sizeof(struct netdev_desc)
 | |
| 			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
 | |
| 		np->tx_ring[i].cmd_status = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* 2) RX ring */
 | |
| 	np->dirty_rx = 0;
 | |
| 	np->cur_rx = RX_RING_SIZE;
 | |
| 	np->oom = 0;
 | |
| 	set_bufsize(dev);
 | |
| 
 | |
| 	np->rx_head_desc = &np->rx_ring[0];
 | |
| 
 | |
| 	/* Please be carefull before changing this loop - at least gcc-2.95.1
 | |
| 	 * miscompiles it otherwise.
 | |
| 	 */
 | |
| 	/* Initialize all Rx descriptors. */
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
 | |
| 				+sizeof(struct netdev_desc)
 | |
| 				*((i+1)%RX_RING_SIZE));
 | |
| 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
 | |
| 		np->rx_skbuff[i] = NULL;
 | |
| 	}
 | |
| 	refill_rx(dev);
 | |
| 	dump_ring(dev);
 | |
| }
 | |
| 
 | |
| static void drain_tx(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++) {
 | |
| 		if (np->tx_skbuff[i]) {
 | |
| 			pci_unmap_single(np->pci_dev,
 | |
| 				np->tx_dma[i], np->tx_skbuff[i]->len,
 | |
| 				PCI_DMA_TODEVICE);
 | |
| 			dev_kfree_skb(np->tx_skbuff[i]);
 | |
| 			dev->stats.tx_dropped++;
 | |
| 		}
 | |
| 		np->tx_skbuff[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void drain_rx(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	unsigned int buflen = np->rx_buf_sz;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Free all the skbuffs in the Rx queue. */
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 		np->rx_ring[i].cmd_status = 0;
 | |
| 		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
 | |
| 		if (np->rx_skbuff[i]) {
 | |
| 			pci_unmap_single(np->pci_dev,
 | |
| 				np->rx_dma[i], buflen,
 | |
| 				PCI_DMA_FROMDEVICE);
 | |
| 			dev_kfree_skb(np->rx_skbuff[i]);
 | |
| 		}
 | |
| 		np->rx_skbuff[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void drain_ring(struct net_device *dev)
 | |
| {
 | |
| 	drain_rx(dev);
 | |
| 	drain_tx(dev);
 | |
| }
 | |
| 
 | |
| static void free_ring(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	pci_free_consistent(np->pci_dev,
 | |
| 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
 | |
| 		np->rx_ring, np->ring_dma);
 | |
| }
 | |
| 
 | |
| static void reinit_rx(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	/* RX Ring */
 | |
| 	np->dirty_rx = 0;
 | |
| 	np->cur_rx = RX_RING_SIZE;
 | |
| 	np->rx_head_desc = &np->rx_ring[0];
 | |
| 	/* Initialize all Rx descriptors. */
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++)
 | |
| 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
 | |
| 
 | |
| 	refill_rx(dev);
 | |
| }
 | |
| 
 | |
| static void reinit_ring(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	/* drain TX ring */
 | |
| 	drain_tx(dev);
 | |
| 	np->dirty_tx = np->cur_tx = 0;
 | |
| 	for (i=0;i<TX_RING_SIZE;i++)
 | |
| 		np->tx_ring[i].cmd_status = 0;
 | |
| 
 | |
| 	reinit_rx(dev);
 | |
| }
 | |
| 
 | |
| static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	unsigned entry;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Note: Ordering is important here, set the field with the
 | |
| 	   "ownership" bit last, and only then increment cur_tx. */
 | |
| 
 | |
| 	/* Calculate the next Tx descriptor entry. */
 | |
| 	entry = np->cur_tx % TX_RING_SIZE;
 | |
| 
 | |
| 	np->tx_skbuff[entry] = skb;
 | |
| 	np->tx_dma[entry] = pci_map_single(np->pci_dev,
 | |
| 				skb->data,skb->len, PCI_DMA_TODEVICE);
 | |
| 
 | |
| 	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
 | |
| 
 | |
| 	spin_lock_irqsave(&np->lock, flags);
 | |
| 
 | |
| 	if (!np->hands_off) {
 | |
| 		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
 | |
| 		/* StrongARM: Explicitly cache flush np->tx_ring and
 | |
| 		 * skb->data,skb->len. */
 | |
| 		wmb();
 | |
| 		np->cur_tx++;
 | |
| 		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
 | |
| 			netdev_tx_done(dev);
 | |
| 			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
 | |
| 				netif_stop_queue(dev);
 | |
| 		}
 | |
| 		/* Wake the potentially-idle transmit channel. */
 | |
| 		writel(TxOn, ioaddr + ChipCmd);
 | |
| 	} else {
 | |
| 		dev_kfree_skb_irq(skb);
 | |
| 		dev->stats.tx_dropped++;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&np->lock, flags);
 | |
| 
 | |
| 	if (netif_msg_tx_queued(np)) {
 | |
| 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
 | |
| 			dev->name, np->cur_tx, entry);
 | |
| 	}
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static void netdev_tx_done(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
 | |
| 		int entry = np->dirty_tx % TX_RING_SIZE;
 | |
| 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
 | |
| 			break;
 | |
| 		if (netif_msg_tx_done(np))
 | |
| 			printk(KERN_DEBUG
 | |
| 				"%s: tx frame #%d finished, status %#08x.\n",
 | |
| 					dev->name, np->dirty_tx,
 | |
| 					le32_to_cpu(np->tx_ring[entry].cmd_status));
 | |
| 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
 | |
| 			dev->stats.tx_packets++;
 | |
| 			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
 | |
| 		} else { /* Various Tx errors */
 | |
| 			int tx_status =
 | |
| 				le32_to_cpu(np->tx_ring[entry].cmd_status);
 | |
| 			if (tx_status & (DescTxAbort|DescTxExcColl))
 | |
| 				dev->stats.tx_aborted_errors++;
 | |
| 			if (tx_status & DescTxFIFO)
 | |
| 				dev->stats.tx_fifo_errors++;
 | |
| 			if (tx_status & DescTxCarrier)
 | |
| 				dev->stats.tx_carrier_errors++;
 | |
| 			if (tx_status & DescTxOOWCol)
 | |
| 				dev->stats.tx_window_errors++;
 | |
| 			dev->stats.tx_errors++;
 | |
| 		}
 | |
| 		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
 | |
| 					np->tx_skbuff[entry]->len,
 | |
| 					PCI_DMA_TODEVICE);
 | |
| 		/* Free the original skb. */
 | |
| 		dev_kfree_skb_irq(np->tx_skbuff[entry]);
 | |
| 		np->tx_skbuff[entry] = NULL;
 | |
| 	}
 | |
| 	if (netif_queue_stopped(dev) &&
 | |
| 	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
 | |
| 		/* The ring is no longer full, wake queue. */
 | |
| 		netif_wake_queue(dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* The interrupt handler doesn't actually handle interrupts itself, it
 | |
|  * schedules a NAPI poll if there is anything to do. */
 | |
| static irqreturn_t intr_handler(int irq, void *dev_instance)
 | |
| {
 | |
| 	struct net_device *dev = dev_instance;
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	/* Reading IntrStatus automatically acknowledges so don't do
 | |
| 	 * that while interrupts are disabled, (for example, while a
 | |
| 	 * poll is scheduled).  */
 | |
| 	if (np->hands_off || !readl(ioaddr + IntrEnable))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	np->intr_status = readl(ioaddr + IntrStatus);
 | |
| 
 | |
| 	if (!np->intr_status)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (netif_msg_intr(np))
 | |
| 		printk(KERN_DEBUG
 | |
| 		       "%s: Interrupt, status %#08x, mask %#08x.\n",
 | |
| 		       dev->name, np->intr_status,
 | |
| 		       readl(ioaddr + IntrMask));
 | |
| 
 | |
| 	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
 | |
| 
 | |
| 	if (napi_schedule_prep(&np->napi)) {
 | |
| 		/* Disable interrupts and register for poll */
 | |
| 		natsemi_irq_disable(dev);
 | |
| 		__napi_schedule(&np->napi);
 | |
| 	} else
 | |
| 		printk(KERN_WARNING
 | |
| 	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
 | |
| 		       dev->name, np->intr_status,
 | |
| 		       readl(ioaddr + IntrMask));
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* This is the NAPI poll routine.  As well as the standard RX handling
 | |
|  * it also handles all other interrupts that the chip might raise.
 | |
|  */
 | |
| static int natsemi_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
 | |
| 	struct net_device *dev = np->dev;
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	int work_done = 0;
 | |
| 
 | |
| 	do {
 | |
| 		if (netif_msg_intr(np))
 | |
| 			printk(KERN_DEBUG
 | |
| 			       "%s: Poll, status %#08x, mask %#08x.\n",
 | |
| 			       dev->name, np->intr_status,
 | |
| 			       readl(ioaddr + IntrMask));
 | |
| 
 | |
| 		/* netdev_rx() may read IntrStatus again if the RX state
 | |
| 		 * machine falls over so do it first. */
 | |
| 		if (np->intr_status &
 | |
| 		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
 | |
| 		     IntrRxErr | IntrRxOverrun)) {
 | |
| 			netdev_rx(dev, &work_done, budget);
 | |
| 		}
 | |
| 
 | |
| 		if (np->intr_status &
 | |
| 		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
 | |
| 			spin_lock(&np->lock);
 | |
| 			netdev_tx_done(dev);
 | |
| 			spin_unlock(&np->lock);
 | |
| 		}
 | |
| 
 | |
| 		/* Abnormal error summary/uncommon events handlers. */
 | |
| 		if (np->intr_status & IntrAbnormalSummary)
 | |
| 			netdev_error(dev, np->intr_status);
 | |
| 
 | |
| 		if (work_done >= budget)
 | |
| 			return work_done;
 | |
| 
 | |
| 		np->intr_status = readl(ioaddr + IntrStatus);
 | |
| 	} while (np->intr_status);
 | |
| 
 | |
| 	napi_complete(napi);
 | |
| 
 | |
| 	/* Reenable interrupts providing nothing is trying to shut
 | |
| 	 * the chip down. */
 | |
| 	spin_lock(&np->lock);
 | |
| 	if (!np->hands_off)
 | |
| 		natsemi_irq_enable(dev);
 | |
| 	spin_unlock(&np->lock);
 | |
| 
 | |
| 	return work_done;
 | |
| }
 | |
| 
 | |
| /* This routine is logically part of the interrupt handler, but separated
 | |
|    for clarity and better register allocation. */
 | |
| static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int entry = np->cur_rx % RX_RING_SIZE;
 | |
| 	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
 | |
| 	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
 | |
| 	unsigned int buflen = np->rx_buf_sz;
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	/* If the driver owns the next entry it's a new packet. Send it up. */
 | |
| 	while (desc_status < 0) { /* e.g. & DescOwn */
 | |
| 		int pkt_len;
 | |
| 		if (netif_msg_rx_status(np))
 | |
| 			printk(KERN_DEBUG
 | |
| 				"  netdev_rx() entry %d status was %#08x.\n",
 | |
| 				entry, desc_status);
 | |
| 		if (--boguscnt < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (*work_done >= work_to_do)
 | |
| 			break;
 | |
| 
 | |
| 		(*work_done)++;
 | |
| 
 | |
| 		pkt_len = (desc_status & DescSizeMask) - 4;
 | |
| 		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
 | |
| 			if (desc_status & DescMore) {
 | |
| 				unsigned long flags;
 | |
| 
 | |
| 				if (netif_msg_rx_err(np))
 | |
| 					printk(KERN_WARNING
 | |
| 						"%s: Oversized(?) Ethernet "
 | |
| 						"frame spanned multiple "
 | |
| 						"buffers, entry %#08x "
 | |
| 						"status %#08x.\n", dev->name,
 | |
| 						np->cur_rx, desc_status);
 | |
| 				dev->stats.rx_length_errors++;
 | |
| 
 | |
| 				/* The RX state machine has probably
 | |
| 				 * locked up beneath us.  Follow the
 | |
| 				 * reset procedure documented in
 | |
| 				 * AN-1287. */
 | |
| 
 | |
| 				spin_lock_irqsave(&np->lock, flags);
 | |
| 				reset_rx(dev);
 | |
| 				reinit_rx(dev);
 | |
| 				writel(np->ring_dma, ioaddr + RxRingPtr);
 | |
| 				check_link(dev);
 | |
| 				spin_unlock_irqrestore(&np->lock, flags);
 | |
| 
 | |
| 				/* We'll enable RX on exit from this
 | |
| 				 * function. */
 | |
| 				break;
 | |
| 
 | |
| 			} else {
 | |
| 				/* There was an error. */
 | |
| 				dev->stats.rx_errors++;
 | |
| 				if (desc_status & (DescRxAbort|DescRxOver))
 | |
| 					dev->stats.rx_over_errors++;
 | |
| 				if (desc_status & (DescRxLong|DescRxRunt))
 | |
| 					dev->stats.rx_length_errors++;
 | |
| 				if (desc_status & (DescRxInvalid|DescRxAlign))
 | |
| 					dev->stats.rx_frame_errors++;
 | |
| 				if (desc_status & DescRxCRC)
 | |
| 					dev->stats.rx_crc_errors++;
 | |
| 			}
 | |
| 		} else if (pkt_len > np->rx_buf_sz) {
 | |
| 			/* if this is the tail of a double buffer
 | |
| 			 * packet, we've already counted the error
 | |
| 			 * on the first part.  Ignore the second half.
 | |
| 			 */
 | |
| 		} else {
 | |
| 			struct sk_buff *skb;
 | |
| 			/* Omit CRC size. */
 | |
| 			/* Check if the packet is long enough to accept
 | |
| 			 * without copying to a minimally-sized skbuff. */
 | |
| 			if (pkt_len < rx_copybreak &&
 | |
| 			    (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
 | |
| 				/* 16 byte align the IP header */
 | |
| 				skb_reserve(skb, RX_OFFSET);
 | |
| 				pci_dma_sync_single_for_cpu(np->pci_dev,
 | |
| 					np->rx_dma[entry],
 | |
| 					buflen,
 | |
| 					PCI_DMA_FROMDEVICE);
 | |
| 				skb_copy_to_linear_data(skb,
 | |
| 					np->rx_skbuff[entry]->data, pkt_len);
 | |
| 				skb_put(skb, pkt_len);
 | |
| 				pci_dma_sync_single_for_device(np->pci_dev,
 | |
| 					np->rx_dma[entry],
 | |
| 					buflen,
 | |
| 					PCI_DMA_FROMDEVICE);
 | |
| 			} else {
 | |
| 				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
 | |
| 					buflen, PCI_DMA_FROMDEVICE);
 | |
| 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
 | |
| 				np->rx_skbuff[entry] = NULL;
 | |
| 			}
 | |
| 			skb->protocol = eth_type_trans(skb, dev);
 | |
| 			netif_receive_skb(skb);
 | |
| 			dev->stats.rx_packets++;
 | |
| 			dev->stats.rx_bytes += pkt_len;
 | |
| 		}
 | |
| 		entry = (++np->cur_rx) % RX_RING_SIZE;
 | |
| 		np->rx_head_desc = &np->rx_ring[entry];
 | |
| 		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
 | |
| 	}
 | |
| 	refill_rx(dev);
 | |
| 
 | |
| 	/* Restart Rx engine if stopped. */
 | |
| 	if (np->oom)
 | |
| 		mod_timer(&np->timer, jiffies + 1);
 | |
| 	else
 | |
| 		writel(RxOn, ioaddr + ChipCmd);
 | |
| }
 | |
| 
 | |
| static void netdev_error(struct net_device *dev, int intr_status)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	spin_lock(&np->lock);
 | |
| 	if (intr_status & LinkChange) {
 | |
| 		u16 lpa = mdio_read(dev, MII_LPA);
 | |
| 		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
 | |
| 		    netif_msg_link(np)) {
 | |
| 			printk(KERN_INFO
 | |
| 				"%s: Autonegotiation advertising"
 | |
| 				" %#04x  partner %#04x.\n", dev->name,
 | |
| 				np->advertising, lpa);
 | |
| 		}
 | |
| 
 | |
| 		/* read MII int status to clear the flag */
 | |
| 		readw(ioaddr + MIntrStatus);
 | |
| 		check_link(dev);
 | |
| 	}
 | |
| 	if (intr_status & StatsMax) {
 | |
| 		__get_stats(dev);
 | |
| 	}
 | |
| 	if (intr_status & IntrTxUnderrun) {
 | |
| 		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
 | |
| 			np->tx_config += TX_DRTH_VAL_INC;
 | |
| 			if (netif_msg_tx_err(np))
 | |
| 				printk(KERN_NOTICE
 | |
| 					"%s: increased tx threshold, txcfg %#08x.\n",
 | |
| 					dev->name, np->tx_config);
 | |
| 		} else {
 | |
| 			if (netif_msg_tx_err(np))
 | |
| 				printk(KERN_NOTICE
 | |
| 					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
 | |
| 					dev->name, np->tx_config);
 | |
| 		}
 | |
| 		writel(np->tx_config, ioaddr + TxConfig);
 | |
| 	}
 | |
| 	if (intr_status & WOLPkt && netif_msg_wol(np)) {
 | |
| 		int wol_status = readl(ioaddr + WOLCmd);
 | |
| 		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
 | |
| 			dev->name, wol_status);
 | |
| 	}
 | |
| 	if (intr_status & RxStatusFIFOOver) {
 | |
| 		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
 | |
| 			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
 | |
| 				dev->name);
 | |
| 		}
 | |
| 		dev->stats.rx_fifo_errors++;
 | |
| 		dev->stats.rx_errors++;
 | |
| 	}
 | |
| 	/* Hmmmmm, it's not clear how to recover from PCI faults. */
 | |
| 	if (intr_status & IntrPCIErr) {
 | |
| 		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
 | |
| 			intr_status & IntrPCIErr);
 | |
| 		dev->stats.tx_fifo_errors++;
 | |
| 		dev->stats.tx_errors++;
 | |
| 		dev->stats.rx_fifo_errors++;
 | |
| 		dev->stats.rx_errors++;
 | |
| 	}
 | |
| 	spin_unlock(&np->lock);
 | |
| }
 | |
| 
 | |
| static void __get_stats(struct net_device *dev)
 | |
| {
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	/* The chip only need report frame silently dropped. */
 | |
| 	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
 | |
| 	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
 | |
| }
 | |
| 
 | |
| static struct net_device_stats *get_stats(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	/* The chip only need report frame silently dropped. */
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	if (netif_running(dev) && !np->hands_off)
 | |
| 		__get_stats(dev);
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| 
 | |
| 	return &dev->stats;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| static void natsemi_poll_controller(struct net_device *dev)
 | |
| {
 | |
| 	disable_irq(dev->irq);
 | |
| 	intr_handler(dev->irq, dev);
 | |
| 	enable_irq(dev->irq);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define HASH_TABLE	0x200
 | |
| static void __set_rx_mode(struct net_device *dev)
 | |
| {
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	u8 mc_filter[64]; /* Multicast hash filter */
 | |
| 	u32 rx_mode;
 | |
| 
 | |
| 	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
 | |
| 		rx_mode = RxFilterEnable | AcceptBroadcast
 | |
| 			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
 | |
| 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
 | |
| 		   (dev->flags & IFF_ALLMULTI)) {
 | |
| 		rx_mode = RxFilterEnable | AcceptBroadcast
 | |
| 			| AcceptAllMulticast | AcceptMyPhys;
 | |
| 	} else {
 | |
| 		struct netdev_hw_addr *ha;
 | |
| 		int i;
 | |
| 
 | |
| 		memset(mc_filter, 0, sizeof(mc_filter));
 | |
| 		netdev_for_each_mc_addr(ha, dev) {
 | |
| 			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
 | |
| 			mc_filter[b/8] |= (1 << (b & 0x07));
 | |
| 		}
 | |
| 		rx_mode = RxFilterEnable | AcceptBroadcast
 | |
| 			| AcceptMulticast | AcceptMyPhys;
 | |
| 		for (i = 0; i < 64; i += 2) {
 | |
| 			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
 | |
| 			writel((mc_filter[i + 1] << 8) + mc_filter[i],
 | |
| 			       ioaddr + RxFilterData);
 | |
| 		}
 | |
| 	}
 | |
| 	writel(rx_mode, ioaddr + RxFilterAddr);
 | |
| 	np->cur_rx_mode = rx_mode;
 | |
| }
 | |
| 
 | |
| static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
 | |
| {
 | |
| 	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dev->mtu = new_mtu;
 | |
| 
 | |
| 	/* synchronized against open : rtnl_lock() held by caller */
 | |
| 	if (netif_running(dev)) {
 | |
| 		struct netdev_private *np = netdev_priv(dev);
 | |
| 		void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 		disable_irq(dev->irq);
 | |
| 		spin_lock(&np->lock);
 | |
| 		/* stop engines */
 | |
| 		natsemi_stop_rxtx(dev);
 | |
| 		/* drain rx queue */
 | |
| 		drain_rx(dev);
 | |
| 		/* change buffers */
 | |
| 		set_bufsize(dev);
 | |
| 		reinit_rx(dev);
 | |
| 		writel(np->ring_dma, ioaddr + RxRingPtr);
 | |
| 		/* restart engines */
 | |
| 		writel(RxOn | TxOn, ioaddr + ChipCmd);
 | |
| 		spin_unlock(&np->lock);
 | |
| 		enable_irq(dev->irq);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void set_rx_mode(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	if (!np->hands_off)
 | |
| 		__set_rx_mode(dev);
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| }
 | |
| 
 | |
| static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
 | |
| 	strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
 | |
| 	strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
 | |
| }
 | |
| 
 | |
| static int get_regs_len(struct net_device *dev)
 | |
| {
 | |
| 	return NATSEMI_REGS_SIZE;
 | |
| }
 | |
| 
 | |
| static int get_eeprom_len(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	return np->eeprom_size;
 | |
| }
 | |
| 
 | |
| static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	netdev_get_ecmd(dev, ecmd);
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int res;
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	res = netdev_set_ecmd(dev, ecmd);
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
 | |
| 	netdev_get_sopass(dev, wol->sopass);
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| }
 | |
| 
 | |
| static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int res;
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	netdev_set_wol(dev, wol->wolopts);
 | |
| 	res = netdev_set_sopass(dev, wol->sopass);
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	regs->version = NATSEMI_REGS_VER;
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	netdev_get_regs(dev, buf);
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| }
 | |
| 
 | |
| static u32 get_msglevel(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	return np->msg_enable;
 | |
| }
 | |
| 
 | |
| static void set_msglevel(struct net_device *dev, u32 val)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	np->msg_enable = val;
 | |
| }
 | |
| 
 | |
| static int nway_reset(struct net_device *dev)
 | |
| {
 | |
| 	int tmp;
 | |
| 	int r = -EINVAL;
 | |
| 	/* if autoneg is off, it's an error */
 | |
| 	tmp = mdio_read(dev, MII_BMCR);
 | |
| 	if (tmp & BMCR_ANENABLE) {
 | |
| 		tmp |= (BMCR_ANRESTART);
 | |
| 		mdio_write(dev, MII_BMCR, tmp);
 | |
| 		r = 0;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static u32 get_link(struct net_device *dev)
 | |
| {
 | |
| 	/* LSTATUS is latched low until a read - so read twice */
 | |
| 	mdio_read(dev, MII_BMSR);
 | |
| 	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
 | |
| }
 | |
| 
 | |
| static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	u8 *eebuf;
 | |
| 	int res;
 | |
| 
 | |
| 	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
 | |
| 	if (!eebuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	res = netdev_get_eeprom(dev, eebuf);
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| 	if (!res)
 | |
| 		memcpy(data, eebuf+eeprom->offset, eeprom->len);
 | |
| 	kfree(eebuf);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static const struct ethtool_ops ethtool_ops = {
 | |
| 	.get_drvinfo = get_drvinfo,
 | |
| 	.get_regs_len = get_regs_len,
 | |
| 	.get_eeprom_len = get_eeprom_len,
 | |
| 	.get_settings = get_settings,
 | |
| 	.set_settings = set_settings,
 | |
| 	.get_wol = get_wol,
 | |
| 	.set_wol = set_wol,
 | |
| 	.get_regs = get_regs,
 | |
| 	.get_msglevel = get_msglevel,
 | |
| 	.set_msglevel = set_msglevel,
 | |
| 	.nway_reset = nway_reset,
 | |
| 	.get_link = get_link,
 | |
| 	.get_eeprom = get_eeprom,
 | |
| };
 | |
| 
 | |
| static int netdev_set_wol(struct net_device *dev, u32 newval)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
 | |
| 
 | |
| 	/* translate to bitmasks this chip understands */
 | |
| 	if (newval & WAKE_PHY)
 | |
| 		data |= WakePhy;
 | |
| 	if (newval & WAKE_UCAST)
 | |
| 		data |= WakeUnicast;
 | |
| 	if (newval & WAKE_MCAST)
 | |
| 		data |= WakeMulticast;
 | |
| 	if (newval & WAKE_BCAST)
 | |
| 		data |= WakeBroadcast;
 | |
| 	if (newval & WAKE_ARP)
 | |
| 		data |= WakeArp;
 | |
| 	if (newval & WAKE_MAGIC)
 | |
| 		data |= WakeMagic;
 | |
| 	if (np->srr >= SRR_DP83815_D) {
 | |
| 		if (newval & WAKE_MAGICSECURE) {
 | |
| 			data |= WakeMagicSecure;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	writel(data, ioaddr + WOLCmd);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	u32 regval = readl(ioaddr + WOLCmd);
 | |
| 
 | |
| 	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
 | |
| 			| WAKE_ARP | WAKE_MAGIC);
 | |
| 
 | |
| 	if (np->srr >= SRR_DP83815_D) {
 | |
| 		/* SOPASS works on revD and higher */
 | |
| 		*supported |= WAKE_MAGICSECURE;
 | |
| 	}
 | |
| 	*cur = 0;
 | |
| 
 | |
| 	/* translate from chip bitmasks */
 | |
| 	if (regval & WakePhy)
 | |
| 		*cur |= WAKE_PHY;
 | |
| 	if (regval & WakeUnicast)
 | |
| 		*cur |= WAKE_UCAST;
 | |
| 	if (regval & WakeMulticast)
 | |
| 		*cur |= WAKE_MCAST;
 | |
| 	if (regval & WakeBroadcast)
 | |
| 		*cur |= WAKE_BCAST;
 | |
| 	if (regval & WakeArp)
 | |
| 		*cur |= WAKE_ARP;
 | |
| 	if (regval & WakeMagic)
 | |
| 		*cur |= WAKE_MAGIC;
 | |
| 	if (regval & WakeMagicSecure) {
 | |
| 		/* this can be on in revC, but it's broken */
 | |
| 		*cur |= WAKE_MAGICSECURE;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int netdev_set_sopass(struct net_device *dev, u8 *newval)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	u16 *sval = (u16 *)newval;
 | |
| 	u32 addr;
 | |
| 
 | |
| 	if (np->srr < SRR_DP83815_D) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* enable writing to these registers by disabling the RX filter */
 | |
| 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
 | |
| 	addr &= ~RxFilterEnable;
 | |
| 	writel(addr, ioaddr + RxFilterAddr);
 | |
| 
 | |
| 	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
 | |
| 	writel(addr | 0xa, ioaddr + RxFilterAddr);
 | |
| 	writew(sval[0], ioaddr + RxFilterData);
 | |
| 
 | |
| 	writel(addr | 0xc, ioaddr + RxFilterAddr);
 | |
| 	writew(sval[1], ioaddr + RxFilterData);
 | |
| 
 | |
| 	writel(addr | 0xe, ioaddr + RxFilterAddr);
 | |
| 	writew(sval[2], ioaddr + RxFilterData);
 | |
| 
 | |
| 	/* re-enable the RX filter */
 | |
| 	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int netdev_get_sopass(struct net_device *dev, u8 *data)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	u16 *sval = (u16 *)data;
 | |
| 	u32 addr;
 | |
| 
 | |
| 	if (np->srr < SRR_DP83815_D) {
 | |
| 		sval[0] = sval[1] = sval[2] = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
 | |
| 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
 | |
| 
 | |
| 	writel(addr | 0xa, ioaddr + RxFilterAddr);
 | |
| 	sval[0] = readw(ioaddr + RxFilterData);
 | |
| 
 | |
| 	writel(addr | 0xc, ioaddr + RxFilterAddr);
 | |
| 	sval[1] = readw(ioaddr + RxFilterData);
 | |
| 
 | |
| 	writel(addr | 0xe, ioaddr + RxFilterAddr);
 | |
| 	sval[2] = readw(ioaddr + RxFilterData);
 | |
| 
 | |
| 	writel(addr, ioaddr + RxFilterAddr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	ecmd->port        = dev->if_port;
 | |
| 	ecmd->speed       = np->speed;
 | |
| 	ecmd->duplex      = np->duplex;
 | |
| 	ecmd->autoneg     = np->autoneg;
 | |
| 	ecmd->advertising = 0;
 | |
| 	if (np->advertising & ADVERTISE_10HALF)
 | |
| 		ecmd->advertising |= ADVERTISED_10baseT_Half;
 | |
| 	if (np->advertising & ADVERTISE_10FULL)
 | |
| 		ecmd->advertising |= ADVERTISED_10baseT_Full;
 | |
| 	if (np->advertising & ADVERTISE_100HALF)
 | |
| 		ecmd->advertising |= ADVERTISED_100baseT_Half;
 | |
| 	if (np->advertising & ADVERTISE_100FULL)
 | |
| 		ecmd->advertising |= ADVERTISED_100baseT_Full;
 | |
| 	ecmd->supported   = (SUPPORTED_Autoneg |
 | |
| 		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
 | |
| 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
 | |
| 		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
 | |
| 	ecmd->phy_address = np->phy_addr_external;
 | |
| 	/*
 | |
| 	 * We intentionally report the phy address of the external
 | |
| 	 * phy, even if the internal phy is used. This is necessary
 | |
| 	 * to work around a deficiency of the ethtool interface:
 | |
| 	 * It's only possible to query the settings of the active
 | |
| 	 * port. Therefore
 | |
| 	 * # ethtool -s ethX port mii
 | |
| 	 * actually sends an ioctl to switch to port mii with the
 | |
| 	 * settings that are used for the current active port.
 | |
| 	 * If we would report a different phy address in this
 | |
| 	 * command, then
 | |
| 	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
 | |
| 	 * would unintentionally change the phy address.
 | |
| 	 *
 | |
| 	 * Fortunately the phy address doesn't matter with the
 | |
| 	 * internal phy...
 | |
| 	 */
 | |
| 
 | |
| 	/* set information based on active port type */
 | |
| 	switch (ecmd->port) {
 | |
| 	default:
 | |
| 	case PORT_TP:
 | |
| 		ecmd->advertising |= ADVERTISED_TP;
 | |
| 		ecmd->transceiver = XCVR_INTERNAL;
 | |
| 		break;
 | |
| 	case PORT_MII:
 | |
| 		ecmd->advertising |= ADVERTISED_MII;
 | |
| 		ecmd->transceiver = XCVR_EXTERNAL;
 | |
| 		break;
 | |
| 	case PORT_FIBRE:
 | |
| 		ecmd->advertising |= ADVERTISED_FIBRE;
 | |
| 		ecmd->transceiver = XCVR_EXTERNAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* if autonegotiation is on, try to return the active speed/duplex */
 | |
| 	if (ecmd->autoneg == AUTONEG_ENABLE) {
 | |
| 		ecmd->advertising |= ADVERTISED_Autoneg;
 | |
| 		tmp = mii_nway_result(
 | |
| 			np->advertising & mdio_read(dev, MII_LPA));
 | |
| 		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
 | |
| 			ecmd->speed  = SPEED_100;
 | |
| 		else
 | |
| 			ecmd->speed  = SPEED_10;
 | |
| 		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
 | |
| 			ecmd->duplex = DUPLEX_FULL;
 | |
| 		else
 | |
| 			ecmd->duplex = DUPLEX_HALF;
 | |
| 	}
 | |
| 
 | |
| 	/* ignore maxtxpkt, maxrxpkt for now */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
 | |
| 		return -EINVAL;
 | |
| 	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
 | |
| 		return -EINVAL;
 | |
| 	if (ecmd->autoneg == AUTONEG_ENABLE) {
 | |
| 		if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
 | |
| 					  ADVERTISED_10baseT_Full |
 | |
| 					  ADVERTISED_100baseT_Half |
 | |
| 					  ADVERTISED_100baseT_Full)) == 0) {
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
 | |
| 		if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
 | |
| 			return -EINVAL;
 | |
| 		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're ignoring the PHY then autoneg and the internal
 | |
| 	 * transciever are really not going to work so don't let the
 | |
| 	 * user select them.
 | |
| 	 */
 | |
| 	if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
 | |
| 			       ecmd->port == PORT_TP))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * maxtxpkt, maxrxpkt: ignored for now.
 | |
| 	 *
 | |
| 	 * transceiver:
 | |
| 	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
 | |
| 	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
 | |
| 	 * selects based on ecmd->port.
 | |
| 	 *
 | |
| 	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
 | |
| 	 * phys that are connected to the mii bus. It's used to apply fibre
 | |
| 	 * specific updates.
 | |
| 	 */
 | |
| 
 | |
| 	/* WHEW! now lets bang some bits */
 | |
| 
 | |
| 	/* save the parms */
 | |
| 	dev->if_port          = ecmd->port;
 | |
| 	np->autoneg           = ecmd->autoneg;
 | |
| 	np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
 | |
| 	if (np->autoneg == AUTONEG_ENABLE) {
 | |
| 		/* advertise only what has been requested */
 | |
| 		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 | |
| 		if (ecmd->advertising & ADVERTISED_10baseT_Half)
 | |
| 			np->advertising |= ADVERTISE_10HALF;
 | |
| 		if (ecmd->advertising & ADVERTISED_10baseT_Full)
 | |
| 			np->advertising |= ADVERTISE_10FULL;
 | |
| 		if (ecmd->advertising & ADVERTISED_100baseT_Half)
 | |
| 			np->advertising |= ADVERTISE_100HALF;
 | |
| 		if (ecmd->advertising & ADVERTISED_100baseT_Full)
 | |
| 			np->advertising |= ADVERTISE_100FULL;
 | |
| 	} else {
 | |
| 		np->speed  = ecmd->speed;
 | |
| 		np->duplex = ecmd->duplex;
 | |
| 		/* user overriding the initial full duplex parm? */
 | |
| 		if (np->duplex == DUPLEX_HALF)
 | |
| 			np->full_duplex = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* get the right phy enabled */
 | |
| 	if (ecmd->port == PORT_TP)
 | |
| 		switch_port_internal(dev);
 | |
| 	else
 | |
| 		switch_port_external(dev);
 | |
| 
 | |
| 	/* set parms and see how this affected our link status */
 | |
| 	init_phy_fixup(dev);
 | |
| 	check_link(dev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int netdev_get_regs(struct net_device *dev, u8 *buf)
 | |
| {
 | |
| 	int i;
 | |
| 	int j;
 | |
| 	u32 rfcr;
 | |
| 	u32 *rbuf = (u32 *)buf;
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	/* read non-mii page 0 of registers */
 | |
| 	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
 | |
| 		rbuf[i] = readl(ioaddr + i*4);
 | |
| 	}
 | |
| 
 | |
| 	/* read current mii registers */
 | |
| 	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
 | |
| 		rbuf[i] = mdio_read(dev, i & 0x1f);
 | |
| 
 | |
| 	/* read only the 'magic' registers from page 1 */
 | |
| 	writew(1, ioaddr + PGSEL);
 | |
| 	rbuf[i++] = readw(ioaddr + PMDCSR);
 | |
| 	rbuf[i++] = readw(ioaddr + TSTDAT);
 | |
| 	rbuf[i++] = readw(ioaddr + DSPCFG);
 | |
| 	rbuf[i++] = readw(ioaddr + SDCFG);
 | |
| 	writew(0, ioaddr + PGSEL);
 | |
| 
 | |
| 	/* read RFCR indexed registers */
 | |
| 	rfcr = readl(ioaddr + RxFilterAddr);
 | |
| 	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
 | |
| 		writel(j*2, ioaddr + RxFilterAddr);
 | |
| 		rbuf[i++] = readw(ioaddr + RxFilterData);
 | |
| 	}
 | |
| 	writel(rfcr, ioaddr + RxFilterAddr);
 | |
| 
 | |
| 	/* the interrupt status is clear-on-read - see if we missed any */
 | |
| 	if (rbuf[4] & rbuf[5]) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"%s: shoot, we dropped an interrupt (%#08x)\n",
 | |
| 			dev->name, rbuf[4] & rbuf[5]);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
 | |
| 			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
 | |
| 			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
 | |
| 			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
 | |
| 			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
 | |
| 			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
 | |
| 			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
 | |
| 			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
 | |
| 
 | |
| static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
 | |
| {
 | |
| 	int i;
 | |
| 	u16 *ebuf = (u16 *)buf;
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	/* eeprom_read reads 16 bits, and indexes by 16 bits */
 | |
| 	for (i = 0; i < np->eeprom_size/2; i++) {
 | |
| 		ebuf[i] = eeprom_read(ioaddr, i);
 | |
| 		/* The EEPROM itself stores data bit-swapped, but eeprom_read
 | |
| 		 * reads it back "sanely". So we swap it back here in order to
 | |
| 		 * present it to userland as it is stored. */
 | |
| 		ebuf[i] = SWAP_BITS(ebuf[i]);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 | |
| {
 | |
| 	struct mii_ioctl_data *data = if_mii(rq);
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	switch(cmd) {
 | |
| 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
 | |
| 		data->phy_id = np->phy_addr_external;
 | |
| 		/* Fall Through */
 | |
| 
 | |
| 	case SIOCGMIIREG:		/* Read MII PHY register. */
 | |
| 		/* The phy_id is not enough to uniquely identify
 | |
| 		 * the intended target. Therefore the command is sent to
 | |
| 		 * the given mii on the current port.
 | |
| 		 */
 | |
| 		if (dev->if_port == PORT_TP) {
 | |
| 			if ((data->phy_id & 0x1f) == np->phy_addr_external)
 | |
| 				data->val_out = mdio_read(dev,
 | |
| 							data->reg_num & 0x1f);
 | |
| 			else
 | |
| 				data->val_out = 0;
 | |
| 		} else {
 | |
| 			move_int_phy(dev, data->phy_id & 0x1f);
 | |
| 			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
 | |
| 							data->reg_num & 0x1f);
 | |
| 		}
 | |
| 		return 0;
 | |
| 
 | |
| 	case SIOCSMIIREG:		/* Write MII PHY register. */
 | |
| 		if (dev->if_port == PORT_TP) {
 | |
| 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
 | |
|  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
 | |
| 					np->advertising = data->val_in;
 | |
| 				mdio_write(dev, data->reg_num & 0x1f,
 | |
| 							data->val_in);
 | |
| 			}
 | |
| 		} else {
 | |
| 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
 | |
|  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
 | |
| 					np->advertising = data->val_in;
 | |
| 			}
 | |
| 			move_int_phy(dev, data->phy_id & 0x1f);
 | |
| 			miiport_write(dev, data->phy_id & 0x1f,
 | |
| 						data->reg_num & 0x1f,
 | |
| 						data->val_in);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void enable_wol_mode(struct net_device *dev, int enable_intr)
 | |
| {
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	if (netif_msg_wol(np))
 | |
| 		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
 | |
| 			dev->name);
 | |
| 
 | |
| 	/* For WOL we must restart the rx process in silent mode.
 | |
| 	 * Write NULL to the RxRingPtr. Only possible if
 | |
| 	 * rx process is stopped
 | |
| 	 */
 | |
| 	writel(0, ioaddr + RxRingPtr);
 | |
| 
 | |
| 	/* read WoL status to clear */
 | |
| 	readl(ioaddr + WOLCmd);
 | |
| 
 | |
| 	/* PME on, clear status */
 | |
| 	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
 | |
| 
 | |
| 	/* and restart the rx process */
 | |
| 	writel(RxOn, ioaddr + ChipCmd);
 | |
| 
 | |
| 	if (enable_intr) {
 | |
| 		/* enable the WOL interrupt.
 | |
| 		 * Could be used to send a netlink message.
 | |
| 		 */
 | |
| 		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
 | |
| 		natsemi_irq_enable(dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int netdev_close(struct net_device *dev)
 | |
| {
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	if (netif_msg_ifdown(np))
 | |
| 		printk(KERN_DEBUG
 | |
| 			"%s: Shutting down ethercard, status was %#04x.\n",
 | |
| 			dev->name, (int)readl(ioaddr + ChipCmd));
 | |
| 	if (netif_msg_pktdata(np))
 | |
| 		printk(KERN_DEBUG
 | |
| 			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
 | |
| 			dev->name, np->cur_tx, np->dirty_tx,
 | |
| 			np->cur_rx, np->dirty_rx);
 | |
| 
 | |
| 	napi_disable(&np->napi);
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: what if someone tries to close a device
 | |
| 	 * that is suspended?
 | |
| 	 * Should we reenable the nic to switch to
 | |
| 	 * the final WOL settings?
 | |
| 	 */
 | |
| 
 | |
| 	del_timer_sync(&np->timer);
 | |
| 	disable_irq(dev->irq);
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	natsemi_irq_disable(dev);
 | |
| 	np->hands_off = 1;
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| 	enable_irq(dev->irq);
 | |
| 
 | |
| 	free_irq(dev->irq, dev);
 | |
| 
 | |
| 	/* Interrupt disabled, interrupt handler released,
 | |
| 	 * queue stopped, timer deleted, rtnl_lock held
 | |
| 	 * All async codepaths that access the driver are disabled.
 | |
| 	 */
 | |
| 	spin_lock_irq(&np->lock);
 | |
| 	np->hands_off = 0;
 | |
| 	readl(ioaddr + IntrMask);
 | |
| 	readw(ioaddr + MIntrStatus);
 | |
| 
 | |
| 	/* Freeze Stats */
 | |
| 	writel(StatsFreeze, ioaddr + StatsCtrl);
 | |
| 
 | |
| 	/* Stop the chip's Tx and Rx processes. */
 | |
| 	natsemi_stop_rxtx(dev);
 | |
| 
 | |
| 	__get_stats(dev);
 | |
| 	spin_unlock_irq(&np->lock);
 | |
| 
 | |
| 	/* clear the carrier last - an interrupt could reenable it otherwise */
 | |
| 	netif_carrier_off(dev);
 | |
| 	netif_stop_queue(dev);
 | |
| 
 | |
| 	dump_ring(dev);
 | |
| 	drain_ring(dev);
 | |
| 	free_ring(dev);
 | |
| 
 | |
| 	{
 | |
| 		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
 | |
| 		if (wol) {
 | |
| 			/* restart the NIC in WOL mode.
 | |
| 			 * The nic must be stopped for this.
 | |
| 			 */
 | |
| 			enable_wol_mode(dev, 0);
 | |
| 		} else {
 | |
| 			/* Restore PME enable bit unmolested */
 | |
| 			writel(np->SavedClkRun, ioaddr + ClkRun);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __devexit natsemi_remove1 (struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
 | |
| 	unregister_netdev (dev);
 | |
| 	pci_release_regions (pdev);
 | |
| 	iounmap(ioaddr);
 | |
| 	free_netdev (dev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| 
 | |
| /*
 | |
|  * The ns83815 chip doesn't have explicit RxStop bits.
 | |
|  * Kicking the Rx or Tx process for a new packet reenables the Rx process
 | |
|  * of the nic, thus this function must be very careful:
 | |
|  *
 | |
|  * suspend/resume synchronization:
 | |
|  * entry points:
 | |
|  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
 | |
|  *   start_tx, ns_tx_timeout
 | |
|  *
 | |
|  * No function accesses the hardware without checking np->hands_off.
 | |
|  *	the check occurs under spin_lock_irq(&np->lock);
 | |
|  * exceptions:
 | |
|  *	* netdev_ioctl: noncritical access.
 | |
|  *	* netdev_open: cannot happen due to the device_detach
 | |
|  *	* netdev_close: doesn't hurt.
 | |
|  *	* netdev_timer: timer stopped by natsemi_suspend.
 | |
|  *	* intr_handler: doesn't acquire the spinlock. suspend calls
 | |
|  *		disable_irq() to enforce synchronization.
 | |
|  *      * natsemi_poll: checks before reenabling interrupts.  suspend
 | |
|  *              sets hands_off, disables interrupts and then waits with
 | |
|  *              napi_disable().
 | |
|  *
 | |
|  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
 | |
|  */
 | |
| 
 | |
| static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata (pdev);
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem * ioaddr = ns_ioaddr(dev);
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	if (netif_running (dev)) {
 | |
| 		del_timer_sync(&np->timer);
 | |
| 
 | |
| 		disable_irq(dev->irq);
 | |
| 		spin_lock_irq(&np->lock);
 | |
| 
 | |
| 		natsemi_irq_disable(dev);
 | |
| 		np->hands_off = 1;
 | |
| 		natsemi_stop_rxtx(dev);
 | |
| 		netif_stop_queue(dev);
 | |
| 
 | |
| 		spin_unlock_irq(&np->lock);
 | |
| 		enable_irq(dev->irq);
 | |
| 
 | |
| 		napi_disable(&np->napi);
 | |
| 
 | |
| 		/* Update the error counts. */
 | |
| 		__get_stats(dev);
 | |
| 
 | |
| 		/* pci_power_off(pdev, -1); */
 | |
| 		drain_ring(dev);
 | |
| 		{
 | |
| 			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
 | |
| 			/* Restore PME enable bit */
 | |
| 			if (wol) {
 | |
| 				/* restart the NIC in WOL mode.
 | |
| 				 * The nic must be stopped for this.
 | |
| 				 * FIXME: use the WOL interrupt
 | |
| 				 */
 | |
| 				enable_wol_mode(dev, 0);
 | |
| 			} else {
 | |
| 				/* Restore PME enable bit unmolested */
 | |
| 				writel(np->SavedClkRun, ioaddr + ClkRun);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	netif_device_detach(dev);
 | |
| 	rtnl_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int natsemi_resume (struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata (pdev);
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	if (netif_device_present(dev))
 | |
| 		goto out;
 | |
| 	if (netif_running(dev)) {
 | |
| 		BUG_ON(!np->hands_off);
 | |
| 		ret = pci_enable_device(pdev);
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"pci_enable_device() failed: %d\n", ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	/*	pci_power_on(pdev); */
 | |
| 
 | |
| 		napi_enable(&np->napi);
 | |
| 
 | |
| 		natsemi_reset(dev);
 | |
| 		init_ring(dev);
 | |
| 		disable_irq(dev->irq);
 | |
| 		spin_lock_irq(&np->lock);
 | |
| 		np->hands_off = 0;
 | |
| 		init_registers(dev);
 | |
| 		netif_device_attach(dev);
 | |
| 		spin_unlock_irq(&np->lock);
 | |
| 		enable_irq(dev->irq);
 | |
| 
 | |
| 		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
 | |
| 	}
 | |
| 	netif_device_attach(dev);
 | |
| out:
 | |
| 	rtnl_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| static struct pci_driver natsemi_driver = {
 | |
| 	.name		= DRV_NAME,
 | |
| 	.id_table	= natsemi_pci_tbl,
 | |
| 	.probe		= natsemi_probe1,
 | |
| 	.remove		= __devexit_p(natsemi_remove1),
 | |
| #ifdef CONFIG_PM
 | |
| 	.suspend	= natsemi_suspend,
 | |
| 	.resume		= natsemi_resume,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int __init natsemi_init_mod (void)
 | |
| {
 | |
| /* when a module, this is printed whether or not devices are found in probe */
 | |
| #ifdef MODULE
 | |
| 	printk(version);
 | |
| #endif
 | |
| 
 | |
| 	return pci_register_driver(&natsemi_driver);
 | |
| }
 | |
| 
 | |
| static void __exit natsemi_exit_mod (void)
 | |
| {
 | |
| 	pci_unregister_driver (&natsemi_driver);
 | |
| }
 | |
| 
 | |
| module_init(natsemi_init_mod);
 | |
| module_exit(natsemi_exit_mod);
 | |
| 
 |