mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 14:06:03 +00:00 
			
		
		
		
	 9de6d99a75
			
		
	
	
		9de6d99a75
		
	
	
	
	
		
			
			-m486, -O6 are partircularly amusing. Remove some other useless lines near as well. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1716 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1716 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
 | |
|  *
 | |
|  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
 | |
|  *
 | |
|  * Thanks to Essential Communication for providing us with hardware
 | |
|  * and very comprehensive documentation without which I would not have
 | |
|  * been able to write this driver. A special thank you to John Gibbon
 | |
|  * for sorting out the legal issues, with the NDA, allowing the code to
 | |
|  * be released under the GPL.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
 | |
|  * stupid bugs in my code.
 | |
|  *
 | |
|  * Softnet support and various other patches from Val Henson of
 | |
|  * ODS/Essential.
 | |
|  *
 | |
|  * PCI DMA mapping code partly based on work by Francois Romieu.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #define DEBUG 1
 | |
| #define RX_DMA_SKBUFF 1
 | |
| #define PKT_COPY_THRESHOLD 512
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/hippidevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/mm.h>
 | |
| #include <net/sock.h>
 | |
| 
 | |
| #include <asm/system.h>
 | |
| #include <asm/cache.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| #define rr_if_busy(dev)     netif_queue_stopped(dev)
 | |
| #define rr_if_running(dev)  netif_running(dev)
 | |
| 
 | |
| #include "rrunner.h"
 | |
| 
 | |
| #define RUN_AT(x) (jiffies + (x))
 | |
| 
 | |
| 
 | |
| MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
 | |
| MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
 | |
| 
 | |
| 
 | |
| static const struct net_device_ops rr_netdev_ops = {
 | |
| 	.ndo_open 		= rr_open,
 | |
| 	.ndo_stop		= rr_close,
 | |
| 	.ndo_do_ioctl		= rr_ioctl,
 | |
| 	.ndo_start_xmit		= rr_start_xmit,
 | |
| 	.ndo_change_mtu		= hippi_change_mtu,
 | |
| 	.ndo_set_mac_address	= hippi_mac_addr,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Implementation notes:
 | |
|  *
 | |
|  * The DMA engine only allows for DMA within physical 64KB chunks of
 | |
|  * memory. The current approach of the driver (and stack) is to use
 | |
|  * linear blocks of memory for the skbuffs. However, as the data block
 | |
|  * is always the first part of the skb and skbs are 2^n aligned so we
 | |
|  * are guarantted to get the whole block within one 64KB align 64KB
 | |
|  * chunk.
 | |
|  *
 | |
|  * On the long term, relying on being able to allocate 64KB linear
 | |
|  * chunks of memory is not feasible and the skb handling code and the
 | |
|  * stack will need to know about I/O vectors or something similar.
 | |
|  */
 | |
| 
 | |
| static int __devinit rr_init_one(struct pci_dev *pdev,
 | |
| 	const struct pci_device_id *ent)
 | |
| {
 | |
| 	struct net_device *dev;
 | |
| 	static int version_disp;
 | |
| 	u8 pci_latency;
 | |
| 	struct rr_private *rrpriv;
 | |
| 	void *tmpptr;
 | |
| 	dma_addr_t ring_dma;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	dev = alloc_hippi_dev(sizeof(struct rr_private));
 | |
| 	if (!dev)
 | |
| 		goto out3;
 | |
| 
 | |
| 	ret = pci_enable_device(pdev);
 | |
| 	if (ret) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	rrpriv = netdev_priv(dev);
 | |
| 
 | |
| 	SET_NETDEV_DEV(dev, &pdev->dev);
 | |
| 
 | |
| 	if (pci_request_regions(pdev, "rrunner")) {
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_drvdata(pdev, dev);
 | |
| 
 | |
| 	rrpriv->pci_dev = pdev;
 | |
| 
 | |
| 	spin_lock_init(&rrpriv->lock);
 | |
| 
 | |
| 	dev->irq = pdev->irq;
 | |
| 	dev->netdev_ops = &rr_netdev_ops;
 | |
| 
 | |
| 	dev->base_addr = pci_resource_start(pdev, 0);
 | |
| 
 | |
| 	/* display version info if adapter is found */
 | |
| 	if (!version_disp) {
 | |
| 		/* set display flag to TRUE so that */
 | |
| 		/* we only display this string ONCE */
 | |
| 		version_disp = 1;
 | |
| 		printk(version);
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 | |
| 	if (pci_latency <= 0x58){
 | |
| 		pci_latency = 0x58;
 | |
| 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 | |
| 	       "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
 | |
| 	       dev->base_addr, dev->irq, pci_latency);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remap the regs into kernel space.
 | |
| 	 */
 | |
| 
 | |
| 	rrpriv->regs = ioremap(dev->base_addr, 0x1000);
 | |
| 
 | |
| 	if (!rrpriv->regs){
 | |
| 		printk(KERN_ERR "%s:  Unable to map I/O register, "
 | |
| 			"RoadRunner will be disabled.\n", dev->name);
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 | |
| 	rrpriv->tx_ring = tmpptr;
 | |
| 	rrpriv->tx_ring_dma = ring_dma;
 | |
| 
 | |
| 	if (!tmpptr) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 | |
| 	rrpriv->rx_ring = tmpptr;
 | |
| 	rrpriv->rx_ring_dma = ring_dma;
 | |
| 
 | |
| 	if (!tmpptr) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
 | |
| 	rrpriv->evt_ring = tmpptr;
 | |
| 	rrpriv->evt_ring_dma = ring_dma;
 | |
| 
 | |
| 	if (!tmpptr) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't access any register before this point!
 | |
| 	 */
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 | |
| 		&rrpriv->regs->HostCtrl);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Need to add a case for little-endian 64-bit hosts here.
 | |
| 	 */
 | |
| 
 | |
| 	rr_init(dev);
 | |
| 
 | |
| 	dev->base_addr = 0;
 | |
| 
 | |
| 	ret = register_netdev(dev);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	return 0;
 | |
| 
 | |
|  out:
 | |
| 	if (rrpriv->rx_ring)
 | |
| 		pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 | |
| 				    rrpriv->rx_ring_dma);
 | |
| 	if (rrpriv->tx_ring)
 | |
| 		pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 | |
| 				    rrpriv->tx_ring_dma);
 | |
| 	if (rrpriv->regs)
 | |
| 		iounmap(rrpriv->regs);
 | |
| 	if (pdev) {
 | |
| 		pci_release_regions(pdev);
 | |
| 		pci_set_drvdata(pdev, NULL);
 | |
| 	}
 | |
|  out2:
 | |
| 	free_netdev(dev);
 | |
|  out3:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __devexit rr_remove_one (struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 
 | |
| 	if (dev) {
 | |
| 		struct rr_private *rr = netdev_priv(dev);
 | |
| 
 | |
| 		if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
 | |
| 			printk(KERN_ERR "%s: trying to unload running NIC\n",
 | |
| 			       dev->name);
 | |
| 			writel(HALT_NIC, &rr->regs->HostCtrl);
 | |
| 		}
 | |
| 
 | |
| 		pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
 | |
| 				    rr->evt_ring_dma);
 | |
| 		pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
 | |
| 				    rr->rx_ring_dma);
 | |
| 		pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
 | |
| 				    rr->tx_ring_dma);
 | |
| 		unregister_netdev(dev);
 | |
| 		iounmap(rr->regs);
 | |
| 		free_netdev(dev);
 | |
| 		pci_release_regions(pdev);
 | |
| 		pci_disable_device(pdev);
 | |
| 		pci_set_drvdata(pdev, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Commands are considered to be slow, thus there is no reason to
 | |
|  * inline this.
 | |
|  */
 | |
| static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 | |
| {
 | |
| 	struct rr_regs __iomem *regs;
 | |
| 	u32 idx;
 | |
| 
 | |
| 	regs = rrpriv->regs;
 | |
| 	/*
 | |
| 	 * This is temporary - it will go away in the final version.
 | |
| 	 * We probably also want to make this function inline.
 | |
| 	 */
 | |
| 	if (readl(®s->HostCtrl) & NIC_HALTED){
 | |
| 		printk("issuing command for halted NIC, code 0x%x, "
 | |
| 		       "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl));
 | |
| 		if (readl(®s->Mode) & FATAL_ERR)
 | |
| 			printk("error codes Fail1 %02x, Fail2 %02x\n",
 | |
| 			       readl(®s->Fail1), readl(®s->Fail2));
 | |
| 	}
 | |
| 
 | |
| 	idx = rrpriv->info->cmd_ctrl.pi;
 | |
| 
 | |
| 	writel(*(u32*)(cmd), ®s->CmdRing[idx]);
 | |
| 	wmb();
 | |
| 
 | |
| 	idx = (idx - 1) % CMD_RING_ENTRIES;
 | |
| 	rrpriv->info->cmd_ctrl.pi = idx;
 | |
| 	wmb();
 | |
| 
 | |
| 	if (readl(®s->Mode) & FATAL_ERR)
 | |
| 		printk("error code %02x\n", readl(®s->Fail1));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Reset the board in a sensible manner. The NIC is already halted
 | |
|  * when we get here and a spin-lock is held.
 | |
|  */
 | |
| static int rr_reset(struct net_device *dev)
 | |
| {
 | |
| 	struct rr_private *rrpriv;
 | |
| 	struct rr_regs __iomem *regs;
 | |
| 	u32 start_pc;
 | |
| 	int i;
 | |
| 
 | |
| 	rrpriv = netdev_priv(dev);
 | |
| 	regs = rrpriv->regs;
 | |
| 
 | |
| 	rr_load_firmware(dev);
 | |
| 
 | |
| 	writel(0x01000000, ®s->TX_state);
 | |
| 	writel(0xff800000, ®s->RX_state);
 | |
| 	writel(0, ®s->AssistState);
 | |
| 	writel(CLEAR_INTA, ®s->LocalCtrl);
 | |
| 	writel(0x01, ®s->BrkPt);
 | |
| 	writel(0, ®s->Timer);
 | |
| 	writel(0, ®s->TimerRef);
 | |
| 	writel(RESET_DMA, ®s->DmaReadState);
 | |
| 	writel(RESET_DMA, ®s->DmaWriteState);
 | |
| 	writel(0, ®s->DmaWriteHostHi);
 | |
| 	writel(0, ®s->DmaWriteHostLo);
 | |
| 	writel(0, ®s->DmaReadHostHi);
 | |
| 	writel(0, ®s->DmaReadHostLo);
 | |
| 	writel(0, ®s->DmaReadLen);
 | |
| 	writel(0, ®s->DmaWriteLen);
 | |
| 	writel(0, ®s->DmaWriteLcl);
 | |
| 	writel(0, ®s->DmaWriteIPchecksum);
 | |
| 	writel(0, ®s->DmaReadLcl);
 | |
| 	writel(0, ®s->DmaReadIPchecksum);
 | |
| 	writel(0, ®s->PciState);
 | |
| #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 | |
| 	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode);
 | |
| #elif (BITS_PER_LONG == 64)
 | |
| 	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode);
 | |
| #else
 | |
| 	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode);
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
| 	/*
 | |
| 	 * Don't worry, this is just black magic.
 | |
| 	 */
 | |
| 	writel(0xdf000, ®s->RxBase);
 | |
| 	writel(0xdf000, ®s->RxPrd);
 | |
| 	writel(0xdf000, ®s->RxCon);
 | |
| 	writel(0xce000, ®s->TxBase);
 | |
| 	writel(0xce000, ®s->TxPrd);
 | |
| 	writel(0xce000, ®s->TxCon);
 | |
| 	writel(0, ®s->RxIndPro);
 | |
| 	writel(0, ®s->RxIndCon);
 | |
| 	writel(0, ®s->RxIndRef);
 | |
| 	writel(0, ®s->TxIndPro);
 | |
| 	writel(0, ®s->TxIndCon);
 | |
| 	writel(0, ®s->TxIndRef);
 | |
| 	writel(0xcc000, ®s->pad10[0]);
 | |
| 	writel(0, ®s->DrCmndPro);
 | |
| 	writel(0, ®s->DrCmndCon);
 | |
| 	writel(0, ®s->DwCmndPro);
 | |
| 	writel(0, ®s->DwCmndCon);
 | |
| 	writel(0, ®s->DwCmndRef);
 | |
| 	writel(0, ®s->DrDataPro);
 | |
| 	writel(0, ®s->DrDataCon);
 | |
| 	writel(0, ®s->DrDataRef);
 | |
| 	writel(0, ®s->DwDataPro);
 | |
| 	writel(0, ®s->DwDataCon);
 | |
| 	writel(0, ®s->DwDataRef);
 | |
| #endif
 | |
| 
 | |
| 	writel(0xffffffff, ®s->MbEvent);
 | |
| 	writel(0, ®s->Event);
 | |
| 
 | |
| 	writel(0, ®s->TxPi);
 | |
| 	writel(0, ®s->IpRxPi);
 | |
| 
 | |
| 	writel(0, ®s->EvtCon);
 | |
| 	writel(0, ®s->EvtPrd);
 | |
| 
 | |
| 	rrpriv->info->evt_ctrl.pi = 0;
 | |
| 
 | |
| 	for (i = 0; i < CMD_RING_ENTRIES; i++)
 | |
| 		writel(0, ®s->CmdRing[i]);
 | |
| 
 | |
| /*
 | |
|  * Why 32 ? is this not cache line size dependent?
 | |
|  */
 | |
| 	writel(RBURST_64|WBURST_64, ®s->PciState);
 | |
| 	wmb();
 | |
| 
 | |
| 	start_pc = rr_read_eeprom_word(rrpriv,
 | |
| 			offsetof(struct eeprom, rncd_info.FwStart));
 | |
| 
 | |
| #if (DEBUG > 1)
 | |
| 	printk("%s: Executing firmware at address 0x%06x\n",
 | |
| 	       dev->name, start_pc);
 | |
| #endif
 | |
| 
 | |
| 	writel(start_pc + 0x800, ®s->Pc);
 | |
| 	wmb();
 | |
| 	udelay(5);
 | |
| 
 | |
| 	writel(start_pc, ®s->Pc);
 | |
| 	wmb();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Read a string from the EEPROM.
 | |
|  */
 | |
| static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 | |
| 				unsigned long offset,
 | |
| 				unsigned char *buf,
 | |
| 				unsigned long length)
 | |
| {
 | |
| 	struct rr_regs __iomem *regs = rrpriv->regs;
 | |
| 	u32 misc, io, host, i;
 | |
| 
 | |
| 	io = readl(®s->ExtIo);
 | |
| 	writel(0, ®s->ExtIo);
 | |
| 	misc = readl(®s->LocalCtrl);
 | |
| 	writel(0, ®s->LocalCtrl);
 | |
| 	host = readl(®s->HostCtrl);
 | |
| 	writel(host | HALT_NIC, ®s->HostCtrl);
 | |
| 	mb();
 | |
| 
 | |
| 	for (i = 0; i < length; i++){
 | |
| 		writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
 | |
| 		mb();
 | |
| 		buf[i] = (readl(®s->WinData) >> 24) & 0xff;
 | |
| 		mb();
 | |
| 	}
 | |
| 
 | |
| 	writel(host, ®s->HostCtrl);
 | |
| 	writel(misc, ®s->LocalCtrl);
 | |
| 	writel(io, ®s->ExtIo);
 | |
| 	mb();
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 | |
|  * it to our CPU byte-order.
 | |
|  */
 | |
| static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 | |
| 			    size_t offset)
 | |
| {
 | |
| 	__be32 word;
 | |
| 
 | |
| 	if ((rr_read_eeprom(rrpriv, offset,
 | |
| 			    (unsigned char *)&word, 4) == 4))
 | |
| 		return be32_to_cpu(word);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Write a string to the EEPROM.
 | |
|  *
 | |
|  * This is only called when the firmware is not running.
 | |
|  */
 | |
| static unsigned int write_eeprom(struct rr_private *rrpriv,
 | |
| 				 unsigned long offset,
 | |
| 				 unsigned char *buf,
 | |
| 				 unsigned long length)
 | |
| {
 | |
| 	struct rr_regs __iomem *regs = rrpriv->regs;
 | |
| 	u32 misc, io, data, i, j, ready, error = 0;
 | |
| 
 | |
| 	io = readl(®s->ExtIo);
 | |
| 	writel(0, ®s->ExtIo);
 | |
| 	misc = readl(®s->LocalCtrl);
 | |
| 	writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl);
 | |
| 	mb();
 | |
| 
 | |
| 	for (i = 0; i < length; i++){
 | |
| 		writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
 | |
| 		mb();
 | |
| 		data = buf[i] << 24;
 | |
| 		/*
 | |
| 		 * Only try to write the data if it is not the same
 | |
| 		 * value already.
 | |
| 		 */
 | |
| 		if ((readl(®s->WinData) & 0xff000000) != data){
 | |
| 			writel(data, ®s->WinData);
 | |
| 			ready = 0;
 | |
| 			j = 0;
 | |
| 			mb();
 | |
| 			while(!ready){
 | |
| 				udelay(20);
 | |
| 				if ((readl(®s->WinData) & 0xff000000) ==
 | |
| 				    data)
 | |
| 					ready = 1;
 | |
| 				mb();
 | |
| 				if (j++ > 5000){
 | |
| 					printk("data mismatch: %08x, "
 | |
| 					       "WinData %08x\n", data,
 | |
| 					       readl(®s->WinData));
 | |
| 					ready = 1;
 | |
| 					error = 1;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	writel(misc, ®s->LocalCtrl);
 | |
| 	writel(io, ®s->ExtIo);
 | |
| 	mb();
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __devinit rr_init(struct net_device *dev)
 | |
| {
 | |
| 	struct rr_private *rrpriv;
 | |
| 	struct rr_regs __iomem *regs;
 | |
| 	u32 sram_size, rev;
 | |
| 
 | |
| 	rrpriv = netdev_priv(dev);
 | |
| 	regs = rrpriv->regs;
 | |
| 
 | |
| 	rev = readl(®s->FwRev);
 | |
| 	rrpriv->fw_rev = rev;
 | |
| 	if (rev > 0x00020024)
 | |
| 		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 | |
| 		       ((rev >> 8) & 0xff), (rev & 0xff));
 | |
| 	else if (rev >= 0x00020000) {
 | |
| 		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 | |
| 		       "later is recommended)\n", (rev >> 16),
 | |
| 		       ((rev >> 8) & 0xff), (rev & 0xff));
 | |
| 	}else{
 | |
| 		printk("  Firmware revision too old: %i.%i.%i, please "
 | |
| 		       "upgrade to 2.0.37 or later.\n",
 | |
| 		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 | |
| 	}
 | |
| 
 | |
| #if (DEBUG > 2)
 | |
| 	printk("  Maximum receive rings %i\n", readl(®s->MaxRxRng));
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the hardware address from the eeprom.  The HW address
 | |
| 	 * is not really necessary for HIPPI but awfully convenient.
 | |
| 	 * The pointer arithmetic to put it in dev_addr is ugly, but
 | |
| 	 * Donald Becker does it this way for the GigE version of this
 | |
| 	 * card and it's shorter and more portable than any
 | |
| 	 * other method I've seen.  -VAL
 | |
| 	 */
 | |
| 
 | |
| 	*(__be16 *)(dev->dev_addr) =
 | |
| 	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 | |
| 	*(__be32 *)(dev->dev_addr+2) =
 | |
| 	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 | |
| 
 | |
| 	printk("  MAC: %pM\n", dev->dev_addr);
 | |
| 
 | |
| 	sram_size = rr_read_eeprom_word(rrpriv, 8);
 | |
| 	printk("  SRAM size 0x%06x\n", sram_size);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int rr_init1(struct net_device *dev)
 | |
| {
 | |
| 	struct rr_private *rrpriv;
 | |
| 	struct rr_regs __iomem *regs;
 | |
| 	unsigned long myjif, flags;
 | |
| 	struct cmd cmd;
 | |
| 	u32 hostctrl;
 | |
| 	int ecode = 0;
 | |
| 	short i;
 | |
| 
 | |
| 	rrpriv = netdev_priv(dev);
 | |
| 	regs = rrpriv->regs;
 | |
| 
 | |
| 	spin_lock_irqsave(&rrpriv->lock, flags);
 | |
| 
 | |
| 	hostctrl = readl(®s->HostCtrl);
 | |
| 	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl);
 | |
| 	wmb();
 | |
| 
 | |
| 	if (hostctrl & PARITY_ERR){
 | |
| 		printk("%s: Parity error halting NIC - this is serious!\n",
 | |
| 		       dev->name);
 | |
| 		spin_unlock_irqrestore(&rrpriv->lock, flags);
 | |
| 		ecode = -EFAULT;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 | |
| 	set_infoaddr(regs, rrpriv->info_dma);
 | |
| 
 | |
| 	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 | |
| 	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 | |
| 	rrpriv->info->evt_ctrl.mode = 0;
 | |
| 	rrpriv->info->evt_ctrl.pi = 0;
 | |
| 	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 | |
| 
 | |
| 	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 | |
| 	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 | |
| 	rrpriv->info->cmd_ctrl.mode = 0;
 | |
| 	rrpriv->info->cmd_ctrl.pi = 15;
 | |
| 
 | |
| 	for (i = 0; i < CMD_RING_ENTRIES; i++) {
 | |
| 		writel(0, ®s->CmdRing[i]);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < TX_RING_ENTRIES; i++) {
 | |
| 		rrpriv->tx_ring[i].size = 0;
 | |
| 		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 | |
| 		rrpriv->tx_skbuff[i] = NULL;
 | |
| 	}
 | |
| 	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 | |
| 	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 | |
| 	rrpriv->info->tx_ctrl.mode = 0;
 | |
| 	rrpriv->info->tx_ctrl.pi = 0;
 | |
| 	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set dirty_tx before we start receiving interrupts, otherwise
 | |
| 	 * the interrupt handler might think it is supposed to process
 | |
| 	 * tx ints before we are up and running, which may cause a null
 | |
| 	 * pointer access in the int handler.
 | |
| 	 */
 | |
| 	rrpriv->tx_full = 0;
 | |
| 	rrpriv->cur_rx = 0;
 | |
| 	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 | |
| 
 | |
| 	rr_reset(dev);
 | |
| 
 | |
| 	/* Tuning values */
 | |
| 	writel(0x5000, ®s->ConRetry);
 | |
| 	writel(0x100, ®s->ConRetryTmr);
 | |
| 	writel(0x500000, ®s->ConTmout);
 | |
|  	writel(0x60, ®s->IntrTmr);
 | |
| 	writel(0x500000, ®s->TxDataMvTimeout);
 | |
| 	writel(0x200000, ®s->RxDataMvTimeout);
 | |
|  	writel(0x80, ®s->WriteDmaThresh);
 | |
|  	writel(0x80, ®s->ReadDmaThresh);
 | |
| 
 | |
| 	rrpriv->fw_running = 0;
 | |
| 	wmb();
 | |
| 
 | |
| 	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 | |
| 	writel(hostctrl, ®s->HostCtrl);
 | |
| 	wmb();
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rrpriv->lock, flags);
 | |
| 
 | |
| 	for (i = 0; i < RX_RING_ENTRIES; i++) {
 | |
| 		struct sk_buff *skb;
 | |
| 		dma_addr_t addr;
 | |
| 
 | |
| 		rrpriv->rx_ring[i].mode = 0;
 | |
| 		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 | |
| 		if (!skb) {
 | |
| 			printk(KERN_WARNING "%s: Unable to allocate memory "
 | |
| 			       "for receive ring - halting NIC\n", dev->name);
 | |
| 			ecode = -ENOMEM;
 | |
| 			goto error;
 | |
| 		}
 | |
| 		rrpriv->rx_skbuff[i] = skb;
 | |
| 	        addr = pci_map_single(rrpriv->pci_dev, skb->data,
 | |
| 			dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 | |
| 		/*
 | |
| 		 * Sanity test to see if we conflict with the DMA
 | |
| 		 * limitations of the Roadrunner.
 | |
| 		 */
 | |
| 		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 | |
| 			printk("skb alloc error\n");
 | |
| 
 | |
| 		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 | |
| 		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 | |
| 	}
 | |
| 
 | |
| 	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 | |
| 	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 | |
| 	rrpriv->rx_ctrl[4].mode = 8;
 | |
| 	rrpriv->rx_ctrl[4].pi = 0;
 | |
| 	wmb();
 | |
| 	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 | |
| 
 | |
| 	udelay(1000);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now start the FirmWare.
 | |
| 	 */
 | |
| 	cmd.code = C_START_FW;
 | |
| 	cmd.ring = 0;
 | |
| 	cmd.index = 0;
 | |
| 
 | |
| 	rr_issue_cmd(rrpriv, &cmd);
 | |
| 
 | |
| 	/*
 | |
| 	 * Give the FirmWare time to chew on the `get running' command.
 | |
| 	 */
 | |
| 	myjif = jiffies + 5 * HZ;
 | |
| 	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	netif_start_queue(dev);
 | |
| 
 | |
| 	return ecode;
 | |
| 
 | |
|  error:
 | |
| 	/*
 | |
| 	 * We might have gotten here because we are out of memory,
 | |
| 	 * make sure we release everything we allocated before failing
 | |
| 	 */
 | |
| 	for (i = 0; i < RX_RING_ENTRIES; i++) {
 | |
| 		struct sk_buff *skb = rrpriv->rx_skbuff[i];
 | |
| 
 | |
| 		if (skb) {
 | |
| 	        	pci_unmap_single(rrpriv->pci_dev,
 | |
| 					 rrpriv->rx_ring[i].addr.addrlo,
 | |
| 					 dev->mtu + HIPPI_HLEN,
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 			rrpriv->rx_ring[i].size = 0;
 | |
| 			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 | |
| 			dev_kfree_skb(skb);
 | |
| 			rrpriv->rx_skbuff[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return ecode;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * All events are considered to be slow (RX/TX ints do not generate
 | |
|  * events) and are handled here, outside the main interrupt handler,
 | |
|  * to reduce the size of the handler.
 | |
|  */
 | |
| static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 | |
| {
 | |
| 	struct rr_private *rrpriv;
 | |
| 	struct rr_regs __iomem *regs;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	rrpriv = netdev_priv(dev);
 | |
| 	regs = rrpriv->regs;
 | |
| 
 | |
| 	while (prodidx != eidx){
 | |
| 		switch (rrpriv->evt_ring[eidx].code){
 | |
| 		case E_NIC_UP:
 | |
| 			tmp = readl(®s->FwRev);
 | |
| 			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 | |
| 			       "up and running\n", dev->name,
 | |
| 			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 | |
| 			rrpriv->fw_running = 1;
 | |
| 			writel(RX_RING_ENTRIES - 1, ®s->IpRxPi);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		case E_LINK_ON:
 | |
| 			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 | |
| 			break;
 | |
| 		case E_LINK_OFF:
 | |
| 			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 | |
| 			break;
 | |
| 		case E_RX_IDLE:
 | |
| 			printk(KERN_WARNING "%s: RX data not moving\n",
 | |
| 			       dev->name);
 | |
| 			goto drop;
 | |
| 		case E_WATCHDOG:
 | |
| 			printk(KERN_INFO "%s: The watchdog is here to see "
 | |
| 			       "us\n", dev->name);
 | |
| 			break;
 | |
| 		case E_INTERN_ERR:
 | |
| 			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 | |
| 			       dev->name);
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		case E_HOST_ERR:
 | |
| 			printk(KERN_ERR "%s: Host software error\n",
 | |
| 			       dev->name);
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * TX events.
 | |
| 		 */
 | |
| 		case E_CON_REJ:
 | |
| 			printk(KERN_WARNING "%s: Connection rejected\n",
 | |
| 			       dev->name);
 | |
| 			dev->stats.tx_aborted_errors++;
 | |
| 			break;
 | |
| 		case E_CON_TMOUT:
 | |
| 			printk(KERN_WARNING "%s: Connection timeout\n",
 | |
| 			       dev->name);
 | |
| 			break;
 | |
| 		case E_DISC_ERR:
 | |
| 			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 | |
| 			       dev->name);
 | |
| 			dev->stats.tx_aborted_errors++;
 | |
| 			break;
 | |
| 		case E_INT_PRTY:
 | |
| 			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 | |
| 			       dev->name);
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		case E_TX_IDLE:
 | |
| 			printk(KERN_WARNING "%s: Transmitter idle\n",
 | |
| 			       dev->name);
 | |
| 			break;
 | |
| 		case E_TX_LINK_DROP:
 | |
| 			printk(KERN_WARNING "%s: Link lost during transmit\n",
 | |
| 			       dev->name);
 | |
| 			dev->stats.tx_aborted_errors++;
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		case E_TX_INV_RNG:
 | |
| 			printk(KERN_ERR "%s: Invalid send ring block\n",
 | |
| 			       dev->name);
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		case E_TX_INV_BUF:
 | |
| 			printk(KERN_ERR "%s: Invalid send buffer address\n",
 | |
| 			       dev->name);
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		case E_TX_INV_DSC:
 | |
| 			printk(KERN_ERR "%s: Invalid descriptor address\n",
 | |
| 			       dev->name);
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * RX events.
 | |
| 		 */
 | |
| 		case E_RX_RNG_OUT:
 | |
| 			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 | |
| 			break;
 | |
| 
 | |
| 		case E_RX_PAR_ERR:
 | |
| 			printk(KERN_WARNING "%s: Receive parity error\n",
 | |
| 			       dev->name);
 | |
| 			goto drop;
 | |
| 		case E_RX_LLRC_ERR:
 | |
| 			printk(KERN_WARNING "%s: Receive LLRC error\n",
 | |
| 			       dev->name);
 | |
| 			goto drop;
 | |
| 		case E_PKT_LN_ERR:
 | |
| 			printk(KERN_WARNING "%s: Receive packet length "
 | |
| 			       "error\n", dev->name);
 | |
| 			goto drop;
 | |
| 		case E_DTA_CKSM_ERR:
 | |
| 			printk(KERN_WARNING "%s: Data checksum error\n",
 | |
| 			       dev->name);
 | |
| 			goto drop;
 | |
| 		case E_SHT_BST:
 | |
| 			printk(KERN_WARNING "%s: Unexpected short burst "
 | |
| 			       "error\n", dev->name);
 | |
| 			goto drop;
 | |
| 		case E_STATE_ERR:
 | |
| 			printk(KERN_WARNING "%s: Recv. state transition"
 | |
| 			       " error\n", dev->name);
 | |
| 			goto drop;
 | |
| 		case E_UNEXP_DATA:
 | |
| 			printk(KERN_WARNING "%s: Unexpected data error\n",
 | |
| 			       dev->name);
 | |
| 			goto drop;
 | |
| 		case E_LST_LNK_ERR:
 | |
| 			printk(KERN_WARNING "%s: Link lost error\n",
 | |
| 			       dev->name);
 | |
| 			goto drop;
 | |
| 		case E_FRM_ERR:
 | |
| 			printk(KERN_WARNING "%s: Framming Error\n",
 | |
| 			       dev->name);
 | |
| 			goto drop;
 | |
| 		case E_FLG_SYN_ERR:
 | |
| 			printk(KERN_WARNING "%s: Flag sync. lost during "
 | |
| 			       "packet\n", dev->name);
 | |
| 			goto drop;
 | |
| 		case E_RX_INV_BUF:
 | |
| 			printk(KERN_ERR "%s: Invalid receive buffer "
 | |
| 			       "address\n", dev->name);
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		case E_RX_INV_DSC:
 | |
| 			printk(KERN_ERR "%s: Invalid receive descriptor "
 | |
| 			       "address\n", dev->name);
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		case E_RNG_BLK:
 | |
| 			printk(KERN_ERR "%s: Invalid ring block\n",
 | |
| 			       dev->name);
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		drop:
 | |
| 			/* Label packet to be dropped.
 | |
| 			 * Actual dropping occurs in rx
 | |
| 			 * handling.
 | |
| 			 *
 | |
| 			 * The index of packet we get to drop is
 | |
| 			 * the index of the packet following
 | |
| 			 * the bad packet. -kbf
 | |
| 			 */
 | |
| 			{
 | |
| 				u16 index = rrpriv->evt_ring[eidx].index;
 | |
| 				index = (index + (RX_RING_ENTRIES - 1)) %
 | |
| 					RX_RING_ENTRIES;
 | |
| 				rrpriv->rx_ring[index].mode |=
 | |
| 					(PACKET_BAD | PACKET_END);
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 | |
| 			       dev->name, rrpriv->evt_ring[eidx].code);
 | |
| 		}
 | |
| 		eidx = (eidx + 1) % EVT_RING_ENTRIES;
 | |
| 	}
 | |
| 
 | |
| 	rrpriv->info->evt_ctrl.pi = eidx;
 | |
| 	wmb();
 | |
| 	return eidx;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 | |
| {
 | |
| 	struct rr_private *rrpriv = netdev_priv(dev);
 | |
| 	struct rr_regs __iomem *regs = rrpriv->regs;
 | |
| 
 | |
| 	do {
 | |
| 		struct rx_desc *desc;
 | |
| 		u32 pkt_len;
 | |
| 
 | |
| 		desc = &(rrpriv->rx_ring[index]);
 | |
| 		pkt_len = desc->size;
 | |
| #if (DEBUG > 2)
 | |
| 		printk("index %i, rxlimit %i\n", index, rxlimit);
 | |
| 		printk("len %x, mode %x\n", pkt_len, desc->mode);
 | |
| #endif
 | |
| 		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 | |
| 			dev->stats.rx_dropped++;
 | |
| 			goto defer;
 | |
| 		}
 | |
| 
 | |
| 		if (pkt_len > 0){
 | |
| 			struct sk_buff *skb, *rx_skb;
 | |
| 
 | |
| 			rx_skb = rrpriv->rx_skbuff[index];
 | |
| 
 | |
| 			if (pkt_len < PKT_COPY_THRESHOLD) {
 | |
| 				skb = alloc_skb(pkt_len, GFP_ATOMIC);
 | |
| 				if (skb == NULL){
 | |
| 					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 | |
| 					dev->stats.rx_dropped++;
 | |
| 					goto defer;
 | |
| 				} else {
 | |
| 					pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
 | |
| 								    desc->addr.addrlo,
 | |
| 								    pkt_len,
 | |
| 								    PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 					memcpy(skb_put(skb, pkt_len),
 | |
| 					       rx_skb->data, pkt_len);
 | |
| 
 | |
| 					pci_dma_sync_single_for_device(rrpriv->pci_dev,
 | |
| 								       desc->addr.addrlo,
 | |
| 								       pkt_len,
 | |
| 								       PCI_DMA_FROMDEVICE);
 | |
| 				}
 | |
| 			}else{
 | |
| 				struct sk_buff *newskb;
 | |
| 
 | |
| 				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 | |
| 					GFP_ATOMIC);
 | |
| 				if (newskb){
 | |
| 					dma_addr_t addr;
 | |
| 
 | |
| 	        			pci_unmap_single(rrpriv->pci_dev,
 | |
| 						desc->addr.addrlo, dev->mtu +
 | |
| 						HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 | |
| 					skb = rx_skb;
 | |
| 					skb_put(skb, pkt_len);
 | |
| 					rrpriv->rx_skbuff[index] = newskb;
 | |
| 	        			addr = pci_map_single(rrpriv->pci_dev,
 | |
| 						newskb->data,
 | |
| 						dev->mtu + HIPPI_HLEN,
 | |
| 						PCI_DMA_FROMDEVICE);
 | |
| 					set_rraddr(&desc->addr, addr);
 | |
| 				} else {
 | |
| 					printk("%s: Out of memory, deferring "
 | |
| 					       "packet\n", dev->name);
 | |
| 					dev->stats.rx_dropped++;
 | |
| 					goto defer;
 | |
| 				}
 | |
| 			}
 | |
| 			skb->protocol = hippi_type_trans(skb, dev);
 | |
| 
 | |
| 			netif_rx(skb);		/* send it up */
 | |
| 
 | |
| 			dev->stats.rx_packets++;
 | |
| 			dev->stats.rx_bytes += pkt_len;
 | |
| 		}
 | |
| 	defer:
 | |
| 		desc->mode = 0;
 | |
| 		desc->size = dev->mtu + HIPPI_HLEN;
 | |
| 
 | |
| 		if ((index & 7) == 7)
 | |
| 			writel(index, ®s->IpRxPi);
 | |
| 
 | |
| 		index = (index + 1) % RX_RING_ENTRIES;
 | |
| 	} while(index != rxlimit);
 | |
| 
 | |
| 	rrpriv->cur_rx = index;
 | |
| 	wmb();
 | |
| }
 | |
| 
 | |
| 
 | |
| static irqreturn_t rr_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct rr_private *rrpriv;
 | |
| 	struct rr_regs __iomem *regs;
 | |
| 	struct net_device *dev = (struct net_device *)dev_id;
 | |
| 	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
 | |
| 
 | |
| 	rrpriv = netdev_priv(dev);
 | |
| 	regs = rrpriv->regs;
 | |
| 
 | |
| 	if (!(readl(®s->HostCtrl) & RR_INT))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	spin_lock(&rrpriv->lock);
 | |
| 
 | |
| 	prodidx = readl(®s->EvtPrd);
 | |
| 	txcsmr = (prodidx >> 8) & 0xff;
 | |
| 	rxlimit = (prodidx >> 16) & 0xff;
 | |
| 	prodidx &= 0xff;
 | |
| 
 | |
| #if (DEBUG > 2)
 | |
| 	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
 | |
| 	       prodidx, rrpriv->info->evt_ctrl.pi);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Order here is important.  We must handle events
 | |
| 	 * before doing anything else in order to catch
 | |
| 	 * such things as LLRC errors, etc -kbf
 | |
| 	 */
 | |
| 
 | |
| 	eidx = rrpriv->info->evt_ctrl.pi;
 | |
| 	if (prodidx != eidx)
 | |
| 		eidx = rr_handle_event(dev, prodidx, eidx);
 | |
| 
 | |
| 	rxindex = rrpriv->cur_rx;
 | |
| 	if (rxindex != rxlimit)
 | |
| 		rx_int(dev, rxlimit, rxindex);
 | |
| 
 | |
| 	txcon = rrpriv->dirty_tx;
 | |
| 	if (txcsmr != txcon) {
 | |
| 		do {
 | |
| 			/* Due to occational firmware TX producer/consumer out
 | |
| 			 * of sync. error need to check entry in ring -kbf
 | |
| 			 */
 | |
| 			if(rrpriv->tx_skbuff[txcon]){
 | |
| 				struct tx_desc *desc;
 | |
| 				struct sk_buff *skb;
 | |
| 
 | |
| 				desc = &(rrpriv->tx_ring[txcon]);
 | |
| 				skb = rrpriv->tx_skbuff[txcon];
 | |
| 
 | |
| 				dev->stats.tx_packets++;
 | |
| 				dev->stats.tx_bytes += skb->len;
 | |
| 
 | |
| 				pci_unmap_single(rrpriv->pci_dev,
 | |
| 						 desc->addr.addrlo, skb->len,
 | |
| 						 PCI_DMA_TODEVICE);
 | |
| 				dev_kfree_skb_irq(skb);
 | |
| 
 | |
| 				rrpriv->tx_skbuff[txcon] = NULL;
 | |
| 				desc->size = 0;
 | |
| 				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
 | |
| 				desc->mode = 0;
 | |
| 			}
 | |
| 			txcon = (txcon + 1) % TX_RING_ENTRIES;
 | |
| 		} while (txcsmr != txcon);
 | |
| 		wmb();
 | |
| 
 | |
| 		rrpriv->dirty_tx = txcon;
 | |
| 		if (rrpriv->tx_full && rr_if_busy(dev) &&
 | |
| 		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
 | |
| 		     != rrpriv->dirty_tx)){
 | |
| 			rrpriv->tx_full = 0;
 | |
| 			netif_wake_queue(dev);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	eidx |= ((txcsmr << 8) | (rxlimit << 16));
 | |
| 	writel(eidx, ®s->EvtCon);
 | |
| 	wmb();
 | |
| 
 | |
| 	spin_unlock(&rrpriv->lock);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static inline void rr_raz_tx(struct rr_private *rrpriv,
 | |
| 			     struct net_device *dev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < TX_RING_ENTRIES; i++) {
 | |
| 		struct sk_buff *skb = rrpriv->tx_skbuff[i];
 | |
| 
 | |
| 		if (skb) {
 | |
| 			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
 | |
| 
 | |
| 	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
 | |
| 				skb->len, PCI_DMA_TODEVICE);
 | |
| 			desc->size = 0;
 | |
| 			set_rraddr(&desc->addr, 0);
 | |
| 			dev_kfree_skb(skb);
 | |
| 			rrpriv->tx_skbuff[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void rr_raz_rx(struct rr_private *rrpriv,
 | |
| 			     struct net_device *dev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < RX_RING_ENTRIES; i++) {
 | |
| 		struct sk_buff *skb = rrpriv->rx_skbuff[i];
 | |
| 
 | |
| 		if (skb) {
 | |
| 			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
 | |
| 
 | |
| 	        	pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
 | |
| 				dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 | |
| 			desc->size = 0;
 | |
| 			set_rraddr(&desc->addr, 0);
 | |
| 			dev_kfree_skb(skb);
 | |
| 			rrpriv->rx_skbuff[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rr_timer(unsigned long data)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)data;
 | |
| 	struct rr_private *rrpriv = netdev_priv(dev);
 | |
| 	struct rr_regs __iomem *regs = rrpriv->regs;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (readl(®s->HostCtrl) & NIC_HALTED){
 | |
| 		printk("%s: Restarting nic\n", dev->name);
 | |
| 		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
 | |
| 		memset(rrpriv->info, 0, sizeof(struct rr_info));
 | |
| 		wmb();
 | |
| 
 | |
| 		rr_raz_tx(rrpriv, dev);
 | |
| 		rr_raz_rx(rrpriv, dev);
 | |
| 
 | |
| 		if (rr_init1(dev)) {
 | |
| 			spin_lock_irqsave(&rrpriv->lock, flags);
 | |
| 			writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 | |
| 			       ®s->HostCtrl);
 | |
| 			spin_unlock_irqrestore(&rrpriv->lock, flags);
 | |
| 		}
 | |
| 	}
 | |
| 	rrpriv->timer.expires = RUN_AT(5*HZ);
 | |
| 	add_timer(&rrpriv->timer);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int rr_open(struct net_device *dev)
 | |
| {
 | |
| 	struct rr_private *rrpriv = netdev_priv(dev);
 | |
| 	struct pci_dev *pdev = rrpriv->pci_dev;
 | |
| 	struct rr_regs __iomem *regs;
 | |
| 	int ecode = 0;
 | |
| 	unsigned long flags;
 | |
| 	dma_addr_t dma_addr;
 | |
| 
 | |
| 	regs = rrpriv->regs;
 | |
| 
 | |
| 	if (rrpriv->fw_rev < 0x00020000) {
 | |
| 		printk(KERN_WARNING "%s: trying to configure device with "
 | |
| 		       "obsolete firmware\n", dev->name);
 | |
| 		ecode = -EBUSY;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
 | |
| 					       256 * sizeof(struct ring_ctrl),
 | |
| 					       &dma_addr);
 | |
| 	if (!rrpriv->rx_ctrl) {
 | |
| 		ecode = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	rrpriv->rx_ctrl_dma = dma_addr;
 | |
| 	memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
 | |
| 
 | |
| 	rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
 | |
| 					    &dma_addr);
 | |
| 	if (!rrpriv->info) {
 | |
| 		ecode = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	rrpriv->info_dma = dma_addr;
 | |
| 	memset(rrpriv->info, 0, sizeof(struct rr_info));
 | |
| 	wmb();
 | |
| 
 | |
| 	spin_lock_irqsave(&rrpriv->lock, flags);
 | |
| 	writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
 | |
| 	readl(®s->HostCtrl);
 | |
| 	spin_unlock_irqrestore(&rrpriv->lock, flags);
 | |
| 
 | |
| 	if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
 | |
| 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
 | |
| 		       dev->name, dev->irq);
 | |
| 		ecode = -EAGAIN;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	if ((ecode = rr_init1(dev)))
 | |
| 		goto error;
 | |
| 
 | |
| 	/* Set the timer to switch to check for link beat and perhaps switch
 | |
| 	   to an alternate media type. */
 | |
| 	init_timer(&rrpriv->timer);
 | |
| 	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
 | |
| 	rrpriv->timer.data = (unsigned long)dev;
 | |
| 	rrpriv->timer.function = &rr_timer;               /* timer handler */
 | |
| 	add_timer(&rrpriv->timer);
 | |
| 
 | |
| 	netif_start_queue(dev);
 | |
| 
 | |
| 	return ecode;
 | |
| 
 | |
|  error:
 | |
| 	spin_lock_irqsave(&rrpriv->lock, flags);
 | |
| 	writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
 | |
| 	spin_unlock_irqrestore(&rrpriv->lock, flags);
 | |
| 
 | |
| 	if (rrpriv->info) {
 | |
| 		pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
 | |
| 				    rrpriv->info_dma);
 | |
| 		rrpriv->info = NULL;
 | |
| 	}
 | |
| 	if (rrpriv->rx_ctrl) {
 | |
| 		pci_free_consistent(pdev, sizeof(struct ring_ctrl),
 | |
| 				    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
 | |
| 		rrpriv->rx_ctrl = NULL;
 | |
| 	}
 | |
| 
 | |
| 	netif_stop_queue(dev);
 | |
| 
 | |
| 	return ecode;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void rr_dump(struct net_device *dev)
 | |
| {
 | |
| 	struct rr_private *rrpriv;
 | |
| 	struct rr_regs __iomem *regs;
 | |
| 	u32 index, cons;
 | |
| 	short i;
 | |
| 	int len;
 | |
| 
 | |
| 	rrpriv = netdev_priv(dev);
 | |
| 	regs = rrpriv->regs;
 | |
| 
 | |
| 	printk("%s: dumping NIC TX rings\n", dev->name);
 | |
| 
 | |
| 	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
 | |
| 	       readl(®s->RxPrd), readl(®s->TxPrd),
 | |
| 	       readl(®s->EvtPrd), readl(®s->TxPi),
 | |
| 	       rrpriv->info->tx_ctrl.pi);
 | |
| 
 | |
| 	printk("Error code 0x%x\n", readl(®s->Fail1));
 | |
| 
 | |
| 	index = (((readl(®s->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
 | |
| 	cons = rrpriv->dirty_tx;
 | |
| 	printk("TX ring index %i, TX consumer %i\n",
 | |
| 	       index, cons);
 | |
| 
 | |
| 	if (rrpriv->tx_skbuff[index]){
 | |
| 		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
 | |
| 		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
 | |
| 		for (i = 0; i < len; i++){
 | |
| 			if (!(i & 7))
 | |
| 				printk("\n");
 | |
| 			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
 | |
| 		}
 | |
| 		printk("\n");
 | |
| 	}
 | |
| 
 | |
| 	if (rrpriv->tx_skbuff[cons]){
 | |
| 		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
 | |
| 		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
 | |
| 		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
 | |
| 		       rrpriv->tx_ring[cons].mode,
 | |
| 		       rrpriv->tx_ring[cons].size,
 | |
| 		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
 | |
| 		       (unsigned long)rrpriv->tx_skbuff[cons]->data,
 | |
| 		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
 | |
| 		for (i = 0; i < len; i++){
 | |
| 			if (!(i & 7))
 | |
| 				printk("\n");
 | |
| 			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
 | |
| 		}
 | |
| 		printk("\n");
 | |
| 	}
 | |
| 
 | |
| 	printk("dumping TX ring info:\n");
 | |
| 	for (i = 0; i < TX_RING_ENTRIES; i++)
 | |
| 		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
 | |
| 		       rrpriv->tx_ring[i].mode,
 | |
| 		       rrpriv->tx_ring[i].size,
 | |
| 		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| static int rr_close(struct net_device *dev)
 | |
| {
 | |
| 	struct rr_private *rrpriv;
 | |
| 	struct rr_regs __iomem *regs;
 | |
| 	unsigned long flags;
 | |
| 	u32 tmp;
 | |
| 	short i;
 | |
| 
 | |
| 	netif_stop_queue(dev);
 | |
| 
 | |
| 	rrpriv = netdev_priv(dev);
 | |
| 	regs = rrpriv->regs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock to make sure we are not cleaning up while another CPU
 | |
| 	 * is handling interrupts.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&rrpriv->lock, flags);
 | |
| 
 | |
| 	tmp = readl(®s->HostCtrl);
 | |
| 	if (tmp & NIC_HALTED){
 | |
| 		printk("%s: NIC already halted\n", dev->name);
 | |
| 		rr_dump(dev);
 | |
| 	}else{
 | |
| 		tmp |= HALT_NIC | RR_CLEAR_INT;
 | |
| 		writel(tmp, ®s->HostCtrl);
 | |
| 		readl(®s->HostCtrl);
 | |
| 	}
 | |
| 
 | |
| 	rrpriv->fw_running = 0;
 | |
| 
 | |
| 	del_timer_sync(&rrpriv->timer);
 | |
| 
 | |
| 	writel(0, ®s->TxPi);
 | |
| 	writel(0, ®s->IpRxPi);
 | |
| 
 | |
| 	writel(0, ®s->EvtCon);
 | |
| 	writel(0, ®s->EvtPrd);
 | |
| 
 | |
| 	for (i = 0; i < CMD_RING_ENTRIES; i++)
 | |
| 		writel(0, ®s->CmdRing[i]);
 | |
| 
 | |
| 	rrpriv->info->tx_ctrl.entries = 0;
 | |
| 	rrpriv->info->cmd_ctrl.pi = 0;
 | |
| 	rrpriv->info->evt_ctrl.pi = 0;
 | |
| 	rrpriv->rx_ctrl[4].entries = 0;
 | |
| 
 | |
| 	rr_raz_tx(rrpriv, dev);
 | |
| 	rr_raz_rx(rrpriv, dev);
 | |
| 
 | |
| 	pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
 | |
| 			    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
 | |
| 	rrpriv->rx_ctrl = NULL;
 | |
| 
 | |
| 	pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
 | |
| 			    rrpriv->info, rrpriv->info_dma);
 | |
| 	rrpriv->info = NULL;
 | |
| 
 | |
| 	free_irq(dev->irq, dev);
 | |
| 	spin_unlock_irqrestore(&rrpriv->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct rr_private *rrpriv = netdev_priv(dev);
 | |
| 	struct rr_regs __iomem *regs = rrpriv->regs;
 | |
| 	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
 | |
| 	struct ring_ctrl *txctrl;
 | |
| 	unsigned long flags;
 | |
| 	u32 index, len = skb->len;
 | |
| 	u32 *ifield;
 | |
| 	struct sk_buff *new_skb;
 | |
| 
 | |
| 	if (readl(®s->Mode) & FATAL_ERR)
 | |
| 		printk("error codes Fail1 %02x, Fail2 %02x\n",
 | |
| 		       readl(®s->Fail1), readl(®s->Fail2));
 | |
| 
 | |
| 	/*
 | |
| 	 * We probably need to deal with tbusy here to prevent overruns.
 | |
| 	 */
 | |
| 
 | |
| 	if (skb_headroom(skb) < 8){
 | |
| 		printk("incoming skb too small - reallocating\n");
 | |
| 		if (!(new_skb = dev_alloc_skb(len + 8))) {
 | |
| 			dev_kfree_skb(skb);
 | |
| 			netif_wake_queue(dev);
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 		skb_reserve(new_skb, 8);
 | |
| 		skb_put(new_skb, len);
 | |
| 		skb_copy_from_linear_data(skb, new_skb->data, len);
 | |
| 		dev_kfree_skb(skb);
 | |
| 		skb = new_skb;
 | |
| 	}
 | |
| 
 | |
| 	ifield = (u32 *)skb_push(skb, 8);
 | |
| 
 | |
| 	ifield[0] = 0;
 | |
| 	ifield[1] = hcb->ifield;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't need the lock before we are actually going to start
 | |
| 	 * fiddling with the control blocks.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&rrpriv->lock, flags);
 | |
| 
 | |
| 	txctrl = &rrpriv->info->tx_ctrl;
 | |
| 
 | |
| 	index = txctrl->pi;
 | |
| 
 | |
| 	rrpriv->tx_skbuff[index] = skb;
 | |
| 	set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
 | |
| 		rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
 | |
| 	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
 | |
| 	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
 | |
| 	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
 | |
| 	wmb();
 | |
| 	writel(txctrl->pi, ®s->TxPi);
 | |
| 
 | |
| 	if (txctrl->pi == rrpriv->dirty_tx){
 | |
| 		rrpriv->tx_full = 1;
 | |
| 		netif_stop_queue(dev);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rrpriv->lock, flags);
 | |
| 
 | |
| 	dev->trans_start = jiffies;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Read the firmware out of the EEPROM and put it into the SRAM
 | |
|  * (or from user space - later)
 | |
|  *
 | |
|  * This operation requires the NIC to be halted and is performed with
 | |
|  * interrupts disabled and with the spinlock hold.
 | |
|  */
 | |
| static int rr_load_firmware(struct net_device *dev)
 | |
| {
 | |
| 	struct rr_private *rrpriv;
 | |
| 	struct rr_regs __iomem *regs;
 | |
| 	size_t eptr, segptr;
 | |
| 	int i, j;
 | |
| 	u32 localctrl, sptr, len, tmp;
 | |
| 	u32 p2len, p2size, nr_seg, revision, io, sram_size;
 | |
| 
 | |
| 	rrpriv = netdev_priv(dev);
 | |
| 	regs = rrpriv->regs;
 | |
| 
 | |
| 	if (dev->flags & IFF_UP)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (!(readl(®s->HostCtrl) & NIC_HALTED)){
 | |
| 		printk("%s: Trying to load firmware to a running NIC.\n",
 | |
| 		       dev->name);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	localctrl = readl(®s->LocalCtrl);
 | |
| 	writel(0, ®s->LocalCtrl);
 | |
| 
 | |
| 	writel(0, ®s->EvtPrd);
 | |
| 	writel(0, ®s->RxPrd);
 | |
| 	writel(0, ®s->TxPrd);
 | |
| 
 | |
| 	/*
 | |
| 	 * First wipe the entire SRAM, otherwise we might run into all
 | |
| 	 * kinds of trouble ... sigh, this took almost all afternoon
 | |
| 	 * to track down ;-(
 | |
| 	 */
 | |
| 	io = readl(®s->ExtIo);
 | |
| 	writel(0, ®s->ExtIo);
 | |
| 	sram_size = rr_read_eeprom_word(rrpriv, 8);
 | |
| 
 | |
| 	for (i = 200; i < sram_size / 4; i++){
 | |
| 		writel(i * 4, ®s->WinBase);
 | |
| 		mb();
 | |
| 		writel(0, ®s->WinData);
 | |
| 		mb();
 | |
| 	}
 | |
| 	writel(io, ®s->ExtIo);
 | |
| 	mb();
 | |
| 
 | |
| 	eptr = rr_read_eeprom_word(rrpriv,
 | |
| 		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
 | |
| 	eptr = ((eptr & 0x1fffff) >> 3);
 | |
| 
 | |
| 	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
 | |
| 	p2len = (p2len << 2);
 | |
| 	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
 | |
| 	p2size = ((p2size & 0x1fffff) >> 3);
 | |
| 
 | |
| 	if ((eptr < p2size) || (eptr > (p2size + p2len))){
 | |
| 		printk("%s: eptr is invalid\n", dev->name);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	revision = rr_read_eeprom_word(rrpriv,
 | |
| 			offsetof(struct eeprom, manf.HeaderFmt));
 | |
| 
 | |
| 	if (revision != 1){
 | |
| 		printk("%s: invalid firmware format (%i)\n",
 | |
| 		       dev->name, revision);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
 | |
| 	eptr +=4;
 | |
| #if (DEBUG > 1)
 | |
| 	printk("%s: nr_seg %i\n", dev->name, nr_seg);
 | |
| #endif
 | |
| 
 | |
| 	for (i = 0; i < nr_seg; i++){
 | |
| 		sptr = rr_read_eeprom_word(rrpriv, eptr);
 | |
| 		eptr += 4;
 | |
| 		len = rr_read_eeprom_word(rrpriv, eptr);
 | |
| 		eptr += 4;
 | |
| 		segptr = rr_read_eeprom_word(rrpriv, eptr);
 | |
| 		segptr = ((segptr & 0x1fffff) >> 3);
 | |
| 		eptr += 4;
 | |
| #if (DEBUG > 1)
 | |
| 		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
 | |
| 		       dev->name, i, sptr, len, segptr);
 | |
| #endif
 | |
| 		for (j = 0; j < len; j++){
 | |
| 			tmp = rr_read_eeprom_word(rrpriv, segptr);
 | |
| 			writel(sptr, ®s->WinBase);
 | |
| 			mb();
 | |
| 			writel(tmp, ®s->WinData);
 | |
| 			mb();
 | |
| 			segptr += 4;
 | |
| 			sptr += 4;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	writel(localctrl, ®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 | |
| {
 | |
| 	struct rr_private *rrpriv;
 | |
| 	unsigned char *image, *oldimage;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int i;
 | |
| 	int error = -EOPNOTSUPP;
 | |
| 
 | |
| 	rrpriv = netdev_priv(dev);
 | |
| 
 | |
| 	switch(cmd){
 | |
| 	case SIOCRRGFW:
 | |
| 		if (!capable(CAP_SYS_RAWIO)){
 | |
| 			return -EPERM;
 | |
| 		}
 | |
| 
 | |
| 		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
 | |
| 		if (!image){
 | |
| 			printk(KERN_ERR "%s: Unable to allocate memory "
 | |
| 			       "for EEPROM image\n", dev->name);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		if (rrpriv->fw_running){
 | |
| 			printk("%s: Firmware already running\n", dev->name);
 | |
| 			error = -EPERM;
 | |
| 			goto gf_out;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_irqsave(&rrpriv->lock, flags);
 | |
| 		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
 | |
| 		spin_unlock_irqrestore(&rrpriv->lock, flags);
 | |
| 		if (i != EEPROM_BYTES){
 | |
| 			printk(KERN_ERR "%s: Error reading EEPROM\n",
 | |
| 			       dev->name);
 | |
| 			error = -EFAULT;
 | |
| 			goto gf_out;
 | |
| 		}
 | |
| 		error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
 | |
| 		if (error)
 | |
| 			error = -EFAULT;
 | |
| 	gf_out:
 | |
| 		kfree(image);
 | |
| 		return error;
 | |
| 
 | |
| 	case SIOCRRPFW:
 | |
| 		if (!capable(CAP_SYS_RAWIO)){
 | |
| 			return -EPERM;
 | |
| 		}
 | |
| 
 | |
| 		image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
 | |
| 		oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
 | |
| 		if (!image || !oldimage) {
 | |
| 			printk(KERN_ERR "%s: Unable to allocate memory "
 | |
| 			       "for EEPROM image\n", dev->name);
 | |
| 			error = -ENOMEM;
 | |
| 			goto wf_out;
 | |
| 		}
 | |
| 
 | |
| 		error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
 | |
| 		if (error) {
 | |
| 			error = -EFAULT;
 | |
| 			goto wf_out;
 | |
| 		}
 | |
| 
 | |
| 		if (rrpriv->fw_running){
 | |
| 			printk("%s: Firmware already running\n", dev->name);
 | |
| 			error = -EPERM;
 | |
| 			goto wf_out;
 | |
| 		}
 | |
| 
 | |
| 		printk("%s: Updating EEPROM firmware\n", dev->name);
 | |
| 
 | |
| 		spin_lock_irqsave(&rrpriv->lock, flags);
 | |
| 		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
 | |
| 		if (error)
 | |
| 			printk(KERN_ERR "%s: Error writing EEPROM\n",
 | |
| 			       dev->name);
 | |
| 
 | |
| 		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
 | |
| 		spin_unlock_irqrestore(&rrpriv->lock, flags);
 | |
| 
 | |
| 		if (i != EEPROM_BYTES)
 | |
| 			printk(KERN_ERR "%s: Error reading back EEPROM "
 | |
| 			       "image\n", dev->name);
 | |
| 
 | |
| 		error = memcmp(image, oldimage, EEPROM_BYTES);
 | |
| 		if (error){
 | |
| 			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
 | |
| 			       dev->name);
 | |
| 			error = -EFAULT;
 | |
| 		}
 | |
| 	wf_out:
 | |
| 		kfree(oldimage);
 | |
| 		kfree(image);
 | |
| 		return error;
 | |
| 
 | |
| 	case SIOCRRID:
 | |
| 		return put_user(0x52523032, (int __user *)rq->ifr_data);
 | |
| 	default:
 | |
| 		return error;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct pci_device_id rr_pci_tbl[] = {
 | |
| 	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
 | |
| 		PCI_ANY_ID, PCI_ANY_ID, },
 | |
| 	{ 0,}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
 | |
| 
 | |
| static struct pci_driver rr_driver = {
 | |
| 	.name		= "rrunner",
 | |
| 	.id_table	= rr_pci_tbl,
 | |
| 	.probe		= rr_init_one,
 | |
| 	.remove		= __devexit_p(rr_remove_one),
 | |
| };
 | |
| 
 | |
| static int __init rr_init_module(void)
 | |
| {
 | |
| 	return pci_register_driver(&rr_driver);
 | |
| }
 | |
| 
 | |
| static void __exit rr_cleanup_module(void)
 | |
| {
 | |
| 	pci_unregister_driver(&rr_driver);
 | |
| }
 | |
| 
 | |
| module_init(rr_init_module);
 | |
| module_exit(rr_cleanup_module);
 |