mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 7d96567ac0
			
		
	
	
		7d96567ac0
		
	
	
	
	
		
			
			The current code read nothing but zeros on big-endian (wrong part of the 32bits). This caused poor performance on big-endian machines. Though this issue did not cause the system to crash, the performance is significantly better with the fix so I view it as critical bug fix. Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			813 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			813 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* bnx2x_init.h: Broadcom Everest network driver.
 | |
|  *
 | |
|  * Copyright (c) 2007-2008 Broadcom Corporation
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation.
 | |
|  *
 | |
|  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
 | |
|  * Written by: Eliezer Tamir
 | |
|  */
 | |
| 
 | |
| #ifndef BNX2X_INIT_H
 | |
| #define BNX2X_INIT_H
 | |
| 
 | |
| #define COMMON				0x1
 | |
| #define PORT0				0x2
 | |
| #define PORT1				0x4
 | |
| 
 | |
| #define INIT_EMULATION			0x1
 | |
| #define INIT_FPGA			0x2
 | |
| #define INIT_ASIC			0x4
 | |
| #define INIT_HARDWARE			0x7
 | |
| 
 | |
| #define STORM_INTMEM_SIZE_E1		(0x5800 / 4)
 | |
| #define STORM_INTMEM_SIZE_E1H		(0x10000 / 4)
 | |
| #define TSTORM_INTMEM_ADDR		0x1a0000
 | |
| #define CSTORM_INTMEM_ADDR		0x220000
 | |
| #define XSTORM_INTMEM_ADDR		0x2a0000
 | |
| #define USTORM_INTMEM_ADDR		0x320000
 | |
| 
 | |
| 
 | |
| /* Init operation types and structures */
 | |
| /* Common for both E1 and E1H */
 | |
| #define OP_RD			0x1 /* read single register */
 | |
| #define OP_WR			0x2 /* write single register */
 | |
| #define OP_IW			0x3 /* write single register using mailbox */
 | |
| #define OP_SW			0x4 /* copy a string to the device */
 | |
| #define OP_SI			0x5 /* copy a string using mailbox */
 | |
| #define OP_ZR			0x6 /* clear memory */
 | |
| #define OP_ZP			0x7 /* unzip then copy with DMAE */
 | |
| #define OP_WR_64		0x8 /* write 64 bit pattern */
 | |
| #define OP_WB			0x9 /* copy a string using DMAE */
 | |
| 
 | |
| /* Operation specific for E1 */
 | |
| #define OP_RD_E1		0xa /* read single register */
 | |
| #define OP_WR_E1		0xb /* write single register */
 | |
| #define OP_IW_E1		0xc /* write single register using mailbox */
 | |
| #define OP_SW_E1		0xd /* copy a string to the device */
 | |
| #define OP_SI_E1		0xe /* copy a string using mailbox */
 | |
| #define OP_ZR_E1		0xf /* clear memory */
 | |
| #define OP_ZP_E1		0x10 /* unzip then copy with DMAE */
 | |
| #define OP_WR_64_E1		0x11 /* write 64 bit pattern on E1 */
 | |
| #define OP_WB_E1		0x12 /* copy a string using DMAE */
 | |
| 
 | |
| /* Operation specific for E1H */
 | |
| #define OP_RD_E1H		0x13 /* read single register */
 | |
| #define OP_WR_E1H		0x14 /* write single register */
 | |
| #define OP_IW_E1H		0x15 /* write single register using mailbox */
 | |
| #define OP_SW_E1H		0x16 /* copy a string to the device */
 | |
| #define OP_SI_E1H		0x17 /* copy a string using mailbox */
 | |
| #define OP_ZR_E1H		0x18 /* clear memory */
 | |
| #define OP_ZP_E1H		0x19 /* unzip then copy with DMAE */
 | |
| #define OP_WR_64_E1H		0x1a /* write 64 bit pattern on E1H */
 | |
| #define OP_WB_E1H		0x1b /* copy a string using DMAE */
 | |
| 
 | |
| /* FPGA and EMUL specific operations */
 | |
| #define OP_WR_EMUL_E1H		0x1c /* write single register on E1H Emul */
 | |
| #define OP_WR_EMUL		0x1d /* write single register on Emulation */
 | |
| #define OP_WR_FPGA		0x1e /* write single register on FPGA */
 | |
| #define OP_WR_ASIC		0x1f /* write single register on ASIC */
 | |
| 
 | |
| 
 | |
| struct raw_op {
 | |
| 	u32 op:8;
 | |
| 	u32 offset:24;
 | |
| 	u32 raw_data;
 | |
| };
 | |
| 
 | |
| struct op_read {
 | |
| 	u32 op:8;
 | |
| 	u32 offset:24;
 | |
| 	u32 pad;
 | |
| };
 | |
| 
 | |
| struct op_write {
 | |
| 	u32 op:8;
 | |
| 	u32 offset:24;
 | |
| 	u32 val;
 | |
| };
 | |
| 
 | |
| struct op_string_write {
 | |
| 	u32 op:8;
 | |
| 	u32 offset:24;
 | |
| #ifdef __LITTLE_ENDIAN
 | |
| 	u16 data_off;
 | |
| 	u16 data_len;
 | |
| #else /* __BIG_ENDIAN */
 | |
| 	u16 data_len;
 | |
| 	u16 data_off;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| struct op_zero {
 | |
| 	u32 op:8;
 | |
| 	u32 offset:24;
 | |
| 	u32 len;
 | |
| };
 | |
| 
 | |
| union init_op {
 | |
| 	struct op_read		read;
 | |
| 	struct op_write		write;
 | |
| 	struct op_string_write	str_wr;
 | |
| 	struct op_zero		zero;
 | |
| 	struct raw_op		raw;
 | |
| };
 | |
| 
 | |
| #include "bnx2x_init_values.h"
 | |
| 
 | |
| static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
 | |
| static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
 | |
| 
 | |
| static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
 | |
| 			      u32 len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		REG_WR(bp, addr + i*4, data[i]);
 | |
| 		if (!(i % 10000)) {
 | |
| 			touch_softlockup_watchdog();
 | |
| 			cpu_relax();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
 | |
| 			      u16 len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		REG_WR_IND(bp, addr + i*4, data[i]);
 | |
| 		if (!(i % 10000)) {
 | |
| 			touch_softlockup_watchdog();
 | |
| 			cpu_relax();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
 | |
| {
 | |
| #ifdef USE_DMAE
 | |
| 	int offset = 0;
 | |
| 
 | |
| 	if (bp->dmae_ready) {
 | |
| 		while (len > DMAE_LEN32_WR_MAX) {
 | |
| 			bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
 | |
| 					 addr + offset, DMAE_LEN32_WR_MAX);
 | |
| 			offset += DMAE_LEN32_WR_MAX * 4;
 | |
| 			len -= DMAE_LEN32_WR_MAX;
 | |
| 		}
 | |
| 		bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
 | |
| 				 addr + offset, len);
 | |
| 	} else
 | |
| 		bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
 | |
| #else
 | |
| 	bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
 | |
| {
 | |
| 	if ((len * 4) > FW_BUF_SIZE) {
 | |
| 		BNX2X_ERR("LARGE DMAE OPERATION ! addr 0x%x  len 0x%x\n",
 | |
| 			  addr, len*4);
 | |
| 		return;
 | |
| 	}
 | |
| 	memset(bp->gunzip_buf, fill, len * 4);
 | |
| 
 | |
| 	bnx2x_write_big_buf(bp, addr, len);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
 | |
| 			     u32 len64)
 | |
| {
 | |
| 	u32 buf_len32 = FW_BUF_SIZE/4;
 | |
| 	u32 len = len64*2;
 | |
| 	u64 data64 = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
 | |
| 	data64 = HILO_U64((*(data + 1)), (*data));
 | |
| 	len64 = min((u32)(FW_BUF_SIZE/8), len64);
 | |
| 	for (i = 0; i < len64; i++) {
 | |
| 		u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
 | |
| 
 | |
| 		*pdata = data64;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < len; i += buf_len32) {
 | |
| 		u32 cur_len = min(buf_len32, len - i);
 | |
| 
 | |
| 		bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*********************************************************
 | |
|    There are different blobs for each PRAM section.
 | |
|    In addition, each blob write operation is divided into a few operations
 | |
|    in order to decrease the amount of phys. contiguous buffer needed.
 | |
|    Thus, when we select a blob the address may be with some offset
 | |
|    from the beginning of PRAM section.
 | |
|    The same holds for the INT_TABLE sections.
 | |
| **********************************************************/
 | |
| #define IF_IS_INT_TABLE_ADDR(base, addr) \
 | |
| 			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
 | |
| 
 | |
| #define IF_IS_PRAM_ADDR(base, addr) \
 | |
| 			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
 | |
| 
 | |
| static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1)
 | |
| {
 | |
| 	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
 | |
| 		data = is_e1 ? tsem_int_table_data_e1 :
 | |
| 			       tsem_int_table_data_e1h;
 | |
| 	else
 | |
| 		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
 | |
| 			data = is_e1 ? csem_int_table_data_e1 :
 | |
| 				       csem_int_table_data_e1h;
 | |
| 	else
 | |
| 		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
 | |
| 			data = is_e1 ? usem_int_table_data_e1 :
 | |
| 				       usem_int_table_data_e1h;
 | |
| 	else
 | |
| 		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
 | |
| 			data = is_e1 ? xsem_int_table_data_e1 :
 | |
| 				       xsem_int_table_data_e1h;
 | |
| 	else
 | |
| 		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
 | |
| 			data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h;
 | |
| 	else
 | |
| 		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
 | |
| 			data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h;
 | |
| 	else
 | |
| 		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
 | |
| 			data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h;
 | |
| 	else
 | |
| 		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
 | |
| 			data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h;
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
 | |
| 			     u32 len, int gunzip, int is_e1, u32 blob_off)
 | |
| {
 | |
| 	int offset = 0;
 | |
| 
 | |
| 	data = bnx2x_sel_blob(addr, data, is_e1) + blob_off;
 | |
| 
 | |
| 	if (gunzip) {
 | |
| 		int rc;
 | |
| #ifdef __BIG_ENDIAN
 | |
| 		int i, size;
 | |
| 		u32 *temp;
 | |
| 
 | |
| 		temp = kmalloc(len, GFP_KERNEL);
 | |
| 		size = (len / 4) + ((len % 4) ? 1 : 0);
 | |
| 		for (i = 0; i < size; i++)
 | |
| 			temp[i] = swab32(data[i]);
 | |
| 		data = temp;
 | |
| #endif
 | |
| 		rc = bnx2x_gunzip(bp, (u8 *)data, len);
 | |
| 		if (rc) {
 | |
| 			BNX2X_ERR("gunzip failed ! rc %d\n", rc);
 | |
| 			return;
 | |
| 		}
 | |
| 		len = bp->gunzip_outlen;
 | |
| #ifdef __BIG_ENDIAN
 | |
| 		kfree(temp);
 | |
| 		for (i = 0; i < len; i++)
 | |
| 			((u32 *)bp->gunzip_buf)[i] =
 | |
| 					swab32(((u32 *)bp->gunzip_buf)[i]);
 | |
| #endif
 | |
| 	} else {
 | |
| 		if ((len * 4) > FW_BUF_SIZE) {
 | |
| 			BNX2X_ERR("LARGE DMAE OPERATION ! "
 | |
| 				  "addr 0x%x  len 0x%x\n", addr, len*4);
 | |
| 			return;
 | |
| 		}
 | |
| 		memcpy(bp->gunzip_buf, data, len * 4);
 | |
| 	}
 | |
| 
 | |
| 	if (bp->dmae_ready) {
 | |
| 		while (len > DMAE_LEN32_WR_MAX) {
 | |
| 			bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
 | |
| 					 addr + offset, DMAE_LEN32_WR_MAX);
 | |
| 			offset += DMAE_LEN32_WR_MAX * 4;
 | |
| 			len -= DMAE_LEN32_WR_MAX;
 | |
| 		}
 | |
| 		bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
 | |
| 				 addr + offset, len);
 | |
| 	} else
 | |
| 		bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
 | |
| }
 | |
| 
 | |
| static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
 | |
| {
 | |
| 	int is_e1       = CHIP_IS_E1(bp);
 | |
| 	int is_e1h      = CHIP_IS_E1H(bp);
 | |
| 	int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h);
 | |
| 	int hw_wr, i;
 | |
| 	union init_op *op;
 | |
| 	u32 op_type, addr, len;
 | |
| 	const u32 *data, *data_base;
 | |
| 
 | |
| 	if (CHIP_REV_IS_FPGA(bp))
 | |
| 		hw_wr = OP_WR_FPGA;
 | |
| 	else if (CHIP_REV_IS_EMUL(bp))
 | |
| 		hw_wr = OP_WR_EMUL;
 | |
| 	else
 | |
| 		hw_wr = OP_WR_ASIC;
 | |
| 
 | |
| 	if (is_e1)
 | |
| 		data_base = init_data_e1;
 | |
| 	else /* CHIP_IS_E1H(bp) */
 | |
| 		data_base = init_data_e1h;
 | |
| 
 | |
| 	for (i = op_start; i < op_end; i++) {
 | |
| 
 | |
| 		op = (union init_op *)&(init_ops[i]);
 | |
| 
 | |
| 		op_type = op->str_wr.op;
 | |
| 		addr = op->str_wr.offset;
 | |
| 		len = op->str_wr.data_len;
 | |
| 		data = data_base + op->str_wr.data_off;
 | |
| 
 | |
| 		/* careful! it must be in order */
 | |
| 		if (unlikely(op_type > OP_WB)) {
 | |
| 
 | |
| 			/* If E1 only */
 | |
| 			if (op_type <= OP_WB_E1) {
 | |
| 				if (is_e1)
 | |
| 					op_type -= (OP_RD_E1 - OP_RD);
 | |
| 
 | |
| 			/* If E1H only */
 | |
| 			} else if (op_type <= OP_WB_E1H) {
 | |
| 				if (is_e1h)
 | |
| 					op_type -= (OP_RD_E1H - OP_RD);
 | |
| 			}
 | |
| 
 | |
| 			/* HW/EMUL specific */
 | |
| 			if (op_type == hw_wr)
 | |
| 				op_type = OP_WR;
 | |
| 
 | |
| 			/* EMUL on E1H is special */
 | |
| 			if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h)
 | |
| 				op_type = OP_WR;
 | |
| 		}
 | |
| 
 | |
| 		switch (op_type) {
 | |
| 		case OP_RD:
 | |
| 			REG_RD(bp, addr);
 | |
| 			break;
 | |
| 		case OP_WR:
 | |
| 			REG_WR(bp, addr, op->write.val);
 | |
| 			break;
 | |
| 		case OP_SW:
 | |
| 			bnx2x_init_str_wr(bp, addr, data, len);
 | |
| 			break;
 | |
| 		case OP_WB:
 | |
| 			bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0);
 | |
| 			break;
 | |
| 		case OP_SI:
 | |
| 			bnx2x_init_ind_wr(bp, addr, data, len);
 | |
| 			break;
 | |
| 		case OP_ZR:
 | |
| 			bnx2x_init_fill(bp, addr, 0, op->zero.len);
 | |
| 			break;
 | |
| 		case OP_ZP:
 | |
| 			bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1,
 | |
| 					 op->str_wr.data_off);
 | |
| 			break;
 | |
| 		case OP_WR_64:
 | |
| 			bnx2x_init_wr_64(bp, addr, data, len);
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* happens whenever an op is of a diff HW */
 | |
| #if 0
 | |
| 			DP(NETIF_MSG_HW, "skipping init operation  "
 | |
| 			   "index %d[%d:%d]: type %d  addr 0x%x  "
 | |
| 			   "len %d(0x%x)\n",
 | |
| 			   i, op_start, op_end, op_type, addr, len, len);
 | |
| #endif
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
| * PXP
 | |
| ****************************************************************************/
 | |
| /*
 | |
|  * This code configures the PCI read/write arbiter
 | |
|  * which implements a weighted round robin
 | |
|  * between the virtual queues in the chip.
 | |
|  *
 | |
|  * The values were derived for each PCI max payload and max request size.
 | |
|  * since max payload and max request size are only known at run time,
 | |
|  * this is done as a separate init stage.
 | |
|  */
 | |
| 
 | |
| #define NUM_WR_Q			13
 | |
| #define NUM_RD_Q			29
 | |
| #define MAX_RD_ORD			3
 | |
| #define MAX_WR_ORD			2
 | |
| 
 | |
| /* configuration for one arbiter queue */
 | |
| struct arb_line {
 | |
| 	int l;
 | |
| 	int add;
 | |
| 	int ubound;
 | |
| };
 | |
| 
 | |
| /* derived configuration for each read queue for each max request size */
 | |
| static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
 | |
| 	{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
 | |
| 	{{4 , 8 , 4},   {4 , 8 , 4},    {4 , 8 , 4},    {4 , 8 , 4} },
 | |
| 	{{4 , 3 , 3},   {4 , 3 , 3},    {4 , 3 , 3},    {4 , 3 , 3} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {16 , 3 , 11},  {16 , 3 , 11} },
 | |
| 	{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
 | |
| 	{{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} }
 | |
| };
 | |
| 
 | |
| /* derived configuration for each write queue for each max request size */
 | |
| static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
 | |
| 	{{4 , 6 , 3},   {4 , 6 , 3},    {4 , 6 , 3} },
 | |
| 	{{4 , 2 , 3},   {4 , 2 , 3},    {4 , 2 , 3} },
 | |
| 	{{8 , 2 , 6},   {16 , 2 , 11},  {16 , 2 , 11} },
 | |
| 	{{8 , 2 , 6},   {16 , 2 , 11},  {32 , 2 , 21} },
 | |
| 	{{8 , 2 , 6},   {16 , 2 , 11},  {32 , 2 , 21} },
 | |
| 	{{8 , 2 , 6},   {16 , 2 , 11},  {32 , 2 , 21} },
 | |
| 	{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} },
 | |
| 	{{8 , 2 , 6},   {16 , 2 , 11},  {16 , 2 , 11} },
 | |
| 	{{8 , 2 , 6},   {16 , 2 , 11},  {16 , 2 , 11} },
 | |
| 	{{8 , 9 , 6},   {16 , 9 , 11},  {32 , 9 , 21} },
 | |
| 	{{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} },
 | |
| 	{{8 , 9 , 6},   {16 , 9 , 11},  {16 , 9 , 11} },
 | |
| 	{{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} }
 | |
| };
 | |
| 
 | |
| /* register addresses for read queues */
 | |
| static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
 | |
| 	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND0},
 | |
| 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
 | |
| 		PXP2_REG_PSWRQ_BW_UB1},
 | |
| 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
 | |
| 		PXP2_REG_PSWRQ_BW_UB2},
 | |
| 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
 | |
| 		PXP2_REG_PSWRQ_BW_UB3},
 | |
| 	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND4},
 | |
| 	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND5},
 | |
| 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
 | |
| 		PXP2_REG_PSWRQ_BW_UB6},
 | |
| 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
 | |
| 		PXP2_REG_PSWRQ_BW_UB7},
 | |
| 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
 | |
| 		PXP2_REG_PSWRQ_BW_UB8},
 | |
| 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
 | |
| 		PXP2_REG_PSWRQ_BW_UB9},
 | |
| 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
 | |
| 		PXP2_REG_PSWRQ_BW_UB10},
 | |
| 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
 | |
| 		PXP2_REG_PSWRQ_BW_UB11},
 | |
| 	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND12},
 | |
| 	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND13},
 | |
| 	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND14},
 | |
| 	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND15},
 | |
| 	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND16},
 | |
| 	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND17},
 | |
| 	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND18},
 | |
| 	{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND19},
 | |
| 	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND20},
 | |
| 	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND22},
 | |
| 	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND23},
 | |
| 	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND24},
 | |
| 	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND25},
 | |
| 	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND26},
 | |
| 	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
 | |
| 		PXP2_REG_RQ_BW_RD_UBOUND27},
 | |
| 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
 | |
| 		PXP2_REG_PSWRQ_BW_UB28}
 | |
| };
 | |
| 
 | |
| /* register addresses for write queues */
 | |
| static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
 | |
| 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
 | |
| 		PXP2_REG_PSWRQ_BW_UB1},
 | |
| 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
 | |
| 		PXP2_REG_PSWRQ_BW_UB2},
 | |
| 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
 | |
| 		PXP2_REG_PSWRQ_BW_UB3},
 | |
| 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
 | |
| 		PXP2_REG_PSWRQ_BW_UB6},
 | |
| 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
 | |
| 		PXP2_REG_PSWRQ_BW_UB7},
 | |
| 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
 | |
| 		PXP2_REG_PSWRQ_BW_UB8},
 | |
| 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
 | |
| 		PXP2_REG_PSWRQ_BW_UB9},
 | |
| 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
 | |
| 		PXP2_REG_PSWRQ_BW_UB10},
 | |
| 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
 | |
| 		PXP2_REG_PSWRQ_BW_UB11},
 | |
| 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
 | |
| 		PXP2_REG_PSWRQ_BW_UB28},
 | |
| 	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
 | |
| 		PXP2_REG_RQ_BW_WR_UBOUND29},
 | |
| 	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
 | |
| 		PXP2_REG_RQ_BW_WR_UBOUND30}
 | |
| };
 | |
| 
 | |
| static void bnx2x_init_pxp(struct bnx2x *bp)
 | |
| {
 | |
| 	u16 devctl;
 | |
| 	int r_order, w_order;
 | |
| 	u32 val, i;
 | |
| 
 | |
| 	pci_read_config_word(bp->pdev,
 | |
| 			     bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
 | |
| 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
 | |
| 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
 | |
| 	r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
 | |
| 
 | |
| 	if (r_order > MAX_RD_ORD) {
 | |
| 		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
 | |
| 		   r_order, MAX_RD_ORD);
 | |
| 		r_order = MAX_RD_ORD;
 | |
| 	}
 | |
| 	if (w_order > MAX_WR_ORD) {
 | |
| 		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
 | |
| 		   w_order, MAX_WR_ORD);
 | |
| 		w_order = MAX_WR_ORD;
 | |
| 	}
 | |
| 	if (CHIP_REV_IS_FPGA(bp)) {
 | |
| 		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
 | |
| 		w_order = 0;
 | |
| 	}
 | |
| 	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
 | |
| 
 | |
| 	for (i = 0; i < NUM_RD_Q-1; i++) {
 | |
| 		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
 | |
| 		REG_WR(bp, read_arb_addr[i].add,
 | |
| 		       read_arb_data[i][r_order].add);
 | |
| 		REG_WR(bp, read_arb_addr[i].ubound,
 | |
| 		       read_arb_data[i][r_order].ubound);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < NUM_WR_Q-1; i++) {
 | |
| 		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
 | |
| 		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
 | |
| 
 | |
| 			REG_WR(bp, write_arb_addr[i].l,
 | |
| 			       write_arb_data[i][w_order].l);
 | |
| 
 | |
| 			REG_WR(bp, write_arb_addr[i].add,
 | |
| 			       write_arb_data[i][w_order].add);
 | |
| 
 | |
| 			REG_WR(bp, write_arb_addr[i].ubound,
 | |
| 			       write_arb_data[i][w_order].ubound);
 | |
| 		} else {
 | |
| 
 | |
| 			val = REG_RD(bp, write_arb_addr[i].l);
 | |
| 			REG_WR(bp, write_arb_addr[i].l,
 | |
| 			       val | (write_arb_data[i][w_order].l << 10));
 | |
| 
 | |
| 			val = REG_RD(bp, write_arb_addr[i].add);
 | |
| 			REG_WR(bp, write_arb_addr[i].add,
 | |
| 			       val | (write_arb_data[i][w_order].add << 10));
 | |
| 
 | |
| 			val = REG_RD(bp, write_arb_addr[i].ubound);
 | |
| 			REG_WR(bp, write_arb_addr[i].ubound,
 | |
| 			       val | (write_arb_data[i][w_order].ubound << 7));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
 | |
| 	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
 | |
| 	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
 | |
| 	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
 | |
| 
 | |
| 	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
 | |
| 	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
 | |
| 	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
 | |
| 	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
 | |
| 
 | |
| 	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
 | |
| 	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
 | |
| 	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
 | |
| 	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
 | |
| 
 | |
| 	if (r_order == MAX_RD_ORD)
 | |
| 		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
 | |
| 
 | |
| 	REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
 | |
| 
 | |
| 	if (CHIP_IS_E1H(bp)) {
 | |
| 		REG_WR(bp, PXP2_REG_WR_HC_MPS, w_order+1);
 | |
| 		REG_WR(bp, PXP2_REG_WR_USDM_MPS, w_order+1);
 | |
| 		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, w_order+1);
 | |
| 		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, w_order+1);
 | |
| 		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, w_order+1);
 | |
| 		REG_WR(bp, PXP2_REG_WR_QM_MPS, w_order+1);
 | |
| 		REG_WR(bp, PXP2_REG_WR_TM_MPS, w_order+1);
 | |
| 		REG_WR(bp, PXP2_REG_WR_SRC_MPS, w_order+1);
 | |
| 		REG_WR(bp, PXP2_REG_WR_DBG_MPS, w_order+1);
 | |
| 		REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
 | |
| 		REG_WR(bp, PXP2_REG_WR_CDU_MPS, w_order+1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
| * CDU
 | |
| ****************************************************************************/
 | |
| 
 | |
| #define CDU_REGION_NUMBER_XCM_AG	2
 | |
| #define CDU_REGION_NUMBER_UCM_AG	4
 | |
| 
 | |
| /**
 | |
|  * String-to-compress [31:8] = CID (all 24 bits)
 | |
|  * String-to-compress [7:4] = Region
 | |
|  * String-to-compress [3:0] = Type
 | |
|  */
 | |
| #define CDU_VALID_DATA(_cid, _region, _type) \
 | |
| 		(((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
 | |
| #define CDU_CRC8(_cid, _region, _type) \
 | |
| 			calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
 | |
| #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
 | |
| 			(0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
 | |
| #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
 | |
| 	(0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
 | |
| #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val)	((_val) & ~0x80)
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Description:
 | |
|  *         Calculates crc 8 on a word value: polynomial 0-1-2-8
 | |
|  *         Code was translated from Verilog.
 | |
|  ****************************************************************************/
 | |
| static u8 calc_crc8(u32 data, u8 crc)
 | |
| {
 | |
| 	u8 D[32];
 | |
| 	u8 NewCRC[8];
 | |
| 	u8 C[8];
 | |
| 	u8 crc_res;
 | |
| 	u8 i;
 | |
| 
 | |
| 	/* split the data into 31 bits */
 | |
| 	for (i = 0; i < 32; i++) {
 | |
| 		D[i] = data & 1;
 | |
| 		data = data >> 1;
 | |
| 	}
 | |
| 
 | |
| 	/* split the crc into 8 bits */
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		C[i] = crc & 1;
 | |
| 		crc = crc >> 1;
 | |
| 	}
 | |
| 
 | |
| 	NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
 | |
| 		D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
 | |
| 		C[6] ^ C[7];
 | |
| 	NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
 | |
| 		D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
 | |
| 		D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
 | |
| 	NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
 | |
| 		D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
 | |
| 		C[0] ^ C[1] ^ C[4] ^ C[5];
 | |
| 	NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
 | |
| 		D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
 | |
| 		C[1] ^ C[2] ^ C[5] ^ C[6];
 | |
| 	NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
 | |
| 		D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
 | |
| 		C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
 | |
| 	NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
 | |
| 		D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
 | |
| 		C[3] ^ C[4] ^ C[7];
 | |
| 	NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
 | |
| 		D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
 | |
| 		C[5];
 | |
| 	NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
 | |
| 		D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
 | |
| 		C[6];
 | |
| 
 | |
| 	crc_res = 0;
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		crc_res |= (NewCRC[i] << i);
 | |
| 
 | |
| 	return crc_res;
 | |
| }
 | |
| 
 | |
| /* registers addresses are not in order
 | |
|    so these arrays help simplify the code */
 | |
| static const int cm_start[E1H_FUNC_MAX][9] = {
 | |
| 	{MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START,
 | |
| 	 XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START,
 | |
| 	 XSEM_FUNC0_START},
 | |
| 	{MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START,
 | |
| 	 XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START,
 | |
| 	 XSEM_FUNC1_START},
 | |
| 	{MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START,
 | |
| 	 XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START,
 | |
| 	 XSEM_FUNC2_START},
 | |
| 	{MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START,
 | |
| 	 XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START,
 | |
| 	 XSEM_FUNC3_START},
 | |
| 	{MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START,
 | |
| 	 XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START,
 | |
| 	 XSEM_FUNC4_START},
 | |
| 	{MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START,
 | |
| 	 XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START,
 | |
| 	 XSEM_FUNC5_START},
 | |
| 	{MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START,
 | |
| 	 XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START,
 | |
| 	 XSEM_FUNC6_START},
 | |
| 	{MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START,
 | |
| 	 XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START,
 | |
| 	 XSEM_FUNC7_START}
 | |
| };
 | |
| 
 | |
| static const int cm_end[E1H_FUNC_MAX][9] = {
 | |
| 	{MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END,
 | |
| 	 XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END,
 | |
| 	 XSEM_FUNC0_END},
 | |
| 	{MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END,
 | |
| 	 XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END,
 | |
| 	 XSEM_FUNC1_END},
 | |
| 	{MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END,
 | |
| 	 XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END,
 | |
| 	 XSEM_FUNC2_END},
 | |
| 	{MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END,
 | |
| 	 XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END,
 | |
| 	 XSEM_FUNC3_END},
 | |
| 	{MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END,
 | |
| 	 XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END,
 | |
| 	 XSEM_FUNC4_END},
 | |
| 	{MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END,
 | |
| 	 XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END,
 | |
| 	 XSEM_FUNC5_END},
 | |
| 	{MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END,
 | |
| 	 XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END,
 | |
| 	 XSEM_FUNC6_END},
 | |
| 	{MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END,
 | |
| 	 XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END,
 | |
| 	 XSEM_FUNC7_END},
 | |
| };
 | |
| 
 | |
| static const int hc_limits[E1H_FUNC_MAX][2] = {
 | |
| 	{HC_FUNC0_START, HC_FUNC0_END},
 | |
| 	{HC_FUNC1_START, HC_FUNC1_END},
 | |
| 	{HC_FUNC2_START, HC_FUNC2_END},
 | |
| 	{HC_FUNC3_START, HC_FUNC3_END},
 | |
| 	{HC_FUNC4_START, HC_FUNC4_END},
 | |
| 	{HC_FUNC5_START, HC_FUNC5_END},
 | |
| 	{HC_FUNC6_START, HC_FUNC6_END},
 | |
| 	{HC_FUNC7_START, HC_FUNC7_END}
 | |
| };
 | |
| 
 | |
| #endif /* BNX2X_INIT_H */
 | |
| 
 |