mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 52255bbe35
			
		
	
	
		52255bbe35
		
	
	
	
	
		
			
			Some devices were converted incorrectly and are missing the validate address hooks. Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			3253 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3253 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
 | |
|  *           and other Tigon based cards.
 | |
|  *
 | |
|  * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
 | |
|  *
 | |
|  * Thanks to Alteon and 3Com for providing hardware and documentation
 | |
|  * enabling me to write this driver.
 | |
|  *
 | |
|  * A mailing list for discussing the use of this driver has been
 | |
|  * setup, please subscribe to the lists if you have any questions
 | |
|  * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
 | |
|  * see how to subscribe.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * Additional credits:
 | |
|  *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
 | |
|  *       dump support. The trace dump support has not been
 | |
|  *       integrated yet however.
 | |
|  *   Troy Benjegerdes: Big Endian (PPC) patches.
 | |
|  *   Nate Stahl: Better out of memory handling and stats support.
 | |
|  *   Aman Singla: Nasty race between interrupt handler and tx code dealing
 | |
|  *                with 'testing the tx_ret_csm and setting tx_full'
 | |
|  *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
 | |
|  *                                       infrastructure and Sparc support
 | |
|  *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
 | |
|  *                              driver under Linux/Sparc64
 | |
|  *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
 | |
|  *                                       ETHTOOL_GDRVINFO support
 | |
|  *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
 | |
|  *                                       handler and close() cleanup.
 | |
|  *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
 | |
|  *                                       memory mapped IO is enabled to
 | |
|  *                                       make the driver work on RS/6000.
 | |
|  *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
 | |
|  *                                       where the driver would disable
 | |
|  *                                       bus master mode if it had to disable
 | |
|  *                                       write and invalidate.
 | |
|  *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
 | |
|  *                                       endian systems.
 | |
|  *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and
 | |
|  *                                       rx producer index when
 | |
|  *                                       flushing the Jumbo ring.
 | |
|  *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the
 | |
|  *                                       driver init path.
 | |
|  *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/sockios.h>
 | |
| #include <linux/firmware.h>
 | |
| 
 | |
| #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
 | |
| #include <linux/if_vlan.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef SIOCETHTOOL
 | |
| #include <linux/ethtool.h>
 | |
| #endif
 | |
| 
 | |
| #include <net/sock.h>
 | |
| #include <net/ip.h>
 | |
| 
 | |
| #include <asm/system.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| 
 | |
| #define DRV_NAME "acenic"
 | |
| 
 | |
| #undef INDEX_DEBUG
 | |
| 
 | |
| #ifdef CONFIG_ACENIC_OMIT_TIGON_I
 | |
| #define ACE_IS_TIGON_I(ap)	0
 | |
| #define ACE_TX_RING_ENTRIES(ap)	MAX_TX_RING_ENTRIES
 | |
| #else
 | |
| #define ACE_IS_TIGON_I(ap)	(ap->version == 1)
 | |
| #define ACE_TX_RING_ENTRIES(ap)	ap->tx_ring_entries
 | |
| #endif
 | |
| 
 | |
| #ifndef PCI_VENDOR_ID_ALTEON
 | |
| #define PCI_VENDOR_ID_ALTEON		0x12ae
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
 | |
| #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001
 | |
| #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_3COM_3C985
 | |
| #define PCI_DEVICE_ID_3COM_3C985	0x0001
 | |
| #endif
 | |
| #ifndef PCI_VENDOR_ID_NETGEAR
 | |
| #define PCI_VENDOR_ID_NETGEAR		0x1385
 | |
| #define PCI_DEVICE_ID_NETGEAR_GA620	0x620a
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
 | |
| #define PCI_DEVICE_ID_NETGEAR_GA620T	0x630a
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Farallon used the DEC vendor ID by mistake and they seem not
 | |
|  * to care - stinky!
 | |
|  */
 | |
| #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
 | |
| #define PCI_DEVICE_ID_FARALLON_PN9000SX	0x1a
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
 | |
| #define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa
 | |
| #endif
 | |
| #ifndef PCI_VENDOR_ID_SGI
 | |
| #define PCI_VENDOR_ID_SGI		0x10a9
 | |
| #endif
 | |
| #ifndef PCI_DEVICE_ID_SGI_ACENIC
 | |
| #define PCI_DEVICE_ID_SGI_ACENIC	0x0009
 | |
| #endif
 | |
| 
 | |
| static struct pci_device_id acenic_pci_tbl[] = {
 | |
| 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 | |
| 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 | |
| 	{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 | |
| 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 | |
| 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 | |
| 	/*
 | |
| 	 * Farallon used the DEC vendor ID on their cards incorrectly,
 | |
| 	 * then later Alteon's ID.
 | |
| 	 */
 | |
| 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 | |
| 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 | |
| 	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
 | |
| 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
 | |
| 
 | |
| #define ace_sync_irq(irq)	synchronize_irq(irq)
 | |
| 
 | |
| #ifndef offset_in_page
 | |
| #define offset_in_page(ptr)	((unsigned long)(ptr) & ~PAGE_MASK)
 | |
| #endif
 | |
| 
 | |
| #define ACE_MAX_MOD_PARMS	8
 | |
| #define BOARD_IDX_STATIC	0
 | |
| #define BOARD_IDX_OVERFLOW	-1
 | |
| 
 | |
| #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
 | |
| 	defined(NETIF_F_HW_VLAN_RX)
 | |
| #define ACENIC_DO_VLAN		1
 | |
| #define ACE_RCB_VLAN_FLAG	RCB_FLG_VLAN_ASSIST
 | |
| #else
 | |
| #define ACENIC_DO_VLAN		0
 | |
| #define ACE_RCB_VLAN_FLAG	0
 | |
| #endif
 | |
| 
 | |
| #include "acenic.h"
 | |
| 
 | |
| /*
 | |
|  * These must be defined before the firmware is included.
 | |
|  */
 | |
| #define MAX_TEXT_LEN	96*1024
 | |
| #define MAX_RODATA_LEN	8*1024
 | |
| #define MAX_DATA_LEN	2*1024
 | |
| 
 | |
| #ifndef tigon2FwReleaseLocal
 | |
| #define tigon2FwReleaseLocal 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This driver currently supports Tigon I and Tigon II based cards
 | |
|  * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
 | |
|  * GA620. The driver should also work on the SGI, DEC and Farallon
 | |
|  * versions of the card, however I have not been able to test that
 | |
|  * myself.
 | |
|  *
 | |
|  * This card is really neat, it supports receive hardware checksumming
 | |
|  * and jumbo frames (up to 9000 bytes) and does a lot of work in the
 | |
|  * firmware. Also the programming interface is quite neat, except for
 | |
|  * the parts dealing with the i2c eeprom on the card ;-)
 | |
|  *
 | |
|  * Using jumbo frames:
 | |
|  *
 | |
|  * To enable jumbo frames, simply specify an mtu between 1500 and 9000
 | |
|  * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
 | |
|  * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
 | |
|  * interface number and <MTU> being the MTU value.
 | |
|  *
 | |
|  * Module parameters:
 | |
|  *
 | |
|  * When compiled as a loadable module, the driver allows for a number
 | |
|  * of module parameters to be specified. The driver supports the
 | |
|  * following module parameters:
 | |
|  *
 | |
|  *  trace=<val> - Firmware trace level. This requires special traced
 | |
|  *                firmware to replace the firmware supplied with
 | |
|  *                the driver - for debugging purposes only.
 | |
|  *
 | |
|  *  link=<val>  - Link state. Normally you want to use the default link
 | |
|  *                parameters set by the driver. This can be used to
 | |
|  *                override these in case your switch doesn't negotiate
 | |
|  *                the link properly. Valid values are:
 | |
|  *         0x0001 - Force half duplex link.
 | |
|  *         0x0002 - Do not negotiate line speed with the other end.
 | |
|  *         0x0010 - 10Mbit/sec link.
 | |
|  *         0x0020 - 100Mbit/sec link.
 | |
|  *         0x0040 - 1000Mbit/sec link.
 | |
|  *         0x0100 - Do not negotiate flow control.
 | |
|  *         0x0200 - Enable RX flow control Y
 | |
|  *         0x0400 - Enable TX flow control Y (Tigon II NICs only).
 | |
|  *                Default value is 0x0270, ie. enable link+flow
 | |
|  *                control negotiation. Negotiating the highest
 | |
|  *                possible link speed with RX flow control enabled.
 | |
|  *
 | |
|  *                When disabling link speed negotiation, only one link
 | |
|  *                speed is allowed to be specified!
 | |
|  *
 | |
|  *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 | |
|  *                to wait for more packets to arive before
 | |
|  *                interrupting the host, from the time the first
 | |
|  *                packet arrives.
 | |
|  *
 | |
|  *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 | |
|  *                to wait for more packets to arive in the transmit ring,
 | |
|  *                before interrupting the host, after transmitting the
 | |
|  *                first packet in the ring.
 | |
|  *
 | |
|  *  max_tx_desc=<val> - maximum number of transmit descriptors
 | |
|  *                (packets) transmitted before interrupting the host.
 | |
|  *
 | |
|  *  max_rx_desc=<val> - maximum number of receive descriptors
 | |
|  *                (packets) received before interrupting the host.
 | |
|  *
 | |
|  *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
 | |
|  *                increments of the NIC's on board memory to be used for
 | |
|  *                transmit and receive buffers. For the 1MB NIC app. 800KB
 | |
|  *                is available, on the 1/2MB NIC app. 300KB is available.
 | |
|  *                68KB will always be available as a minimum for both
 | |
|  *                directions. The default value is a 50/50 split.
 | |
|  *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
 | |
|  *                operations, default (1) is to always disable this as
 | |
|  *                that is what Alteon does on NT. I have not been able
 | |
|  *                to measure any real performance differences with
 | |
|  *                this on my systems. Set <val>=0 if you want to
 | |
|  *                enable these operations.
 | |
|  *
 | |
|  * If you use more than one NIC, specify the parameters for the
 | |
|  * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
 | |
|  * run tracing on NIC #2 but not on NIC #1 and #3.
 | |
|  *
 | |
|  * TODO:
 | |
|  *
 | |
|  * - Proper multicast support.
 | |
|  * - NIC dump support.
 | |
|  * - More tuning parameters.
 | |
|  *
 | |
|  * The mini ring is not used under Linux and I am not sure it makes sense
 | |
|  * to actually use it.
 | |
|  *
 | |
|  * New interrupt handler strategy:
 | |
|  *
 | |
|  * The old interrupt handler worked using the traditional method of
 | |
|  * replacing an skbuff with a new one when a packet arrives. However
 | |
|  * the rx rings do not need to contain a static number of buffer
 | |
|  * descriptors, thus it makes sense to move the memory allocation out
 | |
|  * of the main interrupt handler and do it in a bottom half handler
 | |
|  * and only allocate new buffers when the number of buffers in the
 | |
|  * ring is below a certain threshold. In order to avoid starving the
 | |
|  * NIC under heavy load it is however necessary to force allocation
 | |
|  * when hitting a minimum threshold. The strategy for alloction is as
 | |
|  * follows:
 | |
|  *
 | |
|  *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
 | |
|  *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
 | |
|  *                           the buffers in the interrupt handler
 | |
|  *     RX_RING_THRES       - maximum number of buffers in the rx ring
 | |
|  *     RX_MINI_THRES       - maximum number of buffers in the mini ring
 | |
|  *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring
 | |
|  *
 | |
|  * One advantagous side effect of this allocation approach is that the
 | |
|  * entire rx processing can be done without holding any spin lock
 | |
|  * since the rx rings and registers are totally independent of the tx
 | |
|  * ring and its registers.  This of course includes the kmalloc's of
 | |
|  * new skb's. Thus start_xmit can run in parallel with rx processing
 | |
|  * and the memory allocation on SMP systems.
 | |
|  *
 | |
|  * Note that running the skb reallocation in a bottom half opens up
 | |
|  * another can of races which needs to be handled properly. In
 | |
|  * particular it can happen that the interrupt handler tries to run
 | |
|  * the reallocation while the bottom half is either running on another
 | |
|  * CPU or was interrupted on the same CPU. To get around this the
 | |
|  * driver uses bitops to prevent the reallocation routines from being
 | |
|  * reentered.
 | |
|  *
 | |
|  * TX handling can also be done without holding any spin lock, wheee
 | |
|  * this is fun! since tx_ret_csm is only written to by the interrupt
 | |
|  * handler. The case to be aware of is when shutting down the device
 | |
|  * and cleaning up where it is necessary to make sure that
 | |
|  * start_xmit() is not running while this is happening. Well DaveM
 | |
|  * informs me that this case is already protected against ... bye bye
 | |
|  * Mr. Spin Lock, it was nice to know you.
 | |
|  *
 | |
|  * TX interrupts are now partly disabled so the NIC will only generate
 | |
|  * TX interrupts for the number of coal ticks, not for the number of
 | |
|  * TX packets in the queue. This should reduce the number of TX only,
 | |
|  * ie. when no RX processing is done, interrupts seen.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Threshold values for RX buffer allocation - the low water marks for
 | |
|  * when to start refilling the rings are set to 75% of the ring
 | |
|  * sizes. It seems to make sense to refill the rings entirely from the
 | |
|  * intrrupt handler once it gets below the panic threshold, that way
 | |
|  * we don't risk that the refilling is moved to another CPU when the
 | |
|  * one running the interrupt handler just got the slab code hot in its
 | |
|  * cache.
 | |
|  */
 | |
| #define RX_RING_SIZE		72
 | |
| #define RX_MINI_SIZE		64
 | |
| #define RX_JUMBO_SIZE		48
 | |
| 
 | |
| #define RX_PANIC_STD_THRES	16
 | |
| #define RX_PANIC_STD_REFILL	(3*RX_PANIC_STD_THRES)/2
 | |
| #define RX_LOW_STD_THRES	(3*RX_RING_SIZE)/4
 | |
| #define RX_PANIC_MINI_THRES	12
 | |
| #define RX_PANIC_MINI_REFILL	(3*RX_PANIC_MINI_THRES)/2
 | |
| #define RX_LOW_MINI_THRES	(3*RX_MINI_SIZE)/4
 | |
| #define RX_PANIC_JUMBO_THRES	6
 | |
| #define RX_PANIC_JUMBO_REFILL	(3*RX_PANIC_JUMBO_THRES)/2
 | |
| #define RX_LOW_JUMBO_THRES	(3*RX_JUMBO_SIZE)/4
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Size of the mini ring entries, basically these just should be big
 | |
|  * enough to take TCP ACKs
 | |
|  */
 | |
| #define ACE_MINI_SIZE		100
 | |
| 
 | |
| #define ACE_MINI_BUFSIZE	ACE_MINI_SIZE
 | |
| #define ACE_STD_BUFSIZE		(ACE_STD_MTU + ETH_HLEN + 4)
 | |
| #define ACE_JUMBO_BUFSIZE	(ACE_JUMBO_MTU + ETH_HLEN + 4)
 | |
| 
 | |
| /*
 | |
|  * There seems to be a magic difference in the effect between 995 and 996
 | |
|  * but little difference between 900 and 995 ... no idea why.
 | |
|  *
 | |
|  * There is now a default set of tuning parameters which is set, depending
 | |
|  * on whether or not the user enables Jumbo frames. It's assumed that if
 | |
|  * Jumbo frames are enabled, the user wants optimal tuning for that case.
 | |
|  */
 | |
| #define DEF_TX_COAL		400 /* 996 */
 | |
| #define DEF_TX_MAX_DESC		60  /* was 40 */
 | |
| #define DEF_RX_COAL		120 /* 1000 */
 | |
| #define DEF_RX_MAX_DESC		25
 | |
| #define DEF_TX_RATIO		21 /* 24 */
 | |
| 
 | |
| #define DEF_JUMBO_TX_COAL	20
 | |
| #define DEF_JUMBO_TX_MAX_DESC	60
 | |
| #define DEF_JUMBO_RX_COAL	30
 | |
| #define DEF_JUMBO_RX_MAX_DESC	6
 | |
| #define DEF_JUMBO_TX_RATIO	21
 | |
| 
 | |
| #if tigon2FwReleaseLocal < 20001118
 | |
| /*
 | |
|  * Standard firmware and early modifications duplicate
 | |
|  * IRQ load without this flag (coal timer is never reset).
 | |
|  * Note that with this flag tx_coal should be less than
 | |
|  * time to xmit full tx ring.
 | |
|  * 400usec is not so bad for tx ring size of 128.
 | |
|  */
 | |
| #define TX_COAL_INTS_ONLY	1	/* worth it */
 | |
| #else
 | |
| /*
 | |
|  * With modified firmware, this is not necessary, but still useful.
 | |
|  */
 | |
| #define TX_COAL_INTS_ONLY	1
 | |
| #endif
 | |
| 
 | |
| #define DEF_TRACE		0
 | |
| #define DEF_STAT		(2 * TICKS_PER_SEC)
 | |
| 
 | |
| 
 | |
| static int link_state[ACE_MAX_MOD_PARMS];
 | |
| static int trace[ACE_MAX_MOD_PARMS];
 | |
| static int tx_coal_tick[ACE_MAX_MOD_PARMS];
 | |
| static int rx_coal_tick[ACE_MAX_MOD_PARMS];
 | |
| static int max_tx_desc[ACE_MAX_MOD_PARMS];
 | |
| static int max_rx_desc[ACE_MAX_MOD_PARMS];
 | |
| static int tx_ratio[ACE_MAX_MOD_PARMS];
 | |
| static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
 | |
| 
 | |
| MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
 | |
| #ifndef CONFIG_ACENIC_OMIT_TIGON_I
 | |
| MODULE_FIRMWARE("acenic/tg1.bin");
 | |
| #endif
 | |
| MODULE_FIRMWARE("acenic/tg2.bin");
 | |
| 
 | |
| module_param_array_named(link, link_state, int, NULL, 0);
 | |
| module_param_array(trace, int, NULL, 0);
 | |
| module_param_array(tx_coal_tick, int, NULL, 0);
 | |
| module_param_array(max_tx_desc, int, NULL, 0);
 | |
| module_param_array(rx_coal_tick, int, NULL, 0);
 | |
| module_param_array(max_rx_desc, int, NULL, 0);
 | |
| module_param_array(tx_ratio, int, NULL, 0);
 | |
| MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
 | |
| MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
 | |
| MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
 | |
| MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
 | |
| MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
 | |
| MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
 | |
| MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
 | |
| 
 | |
| 
 | |
| static char version[] __devinitdata =
 | |
|   "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n"
 | |
|   "                            http://home.cern.ch/~jes/gige/acenic.html\n";
 | |
| 
 | |
| static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
 | |
| static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
 | |
| static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
 | |
| 
 | |
| static const struct ethtool_ops ace_ethtool_ops = {
 | |
| 	.get_settings = ace_get_settings,
 | |
| 	.set_settings = ace_set_settings,
 | |
| 	.get_drvinfo = ace_get_drvinfo,
 | |
| };
 | |
| 
 | |
| static void ace_watchdog(struct net_device *dev);
 | |
| 
 | |
| static const struct net_device_ops ace_netdev_ops = {
 | |
| 	.ndo_open		= ace_open,
 | |
| 	.ndo_stop		= ace_close,
 | |
| 	.ndo_tx_timeout		= ace_watchdog,
 | |
| 	.ndo_get_stats		= ace_get_stats,
 | |
| 	.ndo_start_xmit		= ace_start_xmit,
 | |
| 	.ndo_set_multicast_list	= ace_set_multicast_list,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_set_mac_address	= ace_set_mac_addr,
 | |
| 	.ndo_change_mtu		= ace_change_mtu,
 | |
| #if ACENIC_DO_VLAN
 | |
| 	.ndo_vlan_rx_register	= ace_vlan_rx_register,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int __devinit acenic_probe_one(struct pci_dev *pdev,
 | |
| 		const struct pci_device_id *id)
 | |
| {
 | |
| 	struct net_device *dev;
 | |
| 	struct ace_private *ap;
 | |
| 	static int boards_found;
 | |
| 
 | |
| 	dev = alloc_etherdev(sizeof(struct ace_private));
 | |
| 	if (dev == NULL) {
 | |
| 		printk(KERN_ERR "acenic: Unable to allocate "
 | |
| 		       "net_device structure!\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	SET_NETDEV_DEV(dev, &pdev->dev);
 | |
| 
 | |
| 	ap = netdev_priv(dev);
 | |
| 	ap->pdev = pdev;
 | |
| 	ap->name = pci_name(pdev);
 | |
| 
 | |
| 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
 | |
| #if ACENIC_DO_VLAN
 | |
| 	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
 | |
| #endif
 | |
| 
 | |
| 	dev->watchdog_timeo = 5*HZ;
 | |
| 
 | |
| 	dev->netdev_ops = &ace_netdev_ops;
 | |
| 	SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
 | |
| 
 | |
| 	/* we only display this string ONCE */
 | |
| 	if (!boards_found)
 | |
| 		printk(version);
 | |
| 
 | |
| 	if (pci_enable_device(pdev))
 | |
| 		goto fail_free_netdev;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable master mode before we start playing with the
 | |
| 	 * pci_command word since pci_set_master() will modify
 | |
| 	 * it.
 | |
| 	 */
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
 | |
| 
 | |
| 	/* OpenFirmware on Mac's does not set this - DOH.. */
 | |
| 	if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
 | |
| 		printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
 | |
| 		       "access - was not enabled by BIOS/Firmware\n",
 | |
| 		       ap->name);
 | |
| 		ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
 | |
| 		pci_write_config_word(ap->pdev, PCI_COMMAND,
 | |
| 				      ap->pci_command);
 | |
| 		wmb();
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
 | |
| 	if (ap->pci_latency <= 0x40) {
 | |
| 		ap->pci_latency = 0x40;
 | |
| 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Remap the regs into kernel space - this is abuse of
 | |
| 	 * dev->base_addr since it was means for I/O port
 | |
| 	 * addresses but who gives a damn.
 | |
| 	 */
 | |
| 	dev->base_addr = pci_resource_start(pdev, 0);
 | |
| 	ap->regs = ioremap(dev->base_addr, 0x4000);
 | |
| 	if (!ap->regs) {
 | |
| 		printk(KERN_ERR "%s:  Unable to map I/O register, "
 | |
| 		       "AceNIC %i will be disabled.\n",
 | |
| 		       ap->name, boards_found);
 | |
| 		goto fail_free_netdev;
 | |
| 	}
 | |
| 
 | |
| 	switch(pdev->vendor) {
 | |
| 	case PCI_VENDOR_ID_ALTEON:
 | |
| 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
 | |
| 			printk(KERN_INFO "%s: Farallon PN9100-T ",
 | |
| 			       ap->name);
 | |
| 		} else {
 | |
| 			printk(KERN_INFO "%s: Alteon AceNIC ",
 | |
| 			       ap->name);
 | |
| 		}
 | |
| 		break;
 | |
| 	case PCI_VENDOR_ID_3COM:
 | |
| 		printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
 | |
| 		break;
 | |
| 	case PCI_VENDOR_ID_NETGEAR:
 | |
| 		printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
 | |
| 		break;
 | |
| 	case PCI_VENDOR_ID_DEC:
 | |
| 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
 | |
| 			printk(KERN_INFO "%s: Farallon PN9000-SX ",
 | |
| 			       ap->name);
 | |
| 			break;
 | |
| 		}
 | |
| 	case PCI_VENDOR_ID_SGI:
 | |
| 		printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
 | |
| 	printk("irq %d\n", pdev->irq);
 | |
| 
 | |
| #ifdef CONFIG_ACENIC_OMIT_TIGON_I
 | |
| 	if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
 | |
| 		printk(KERN_ERR "%s: Driver compiled without Tigon I"
 | |
| 		       " support - NIC disabled\n", dev->name);
 | |
| 		goto fail_uninit;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (ace_allocate_descriptors(dev))
 | |
| 		goto fail_free_netdev;
 | |
| 
 | |
| #ifdef MODULE
 | |
| 	if (boards_found >= ACE_MAX_MOD_PARMS)
 | |
| 		ap->board_idx = BOARD_IDX_OVERFLOW;
 | |
| 	else
 | |
| 		ap->board_idx = boards_found;
 | |
| #else
 | |
| 	ap->board_idx = BOARD_IDX_STATIC;
 | |
| #endif
 | |
| 
 | |
| 	if (ace_init(dev))
 | |
| 		goto fail_free_netdev;
 | |
| 
 | |
| 	if (register_netdev(dev)) {
 | |
| 		printk(KERN_ERR "acenic: device registration failed\n");
 | |
| 		goto fail_uninit;
 | |
| 	}
 | |
| 	ap->name = dev->name;
 | |
| 
 | |
| 	if (ap->pci_using_dac)
 | |
| 		dev->features |= NETIF_F_HIGHDMA;
 | |
| 
 | |
| 	pci_set_drvdata(pdev, dev);
 | |
| 
 | |
| 	boards_found++;
 | |
| 	return 0;
 | |
| 
 | |
|  fail_uninit:
 | |
| 	ace_init_cleanup(dev);
 | |
|  fail_free_netdev:
 | |
| 	free_netdev(dev);
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static void __devexit acenic_remove_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	short i;
 | |
| 
 | |
| 	unregister_netdev(dev);
 | |
| 
 | |
| 	writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
 | |
| 	if (ap->version >= 2)
 | |
| 		writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
 | |
| 
 | |
| 	/*
 | |
| 	 * This clears any pending interrupts
 | |
| 	 */
 | |
| 	writel(1, ®s->Mb0Lo);
 | |
| 	readl(®s->CpuCtrl);	/* flush */
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure no other CPUs are processing interrupts
 | |
| 	 * on the card before the buffers are being released.
 | |
| 	 * Otherwise one might experience some `interesting'
 | |
| 	 * effects.
 | |
| 	 *
 | |
| 	 * Then release the RX buffers - jumbo buffers were
 | |
| 	 * already released in ace_close().
 | |
| 	 */
 | |
| 	ace_sync_irq(dev->irq);
 | |
| 
 | |
| 	for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
 | |
| 		struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
 | |
| 
 | |
| 		if (skb) {
 | |
| 			struct ring_info *ringp;
 | |
| 			dma_addr_t mapping;
 | |
| 
 | |
| 			ringp = &ap->skb->rx_std_skbuff[i];
 | |
| 			mapping = pci_unmap_addr(ringp, mapping);
 | |
| 			pci_unmap_page(ap->pdev, mapping,
 | |
| 				       ACE_STD_BUFSIZE,
 | |
| 				       PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 			ap->rx_std_ring[i].size = 0;
 | |
| 			ap->skb->rx_std_skbuff[i].skb = NULL;
 | |
| 			dev_kfree_skb(skb);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ap->version >= 2) {
 | |
| 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
 | |
| 			struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
 | |
| 
 | |
| 			if (skb) {
 | |
| 				struct ring_info *ringp;
 | |
| 				dma_addr_t mapping;
 | |
| 
 | |
| 				ringp = &ap->skb->rx_mini_skbuff[i];
 | |
| 				mapping = pci_unmap_addr(ringp,mapping);
 | |
| 				pci_unmap_page(ap->pdev, mapping,
 | |
| 					       ACE_MINI_BUFSIZE,
 | |
| 					       PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 				ap->rx_mini_ring[i].size = 0;
 | |
| 				ap->skb->rx_mini_skbuff[i].skb = NULL;
 | |
| 				dev_kfree_skb(skb);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
 | |
| 		struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
 | |
| 		if (skb) {
 | |
| 			struct ring_info *ringp;
 | |
| 			dma_addr_t mapping;
 | |
| 
 | |
| 			ringp = &ap->skb->rx_jumbo_skbuff[i];
 | |
| 			mapping = pci_unmap_addr(ringp, mapping);
 | |
| 			pci_unmap_page(ap->pdev, mapping,
 | |
| 				       ACE_JUMBO_BUFSIZE,
 | |
| 				       PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 			ap->rx_jumbo_ring[i].size = 0;
 | |
| 			ap->skb->rx_jumbo_skbuff[i].skb = NULL;
 | |
| 			dev_kfree_skb(skb);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ace_init_cleanup(dev);
 | |
| 	free_netdev(dev);
 | |
| }
 | |
| 
 | |
| static struct pci_driver acenic_pci_driver = {
 | |
| 	.name		= "acenic",
 | |
| 	.id_table	= acenic_pci_tbl,
 | |
| 	.probe		= acenic_probe_one,
 | |
| 	.remove		= __devexit_p(acenic_remove_one),
 | |
| };
 | |
| 
 | |
| static int __init acenic_init(void)
 | |
| {
 | |
| 	return pci_register_driver(&acenic_pci_driver);
 | |
| }
 | |
| 
 | |
| static void __exit acenic_exit(void)
 | |
| {
 | |
| 	pci_unregister_driver(&acenic_pci_driver);
 | |
| }
 | |
| 
 | |
| module_init(acenic_init);
 | |
| module_exit(acenic_exit);
 | |
| 
 | |
| static void ace_free_descriptors(struct net_device *dev)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	int size;
 | |
| 
 | |
| 	if (ap->rx_std_ring != NULL) {
 | |
| 		size = (sizeof(struct rx_desc) *
 | |
| 			(RX_STD_RING_ENTRIES +
 | |
| 			 RX_JUMBO_RING_ENTRIES +
 | |
| 			 RX_MINI_RING_ENTRIES +
 | |
| 			 RX_RETURN_RING_ENTRIES));
 | |
| 		pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
 | |
| 				    ap->rx_ring_base_dma);
 | |
| 		ap->rx_std_ring = NULL;
 | |
| 		ap->rx_jumbo_ring = NULL;
 | |
| 		ap->rx_mini_ring = NULL;
 | |
| 		ap->rx_return_ring = NULL;
 | |
| 	}
 | |
| 	if (ap->evt_ring != NULL) {
 | |
| 		size = (sizeof(struct event) * EVT_RING_ENTRIES);
 | |
| 		pci_free_consistent(ap->pdev, size, ap->evt_ring,
 | |
| 				    ap->evt_ring_dma);
 | |
| 		ap->evt_ring = NULL;
 | |
| 	}
 | |
| 	if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
 | |
| 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 | |
| 		pci_free_consistent(ap->pdev, size, ap->tx_ring,
 | |
| 				    ap->tx_ring_dma);
 | |
| 	}
 | |
| 	ap->tx_ring = NULL;
 | |
| 
 | |
| 	if (ap->evt_prd != NULL) {
 | |
| 		pci_free_consistent(ap->pdev, sizeof(u32),
 | |
| 				    (void *)ap->evt_prd, ap->evt_prd_dma);
 | |
| 		ap->evt_prd = NULL;
 | |
| 	}
 | |
| 	if (ap->rx_ret_prd != NULL) {
 | |
| 		pci_free_consistent(ap->pdev, sizeof(u32),
 | |
| 				    (void *)ap->rx_ret_prd,
 | |
| 				    ap->rx_ret_prd_dma);
 | |
| 		ap->rx_ret_prd = NULL;
 | |
| 	}
 | |
| 	if (ap->tx_csm != NULL) {
 | |
| 		pci_free_consistent(ap->pdev, sizeof(u32),
 | |
| 				    (void *)ap->tx_csm, ap->tx_csm_dma);
 | |
| 		ap->tx_csm = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int ace_allocate_descriptors(struct net_device *dev)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	int size;
 | |
| 
 | |
| 	size = (sizeof(struct rx_desc) *
 | |
| 		(RX_STD_RING_ENTRIES +
 | |
| 		 RX_JUMBO_RING_ENTRIES +
 | |
| 		 RX_MINI_RING_ENTRIES +
 | |
| 		 RX_RETURN_RING_ENTRIES));
 | |
| 
 | |
| 	ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
 | |
| 					       &ap->rx_ring_base_dma);
 | |
| 	if (ap->rx_std_ring == NULL)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
 | |
| 	ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
 | |
| 	ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
 | |
| 
 | |
| 	size = (sizeof(struct event) * EVT_RING_ENTRIES);
 | |
| 
 | |
| 	ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
 | |
| 
 | |
| 	if (ap->evt_ring == NULL)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only allocate a host TX ring for the Tigon II, the Tigon I
 | |
| 	 * has to use PCI registers for this ;-(
 | |
| 	 */
 | |
| 	if (!ACE_IS_TIGON_I(ap)) {
 | |
| 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 | |
| 
 | |
| 		ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
 | |
| 						   &ap->tx_ring_dma);
 | |
| 
 | |
| 		if (ap->tx_ring == NULL)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
 | |
| 					   &ap->evt_prd_dma);
 | |
| 	if (ap->evt_prd == NULL)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
 | |
| 					      &ap->rx_ret_prd_dma);
 | |
| 	if (ap->rx_ret_prd == NULL)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
 | |
| 					  &ap->tx_csm_dma);
 | |
| 	if (ap->tx_csm == NULL)
 | |
| 		goto fail;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	/* Clean up. */
 | |
| 	ace_init_cleanup(dev);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Generic cleanup handling data allocated during init. Used when the
 | |
|  * module is unloaded or if an error occurs during initialization
 | |
|  */
 | |
| static void ace_init_cleanup(struct net_device *dev)
 | |
| {
 | |
| 	struct ace_private *ap;
 | |
| 
 | |
| 	ap = netdev_priv(dev);
 | |
| 
 | |
| 	ace_free_descriptors(dev);
 | |
| 
 | |
| 	if (ap->info)
 | |
| 		pci_free_consistent(ap->pdev, sizeof(struct ace_info),
 | |
| 				    ap->info, ap->info_dma);
 | |
| 	kfree(ap->skb);
 | |
| 	kfree(ap->trace_buf);
 | |
| 
 | |
| 	if (dev->irq)
 | |
| 		free_irq(dev->irq, dev);
 | |
| 
 | |
| 	iounmap(ap->regs);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Commands are considered to be slow.
 | |
|  */
 | |
| static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
 | |
| {
 | |
| 	u32 idx;
 | |
| 
 | |
| 	idx = readl(®s->CmdPrd);
 | |
| 
 | |
| 	writel(*(u32 *)(cmd), ®s->CmdRng[idx]);
 | |
| 	idx = (idx + 1) % CMD_RING_ENTRIES;
 | |
| 
 | |
| 	writel(idx, ®s->CmdPrd);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __devinit ace_init(struct net_device *dev)
 | |
| {
 | |
| 	struct ace_private *ap;
 | |
| 	struct ace_regs __iomem *regs;
 | |
| 	struct ace_info *info = NULL;
 | |
| 	struct pci_dev *pdev;
 | |
| 	unsigned long myjif;
 | |
| 	u64 tmp_ptr;
 | |
| 	u32 tig_ver, mac1, mac2, tmp, pci_state;
 | |
| 	int board_idx, ecode = 0;
 | |
| 	short i;
 | |
| 	unsigned char cache_size;
 | |
| 
 | |
| 	ap = netdev_priv(dev);
 | |
| 	regs = ap->regs;
 | |
| 
 | |
| 	board_idx = ap->board_idx;
 | |
| 
 | |
| 	/*
 | |
| 	 * aman@sgi.com - its useful to do a NIC reset here to
 | |
| 	 * address the `Firmware not running' problem subsequent
 | |
| 	 * to any crashes involving the NIC
 | |
| 	 */
 | |
| 	writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl);
 | |
| 	readl(®s->HostCtrl);		/* PCI write posting */
 | |
| 	udelay(5);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't access any other registers before this point!
 | |
| 	 */
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	/*
 | |
| 	 * This will most likely need BYTE_SWAP once we switch
 | |
| 	 * to using __raw_writel()
 | |
| 	 */
 | |
| 	writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
 | |
| 	       ®s->HostCtrl);
 | |
| #else
 | |
| 	writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
 | |
| 	       ®s->HostCtrl);
 | |
| #endif
 | |
| 	readl(®s->HostCtrl);		/* PCI write posting */
 | |
| 
 | |
| 	/*
 | |
| 	 * Stop the NIC CPU and clear pending interrupts
 | |
| 	 */
 | |
| 	writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
 | |
| 	readl(®s->CpuCtrl);		/* PCI write posting */
 | |
| 	writel(0, ®s->Mb0Lo);
 | |
| 
 | |
| 	tig_ver = readl(®s->HostCtrl) >> 28;
 | |
| 
 | |
| 	switch(tig_ver){
 | |
| #ifndef CONFIG_ACENIC_OMIT_TIGON_I
 | |
| 	case 4:
 | |
| 	case 5:
 | |
| 		printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ",
 | |
| 		       tig_ver, ap->firmware_major, ap->firmware_minor,
 | |
| 		       ap->firmware_fix);
 | |
| 		writel(0, ®s->LocalCtrl);
 | |
| 		ap->version = 1;
 | |
| 		ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
 | |
| 		break;
 | |
| #endif
 | |
| 	case 6:
 | |
| 		printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
 | |
| 		       tig_ver, ap->firmware_major, ap->firmware_minor,
 | |
| 		       ap->firmware_fix);
 | |
| 		writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
 | |
| 		readl(®s->CpuBCtrl);		/* PCI write posting */
 | |
| 		/*
 | |
| 		 * The SRAM bank size does _not_ indicate the amount
 | |
| 		 * of memory on the card, it controls the _bank_ size!
 | |
| 		 * Ie. a 1MB AceNIC will have two banks of 512KB.
 | |
| 		 */
 | |
| 		writel(SRAM_BANK_512K, ®s->LocalCtrl);
 | |
| 		writel(SYNC_SRAM_TIMING, ®s->MiscCfg);
 | |
| 		ap->version = 2;
 | |
| 		ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk(KERN_WARNING "  Unsupported Tigon version detected "
 | |
| 		       "(%i)\n", tig_ver);
 | |
| 		ecode = -ENODEV;
 | |
| 		goto init_error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ModeStat _must_ be set after the SRAM settings as this change
 | |
| 	 * seems to corrupt the ModeStat and possible other registers.
 | |
| 	 * The SRAM settings survive resets and setting it to the same
 | |
| 	 * value a second time works as well. This is what caused the
 | |
| 	 * `Firmware not running' problem on the Tigon II.
 | |
| 	 */
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
 | |
| 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
 | |
| #else
 | |
| 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
 | |
| 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
 | |
| #endif
 | |
| 	readl(®s->ModeStat);		/* PCI write posting */
 | |
| 
 | |
| 	mac1 = 0;
 | |
| 	for(i = 0; i < 4; i++) {
 | |
| 		int t;
 | |
| 
 | |
| 		mac1 = mac1 << 8;
 | |
| 		t = read_eeprom_byte(dev, 0x8c+i);
 | |
| 		if (t < 0) {
 | |
| 			ecode = -EIO;
 | |
| 			goto init_error;
 | |
| 		} else
 | |
| 			mac1 |= (t & 0xff);
 | |
| 	}
 | |
| 	mac2 = 0;
 | |
| 	for(i = 4; i < 8; i++) {
 | |
| 		int t;
 | |
| 
 | |
| 		mac2 = mac2 << 8;
 | |
| 		t = read_eeprom_byte(dev, 0x8c+i);
 | |
| 		if (t < 0) {
 | |
| 			ecode = -EIO;
 | |
| 			goto init_error;
 | |
| 		} else
 | |
| 			mac2 |= (t & 0xff);
 | |
| 	}
 | |
| 
 | |
| 	writel(mac1, ®s->MacAddrHi);
 | |
| 	writel(mac2, ®s->MacAddrLo);
 | |
| 
 | |
| 	dev->dev_addr[0] = (mac1 >> 8) & 0xff;
 | |
| 	dev->dev_addr[1] = mac1 & 0xff;
 | |
| 	dev->dev_addr[2] = (mac2 >> 24) & 0xff;
 | |
| 	dev->dev_addr[3] = (mac2 >> 16) & 0xff;
 | |
| 	dev->dev_addr[4] = (mac2 >> 8) & 0xff;
 | |
| 	dev->dev_addr[5] = mac2 & 0xff;
 | |
| 
 | |
| 	printk("MAC: %pM\n", dev->dev_addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Looks like this is necessary to deal with on all architectures,
 | |
| 	 * even this %$#%$# N440BX Intel based thing doesn't get it right.
 | |
| 	 * Ie. having two NICs in the machine, one will have the cache
 | |
| 	 * line set at boot time, the other will not.
 | |
| 	 */
 | |
| 	pdev = ap->pdev;
 | |
| 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
 | |
| 	cache_size <<= 2;
 | |
| 	if (cache_size != SMP_CACHE_BYTES) {
 | |
| 		printk(KERN_INFO "  PCI cache line size set incorrectly "
 | |
| 		       "(%i bytes) by BIOS/FW, ", cache_size);
 | |
| 		if (cache_size > SMP_CACHE_BYTES)
 | |
| 			printk("expecting %i\n", SMP_CACHE_BYTES);
 | |
| 		else {
 | |
| 			printk("correcting to %i\n", SMP_CACHE_BYTES);
 | |
| 			pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
 | |
| 					      SMP_CACHE_BYTES >> 2);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pci_state = readl(®s->PciState);
 | |
| 	printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, "
 | |
| 	       "latency: %i clks\n",
 | |
| 	       	(pci_state & PCI_32BIT) ? 32 : 64,
 | |
| 		(pci_state & PCI_66MHZ) ? 66 : 33,
 | |
| 		ap->pci_latency);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the max DMA transfer size. Seems that for most systems
 | |
| 	 * the performance is better when no MAX parameter is
 | |
| 	 * set. However for systems enabling PCI write and invalidate,
 | |
| 	 * DMA writes must be set to the L1 cache line size to get
 | |
| 	 * optimal performance.
 | |
| 	 *
 | |
| 	 * The default is now to turn the PCI write and invalidate off
 | |
| 	 * - that is what Alteon does for NT.
 | |
| 	 */
 | |
| 	tmp = READ_CMD_MEM | WRITE_CMD_MEM;
 | |
| 	if (ap->version >= 2) {
 | |
| 		tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
 | |
| 		/*
 | |
| 		 * Tuning parameters only supported for 8 cards
 | |
| 		 */
 | |
| 		if (board_idx == BOARD_IDX_OVERFLOW ||
 | |
| 		    dis_pci_mem_inval[board_idx]) {
 | |
| 			if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
 | |
| 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
 | |
| 				pci_write_config_word(pdev, PCI_COMMAND,
 | |
| 						      ap->pci_command);
 | |
| 				printk(KERN_INFO "  Disabling PCI memory "
 | |
| 				       "write and invalidate\n");
 | |
| 			}
 | |
| 		} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
 | |
| 			printk(KERN_INFO "  PCI memory write & invalidate "
 | |
| 			       "enabled by BIOS, enabling counter measures\n");
 | |
| 
 | |
| 			switch(SMP_CACHE_BYTES) {
 | |
| 			case 16:
 | |
| 				tmp |= DMA_WRITE_MAX_16;
 | |
| 				break;
 | |
| 			case 32:
 | |
| 				tmp |= DMA_WRITE_MAX_32;
 | |
| 				break;
 | |
| 			case 64:
 | |
| 				tmp |= DMA_WRITE_MAX_64;
 | |
| 				break;
 | |
| 			case 128:
 | |
| 				tmp |= DMA_WRITE_MAX_128;
 | |
| 				break;
 | |
| 			default:
 | |
| 				printk(KERN_INFO "  Cache line size %i not "
 | |
| 				       "supported, PCI write and invalidate "
 | |
| 				       "disabled\n", SMP_CACHE_BYTES);
 | |
| 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
 | |
| 				pci_write_config_word(pdev, PCI_COMMAND,
 | |
| 						      ap->pci_command);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef __sparc__
 | |
| 	/*
 | |
| 	 * On this platform, we know what the best dma settings
 | |
| 	 * are.  We use 64-byte maximum bursts, because if we
 | |
| 	 * burst larger than the cache line size (or even cross
 | |
| 	 * a 64byte boundary in a single burst) the UltraSparc
 | |
| 	 * PCI controller will disconnect at 64-byte multiples.
 | |
| 	 *
 | |
| 	 * Read-multiple will be properly enabled above, and when
 | |
| 	 * set will give the PCI controller proper hints about
 | |
| 	 * prefetching.
 | |
| 	 */
 | |
| 	tmp &= ~DMA_READ_WRITE_MASK;
 | |
| 	tmp |= DMA_READ_MAX_64;
 | |
| 	tmp |= DMA_WRITE_MAX_64;
 | |
| #endif
 | |
| #ifdef __alpha__
 | |
| 	tmp &= ~DMA_READ_WRITE_MASK;
 | |
| 	tmp |= DMA_READ_MAX_128;
 | |
| 	/*
 | |
| 	 * All the docs say MUST NOT. Well, I did.
 | |
| 	 * Nothing terrible happens, if we load wrong size.
 | |
| 	 * Bit w&i still works better!
 | |
| 	 */
 | |
| 	tmp |= DMA_WRITE_MAX_128;
 | |
| #endif
 | |
| 	writel(tmp, ®s->PciState);
 | |
| 
 | |
| #if 0
 | |
| 	/*
 | |
| 	 * The Host PCI bus controller driver has to set FBB.
 | |
| 	 * If all devices on that PCI bus support FBB, then the controller
 | |
| 	 * can enable FBB support in the Host PCI Bus controller (or on
 | |
| 	 * the PCI-PCI bridge if that applies).
 | |
| 	 * -ggg
 | |
| 	 */
 | |
| 	/*
 | |
| 	 * I have received reports from people having problems when this
 | |
| 	 * bit is enabled.
 | |
| 	 */
 | |
| 	if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
 | |
| 		printk(KERN_INFO "  Enabling PCI Fast Back to Back\n");
 | |
| 		ap->pci_command |= PCI_COMMAND_FAST_BACK;
 | |
| 		pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure DMA attributes.
 | |
| 	 */
 | |
| 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
 | |
| 		ap->pci_using_dac = 1;
 | |
| 	} else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
 | |
| 		ap->pci_using_dac = 0;
 | |
| 	} else {
 | |
| 		ecode = -ENODEV;
 | |
| 		goto init_error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the generic info block and the command+event rings
 | |
| 	 * and the control blocks for the transmit and receive rings
 | |
| 	 * as they need to be setup once and for all.
 | |
| 	 */
 | |
| 	if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
 | |
| 					  &ap->info_dma))) {
 | |
| 		ecode = -EAGAIN;
 | |
| 		goto init_error;
 | |
| 	}
 | |
| 	ap->info = info;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the memory for the skb rings.
 | |
| 	 */
 | |
| 	if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
 | |
| 		ecode = -EAGAIN;
 | |
| 		goto init_error;
 | |
| 	}
 | |
| 
 | |
| 	ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
 | |
| 			    DRV_NAME, dev);
 | |
| 	if (ecode) {
 | |
| 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
 | |
| 		       DRV_NAME, pdev->irq);
 | |
| 		goto init_error;
 | |
| 	} else
 | |
| 		dev->irq = pdev->irq;
 | |
| 
 | |
| #ifdef INDEX_DEBUG
 | |
| 	spin_lock_init(&ap->debug_lock);
 | |
| 	ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
 | |
| 	ap->last_std_rx = 0;
 | |
| 	ap->last_mini_rx = 0;
 | |
| #endif
 | |
| 
 | |
| 	memset(ap->info, 0, sizeof(struct ace_info));
 | |
| 	memset(ap->skb, 0, sizeof(struct ace_skb));
 | |
| 
 | |
| 	if (ace_load_firmware(dev))
 | |
| 		goto init_error;
 | |
| 
 | |
| 	ap->fw_running = 0;
 | |
| 
 | |
| 	tmp_ptr = ap->info_dma;
 | |
| 	writel(tmp_ptr >> 32, ®s->InfoPtrHi);
 | |
| 	writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo);
 | |
| 
 | |
| 	memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
 | |
| 
 | |
| 	set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
 | |
| 	info->evt_ctrl.flags = 0;
 | |
| 
 | |
| 	*(ap->evt_prd) = 0;
 | |
| 	wmb();
 | |
| 	set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
 | |
| 	writel(0, ®s->EvtCsm);
 | |
| 
 | |
| 	set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
 | |
| 	info->cmd_ctrl.flags = 0;
 | |
| 	info->cmd_ctrl.max_len = 0;
 | |
| 
 | |
| 	for (i = 0; i < CMD_RING_ENTRIES; i++)
 | |
| 		writel(0, ®s->CmdRng[i]);
 | |
| 
 | |
| 	writel(0, ®s->CmdPrd);
 | |
| 	writel(0, ®s->CmdCsm);
 | |
| 
 | |
| 	tmp_ptr = ap->info_dma;
 | |
| 	tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
 | |
| 	set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
 | |
| 
 | |
| 	set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
 | |
| 	info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
 | |
| 	info->rx_std_ctrl.flags =
 | |
| 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
 | |
| 
 | |
| 	memset(ap->rx_std_ring, 0,
 | |
| 	       RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
 | |
| 
 | |
| 	for (i = 0; i < RX_STD_RING_ENTRIES; i++)
 | |
| 		ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
 | |
| 
 | |
| 	ap->rx_std_skbprd = 0;
 | |
| 	atomic_set(&ap->cur_rx_bufs, 0);
 | |
| 
 | |
| 	set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
 | |
| 		    (ap->rx_ring_base_dma +
 | |
| 		     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
 | |
| 	info->rx_jumbo_ctrl.max_len = 0;
 | |
| 	info->rx_jumbo_ctrl.flags =
 | |
| 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
 | |
| 
 | |
| 	memset(ap->rx_jumbo_ring, 0,
 | |
| 	       RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
 | |
| 
 | |
| 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
 | |
| 		ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
 | |
| 
 | |
| 	ap->rx_jumbo_skbprd = 0;
 | |
| 	atomic_set(&ap->cur_jumbo_bufs, 0);
 | |
| 
 | |
| 	memset(ap->rx_mini_ring, 0,
 | |
| 	       RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
 | |
| 
 | |
| 	if (ap->version >= 2) {
 | |
| 		set_aceaddr(&info->rx_mini_ctrl.rngptr,
 | |
| 			    (ap->rx_ring_base_dma +
 | |
| 			     (sizeof(struct rx_desc) *
 | |
| 			      (RX_STD_RING_ENTRIES +
 | |
| 			       RX_JUMBO_RING_ENTRIES))));
 | |
| 		info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
 | |
| 		info->rx_mini_ctrl.flags =
 | |
| 		  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
 | |
| 
 | |
| 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
 | |
| 			ap->rx_mini_ring[i].flags =
 | |
| 				BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
 | |
| 	} else {
 | |
| 		set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
 | |
| 		info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
 | |
| 		info->rx_mini_ctrl.max_len = 0;
 | |
| 	}
 | |
| 
 | |
| 	ap->rx_mini_skbprd = 0;
 | |
| 	atomic_set(&ap->cur_mini_bufs, 0);
 | |
| 
 | |
| 	set_aceaddr(&info->rx_return_ctrl.rngptr,
 | |
| 		    (ap->rx_ring_base_dma +
 | |
| 		     (sizeof(struct rx_desc) *
 | |
| 		      (RX_STD_RING_ENTRIES +
 | |
| 		       RX_JUMBO_RING_ENTRIES +
 | |
| 		       RX_MINI_RING_ENTRIES))));
 | |
| 	info->rx_return_ctrl.flags = 0;
 | |
| 	info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
 | |
| 
 | |
| 	memset(ap->rx_return_ring, 0,
 | |
| 	       RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
 | |
| 
 | |
| 	set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
 | |
| 	*(ap->rx_ret_prd) = 0;
 | |
| 
 | |
| 	writel(TX_RING_BASE, ®s->WinBase);
 | |
| 
 | |
| 	if (ACE_IS_TIGON_I(ap)) {
 | |
| 		ap->tx_ring = (__force struct tx_desc *) regs->Window;
 | |
| 		for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
 | |
| 				 * sizeof(struct tx_desc)) / sizeof(u32); i++)
 | |
| 			writel(0, (__force void __iomem *)ap->tx_ring  + i * 4);
 | |
| 
 | |
| 		set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
 | |
| 	} else {
 | |
| 		memset(ap->tx_ring, 0,
 | |
| 		       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
 | |
| 
 | |
| 		set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
 | |
| 	}
 | |
| 
 | |
| 	info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
 | |
| 	tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
 | |
| 
 | |
| 	/*
 | |
| 	 * The Tigon I does not like having the TX ring in host memory ;-(
 | |
| 	 */
 | |
| 	if (!ACE_IS_TIGON_I(ap))
 | |
| 		tmp |= RCB_FLG_TX_HOST_RING;
 | |
| #if TX_COAL_INTS_ONLY
 | |
| 	tmp |= RCB_FLG_COAL_INT_ONLY;
 | |
| #endif
 | |
| 	info->tx_ctrl.flags = tmp;
 | |
| 
 | |
| 	set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
 | |
| 
 | |
| 	/*
 | |
| 	 * Potential item for tuning parameter
 | |
| 	 */
 | |
| #if 0 /* NO */
 | |
| 	writel(DMA_THRESH_16W, ®s->DmaReadCfg);
 | |
| 	writel(DMA_THRESH_16W, ®s->DmaWriteCfg);
 | |
| #else
 | |
| 	writel(DMA_THRESH_8W, ®s->DmaReadCfg);
 | |
| 	writel(DMA_THRESH_8W, ®s->DmaWriteCfg);
 | |
| #endif
 | |
| 
 | |
| 	writel(0, ®s->MaskInt);
 | |
| 	writel(1, ®s->IfIdx);
 | |
| #if 0
 | |
| 	/*
 | |
| 	 * McKinley boxes do not like us fiddling with AssistState
 | |
| 	 * this early
 | |
| 	 */
 | |
| 	writel(1, ®s->AssistState);
 | |
| #endif
 | |
| 
 | |
| 	writel(DEF_STAT, ®s->TuneStatTicks);
 | |
| 	writel(DEF_TRACE, ®s->TuneTrace);
 | |
| 
 | |
| 	ace_set_rxtx_parms(dev, 0);
 | |
| 
 | |
| 	if (board_idx == BOARD_IDX_OVERFLOW) {
 | |
| 		printk(KERN_WARNING "%s: more than %i NICs detected, "
 | |
| 		       "ignoring module parameters!\n",
 | |
| 		       ap->name, ACE_MAX_MOD_PARMS);
 | |
| 	} else if (board_idx >= 0) {
 | |
| 		if (tx_coal_tick[board_idx])
 | |
| 			writel(tx_coal_tick[board_idx],
 | |
| 			       ®s->TuneTxCoalTicks);
 | |
| 		if (max_tx_desc[board_idx])
 | |
| 			writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc);
 | |
| 
 | |
| 		if (rx_coal_tick[board_idx])
 | |
| 			writel(rx_coal_tick[board_idx],
 | |
| 			       ®s->TuneRxCoalTicks);
 | |
| 		if (max_rx_desc[board_idx])
 | |
| 			writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc);
 | |
| 
 | |
| 		if (trace[board_idx])
 | |
| 			writel(trace[board_idx], ®s->TuneTrace);
 | |
| 
 | |
| 		if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
 | |
| 			writel(tx_ratio[board_idx], ®s->TxBufRat);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Default link parameters
 | |
| 	 */
 | |
| 	tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
 | |
| 		LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
 | |
| 	if(ap->version >= 2)
 | |
| 		tmp |= LNK_TX_FLOW_CTL_Y;
 | |
| 
 | |
| 	/*
 | |
| 	 * Override link default parameters
 | |
| 	 */
 | |
| 	if ((board_idx >= 0) && link_state[board_idx]) {
 | |
| 		int option = link_state[board_idx];
 | |
| 
 | |
| 		tmp = LNK_ENABLE;
 | |
| 
 | |
| 		if (option & 0x01) {
 | |
| 			printk(KERN_INFO "%s: Setting half duplex link\n",
 | |
| 			       ap->name);
 | |
| 			tmp &= ~LNK_FULL_DUPLEX;
 | |
| 		}
 | |
| 		if (option & 0x02)
 | |
| 			tmp &= ~LNK_NEGOTIATE;
 | |
| 		if (option & 0x10)
 | |
| 			tmp |= LNK_10MB;
 | |
| 		if (option & 0x20)
 | |
| 			tmp |= LNK_100MB;
 | |
| 		if (option & 0x40)
 | |
| 			tmp |= LNK_1000MB;
 | |
| 		if ((option & 0x70) == 0) {
 | |
| 			printk(KERN_WARNING "%s: No media speed specified, "
 | |
| 			       "forcing auto negotiation\n", ap->name);
 | |
| 			tmp |= LNK_NEGOTIATE | LNK_1000MB |
 | |
| 				LNK_100MB | LNK_10MB;
 | |
| 		}
 | |
| 		if ((option & 0x100) == 0)
 | |
| 			tmp |= LNK_NEG_FCTL;
 | |
| 		else
 | |
| 			printk(KERN_INFO "%s: Disabling flow control "
 | |
| 			       "negotiation\n", ap->name);
 | |
| 		if (option & 0x200)
 | |
| 			tmp |= LNK_RX_FLOW_CTL_Y;
 | |
| 		if ((option & 0x400) && (ap->version >= 2)) {
 | |
| 			printk(KERN_INFO "%s: Enabling TX flow control\n",
 | |
| 			       ap->name);
 | |
| 			tmp |= LNK_TX_FLOW_CTL_Y;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ap->link = tmp;
 | |
| 	writel(tmp, ®s->TuneLink);
 | |
| 	if (ap->version >= 2)
 | |
| 		writel(tmp, ®s->TuneFastLink);
 | |
| 
 | |
| 	writel(ap->firmware_start, ®s->Pc);
 | |
| 
 | |
| 	writel(0, ®s->Mb0Lo);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set tx_csm before we start receiving interrupts, otherwise
 | |
| 	 * the interrupt handler might think it is supposed to process
 | |
| 	 * tx ints before we are up and running, which may cause a null
 | |
| 	 * pointer access in the int handler.
 | |
| 	 */
 | |
| 	ap->cur_rx = 0;
 | |
| 	ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
 | |
| 
 | |
| 	wmb();
 | |
| 	ace_set_txprd(regs, ap, 0);
 | |
| 	writel(0, ®s->RxRetCsm);
 | |
| 
 | |
|        /*
 | |
| 	* Enable DMA engine now.
 | |
| 	* If we do this sooner, Mckinley box pukes.
 | |
| 	* I assume it's because Tigon II DMA engine wants to check
 | |
| 	* *something* even before the CPU is started.
 | |
| 	*/
 | |
|        writel(1, ®s->AssistState);  /* enable DMA */
 | |
| 
 | |
| 	/*
 | |
| 	 * Start the NIC CPU
 | |
| 	 */
 | |
| 	writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl);
 | |
| 	readl(®s->CpuCtrl);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the firmware to spin up - max 3 seconds.
 | |
| 	 */
 | |
| 	myjif = jiffies + 3 * HZ;
 | |
| 	while (time_before(jiffies, myjif) && !ap->fw_running)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	if (!ap->fw_running) {
 | |
| 		printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
 | |
| 
 | |
| 		ace_dump_trace(ap);
 | |
| 		writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
 | |
| 		readl(®s->CpuCtrl);
 | |
| 
 | |
| 		/* aman@sgi.com - account for badly behaving firmware/NIC:
 | |
| 		 * - have observed that the NIC may continue to generate
 | |
| 		 *   interrupts for some reason; attempt to stop it - halt
 | |
| 		 *   second CPU for Tigon II cards, and also clear Mb0
 | |
| 		 * - if we're a module, we'll fail to load if this was
 | |
| 		 *   the only GbE card in the system => if the kernel does
 | |
| 		 *   see an interrupt from the NIC, code to handle it is
 | |
| 		 *   gone and OOps! - so free_irq also
 | |
| 		 */
 | |
| 		if (ap->version >= 2)
 | |
| 			writel(readl(®s->CpuBCtrl) | CPU_HALT,
 | |
| 			       ®s->CpuBCtrl);
 | |
| 		writel(0, ®s->Mb0Lo);
 | |
| 		readl(®s->Mb0Lo);
 | |
| 
 | |
| 		ecode = -EBUSY;
 | |
| 		goto init_error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We load the ring here as there seem to be no way to tell the
 | |
| 	 * firmware to wipe the ring without re-initializing it.
 | |
| 	 */
 | |
| 	if (!test_and_set_bit(0, &ap->std_refill_busy))
 | |
| 		ace_load_std_rx_ring(ap, RX_RING_SIZE);
 | |
| 	else
 | |
| 		printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
 | |
| 		       ap->name);
 | |
| 	if (ap->version >= 2) {
 | |
| 		if (!test_and_set_bit(0, &ap->mini_refill_busy))
 | |
| 			ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
 | |
| 		else
 | |
| 			printk(KERN_ERR "%s: Someone is busy refilling "
 | |
| 			       "the RX mini ring\n", ap->name);
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
|  init_error:
 | |
| 	ace_init_cleanup(dev);
 | |
| 	return ecode;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	int board_idx = ap->board_idx;
 | |
| 
 | |
| 	if (board_idx >= 0) {
 | |
| 		if (!jumbo) {
 | |
| 			if (!tx_coal_tick[board_idx])
 | |
| 				writel(DEF_TX_COAL, ®s->TuneTxCoalTicks);
 | |
| 			if (!max_tx_desc[board_idx])
 | |
| 				writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc);
 | |
| 			if (!rx_coal_tick[board_idx])
 | |
| 				writel(DEF_RX_COAL, ®s->TuneRxCoalTicks);
 | |
| 			if (!max_rx_desc[board_idx])
 | |
| 				writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc);
 | |
| 			if (!tx_ratio[board_idx])
 | |
| 				writel(DEF_TX_RATIO, ®s->TxBufRat);
 | |
| 		} else {
 | |
| 			if (!tx_coal_tick[board_idx])
 | |
| 				writel(DEF_JUMBO_TX_COAL,
 | |
| 				       ®s->TuneTxCoalTicks);
 | |
| 			if (!max_tx_desc[board_idx])
 | |
| 				writel(DEF_JUMBO_TX_MAX_DESC,
 | |
| 				       ®s->TuneMaxTxDesc);
 | |
| 			if (!rx_coal_tick[board_idx])
 | |
| 				writel(DEF_JUMBO_RX_COAL,
 | |
| 				       ®s->TuneRxCoalTicks);
 | |
| 			if (!max_rx_desc[board_idx])
 | |
| 				writel(DEF_JUMBO_RX_MAX_DESC,
 | |
| 				       ®s->TuneMaxRxDesc);
 | |
| 			if (!tx_ratio[board_idx])
 | |
| 				writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ace_watchdog(struct net_device *data)
 | |
| {
 | |
| 	struct net_device *dev = data;
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 
 | |
| 	/*
 | |
| 	 * We haven't received a stats update event for more than 2.5
 | |
| 	 * seconds and there is data in the transmit queue, thus we
 | |
| 	 * asume the card is stuck.
 | |
| 	 */
 | |
| 	if (*ap->tx_csm != ap->tx_ret_csm) {
 | |
| 		printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
 | |
| 		       dev->name, (unsigned int)readl(®s->HostCtrl));
 | |
| 		/* This can happen due to ieee flow control. */
 | |
| 	} else {
 | |
| 		printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
 | |
| 		       dev->name);
 | |
| #if 0
 | |
| 		netif_wake_queue(dev);
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ace_tasklet(unsigned long dev)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv((struct net_device *)dev);
 | |
| 	int cur_size;
 | |
| 
 | |
| 	cur_size = atomic_read(&ap->cur_rx_bufs);
 | |
| 	if ((cur_size < RX_LOW_STD_THRES) &&
 | |
| 	    !test_and_set_bit(0, &ap->std_refill_busy)) {
 | |
| #ifdef DEBUG
 | |
| 		printk("refilling buffers (current %i)\n", cur_size);
 | |
| #endif
 | |
| 		ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
 | |
| 	}
 | |
| 
 | |
| 	if (ap->version >= 2) {
 | |
| 		cur_size = atomic_read(&ap->cur_mini_bufs);
 | |
| 		if ((cur_size < RX_LOW_MINI_THRES) &&
 | |
| 		    !test_and_set_bit(0, &ap->mini_refill_busy)) {
 | |
| #ifdef DEBUG
 | |
| 			printk("refilling mini buffers (current %i)\n",
 | |
| 			       cur_size);
 | |
| #endif
 | |
| 			ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cur_size = atomic_read(&ap->cur_jumbo_bufs);
 | |
| 	if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
 | |
| 	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
 | |
| #ifdef DEBUG
 | |
| 		printk("refilling jumbo buffers (current %i)\n", cur_size);
 | |
| #endif
 | |
| 		ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
 | |
| 	}
 | |
| 	ap->tasklet_pending = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of the NIC's trace buffer to kernel memory.
 | |
|  */
 | |
| static void ace_dump_trace(struct ace_private *ap)
 | |
| {
 | |
| #if 0
 | |
| 	if (!ap->trace_buf)
 | |
| 		if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
 | |
| 		    return;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Load the standard rx ring.
 | |
|  *
 | |
|  * Loading rings is safe without holding the spin lock since this is
 | |
|  * done only before the device is enabled, thus no interrupts are
 | |
|  * generated and by the interrupt handler/tasklet handler.
 | |
|  */
 | |
| static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
 | |
| {
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	short i, idx;
 | |
| 
 | |
| 
 | |
| 	prefetchw(&ap->cur_rx_bufs);
 | |
| 
 | |
| 	idx = ap->rx_std_skbprd;
 | |
| 
 | |
| 	for (i = 0; i < nr_bufs; i++) {
 | |
| 		struct sk_buff *skb;
 | |
| 		struct rx_desc *rd;
 | |
| 		dma_addr_t mapping;
 | |
| 
 | |
| 		skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
 | |
| 		if (!skb)
 | |
| 			break;
 | |
| 
 | |
| 		skb_reserve(skb, NET_IP_ALIGN);
 | |
| 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
 | |
| 				       offset_in_page(skb->data),
 | |
| 				       ACE_STD_BUFSIZE,
 | |
| 				       PCI_DMA_FROMDEVICE);
 | |
| 		ap->skb->rx_std_skbuff[idx].skb = skb;
 | |
| 		pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
 | |
| 				   mapping, mapping);
 | |
| 
 | |
| 		rd = &ap->rx_std_ring[idx];
 | |
| 		set_aceaddr(&rd->addr, mapping);
 | |
| 		rd->size = ACE_STD_BUFSIZE;
 | |
| 		rd->idx = idx;
 | |
| 		idx = (idx + 1) % RX_STD_RING_ENTRIES;
 | |
| 	}
 | |
| 
 | |
| 	if (!i)
 | |
| 		goto error_out;
 | |
| 
 | |
| 	atomic_add(i, &ap->cur_rx_bufs);
 | |
| 	ap->rx_std_skbprd = idx;
 | |
| 
 | |
| 	if (ACE_IS_TIGON_I(ap)) {
 | |
| 		struct cmd cmd;
 | |
| 		cmd.evt = C_SET_RX_PRD_IDX;
 | |
| 		cmd.code = 0;
 | |
| 		cmd.idx = ap->rx_std_skbprd;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 	} else {
 | |
| 		writel(idx, ®s->RxStdPrd);
 | |
| 		wmb();
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	clear_bit(0, &ap->std_refill_busy);
 | |
| 	return;
 | |
| 
 | |
|  error_out:
 | |
| 	printk(KERN_INFO "Out of memory when allocating "
 | |
| 	       "standard receive buffers\n");
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
 | |
| {
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	short i, idx;
 | |
| 
 | |
| 	prefetchw(&ap->cur_mini_bufs);
 | |
| 
 | |
| 	idx = ap->rx_mini_skbprd;
 | |
| 	for (i = 0; i < nr_bufs; i++) {
 | |
| 		struct sk_buff *skb;
 | |
| 		struct rx_desc *rd;
 | |
| 		dma_addr_t mapping;
 | |
| 
 | |
| 		skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
 | |
| 		if (!skb)
 | |
| 			break;
 | |
| 
 | |
| 		skb_reserve(skb, NET_IP_ALIGN);
 | |
| 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
 | |
| 				       offset_in_page(skb->data),
 | |
| 				       ACE_MINI_BUFSIZE,
 | |
| 				       PCI_DMA_FROMDEVICE);
 | |
| 		ap->skb->rx_mini_skbuff[idx].skb = skb;
 | |
| 		pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
 | |
| 				   mapping, mapping);
 | |
| 
 | |
| 		rd = &ap->rx_mini_ring[idx];
 | |
| 		set_aceaddr(&rd->addr, mapping);
 | |
| 		rd->size = ACE_MINI_BUFSIZE;
 | |
| 		rd->idx = idx;
 | |
| 		idx = (idx + 1) % RX_MINI_RING_ENTRIES;
 | |
| 	}
 | |
| 
 | |
| 	if (!i)
 | |
| 		goto error_out;
 | |
| 
 | |
| 	atomic_add(i, &ap->cur_mini_bufs);
 | |
| 
 | |
| 	ap->rx_mini_skbprd = idx;
 | |
| 
 | |
| 	writel(idx, ®s->RxMiniPrd);
 | |
| 	wmb();
 | |
| 
 | |
|  out:
 | |
| 	clear_bit(0, &ap->mini_refill_busy);
 | |
| 	return;
 | |
|  error_out:
 | |
| 	printk(KERN_INFO "Out of memory when allocating "
 | |
| 	       "mini receive buffers\n");
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Load the jumbo rx ring, this may happen at any time if the MTU
 | |
|  * is changed to a value > 1500.
 | |
|  */
 | |
| static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
 | |
| {
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	short i, idx;
 | |
| 
 | |
| 	idx = ap->rx_jumbo_skbprd;
 | |
| 
 | |
| 	for (i = 0; i < nr_bufs; i++) {
 | |
| 		struct sk_buff *skb;
 | |
| 		struct rx_desc *rd;
 | |
| 		dma_addr_t mapping;
 | |
| 
 | |
| 		skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
 | |
| 		if (!skb)
 | |
| 			break;
 | |
| 
 | |
| 		skb_reserve(skb, NET_IP_ALIGN);
 | |
| 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
 | |
| 				       offset_in_page(skb->data),
 | |
| 				       ACE_JUMBO_BUFSIZE,
 | |
| 				       PCI_DMA_FROMDEVICE);
 | |
| 		ap->skb->rx_jumbo_skbuff[idx].skb = skb;
 | |
| 		pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
 | |
| 				   mapping, mapping);
 | |
| 
 | |
| 		rd = &ap->rx_jumbo_ring[idx];
 | |
| 		set_aceaddr(&rd->addr, mapping);
 | |
| 		rd->size = ACE_JUMBO_BUFSIZE;
 | |
| 		rd->idx = idx;
 | |
| 		idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
 | |
| 	}
 | |
| 
 | |
| 	if (!i)
 | |
| 		goto error_out;
 | |
| 
 | |
| 	atomic_add(i, &ap->cur_jumbo_bufs);
 | |
| 	ap->rx_jumbo_skbprd = idx;
 | |
| 
 | |
| 	if (ACE_IS_TIGON_I(ap)) {
 | |
| 		struct cmd cmd;
 | |
| 		cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
 | |
| 		cmd.code = 0;
 | |
| 		cmd.idx = ap->rx_jumbo_skbprd;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 	} else {
 | |
| 		writel(idx, ®s->RxJumboPrd);
 | |
| 		wmb();
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	clear_bit(0, &ap->jumbo_refill_busy);
 | |
| 	return;
 | |
|  error_out:
 | |
| 	if (net_ratelimit())
 | |
| 		printk(KERN_INFO "Out of memory when allocating "
 | |
| 		       "jumbo receive buffers\n");
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * All events are considered to be slow (RX/TX ints do not generate
 | |
|  * events) and are handled here, outside the main interrupt handler,
 | |
|  * to reduce the size of the handler.
 | |
|  */
 | |
| static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
 | |
| {
 | |
| 	struct ace_private *ap;
 | |
| 
 | |
| 	ap = netdev_priv(dev);
 | |
| 
 | |
| 	while (evtcsm != evtprd) {
 | |
| 		switch (ap->evt_ring[evtcsm].evt) {
 | |
| 		case E_FW_RUNNING:
 | |
| 			printk(KERN_INFO "%s: Firmware up and running\n",
 | |
| 			       ap->name);
 | |
| 			ap->fw_running = 1;
 | |
| 			wmb();
 | |
| 			break;
 | |
| 		case E_STATS_UPDATED:
 | |
| 			break;
 | |
| 		case E_LNK_STATE:
 | |
| 		{
 | |
| 			u16 code = ap->evt_ring[evtcsm].code;
 | |
| 			switch (code) {
 | |
| 			case E_C_LINK_UP:
 | |
| 			{
 | |
| 				u32 state = readl(&ap->regs->GigLnkState);
 | |
| 				printk(KERN_WARNING "%s: Optical link UP "
 | |
| 				       "(%s Duplex, Flow Control: %s%s)\n",
 | |
| 				       ap->name,
 | |
| 				       state & LNK_FULL_DUPLEX ? "Full":"Half",
 | |
| 				       state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
 | |
| 				       state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
 | |
| 				break;
 | |
| 			}
 | |
| 			case E_C_LINK_DOWN:
 | |
| 				printk(KERN_WARNING "%s: Optical link DOWN\n",
 | |
| 				       ap->name);
 | |
| 				break;
 | |
| 			case E_C_LINK_10_100:
 | |
| 				printk(KERN_WARNING "%s: 10/100BaseT link "
 | |
| 				       "UP\n", ap->name);
 | |
| 				break;
 | |
| 			default:
 | |
| 				printk(KERN_ERR "%s: Unknown optical link "
 | |
| 				       "state %02x\n", ap->name, code);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		case E_ERROR:
 | |
| 			switch(ap->evt_ring[evtcsm].code) {
 | |
| 			case E_C_ERR_INVAL_CMD:
 | |
| 				printk(KERN_ERR "%s: invalid command error\n",
 | |
| 				       ap->name);
 | |
| 				break;
 | |
| 			case E_C_ERR_UNIMP_CMD:
 | |
| 				printk(KERN_ERR "%s: unimplemented command "
 | |
| 				       "error\n", ap->name);
 | |
| 				break;
 | |
| 			case E_C_ERR_BAD_CFG:
 | |
| 				printk(KERN_ERR "%s: bad config error\n",
 | |
| 				       ap->name);
 | |
| 				break;
 | |
| 			default:
 | |
| 				printk(KERN_ERR "%s: unknown error %02x\n",
 | |
| 				       ap->name, ap->evt_ring[evtcsm].code);
 | |
| 			}
 | |
| 			break;
 | |
| 		case E_RESET_JUMBO_RNG:
 | |
| 		{
 | |
| 			int i;
 | |
| 			for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
 | |
| 				if (ap->skb->rx_jumbo_skbuff[i].skb) {
 | |
| 					ap->rx_jumbo_ring[i].size = 0;
 | |
| 					set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
 | |
| 					dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
 | |
| 					ap->skb->rx_jumbo_skbuff[i].skb = NULL;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
|  			if (ACE_IS_TIGON_I(ap)) {
 | |
|  				struct cmd cmd;
 | |
|  				cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
 | |
|  				cmd.code = 0;
 | |
|  				cmd.idx = 0;
 | |
|  				ace_issue_cmd(ap->regs, &cmd);
 | |
|  			} else {
 | |
|  				writel(0, &((ap->regs)->RxJumboPrd));
 | |
|  				wmb();
 | |
|  			}
 | |
| 
 | |
| 			ap->jumbo = 0;
 | |
| 			ap->rx_jumbo_skbprd = 0;
 | |
| 			printk(KERN_INFO "%s: Jumbo ring flushed\n",
 | |
| 			       ap->name);
 | |
| 			clear_bit(0, &ap->jumbo_refill_busy);
 | |
| 			break;
 | |
| 		}
 | |
| 		default:
 | |
| 			printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
 | |
| 			       ap->name, ap->evt_ring[evtcsm].evt);
 | |
| 		}
 | |
| 		evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
 | |
| 	}
 | |
| 
 | |
| 	return evtcsm;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	u32 idx;
 | |
| 	int mini_count = 0, std_count = 0;
 | |
| 
 | |
| 	idx = rxretcsm;
 | |
| 
 | |
| 	prefetchw(&ap->cur_rx_bufs);
 | |
| 	prefetchw(&ap->cur_mini_bufs);
 | |
| 
 | |
| 	while (idx != rxretprd) {
 | |
| 		struct ring_info *rip;
 | |
| 		struct sk_buff *skb;
 | |
| 		struct rx_desc *rxdesc, *retdesc;
 | |
| 		u32 skbidx;
 | |
| 		int bd_flags, desc_type, mapsize;
 | |
| 		u16 csum;
 | |
| 
 | |
| 
 | |
| 		/* make sure the rx descriptor isn't read before rxretprd */
 | |
| 		if (idx == rxretcsm)
 | |
| 			rmb();
 | |
| 
 | |
| 		retdesc = &ap->rx_return_ring[idx];
 | |
| 		skbidx = retdesc->idx;
 | |
| 		bd_flags = retdesc->flags;
 | |
| 		desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
 | |
| 
 | |
| 		switch(desc_type) {
 | |
| 			/*
 | |
| 			 * Normal frames do not have any flags set
 | |
| 			 *
 | |
| 			 * Mini and normal frames arrive frequently,
 | |
| 			 * so use a local counter to avoid doing
 | |
| 			 * atomic operations for each packet arriving.
 | |
| 			 */
 | |
| 		case 0:
 | |
| 			rip = &ap->skb->rx_std_skbuff[skbidx];
 | |
| 			mapsize = ACE_STD_BUFSIZE;
 | |
| 			rxdesc = &ap->rx_std_ring[skbidx];
 | |
| 			std_count++;
 | |
| 			break;
 | |
| 		case BD_FLG_JUMBO:
 | |
| 			rip = &ap->skb->rx_jumbo_skbuff[skbidx];
 | |
| 			mapsize = ACE_JUMBO_BUFSIZE;
 | |
| 			rxdesc = &ap->rx_jumbo_ring[skbidx];
 | |
| 			atomic_dec(&ap->cur_jumbo_bufs);
 | |
| 			break;
 | |
| 		case BD_FLG_MINI:
 | |
| 			rip = &ap->skb->rx_mini_skbuff[skbidx];
 | |
| 			mapsize = ACE_MINI_BUFSIZE;
 | |
| 			rxdesc = &ap->rx_mini_ring[skbidx];
 | |
| 			mini_count++;
 | |
| 			break;
 | |
| 		default:
 | |
| 			printk(KERN_INFO "%s: unknown frame type (0x%02x) "
 | |
| 			       "returned by NIC\n", dev->name,
 | |
| 			       retdesc->flags);
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		skb = rip->skb;
 | |
| 		rip->skb = NULL;
 | |
| 		pci_unmap_page(ap->pdev,
 | |
| 			       pci_unmap_addr(rip, mapping),
 | |
| 			       mapsize,
 | |
| 			       PCI_DMA_FROMDEVICE);
 | |
| 		skb_put(skb, retdesc->size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Fly baby, fly!
 | |
| 		 */
 | |
| 		csum = retdesc->tcp_udp_csum;
 | |
| 
 | |
| 		skb->protocol = eth_type_trans(skb, dev);
 | |
| 
 | |
| 		/*
 | |
| 		 * Instead of forcing the poor tigon mips cpu to calculate
 | |
| 		 * pseudo hdr checksum, we do this ourselves.
 | |
| 		 */
 | |
| 		if (bd_flags & BD_FLG_TCP_UDP_SUM) {
 | |
| 			skb->csum = htons(csum);
 | |
| 			skb->ip_summed = CHECKSUM_COMPLETE;
 | |
| 		} else {
 | |
| 			skb->ip_summed = CHECKSUM_NONE;
 | |
| 		}
 | |
| 
 | |
| 		/* send it up */
 | |
| #if ACENIC_DO_VLAN
 | |
| 		if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
 | |
| 			vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
 | |
| 		} else
 | |
| #endif
 | |
| 			netif_rx(skb);
 | |
| 
 | |
| 		dev->stats.rx_packets++;
 | |
| 		dev->stats.rx_bytes += retdesc->size;
 | |
| 
 | |
| 		idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
 | |
| 	}
 | |
| 
 | |
| 	atomic_sub(std_count, &ap->cur_rx_bufs);
 | |
| 	if (!ACE_IS_TIGON_I(ap))
 | |
| 		atomic_sub(mini_count, &ap->cur_mini_bufs);
 | |
| 
 | |
|  out:
 | |
| 	/*
 | |
| 	 * According to the documentation RxRetCsm is obsolete with
 | |
| 	 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
 | |
| 	 */
 | |
| 	if (ACE_IS_TIGON_I(ap)) {
 | |
| 		writel(idx, &ap->regs->RxRetCsm);
 | |
| 	}
 | |
| 	ap->cur_rx = idx;
 | |
| 
 | |
| 	return;
 | |
|  error:
 | |
| 	idx = rxretprd;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void ace_tx_int(struct net_device *dev,
 | |
| 			      u32 txcsm, u32 idx)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 
 | |
| 	do {
 | |
| 		struct sk_buff *skb;
 | |
| 		dma_addr_t mapping;
 | |
| 		struct tx_ring_info *info;
 | |
| 
 | |
| 		info = ap->skb->tx_skbuff + idx;
 | |
| 		skb = info->skb;
 | |
| 		mapping = pci_unmap_addr(info, mapping);
 | |
| 
 | |
| 		if (mapping) {
 | |
| 			pci_unmap_page(ap->pdev, mapping,
 | |
| 				       pci_unmap_len(info, maplen),
 | |
| 				       PCI_DMA_TODEVICE);
 | |
| 			pci_unmap_addr_set(info, mapping, 0);
 | |
| 		}
 | |
| 
 | |
| 		if (skb) {
 | |
| 			dev->stats.tx_packets++;
 | |
| 			dev->stats.tx_bytes += skb->len;
 | |
| 			dev_kfree_skb_irq(skb);
 | |
| 			info->skb = NULL;
 | |
| 		}
 | |
| 
 | |
| 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
 | |
| 	} while (idx != txcsm);
 | |
| 
 | |
| 	if (netif_queue_stopped(dev))
 | |
| 		netif_wake_queue(dev);
 | |
| 
 | |
| 	wmb();
 | |
| 	ap->tx_ret_csm = txcsm;
 | |
| 
 | |
| 	/* So... tx_ret_csm is advanced _after_ check for device wakeup.
 | |
| 	 *
 | |
| 	 * We could try to make it before. In this case we would get
 | |
| 	 * the following race condition: hard_start_xmit on other cpu
 | |
| 	 * enters after we advanced tx_ret_csm and fills space,
 | |
| 	 * which we have just freed, so that we make illegal device wakeup.
 | |
| 	 * There is no good way to workaround this (at entry
 | |
| 	 * to ace_start_xmit detects this condition and prevents
 | |
| 	 * ring corruption, but it is not a good workaround.)
 | |
| 	 *
 | |
| 	 * When tx_ret_csm is advanced after, we wake up device _only_
 | |
| 	 * if we really have some space in ring (though the core doing
 | |
| 	 * hard_start_xmit can see full ring for some period and has to
 | |
| 	 * synchronize.) Superb.
 | |
| 	 * BUT! We get another subtle race condition. hard_start_xmit
 | |
| 	 * may think that ring is full between wakeup and advancing
 | |
| 	 * tx_ret_csm and will stop device instantly! It is not so bad.
 | |
| 	 * We are guaranteed that there is something in ring, so that
 | |
| 	 * the next irq will resume transmission. To speedup this we could
 | |
| 	 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
 | |
| 	 * (see ace_start_xmit).
 | |
| 	 *
 | |
| 	 * Well, this dilemma exists in all lock-free devices.
 | |
| 	 * We, following scheme used in drivers by Donald Becker,
 | |
| 	 * select the least dangerous.
 | |
| 	 *							--ANK
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| 
 | |
| static irqreturn_t ace_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)dev_id;
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	u32 idx;
 | |
| 	u32 txcsm, rxretcsm, rxretprd;
 | |
| 	u32 evtcsm, evtprd;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of PCI shared interrupts or spurious interrupts,
 | |
| 	 * we want to make sure it is actually our interrupt before
 | |
| 	 * spending any time in here.
 | |
| 	 */
 | |
| 	if (!(readl(®s->HostCtrl) & IN_INT))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	/*
 | |
| 	 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
 | |
| 	 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
 | |
| 	 * writel(0, ®s->Mb0Lo).
 | |
| 	 *
 | |
| 	 * "IRQ avoidance" recommended in docs applies to IRQs served
 | |
| 	 * threads and it is wrong even for that case.
 | |
| 	 */
 | |
| 	writel(0, ®s->Mb0Lo);
 | |
| 	readl(®s->Mb0Lo);
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no conflict between transmit handling in
 | |
| 	 * start_xmit and receive processing, thus there is no reason
 | |
| 	 * to take a spin lock for RX handling. Wait until we start
 | |
| 	 * working on the other stuff - hey we don't need a spin lock
 | |
| 	 * anymore.
 | |
| 	 */
 | |
| 	rxretprd = *ap->rx_ret_prd;
 | |
| 	rxretcsm = ap->cur_rx;
 | |
| 
 | |
| 	if (rxretprd != rxretcsm)
 | |
| 		ace_rx_int(dev, rxretprd, rxretcsm);
 | |
| 
 | |
| 	txcsm = *ap->tx_csm;
 | |
| 	idx = ap->tx_ret_csm;
 | |
| 
 | |
| 	if (txcsm != idx) {
 | |
| 		/*
 | |
| 		 * If each skb takes only one descriptor this check degenerates
 | |
| 		 * to identity, because new space has just been opened.
 | |
| 		 * But if skbs are fragmented we must check that this index
 | |
| 		 * update releases enough of space, otherwise we just
 | |
| 		 * wait for device to make more work.
 | |
| 		 */
 | |
| 		if (!tx_ring_full(ap, txcsm, ap->tx_prd))
 | |
| 			ace_tx_int(dev, txcsm, idx);
 | |
| 	}
 | |
| 
 | |
| 	evtcsm = readl(®s->EvtCsm);
 | |
| 	evtprd = *ap->evt_prd;
 | |
| 
 | |
| 	if (evtcsm != evtprd) {
 | |
| 		evtcsm = ace_handle_event(dev, evtcsm, evtprd);
 | |
| 		writel(evtcsm, ®s->EvtCsm);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This has to go last in the interrupt handler and run with
 | |
| 	 * the spin lock released ... what lock?
 | |
| 	 */
 | |
| 	if (netif_running(dev)) {
 | |
| 		int cur_size;
 | |
| 		int run_tasklet = 0;
 | |
| 
 | |
| 		cur_size = atomic_read(&ap->cur_rx_bufs);
 | |
| 		if (cur_size < RX_LOW_STD_THRES) {
 | |
| 			if ((cur_size < RX_PANIC_STD_THRES) &&
 | |
| 			    !test_and_set_bit(0, &ap->std_refill_busy)) {
 | |
| #ifdef DEBUG
 | |
| 				printk("low on std buffers %i\n", cur_size);
 | |
| #endif
 | |
| 				ace_load_std_rx_ring(ap,
 | |
| 						     RX_RING_SIZE - cur_size);
 | |
| 			} else
 | |
| 				run_tasklet = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (!ACE_IS_TIGON_I(ap)) {
 | |
| 			cur_size = atomic_read(&ap->cur_mini_bufs);
 | |
| 			if (cur_size < RX_LOW_MINI_THRES) {
 | |
| 				if ((cur_size < RX_PANIC_MINI_THRES) &&
 | |
| 				    !test_and_set_bit(0,
 | |
| 						      &ap->mini_refill_busy)) {
 | |
| #ifdef DEBUG
 | |
| 					printk("low on mini buffers %i\n",
 | |
| 					       cur_size);
 | |
| #endif
 | |
| 					ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
 | |
| 				} else
 | |
| 					run_tasklet = 1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (ap->jumbo) {
 | |
| 			cur_size = atomic_read(&ap->cur_jumbo_bufs);
 | |
| 			if (cur_size < RX_LOW_JUMBO_THRES) {
 | |
| 				if ((cur_size < RX_PANIC_JUMBO_THRES) &&
 | |
| 				    !test_and_set_bit(0,
 | |
| 						      &ap->jumbo_refill_busy)){
 | |
| #ifdef DEBUG
 | |
| 					printk("low on jumbo buffers %i\n",
 | |
| 					       cur_size);
 | |
| #endif
 | |
| 					ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
 | |
| 				} else
 | |
| 					run_tasklet = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		if (run_tasklet && !ap->tasklet_pending) {
 | |
| 			ap->tasklet_pending = 1;
 | |
| 			tasklet_schedule(&ap->ace_tasklet);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if ACENIC_DO_VLAN
 | |
| static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	ace_mask_irq(dev);
 | |
| 
 | |
| 	ap->vlgrp = grp;
 | |
| 
 | |
| 	ace_unmask_irq(dev);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| #endif /* ACENIC_DO_VLAN */
 | |
| 
 | |
| 
 | |
| static int ace_open(struct net_device *dev)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	struct cmd cmd;
 | |
| 
 | |
| 	if (!(ap->fw_running)) {
 | |
| 		printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu);
 | |
| 
 | |
| 	cmd.evt = C_CLEAR_STATS;
 | |
| 	cmd.code = 0;
 | |
| 	cmd.idx = 0;
 | |
| 	ace_issue_cmd(regs, &cmd);
 | |
| 
 | |
| 	cmd.evt = C_HOST_STATE;
 | |
| 	cmd.code = C_C_STACK_UP;
 | |
| 	cmd.idx = 0;
 | |
| 	ace_issue_cmd(regs, &cmd);
 | |
| 
 | |
| 	if (ap->jumbo &&
 | |
| 	    !test_and_set_bit(0, &ap->jumbo_refill_busy))
 | |
| 		ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
 | |
| 
 | |
| 	if (dev->flags & IFF_PROMISC) {
 | |
| 		cmd.evt = C_SET_PROMISC_MODE;
 | |
| 		cmd.code = C_C_PROMISC_ENABLE;
 | |
| 		cmd.idx = 0;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 
 | |
| 		ap->promisc = 1;
 | |
| 	}else
 | |
| 		ap->promisc = 0;
 | |
| 	ap->mcast_all = 0;
 | |
| 
 | |
| #if 0
 | |
| 	cmd.evt = C_LNK_NEGOTIATION;
 | |
| 	cmd.code = 0;
 | |
| 	cmd.idx = 0;
 | |
| 	ace_issue_cmd(regs, &cmd);
 | |
| #endif
 | |
| 
 | |
| 	netif_start_queue(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup the bottom half rx ring refill handler
 | |
| 	 */
 | |
| 	tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int ace_close(struct net_device *dev)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	struct cmd cmd;
 | |
| 	unsigned long flags;
 | |
| 	short i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Without (or before) releasing irq and stopping hardware, this
 | |
| 	 * is an absolute non-sense, by the way. It will be reset instantly
 | |
| 	 * by the first irq.
 | |
| 	 */
 | |
| 	netif_stop_queue(dev);
 | |
| 
 | |
| 
 | |
| 	if (ap->promisc) {
 | |
| 		cmd.evt = C_SET_PROMISC_MODE;
 | |
| 		cmd.code = C_C_PROMISC_DISABLE;
 | |
| 		cmd.idx = 0;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 		ap->promisc = 0;
 | |
| 	}
 | |
| 
 | |
| 	cmd.evt = C_HOST_STATE;
 | |
| 	cmd.code = C_C_STACK_DOWN;
 | |
| 	cmd.idx = 0;
 | |
| 	ace_issue_cmd(regs, &cmd);
 | |
| 
 | |
| 	tasklet_kill(&ap->ace_tasklet);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure one CPU is not processing packets while
 | |
| 	 * buffers are being released by another.
 | |
| 	 */
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	ace_mask_irq(dev);
 | |
| 
 | |
| 	for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
 | |
| 		struct sk_buff *skb;
 | |
| 		dma_addr_t mapping;
 | |
| 		struct tx_ring_info *info;
 | |
| 
 | |
| 		info = ap->skb->tx_skbuff + i;
 | |
| 		skb = info->skb;
 | |
| 		mapping = pci_unmap_addr(info, mapping);
 | |
| 
 | |
| 		if (mapping) {
 | |
| 			if (ACE_IS_TIGON_I(ap)) {
 | |
| 				/* NB: TIGON_1 is special, tx_ring is in io space */
 | |
| 				struct tx_desc __iomem *tx;
 | |
| 				tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
 | |
| 				writel(0, &tx->addr.addrhi);
 | |
| 				writel(0, &tx->addr.addrlo);
 | |
| 				writel(0, &tx->flagsize);
 | |
| 			} else
 | |
| 				memset(ap->tx_ring + i, 0,
 | |
| 				       sizeof(struct tx_desc));
 | |
| 			pci_unmap_page(ap->pdev, mapping,
 | |
| 				       pci_unmap_len(info, maplen),
 | |
| 				       PCI_DMA_TODEVICE);
 | |
| 			pci_unmap_addr_set(info, mapping, 0);
 | |
| 		}
 | |
| 		if (skb) {
 | |
| 			dev_kfree_skb(skb);
 | |
| 			info->skb = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ap->jumbo) {
 | |
| 		cmd.evt = C_RESET_JUMBO_RNG;
 | |
| 		cmd.code = 0;
 | |
| 		cmd.idx = 0;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 	}
 | |
| 
 | |
| 	ace_unmask_irq(dev);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline dma_addr_t
 | |
| ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
 | |
| 	       struct sk_buff *tail, u32 idx)
 | |
| {
 | |
| 	dma_addr_t mapping;
 | |
| 	struct tx_ring_info *info;
 | |
| 
 | |
| 	mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
 | |
| 			       offset_in_page(skb->data),
 | |
| 			       skb->len, PCI_DMA_TODEVICE);
 | |
| 
 | |
| 	info = ap->skb->tx_skbuff + idx;
 | |
| 	info->skb = tail;
 | |
| 	pci_unmap_addr_set(info, mapping, mapping);
 | |
| 	pci_unmap_len_set(info, maplen, skb->len);
 | |
| 	return mapping;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void
 | |
| ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
 | |
| 	       u32 flagsize, u32 vlan_tag)
 | |
| {
 | |
| #if !USE_TX_COAL_NOW
 | |
| 	flagsize &= ~BD_FLG_COAL_NOW;
 | |
| #endif
 | |
| 
 | |
| 	if (ACE_IS_TIGON_I(ap)) {
 | |
| 		struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
 | |
| 		writel(addr >> 32, &io->addr.addrhi);
 | |
| 		writel(addr & 0xffffffff, &io->addr.addrlo);
 | |
| 		writel(flagsize, &io->flagsize);
 | |
| #if ACENIC_DO_VLAN
 | |
| 		writel(vlan_tag, &io->vlanres);
 | |
| #endif
 | |
| 	} else {
 | |
| 		desc->addr.addrhi = addr >> 32;
 | |
| 		desc->addr.addrlo = addr;
 | |
| 		desc->flagsize = flagsize;
 | |
| #if ACENIC_DO_VLAN
 | |
| 		desc->vlanres = vlan_tag;
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	struct tx_desc *desc;
 | |
| 	u32 idx, flagsize;
 | |
| 	unsigned long maxjiff = jiffies + 3*HZ;
 | |
| 
 | |
| restart:
 | |
| 	idx = ap->tx_prd;
 | |
| 
 | |
| 	if (tx_ring_full(ap, ap->tx_ret_csm, idx))
 | |
| 		goto overflow;
 | |
| 
 | |
| 	if (!skb_shinfo(skb)->nr_frags)	{
 | |
| 		dma_addr_t mapping;
 | |
| 		u32 vlan_tag = 0;
 | |
| 
 | |
| 		mapping = ace_map_tx_skb(ap, skb, skb, idx);
 | |
| 		flagsize = (skb->len << 16) | (BD_FLG_END);
 | |
| 		if (skb->ip_summed == CHECKSUM_PARTIAL)
 | |
| 			flagsize |= BD_FLG_TCP_UDP_SUM;
 | |
| #if ACENIC_DO_VLAN
 | |
| 		if (vlan_tx_tag_present(skb)) {
 | |
| 			flagsize |= BD_FLG_VLAN_TAG;
 | |
| 			vlan_tag = vlan_tx_tag_get(skb);
 | |
| 		}
 | |
| #endif
 | |
| 		desc = ap->tx_ring + idx;
 | |
| 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
 | |
| 
 | |
| 		/* Look at ace_tx_int for explanations. */
 | |
| 		if (tx_ring_full(ap, ap->tx_ret_csm, idx))
 | |
| 			flagsize |= BD_FLG_COAL_NOW;
 | |
| 
 | |
| 		ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
 | |
| 	} else {
 | |
| 		dma_addr_t mapping;
 | |
| 		u32 vlan_tag = 0;
 | |
| 		int i, len = 0;
 | |
| 
 | |
| 		mapping = ace_map_tx_skb(ap, skb, NULL, idx);
 | |
| 		flagsize = (skb_headlen(skb) << 16);
 | |
| 		if (skb->ip_summed == CHECKSUM_PARTIAL)
 | |
| 			flagsize |= BD_FLG_TCP_UDP_SUM;
 | |
| #if ACENIC_DO_VLAN
 | |
| 		if (vlan_tx_tag_present(skb)) {
 | |
| 			flagsize |= BD_FLG_VLAN_TAG;
 | |
| 			vlan_tag = vlan_tx_tag_get(skb);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
 | |
| 
 | |
| 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
 | |
| 
 | |
| 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 | |
| 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 			struct tx_ring_info *info;
 | |
| 
 | |
| 			len += frag->size;
 | |
| 			info = ap->skb->tx_skbuff + idx;
 | |
| 			desc = ap->tx_ring + idx;
 | |
| 
 | |
| 			mapping = pci_map_page(ap->pdev, frag->page,
 | |
| 					       frag->page_offset, frag->size,
 | |
| 					       PCI_DMA_TODEVICE);
 | |
| 
 | |
| 			flagsize = (frag->size << 16);
 | |
| 			if (skb->ip_summed == CHECKSUM_PARTIAL)
 | |
| 				flagsize |= BD_FLG_TCP_UDP_SUM;
 | |
| 			idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
 | |
| 
 | |
| 			if (i == skb_shinfo(skb)->nr_frags - 1) {
 | |
| 				flagsize |= BD_FLG_END;
 | |
| 				if (tx_ring_full(ap, ap->tx_ret_csm, idx))
 | |
| 					flagsize |= BD_FLG_COAL_NOW;
 | |
| 
 | |
| 				/*
 | |
| 				 * Only the last fragment frees
 | |
| 				 * the skb!
 | |
| 				 */
 | |
| 				info->skb = skb;
 | |
| 			} else {
 | |
| 				info->skb = NULL;
 | |
| 			}
 | |
| 			pci_unmap_addr_set(info, mapping, mapping);
 | |
| 			pci_unmap_len_set(info, maplen, frag->size);
 | |
| 			ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|  	wmb();
 | |
|  	ap->tx_prd = idx;
 | |
|  	ace_set_txprd(regs, ap, idx);
 | |
| 
 | |
| 	if (flagsize & BD_FLG_COAL_NOW) {
 | |
| 		netif_stop_queue(dev);
 | |
| 
 | |
| 		/*
 | |
| 		 * A TX-descriptor producer (an IRQ) might have gotten
 | |
| 		 * inbetween, making the ring free again. Since xmit is
 | |
| 		 * serialized, this is the only situation we have to
 | |
| 		 * re-test.
 | |
| 		 */
 | |
| 		if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
 | |
| 			netif_wake_queue(dev);
 | |
| 	}
 | |
| 
 | |
| 	dev->trans_start = jiffies;
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| overflow:
 | |
| 	/*
 | |
| 	 * This race condition is unavoidable with lock-free drivers.
 | |
| 	 * We wake up the queue _before_ tx_prd is advanced, so that we can
 | |
| 	 * enter hard_start_xmit too early, while tx ring still looks closed.
 | |
| 	 * This happens ~1-4 times per 100000 packets, so that we can allow
 | |
| 	 * to loop syncing to other CPU. Probably, we need an additional
 | |
| 	 * wmb() in ace_tx_intr as well.
 | |
| 	 *
 | |
| 	 * Note that this race is relieved by reserving one more entry
 | |
| 	 * in tx ring than it is necessary (see original non-SG driver).
 | |
| 	 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
 | |
| 	 * is already overkill.
 | |
| 	 *
 | |
| 	 * Alternative is to return with 1 not throttling queue. In this
 | |
| 	 * case loop becomes longer, no more useful effects.
 | |
| 	 */
 | |
| 	if (time_before(jiffies, maxjiff)) {
 | |
| 		barrier();
 | |
| 		cpu_relax();
 | |
| 		goto restart;
 | |
| 	}
 | |
| 
 | |
| 	/* The ring is stuck full. */
 | |
| 	printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
 | |
| 	return NETDEV_TX_BUSY;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int ace_change_mtu(struct net_device *dev, int new_mtu)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 
 | |
| 	if (new_mtu > ACE_JUMBO_MTU)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu);
 | |
| 	dev->mtu = new_mtu;
 | |
| 
 | |
| 	if (new_mtu > ACE_STD_MTU) {
 | |
| 		if (!(ap->jumbo)) {
 | |
| 			printk(KERN_INFO "%s: Enabling Jumbo frame "
 | |
| 			       "support\n", dev->name);
 | |
| 			ap->jumbo = 1;
 | |
| 			if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
 | |
| 				ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
 | |
| 			ace_set_rxtx_parms(dev, 1);
 | |
| 		}
 | |
| 	} else {
 | |
| 		while (test_and_set_bit(0, &ap->jumbo_refill_busy));
 | |
| 		ace_sync_irq(dev->irq);
 | |
| 		ace_set_rxtx_parms(dev, 0);
 | |
| 		if (ap->jumbo) {
 | |
| 			struct cmd cmd;
 | |
| 
 | |
| 			cmd.evt = C_RESET_JUMBO_RNG;
 | |
| 			cmd.code = 0;
 | |
| 			cmd.idx = 0;
 | |
| 			ace_issue_cmd(regs, &cmd);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	u32 link;
 | |
| 
 | |
| 	memset(ecmd, 0, sizeof(struct ethtool_cmd));
 | |
| 	ecmd->supported =
 | |
| 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
 | |
| 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
 | |
| 		 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
 | |
| 		 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
 | |
| 
 | |
| 	ecmd->port = PORT_FIBRE;
 | |
| 	ecmd->transceiver = XCVR_INTERNAL;
 | |
| 
 | |
| 	link = readl(®s->GigLnkState);
 | |
| 	if (link & LNK_1000MB)
 | |
| 		ecmd->speed = SPEED_1000;
 | |
| 	else {
 | |
| 		link = readl(®s->FastLnkState);
 | |
| 		if (link & LNK_100MB)
 | |
| 			ecmd->speed = SPEED_100;
 | |
| 		else if (link & LNK_10MB)
 | |
| 			ecmd->speed = SPEED_10;
 | |
| 		else
 | |
| 			ecmd->speed = 0;
 | |
| 	}
 | |
| 	if (link & LNK_FULL_DUPLEX)
 | |
| 		ecmd->duplex = DUPLEX_FULL;
 | |
| 	else
 | |
| 		ecmd->duplex = DUPLEX_HALF;
 | |
| 
 | |
| 	if (link & LNK_NEGOTIATE)
 | |
| 		ecmd->autoneg = AUTONEG_ENABLE;
 | |
| 	else
 | |
| 		ecmd->autoneg = AUTONEG_DISABLE;
 | |
| 
 | |
| #if 0
 | |
| 	/*
 | |
| 	 * Current struct ethtool_cmd is insufficient
 | |
| 	 */
 | |
| 	ecmd->trace = readl(®s->TuneTrace);
 | |
| 
 | |
| 	ecmd->txcoal = readl(®s->TuneTxCoalTicks);
 | |
| 	ecmd->rxcoal = readl(®s->TuneRxCoalTicks);
 | |
| #endif
 | |
| 	ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc);
 | |
| 	ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	u32 link, speed;
 | |
| 
 | |
| 	link = readl(®s->GigLnkState);
 | |
| 	if (link & LNK_1000MB)
 | |
| 		speed = SPEED_1000;
 | |
| 	else {
 | |
| 		link = readl(®s->FastLnkState);
 | |
| 		if (link & LNK_100MB)
 | |
| 			speed = SPEED_100;
 | |
| 		else if (link & LNK_10MB)
 | |
| 			speed = SPEED_10;
 | |
| 		else
 | |
| 			speed = SPEED_100;
 | |
| 	}
 | |
| 
 | |
| 	link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
 | |
| 		LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
 | |
| 	if (!ACE_IS_TIGON_I(ap))
 | |
| 		link |= LNK_TX_FLOW_CTL_Y;
 | |
| 	if (ecmd->autoneg == AUTONEG_ENABLE)
 | |
| 		link |= LNK_NEGOTIATE;
 | |
| 	if (ecmd->speed != speed) {
 | |
| 		link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
 | |
| 		switch (speed) {
 | |
| 		case SPEED_1000:
 | |
| 			link |= LNK_1000MB;
 | |
| 			break;
 | |
| 		case SPEED_100:
 | |
| 			link |= LNK_100MB;
 | |
| 			break;
 | |
| 		case SPEED_10:
 | |
| 			link |= LNK_10MB;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ecmd->duplex == DUPLEX_FULL)
 | |
| 		link |= LNK_FULL_DUPLEX;
 | |
| 
 | |
| 	if (link != ap->link) {
 | |
| 		struct cmd cmd;
 | |
| 		printk(KERN_INFO "%s: Renegotiating link state\n",
 | |
| 		       dev->name);
 | |
| 
 | |
| 		ap->link = link;
 | |
| 		writel(link, ®s->TuneLink);
 | |
| 		if (!ACE_IS_TIGON_I(ap))
 | |
| 			writel(link, ®s->TuneFastLink);
 | |
| 		wmb();
 | |
| 
 | |
| 		cmd.evt = C_LNK_NEGOTIATION;
 | |
| 		cmd.code = 0;
 | |
| 		cmd.idx = 0;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ace_get_drvinfo(struct net_device *dev,
 | |
| 			    struct ethtool_drvinfo *info)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 
 | |
| 	strlcpy(info->driver, "acenic", sizeof(info->driver));
 | |
| 	snprintf(info->version, sizeof(info->version), "%i.%i.%i",
 | |
| 		 ap->firmware_major, ap->firmware_minor,
 | |
| 		 ap->firmware_fix);
 | |
| 
 | |
| 	if (ap->pdev)
 | |
| 		strlcpy(info->bus_info, pci_name(ap->pdev),
 | |
| 			sizeof(info->bus_info));
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the hardware MAC address.
 | |
|  */
 | |
| static int ace_set_mac_addr(struct net_device *dev, void *p)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	struct sockaddr *addr=p;
 | |
| 	u8 *da;
 | |
| 	struct cmd cmd;
 | |
| 
 | |
| 	if(netif_running(dev))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
 | |
| 
 | |
| 	da = (u8 *)dev->dev_addr;
 | |
| 
 | |
| 	writel(da[0] << 8 | da[1], ®s->MacAddrHi);
 | |
| 	writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
 | |
| 	       ®s->MacAddrLo);
 | |
| 
 | |
| 	cmd.evt = C_SET_MAC_ADDR;
 | |
| 	cmd.code = 0;
 | |
| 	cmd.idx = 0;
 | |
| 	ace_issue_cmd(regs, &cmd);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ace_set_multicast_list(struct net_device *dev)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	struct cmd cmd;
 | |
| 
 | |
| 	if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
 | |
| 		cmd.evt = C_SET_MULTICAST_MODE;
 | |
| 		cmd.code = C_C_MCAST_ENABLE;
 | |
| 		cmd.idx = 0;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 		ap->mcast_all = 1;
 | |
| 	} else if (ap->mcast_all) {
 | |
| 		cmd.evt = C_SET_MULTICAST_MODE;
 | |
| 		cmd.code = C_C_MCAST_DISABLE;
 | |
| 		cmd.idx = 0;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 		ap->mcast_all = 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
 | |
| 		cmd.evt = C_SET_PROMISC_MODE;
 | |
| 		cmd.code = C_C_PROMISC_ENABLE;
 | |
| 		cmd.idx = 0;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 		ap->promisc = 1;
 | |
| 	}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
 | |
| 		cmd.evt = C_SET_PROMISC_MODE;
 | |
| 		cmd.code = C_C_PROMISC_DISABLE;
 | |
| 		cmd.idx = 0;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 		ap->promisc = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For the time being multicast relies on the upper layers
 | |
| 	 * filtering it properly. The Firmware does not allow one to
 | |
| 	 * set the entire multicast list at a time and keeping track of
 | |
| 	 * it here is going to be messy.
 | |
| 	 */
 | |
| 	if ((dev->mc_count) && !(ap->mcast_all)) {
 | |
| 		cmd.evt = C_SET_MULTICAST_MODE;
 | |
| 		cmd.code = C_C_MCAST_ENABLE;
 | |
| 		cmd.idx = 0;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 	}else if (!ap->mcast_all) {
 | |
| 		cmd.evt = C_SET_MULTICAST_MODE;
 | |
| 		cmd.code = C_C_MCAST_DISABLE;
 | |
| 		cmd.idx = 0;
 | |
| 		ace_issue_cmd(regs, &cmd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct net_device_stats *ace_get_stats(struct net_device *dev)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_mac_stats __iomem *mac_stats =
 | |
| 		(struct ace_mac_stats __iomem *)ap->regs->Stats;
 | |
| 
 | |
| 	dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
 | |
| 	dev->stats.multicast = readl(&mac_stats->kept_mc);
 | |
| 	dev->stats.collisions = readl(&mac_stats->coll);
 | |
| 
 | |
| 	return &dev->stats;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
 | |
| 			       u32 dest, int size)
 | |
| {
 | |
| 	void __iomem *tdest;
 | |
| 	short tsize, i;
 | |
| 
 | |
| 	if (size <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	while (size > 0) {
 | |
| 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
 | |
| 			    min_t(u32, size, ACE_WINDOW_SIZE));
 | |
| 		tdest = (void __iomem *) ®s->Window +
 | |
| 			(dest & (ACE_WINDOW_SIZE - 1));
 | |
| 		writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
 | |
| 		for (i = 0; i < (tsize / 4); i++) {
 | |
| 			/* Firmware is big-endian */
 | |
| 			writel(be32_to_cpup(src), tdest);
 | |
| 			src++;
 | |
| 			tdest += 4;
 | |
| 			dest += 4;
 | |
| 			size -= 4;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
 | |
| {
 | |
| 	void __iomem *tdest;
 | |
| 	short tsize = 0, i;
 | |
| 
 | |
| 	if (size <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	while (size > 0) {
 | |
| 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
 | |
| 				min_t(u32, size, ACE_WINDOW_SIZE));
 | |
| 		tdest = (void __iomem *) ®s->Window +
 | |
| 			(dest & (ACE_WINDOW_SIZE - 1));
 | |
| 		writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
 | |
| 
 | |
| 		for (i = 0; i < (tsize / 4); i++) {
 | |
| 			writel(0, tdest + i*4);
 | |
| 		}
 | |
| 
 | |
| 		dest += tsize;
 | |
| 		size -= tsize;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Download the firmware into the SRAM on the NIC
 | |
|  *
 | |
|  * This operation requires the NIC to be halted and is performed with
 | |
|  * interrupts disabled and with the spinlock hold.
 | |
|  */
 | |
| static int __devinit ace_load_firmware(struct net_device *dev)
 | |
| {
 | |
| 	const struct firmware *fw;
 | |
| 	const char *fw_name = "acenic/tg2.bin";
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	const __be32 *fw_data;
 | |
| 	u32 load_addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!(readl(®s->CpuCtrl) & CPU_HALTED)) {
 | |
| 		printk(KERN_ERR "%s: trying to download firmware while the "
 | |
| 		       "CPU is running!\n", ap->name);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	if (ACE_IS_TIGON_I(ap))
 | |
| 		fw_name = "acenic/tg1.bin";
 | |
| 
 | |
| 	ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
 | |
| 		       ap->name, fw_name);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	fw_data = (void *)fw->data;
 | |
| 
 | |
| 	/* Firmware blob starts with version numbers, followed by
 | |
| 	   load and start address. Remainder is the blob to be loaded
 | |
| 	   contiguously from load address. We don't bother to represent
 | |
| 	   the BSS/SBSS sections any more, since we were clearing the
 | |
| 	   whole thing anyway. */
 | |
| 	ap->firmware_major = fw->data[0];
 | |
| 	ap->firmware_minor = fw->data[1];
 | |
| 	ap->firmware_fix = fw->data[2];
 | |
| 
 | |
| 	ap->firmware_start = be32_to_cpu(fw_data[1]);
 | |
| 	if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
 | |
| 		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
 | |
| 		       ap->name, ap->firmware_start, fw_name);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	load_addr = be32_to_cpu(fw_data[2]);
 | |
| 	if (load_addr < 0x4000 || load_addr >= 0x80000) {
 | |
| 		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
 | |
| 		       ap->name, load_addr, fw_name);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not try to clear more than 512KiB or we end up seeing
 | |
| 	 * funny things on NICs with only 512KiB SRAM
 | |
| 	 */
 | |
| 	ace_clear(regs, 0x2000, 0x80000-0x2000);
 | |
| 	ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
 | |
|  out:
 | |
| 	release_firmware(fw);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The eeprom on the AceNIC is an Atmel i2c EEPROM.
 | |
|  *
 | |
|  * Accessing the EEPROM is `interesting' to say the least - don't read
 | |
|  * this code right after dinner.
 | |
|  *
 | |
|  * This is all about black magic and bit-banging the device .... I
 | |
|  * wonder in what hospital they have put the guy who designed the i2c
 | |
|  * specs.
 | |
|  *
 | |
|  * Oh yes, this is only the beginning!
 | |
|  *
 | |
|  * Thanks to Stevarino Webinski for helping tracking down the bugs in the
 | |
|  * code i2c readout code by beta testing all my hacks.
 | |
|  */
 | |
| static void __devinit eeprom_start(struct ace_regs __iomem *regs)
 | |
| {
 | |
| 	u32 local;
 | |
| 
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	local = readl(®s->LocalCtrl);
 | |
| 	local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	local |= EEPROM_CLK_OUT;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	local &= ~EEPROM_DATA_OUT;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	local &= ~EEPROM_CLK_OUT;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
 | |
| {
 | |
| 	short i;
 | |
| 	u32 local;
 | |
| 
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	local = readl(®s->LocalCtrl);
 | |
| 	local &= ~EEPROM_DATA_OUT;
 | |
| 	local |= EEPROM_WRITE_ENABLE;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 
 | |
| 	for (i = 0; i < 8; i++, magic <<= 1) {
 | |
| 		udelay(ACE_SHORT_DELAY);
 | |
| 		if (magic & 0x80)
 | |
| 			local |= EEPROM_DATA_OUT;
 | |
| 		else
 | |
| 			local &= ~EEPROM_DATA_OUT;
 | |
| 		writel(local, ®s->LocalCtrl);
 | |
| 		readl(®s->LocalCtrl);
 | |
| 		mb();
 | |
| 
 | |
| 		udelay(ACE_SHORT_DELAY);
 | |
| 		local |= EEPROM_CLK_OUT;
 | |
| 		writel(local, ®s->LocalCtrl);
 | |
| 		readl(®s->LocalCtrl);
 | |
| 		mb();
 | |
| 		udelay(ACE_SHORT_DELAY);
 | |
| 		local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
 | |
| 		writel(local, ®s->LocalCtrl);
 | |
| 		readl(®s->LocalCtrl);
 | |
| 		mb();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
 | |
| {
 | |
| 	int state;
 | |
| 	u32 local;
 | |
| 
 | |
| 	local = readl(®s->LocalCtrl);
 | |
| 	local &= ~EEPROM_WRITE_ENABLE;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_LONG_DELAY);
 | |
| 	local |= EEPROM_CLK_OUT;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	/* sample data in middle of high clk */
 | |
| 	state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0;
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	mb();
 | |
| 	writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 
 | |
| 	return state;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
 | |
| {
 | |
| 	u32 local;
 | |
| 
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	local = readl(®s->LocalCtrl);
 | |
| 	local |= EEPROM_WRITE_ENABLE;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	local &= ~EEPROM_DATA_OUT;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	local |= EEPROM_CLK_OUT;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	local |= EEPROM_DATA_OUT;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_LONG_DELAY);
 | |
| 	local &= ~EEPROM_CLK_OUT;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	mb();
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Read a whole byte from the EEPROM.
 | |
|  */
 | |
| static int __devinit read_eeprom_byte(struct net_device *dev,
 | |
| 				   unsigned long offset)
 | |
| {
 | |
| 	struct ace_private *ap = netdev_priv(dev);
 | |
| 	struct ace_regs __iomem *regs = ap->regs;
 | |
| 	unsigned long flags;
 | |
| 	u32 local;
 | |
| 	int result = 0;
 | |
| 	short i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't take interrupts on this CPU will bit banging
 | |
| 	 * the %#%#@$ I2C device
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	eeprom_start(regs);
 | |
| 
 | |
| 	eeprom_prep(regs, EEPROM_WRITE_SELECT);
 | |
| 	if (eeprom_check_ack(regs)) {
 | |
| 		local_irq_restore(flags);
 | |
| 		printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
 | |
| 		result = -EIO;
 | |
| 		goto eeprom_read_error;
 | |
| 	}
 | |
| 
 | |
| 	eeprom_prep(regs, (offset >> 8) & 0xff);
 | |
| 	if (eeprom_check_ack(regs)) {
 | |
| 		local_irq_restore(flags);
 | |
| 		printk(KERN_ERR "%s: Unable to set address byte 0\n",
 | |
| 		       ap->name);
 | |
| 		result = -EIO;
 | |
| 		goto eeprom_read_error;
 | |
| 	}
 | |
| 
 | |
| 	eeprom_prep(regs, offset & 0xff);
 | |
| 	if (eeprom_check_ack(regs)) {
 | |
| 		local_irq_restore(flags);
 | |
| 		printk(KERN_ERR "%s: Unable to set address byte 1\n",
 | |
| 		       ap->name);
 | |
| 		result = -EIO;
 | |
| 		goto eeprom_read_error;
 | |
| 	}
 | |
| 
 | |
| 	eeprom_start(regs);
 | |
| 	eeprom_prep(regs, EEPROM_READ_SELECT);
 | |
| 	if (eeprom_check_ack(regs)) {
 | |
| 		local_irq_restore(flags);
 | |
| 		printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
 | |
| 		       ap->name);
 | |
| 		result = -EIO;
 | |
| 		goto eeprom_read_error;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		local = readl(®s->LocalCtrl);
 | |
| 		local &= ~EEPROM_WRITE_ENABLE;
 | |
| 		writel(local, ®s->LocalCtrl);
 | |
| 		readl(®s->LocalCtrl);
 | |
| 		udelay(ACE_LONG_DELAY);
 | |
| 		mb();
 | |
| 		local |= EEPROM_CLK_OUT;
 | |
| 		writel(local, ®s->LocalCtrl);
 | |
| 		readl(®s->LocalCtrl);
 | |
| 		mb();
 | |
| 		udelay(ACE_SHORT_DELAY);
 | |
| 		/* sample data mid high clk */
 | |
| 		result = (result << 1) |
 | |
| 			((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0);
 | |
| 		udelay(ACE_SHORT_DELAY);
 | |
| 		mb();
 | |
| 		local = readl(®s->LocalCtrl);
 | |
| 		local &= ~EEPROM_CLK_OUT;
 | |
| 		writel(local, ®s->LocalCtrl);
 | |
| 		readl(®s->LocalCtrl);
 | |
| 		udelay(ACE_SHORT_DELAY);
 | |
| 		mb();
 | |
| 		if (i == 7) {
 | |
| 			local |= EEPROM_WRITE_ENABLE;
 | |
| 			writel(local, ®s->LocalCtrl);
 | |
| 			readl(®s->LocalCtrl);
 | |
| 			mb();
 | |
| 			udelay(ACE_SHORT_DELAY);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	local |= EEPROM_DATA_OUT;
 | |
| 	writel(local, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	udelay(ACE_LONG_DELAY);
 | |
| 	writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
 | |
| 	readl(®s->LocalCtrl);
 | |
| 	mb();
 | |
| 	udelay(ACE_SHORT_DELAY);
 | |
| 	eeprom_stop(regs);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
|  out:
 | |
| 	return result;
 | |
| 
 | |
|  eeprom_read_error:
 | |
| 	printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
 | |
| 	       ap->name, offset);
 | |
| 	goto out;
 | |
| }
 |