mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-27 10:38:01 +00:00 
			
		
		
		
	 7ad0ba91d4
			
		
	
	
		7ad0ba91d4
		
	
	
	
	
		
			
			Signed-off-by: Mike Rapoport <mike@compulab.co.il> Cc: Bryan Wu <bryan.wu@analog.com> Cc: David Brownell <david-b@pacbell.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1742 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1742 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/gpio.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/delay.h>
 | |
| 
 | |
| #include <mach/dma.h>
 | |
| #include <mach/regs-ssp.h>
 | |
| #include <mach/ssp.h>
 | |
| #include <mach/pxa2xx_spi.h>
 | |
| 
 | |
| MODULE_AUTHOR("Stephen Street");
 | |
| MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("platform:pxa2xx-spi");
 | |
| 
 | |
| #define MAX_BUSES 3
 | |
| 
 | |
| #define RX_THRESH_DFLT 	8
 | |
| #define TX_THRESH_DFLT 	8
 | |
| #define TIMOUT_DFLT		1000
 | |
| 
 | |
| #define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
 | |
| #define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
 | |
| #define IS_DMA_ALIGNED(x)	((((u32)(x)) & 0x07) == 0)
 | |
| #define MAX_DMA_LEN		8191
 | |
| #define DMA_ALIGNMENT		8
 | |
| 
 | |
| /*
 | |
|  * for testing SSCR1 changes that require SSP restart, basically
 | |
|  * everything except the service and interrupt enables, the pxa270 developer
 | |
|  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
 | |
|  * list, but the PXA255 dev man says all bits without really meaning the
 | |
|  * service and interrupt enables
 | |
|  */
 | |
| #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
 | |
| 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
 | |
| 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
 | |
| 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
 | |
| 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
 | |
| 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
 | |
| 
 | |
| #define DEFINE_SSP_REG(reg, off) \
 | |
| static inline u32 read_##reg(void const __iomem *p) \
 | |
| { return __raw_readl(p + (off)); } \
 | |
| \
 | |
| static inline void write_##reg(u32 v, void __iomem *p) \
 | |
| { __raw_writel(v, p + (off)); }
 | |
| 
 | |
| DEFINE_SSP_REG(SSCR0, 0x00)
 | |
| DEFINE_SSP_REG(SSCR1, 0x04)
 | |
| DEFINE_SSP_REG(SSSR, 0x08)
 | |
| DEFINE_SSP_REG(SSITR, 0x0c)
 | |
| DEFINE_SSP_REG(SSDR, 0x10)
 | |
| DEFINE_SSP_REG(SSTO, 0x28)
 | |
| DEFINE_SSP_REG(SSPSP, 0x2c)
 | |
| 
 | |
| #define START_STATE ((void*)0)
 | |
| #define RUNNING_STATE ((void*)1)
 | |
| #define DONE_STATE ((void*)2)
 | |
| #define ERROR_STATE ((void*)-1)
 | |
| 
 | |
| #define QUEUE_RUNNING 0
 | |
| #define QUEUE_STOPPED 1
 | |
| 
 | |
| struct driver_data {
 | |
| 	/* Driver model hookup */
 | |
| 	struct platform_device *pdev;
 | |
| 
 | |
| 	/* SSP Info */
 | |
| 	struct ssp_device *ssp;
 | |
| 
 | |
| 	/* SPI framework hookup */
 | |
| 	enum pxa_ssp_type ssp_type;
 | |
| 	struct spi_master *master;
 | |
| 
 | |
| 	/* PXA hookup */
 | |
| 	struct pxa2xx_spi_master *master_info;
 | |
| 
 | |
| 	/* DMA setup stuff */
 | |
| 	int rx_channel;
 | |
| 	int tx_channel;
 | |
| 	u32 *null_dma_buf;
 | |
| 
 | |
| 	/* SSP register addresses */
 | |
| 	void __iomem *ioaddr;
 | |
| 	u32 ssdr_physical;
 | |
| 
 | |
| 	/* SSP masks*/
 | |
| 	u32 dma_cr1;
 | |
| 	u32 int_cr1;
 | |
| 	u32 clear_sr;
 | |
| 	u32 mask_sr;
 | |
| 
 | |
| 	/* Driver message queue */
 | |
| 	struct workqueue_struct	*workqueue;
 | |
| 	struct work_struct pump_messages;
 | |
| 	spinlock_t lock;
 | |
| 	struct list_head queue;
 | |
| 	int busy;
 | |
| 	int run;
 | |
| 
 | |
| 	/* Message Transfer pump */
 | |
| 	struct tasklet_struct pump_transfers;
 | |
| 
 | |
| 	/* Current message transfer state info */
 | |
| 	struct spi_message* cur_msg;
 | |
| 	struct spi_transfer* cur_transfer;
 | |
| 	struct chip_data *cur_chip;
 | |
| 	size_t len;
 | |
| 	void *tx;
 | |
| 	void *tx_end;
 | |
| 	void *rx;
 | |
| 	void *rx_end;
 | |
| 	int dma_mapped;
 | |
| 	dma_addr_t rx_dma;
 | |
| 	dma_addr_t tx_dma;
 | |
| 	size_t rx_map_len;
 | |
| 	size_t tx_map_len;
 | |
| 	u8 n_bytes;
 | |
| 	u32 dma_width;
 | |
| 	int (*write)(struct driver_data *drv_data);
 | |
| 	int (*read)(struct driver_data *drv_data);
 | |
| 	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
 | |
| 	void (*cs_control)(u32 command);
 | |
| };
 | |
| 
 | |
| struct chip_data {
 | |
| 	u32 cr0;
 | |
| 	u32 cr1;
 | |
| 	u32 psp;
 | |
| 	u32 timeout;
 | |
| 	u8 n_bytes;
 | |
| 	u32 dma_width;
 | |
| 	u32 dma_burst_size;
 | |
| 	u32 threshold;
 | |
| 	u32 dma_threshold;
 | |
| 	u8 enable_dma;
 | |
| 	u8 bits_per_word;
 | |
| 	u32 speed_hz;
 | |
| 	int gpio_cs;
 | |
| 	int gpio_cs_inverted;
 | |
| 	int (*write)(struct driver_data *drv_data);
 | |
| 	int (*read)(struct driver_data *drv_data);
 | |
| 	void (*cs_control)(u32 command);
 | |
| };
 | |
| 
 | |
| static void pump_messages(struct work_struct *work);
 | |
| 
 | |
| static void cs_assert(struct driver_data *drv_data)
 | |
| {
 | |
| 	struct chip_data *chip = drv_data->cur_chip;
 | |
| 
 | |
| 	if (chip->cs_control) {
 | |
| 		chip->cs_control(PXA2XX_CS_ASSERT);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (gpio_is_valid(chip->gpio_cs))
 | |
| 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 | |
| }
 | |
| 
 | |
| static void cs_deassert(struct driver_data *drv_data)
 | |
| {
 | |
| 	struct chip_data *chip = drv_data->cur_chip;
 | |
| 
 | |
| 	if (chip->cs_control) {
 | |
| 		chip->cs_control(PXA2XX_CS_ASSERT);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (gpio_is_valid(chip->gpio_cs))
 | |
| 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 | |
| }
 | |
| 
 | |
| static int flush(struct driver_data *drv_data)
 | |
| {
 | |
| 	unsigned long limit = loops_per_jiffy << 1;
 | |
| 
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	do {
 | |
| 		while (read_SSSR(reg) & SSSR_RNE) {
 | |
| 			read_SSDR(reg);
 | |
| 		}
 | |
| 	} while ((read_SSSR(reg) & SSSR_BSY) && limit--);
 | |
| 	write_SSSR(SSSR_ROR, reg);
 | |
| 
 | |
| 	return limit;
 | |
| }
 | |
| 
 | |
| static int null_writer(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 	u8 n_bytes = drv_data->n_bytes;
 | |
| 
 | |
| 	if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
 | |
| 		|| (drv_data->tx == drv_data->tx_end))
 | |
| 		return 0;
 | |
| 
 | |
| 	write_SSDR(0, reg);
 | |
| 	drv_data->tx += n_bytes;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int null_reader(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 	u8 n_bytes = drv_data->n_bytes;
 | |
| 
 | |
| 	while ((read_SSSR(reg) & SSSR_RNE)
 | |
| 		&& (drv_data->rx < drv_data->rx_end)) {
 | |
| 		read_SSDR(reg);
 | |
| 		drv_data->rx += n_bytes;
 | |
| 	}
 | |
| 
 | |
| 	return drv_data->rx == drv_data->rx_end;
 | |
| }
 | |
| 
 | |
| static int u8_writer(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
 | |
| 		|| (drv_data->tx == drv_data->tx_end))
 | |
| 		return 0;
 | |
| 
 | |
| 	write_SSDR(*(u8 *)(drv_data->tx), reg);
 | |
| 	++drv_data->tx;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int u8_reader(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	while ((read_SSSR(reg) & SSSR_RNE)
 | |
| 		&& (drv_data->rx < drv_data->rx_end)) {
 | |
| 		*(u8 *)(drv_data->rx) = read_SSDR(reg);
 | |
| 		++drv_data->rx;
 | |
| 	}
 | |
| 
 | |
| 	return drv_data->rx == drv_data->rx_end;
 | |
| }
 | |
| 
 | |
| static int u16_writer(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
 | |
| 		|| (drv_data->tx == drv_data->tx_end))
 | |
| 		return 0;
 | |
| 
 | |
| 	write_SSDR(*(u16 *)(drv_data->tx), reg);
 | |
| 	drv_data->tx += 2;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int u16_reader(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	while ((read_SSSR(reg) & SSSR_RNE)
 | |
| 		&& (drv_data->rx < drv_data->rx_end)) {
 | |
| 		*(u16 *)(drv_data->rx) = read_SSDR(reg);
 | |
| 		drv_data->rx += 2;
 | |
| 	}
 | |
| 
 | |
| 	return drv_data->rx == drv_data->rx_end;
 | |
| }
 | |
| 
 | |
| static int u32_writer(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
 | |
| 		|| (drv_data->tx == drv_data->tx_end))
 | |
| 		return 0;
 | |
| 
 | |
| 	write_SSDR(*(u32 *)(drv_data->tx), reg);
 | |
| 	drv_data->tx += 4;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int u32_reader(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	while ((read_SSSR(reg) & SSSR_RNE)
 | |
| 		&& (drv_data->rx < drv_data->rx_end)) {
 | |
| 		*(u32 *)(drv_data->rx) = read_SSDR(reg);
 | |
| 		drv_data->rx += 4;
 | |
| 	}
 | |
| 
 | |
| 	return drv_data->rx == drv_data->rx_end;
 | |
| }
 | |
| 
 | |
| static void *next_transfer(struct driver_data *drv_data)
 | |
| {
 | |
| 	struct spi_message *msg = drv_data->cur_msg;
 | |
| 	struct spi_transfer *trans = drv_data->cur_transfer;
 | |
| 
 | |
| 	/* Move to next transfer */
 | |
| 	if (trans->transfer_list.next != &msg->transfers) {
 | |
| 		drv_data->cur_transfer =
 | |
| 			list_entry(trans->transfer_list.next,
 | |
| 					struct spi_transfer,
 | |
| 					transfer_list);
 | |
| 		return RUNNING_STATE;
 | |
| 	} else
 | |
| 		return DONE_STATE;
 | |
| }
 | |
| 
 | |
| static int map_dma_buffers(struct driver_data *drv_data)
 | |
| {
 | |
| 	struct spi_message *msg = drv_data->cur_msg;
 | |
| 	struct device *dev = &msg->spi->dev;
 | |
| 
 | |
| 	if (!drv_data->cur_chip->enable_dma)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (msg->is_dma_mapped)
 | |
| 		return  drv_data->rx_dma && drv_data->tx_dma;
 | |
| 
 | |
| 	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Modify setup if rx buffer is null */
 | |
| 	if (drv_data->rx == NULL) {
 | |
| 		*drv_data->null_dma_buf = 0;
 | |
| 		drv_data->rx = drv_data->null_dma_buf;
 | |
| 		drv_data->rx_map_len = 4;
 | |
| 	} else
 | |
| 		drv_data->rx_map_len = drv_data->len;
 | |
| 
 | |
| 
 | |
| 	/* Modify setup if tx buffer is null */
 | |
| 	if (drv_data->tx == NULL) {
 | |
| 		*drv_data->null_dma_buf = 0;
 | |
| 		drv_data->tx = drv_data->null_dma_buf;
 | |
| 		drv_data->tx_map_len = 4;
 | |
| 	} else
 | |
| 		drv_data->tx_map_len = drv_data->len;
 | |
| 
 | |
| 	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
 | |
| 	 * so we flush the cache *before* invalidating it, in case
 | |
| 	 * the tx and rx buffers overlap.
 | |
| 	 */
 | |
| 	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
 | |
| 					drv_data->tx_map_len, DMA_TO_DEVICE);
 | |
| 	if (dma_mapping_error(dev, drv_data->tx_dma))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Stream map the rx buffer */
 | |
| 	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
 | |
| 					drv_data->rx_map_len, DMA_FROM_DEVICE);
 | |
| 	if (dma_mapping_error(dev, drv_data->rx_dma)) {
 | |
| 		dma_unmap_single(dev, drv_data->tx_dma,
 | |
| 					drv_data->tx_map_len, DMA_TO_DEVICE);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void unmap_dma_buffers(struct driver_data *drv_data)
 | |
| {
 | |
| 	struct device *dev;
 | |
| 
 | |
| 	if (!drv_data->dma_mapped)
 | |
| 		return;
 | |
| 
 | |
| 	if (!drv_data->cur_msg->is_dma_mapped) {
 | |
| 		dev = &drv_data->cur_msg->spi->dev;
 | |
| 		dma_unmap_single(dev, drv_data->rx_dma,
 | |
| 					drv_data->rx_map_len, DMA_FROM_DEVICE);
 | |
| 		dma_unmap_single(dev, drv_data->tx_dma,
 | |
| 					drv_data->tx_map_len, DMA_TO_DEVICE);
 | |
| 	}
 | |
| 
 | |
| 	drv_data->dma_mapped = 0;
 | |
| }
 | |
| 
 | |
| /* caller already set message->status; dma and pio irqs are blocked */
 | |
| static void giveback(struct driver_data *drv_data)
 | |
| {
 | |
| 	struct spi_transfer* last_transfer;
 | |
| 	unsigned long flags;
 | |
| 	struct spi_message *msg;
 | |
| 
 | |
| 	spin_lock_irqsave(&drv_data->lock, flags);
 | |
| 	msg = drv_data->cur_msg;
 | |
| 	drv_data->cur_msg = NULL;
 | |
| 	drv_data->cur_transfer = NULL;
 | |
| 	queue_work(drv_data->workqueue, &drv_data->pump_messages);
 | |
| 	spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| 
 | |
| 	last_transfer = list_entry(msg->transfers.prev,
 | |
| 					struct spi_transfer,
 | |
| 					transfer_list);
 | |
| 
 | |
| 	/* Delay if requested before any change in chip select */
 | |
| 	if (last_transfer->delay_usecs)
 | |
| 		udelay(last_transfer->delay_usecs);
 | |
| 
 | |
| 	/* Drop chip select UNLESS cs_change is true or we are returning
 | |
| 	 * a message with an error, or next message is for another chip
 | |
| 	 */
 | |
| 	if (!last_transfer->cs_change)
 | |
| 		cs_deassert(drv_data);
 | |
| 	else {
 | |
| 		struct spi_message *next_msg;
 | |
| 
 | |
| 		/* Holding of cs was hinted, but we need to make sure
 | |
| 		 * the next message is for the same chip.  Don't waste
 | |
| 		 * time with the following tests unless this was hinted.
 | |
| 		 *
 | |
| 		 * We cannot postpone this until pump_messages, because
 | |
| 		 * after calling msg->complete (below) the driver that
 | |
| 		 * sent the current message could be unloaded, which
 | |
| 		 * could invalidate the cs_control() callback...
 | |
| 		 */
 | |
| 
 | |
| 		/* get a pointer to the next message, if any */
 | |
| 		spin_lock_irqsave(&drv_data->lock, flags);
 | |
| 		if (list_empty(&drv_data->queue))
 | |
| 			next_msg = NULL;
 | |
| 		else
 | |
| 			next_msg = list_entry(drv_data->queue.next,
 | |
| 					struct spi_message, queue);
 | |
| 		spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| 
 | |
| 		/* see if the next and current messages point
 | |
| 		 * to the same chip
 | |
| 		 */
 | |
| 		if (next_msg && next_msg->spi != msg->spi)
 | |
| 			next_msg = NULL;
 | |
| 		if (!next_msg || msg->state == ERROR_STATE)
 | |
| 			cs_deassert(drv_data);
 | |
| 	}
 | |
| 
 | |
| 	msg->state = NULL;
 | |
| 	if (msg->complete)
 | |
| 		msg->complete(msg->context);
 | |
| 
 | |
| 	drv_data->cur_chip = NULL;
 | |
| }
 | |
| 
 | |
| static int wait_ssp_rx_stall(void const __iomem *ioaddr)
 | |
| {
 | |
| 	unsigned long limit = loops_per_jiffy << 1;
 | |
| 
 | |
| 	while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	return limit;
 | |
| }
 | |
| 
 | |
| static int wait_dma_channel_stop(int channel)
 | |
| {
 | |
| 	unsigned long limit = loops_per_jiffy << 1;
 | |
| 
 | |
| 	while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	return limit;
 | |
| }
 | |
| 
 | |
| static void dma_error_stop(struct driver_data *drv_data, const char *msg)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	/* Stop and reset */
 | |
| 	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 | |
| 	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 | |
| 	write_SSSR(drv_data->clear_sr, reg);
 | |
| 	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 | |
| 	if (drv_data->ssp_type != PXA25x_SSP)
 | |
| 		write_SSTO(0, reg);
 | |
| 	flush(drv_data);
 | |
| 	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 | |
| 
 | |
| 	unmap_dma_buffers(drv_data);
 | |
| 
 | |
| 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 | |
| 
 | |
| 	drv_data->cur_msg->state = ERROR_STATE;
 | |
| 	tasklet_schedule(&drv_data->pump_transfers);
 | |
| }
 | |
| 
 | |
| static void dma_transfer_complete(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 	struct spi_message *msg = drv_data->cur_msg;
 | |
| 
 | |
| 	/* Clear and disable interrupts on SSP and DMA channels*/
 | |
| 	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
 | |
| 	write_SSSR(drv_data->clear_sr, reg);
 | |
| 	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 | |
| 	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 | |
| 
 | |
| 	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
 | |
| 		dev_err(&drv_data->pdev->dev,
 | |
| 			"dma_handler: dma rx channel stop failed\n");
 | |
| 
 | |
| 	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 | |
| 		dev_err(&drv_data->pdev->dev,
 | |
| 			"dma_transfer: ssp rx stall failed\n");
 | |
| 
 | |
| 	unmap_dma_buffers(drv_data);
 | |
| 
 | |
| 	/* update the buffer pointer for the amount completed in dma */
 | |
| 	drv_data->rx += drv_data->len -
 | |
| 			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
 | |
| 
 | |
| 	/* read trailing data from fifo, it does not matter how many
 | |
| 	 * bytes are in the fifo just read until buffer is full
 | |
| 	 * or fifo is empty, which ever occurs first */
 | |
| 	drv_data->read(drv_data);
 | |
| 
 | |
| 	/* return count of what was actually read */
 | |
| 	msg->actual_length += drv_data->len -
 | |
| 				(drv_data->rx_end - drv_data->rx);
 | |
| 
 | |
| 	/* Transfer delays and chip select release are
 | |
| 	 * handled in pump_transfers or giveback
 | |
| 	 */
 | |
| 
 | |
| 	/* Move to next transfer */
 | |
| 	msg->state = next_transfer(drv_data);
 | |
| 
 | |
| 	/* Schedule transfer tasklet */
 | |
| 	tasklet_schedule(&drv_data->pump_transfers);
 | |
| }
 | |
| 
 | |
| static void dma_handler(int channel, void *data)
 | |
| {
 | |
| 	struct driver_data *drv_data = data;
 | |
| 	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
 | |
| 
 | |
| 	if (irq_status & DCSR_BUSERR) {
 | |
| 
 | |
| 		if (channel == drv_data->tx_channel)
 | |
| 			dma_error_stop(drv_data,
 | |
| 					"dma_handler: "
 | |
| 					"bad bus address on tx channel");
 | |
| 		else
 | |
| 			dma_error_stop(drv_data,
 | |
| 					"dma_handler: "
 | |
| 					"bad bus address on rx channel");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
 | |
| 	if ((channel == drv_data->tx_channel)
 | |
| 		&& (irq_status & DCSR_ENDINTR)
 | |
| 		&& (drv_data->ssp_type == PXA25x_SSP)) {
 | |
| 
 | |
| 		/* Wait for rx to stall */
 | |
| 		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
 | |
| 			dev_err(&drv_data->pdev->dev,
 | |
| 				"dma_handler: ssp rx stall failed\n");
 | |
| 
 | |
| 		/* finish this transfer, start the next */
 | |
| 		dma_transfer_complete(drv_data);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static irqreturn_t dma_transfer(struct driver_data *drv_data)
 | |
| {
 | |
| 	u32 irq_status;
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	irq_status = read_SSSR(reg) & drv_data->mask_sr;
 | |
| 	if (irq_status & SSSR_ROR) {
 | |
| 		dma_error_stop(drv_data, "dma_transfer: fifo overrun");
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for false positive timeout */
 | |
| 	if ((irq_status & SSSR_TINT)
 | |
| 		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
 | |
| 		write_SSSR(SSSR_TINT, reg);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
 | |
| 
 | |
| 		/* Clear and disable timeout interrupt, do the rest in
 | |
| 		 * dma_transfer_complete */
 | |
| 		if (drv_data->ssp_type != PXA25x_SSP)
 | |
| 			write_SSTO(0, reg);
 | |
| 
 | |
| 		/* finish this transfer, start the next */
 | |
| 		dma_transfer_complete(drv_data);
 | |
| 
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	/* Opps problem detected */
 | |
| 	return IRQ_NONE;
 | |
| }
 | |
| 
 | |
| static void int_error_stop(struct driver_data *drv_data, const char* msg)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	/* Stop and reset SSP */
 | |
| 	write_SSSR(drv_data->clear_sr, reg);
 | |
| 	write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 | |
| 	if (drv_data->ssp_type != PXA25x_SSP)
 | |
| 		write_SSTO(0, reg);
 | |
| 	flush(drv_data);
 | |
| 	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 | |
| 
 | |
| 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 | |
| 
 | |
| 	drv_data->cur_msg->state = ERROR_STATE;
 | |
| 	tasklet_schedule(&drv_data->pump_transfers);
 | |
| }
 | |
| 
 | |
| static void int_transfer_complete(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	/* Stop SSP */
 | |
| 	write_SSSR(drv_data->clear_sr, reg);
 | |
| 	write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 | |
| 	if (drv_data->ssp_type != PXA25x_SSP)
 | |
| 		write_SSTO(0, reg);
 | |
| 
 | |
| 	/* Update total byte transfered return count actual bytes read */
 | |
| 	drv_data->cur_msg->actual_length += drv_data->len -
 | |
| 				(drv_data->rx_end - drv_data->rx);
 | |
| 
 | |
| 	/* Transfer delays and chip select release are
 | |
| 	 * handled in pump_transfers or giveback
 | |
| 	 */
 | |
| 
 | |
| 	/* Move to next transfer */
 | |
| 	drv_data->cur_msg->state = next_transfer(drv_data);
 | |
| 
 | |
| 	/* Schedule transfer tasklet */
 | |
| 	tasklet_schedule(&drv_data->pump_transfers);
 | |
| }
 | |
| 
 | |
| static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 | |
| {
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
 | |
| 			drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 | |
| 
 | |
| 	u32 irq_status = read_SSSR(reg) & irq_mask;
 | |
| 
 | |
| 	if (irq_status & SSSR_ROR) {
 | |
| 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	if (irq_status & SSSR_TINT) {
 | |
| 		write_SSSR(SSSR_TINT, reg);
 | |
| 		if (drv_data->read(drv_data)) {
 | |
| 			int_transfer_complete(drv_data);
 | |
| 			return IRQ_HANDLED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 | |
| 	do {
 | |
| 		if (drv_data->read(drv_data)) {
 | |
| 			int_transfer_complete(drv_data);
 | |
| 			return IRQ_HANDLED;
 | |
| 		}
 | |
| 	} while (drv_data->write(drv_data));
 | |
| 
 | |
| 	if (drv_data->read(drv_data)) {
 | |
| 		int_transfer_complete(drv_data);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	if (drv_data->tx == drv_data->tx_end) {
 | |
| 		write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
 | |
| 		/* PXA25x_SSP has no timeout, read trailing bytes */
 | |
| 		if (drv_data->ssp_type == PXA25x_SSP) {
 | |
| 			if (!wait_ssp_rx_stall(reg))
 | |
| 			{
 | |
| 				int_error_stop(drv_data, "interrupt_transfer: "
 | |
| 						"rx stall failed");
 | |
| 				return IRQ_HANDLED;
 | |
| 			}
 | |
| 			if (!drv_data->read(drv_data))
 | |
| 			{
 | |
| 				int_error_stop(drv_data,
 | |
| 						"interrupt_transfer: "
 | |
| 						"trailing byte read failed");
 | |
| 				return IRQ_HANDLED;
 | |
| 			}
 | |
| 			int_transfer_complete(drv_data);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We did something */
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t ssp_int(int irq, void *dev_id)
 | |
| {
 | |
| 	struct driver_data *drv_data = dev_id;
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 
 | |
| 	if (!drv_data->cur_msg) {
 | |
| 
 | |
| 		write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
 | |
| 		write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
 | |
| 		if (drv_data->ssp_type != PXA25x_SSP)
 | |
| 			write_SSTO(0, reg);
 | |
| 		write_SSSR(drv_data->clear_sr, reg);
 | |
| 
 | |
| 		dev_err(&drv_data->pdev->dev, "bad message state "
 | |
| 			"in interrupt handler\n");
 | |
| 
 | |
| 		/* Never fail */
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	return drv_data->transfer_handler(drv_data);
 | |
| }
 | |
| 
 | |
| static int set_dma_burst_and_threshold(struct chip_data *chip,
 | |
| 				struct spi_device *spi,
 | |
| 				u8 bits_per_word, u32 *burst_code,
 | |
| 				u32 *threshold)
 | |
| {
 | |
| 	struct pxa2xx_spi_chip *chip_info =
 | |
| 			(struct pxa2xx_spi_chip *)spi->controller_data;
 | |
| 	int bytes_per_word;
 | |
| 	int burst_bytes;
 | |
| 	int thresh_words;
 | |
| 	int req_burst_size;
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	/* Set the threshold (in registers) to equal the same amount of data
 | |
| 	 * as represented by burst size (in bytes).  The computation below
 | |
| 	 * is (burst_size rounded up to nearest 8 byte, word or long word)
 | |
| 	 * divided by (bytes/register); the tx threshold is the inverse of
 | |
| 	 * the rx, so that there will always be enough data in the rx fifo
 | |
| 	 * to satisfy a burst, and there will always be enough space in the
 | |
| 	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
 | |
| 	 * there is not enough space), there must always remain enough empty
 | |
| 	 * space in the rx fifo for any data loaded to the tx fifo.
 | |
| 	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
 | |
| 	 * will be 8, or half the fifo;
 | |
| 	 * The threshold can only be set to 2, 4 or 8, but not 16, because
 | |
| 	 * to burst 16 to the tx fifo, the fifo would have to be empty;
 | |
| 	 * however, the minimum fifo trigger level is 1, and the tx will
 | |
| 	 * request service when the fifo is at this level, with only 15 spaces.
 | |
| 	 */
 | |
| 
 | |
| 	/* find bytes/word */
 | |
| 	if (bits_per_word <= 8)
 | |
| 		bytes_per_word = 1;
 | |
| 	else if (bits_per_word <= 16)
 | |
| 		bytes_per_word = 2;
 | |
| 	else
 | |
| 		bytes_per_word = 4;
 | |
| 
 | |
| 	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
 | |
| 	if (chip_info)
 | |
| 		req_burst_size = chip_info->dma_burst_size;
 | |
| 	else {
 | |
| 		switch (chip->dma_burst_size) {
 | |
| 		default:
 | |
| 			/* if the default burst size is not set,
 | |
| 			 * do it now */
 | |
| 			chip->dma_burst_size = DCMD_BURST8;
 | |
| 		case DCMD_BURST8:
 | |
| 			req_burst_size = 8;
 | |
| 			break;
 | |
| 		case DCMD_BURST16:
 | |
| 			req_burst_size = 16;
 | |
| 			break;
 | |
| 		case DCMD_BURST32:
 | |
| 			req_burst_size = 32;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (req_burst_size <= 8) {
 | |
| 		*burst_code = DCMD_BURST8;
 | |
| 		burst_bytes = 8;
 | |
| 	} else if (req_burst_size <= 16) {
 | |
| 		if (bytes_per_word == 1) {
 | |
| 			/* don't burst more than 1/2 the fifo */
 | |
| 			*burst_code = DCMD_BURST8;
 | |
| 			burst_bytes = 8;
 | |
| 			retval = 1;
 | |
| 		} else {
 | |
| 			*burst_code = DCMD_BURST16;
 | |
| 			burst_bytes = 16;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (bytes_per_word == 1) {
 | |
| 			/* don't burst more than 1/2 the fifo */
 | |
| 			*burst_code = DCMD_BURST8;
 | |
| 			burst_bytes = 8;
 | |
| 			retval = 1;
 | |
| 		} else if (bytes_per_word == 2) {
 | |
| 			/* don't burst more than 1/2 the fifo */
 | |
| 			*burst_code = DCMD_BURST16;
 | |
| 			burst_bytes = 16;
 | |
| 			retval = 1;
 | |
| 		} else {
 | |
| 			*burst_code = DCMD_BURST32;
 | |
| 			burst_bytes = 32;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	thresh_words = burst_bytes / bytes_per_word;
 | |
| 
 | |
| 	/* thresh_words will be between 2 and 8 */
 | |
| 	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
 | |
| 			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
 | |
| {
 | |
| 	unsigned long ssp_clk = clk_get_rate(ssp->clk);
 | |
| 
 | |
| 	if (ssp->type == PXA25x_SSP)
 | |
| 		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
 | |
| 	else
 | |
| 		return ((ssp_clk / rate - 1) & 0xfff) << 8;
 | |
| }
 | |
| 
 | |
| static void pump_transfers(unsigned long data)
 | |
| {
 | |
| 	struct driver_data *drv_data = (struct driver_data *)data;
 | |
| 	struct spi_message *message = NULL;
 | |
| 	struct spi_transfer *transfer = NULL;
 | |
| 	struct spi_transfer *previous = NULL;
 | |
| 	struct chip_data *chip = NULL;
 | |
| 	struct ssp_device *ssp = drv_data->ssp;
 | |
| 	void __iomem *reg = drv_data->ioaddr;
 | |
| 	u32 clk_div = 0;
 | |
| 	u8 bits = 0;
 | |
| 	u32 speed = 0;
 | |
| 	u32 cr0;
 | |
| 	u32 cr1;
 | |
| 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
 | |
| 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
 | |
| 
 | |
| 	/* Get current state information */
 | |
| 	message = drv_data->cur_msg;
 | |
| 	transfer = drv_data->cur_transfer;
 | |
| 	chip = drv_data->cur_chip;
 | |
| 
 | |
| 	/* Handle for abort */
 | |
| 	if (message->state == ERROR_STATE) {
 | |
| 		message->status = -EIO;
 | |
| 		giveback(drv_data);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle end of message */
 | |
| 	if (message->state == DONE_STATE) {
 | |
| 		message->status = 0;
 | |
| 		giveback(drv_data);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Delay if requested at end of transfer before CS change */
 | |
| 	if (message->state == RUNNING_STATE) {
 | |
| 		previous = list_entry(transfer->transfer_list.prev,
 | |
| 					struct spi_transfer,
 | |
| 					transfer_list);
 | |
| 		if (previous->delay_usecs)
 | |
| 			udelay(previous->delay_usecs);
 | |
| 
 | |
| 		/* Drop chip select only if cs_change is requested */
 | |
| 		if (previous->cs_change)
 | |
| 			cs_deassert(drv_data);
 | |
| 	}
 | |
| 
 | |
| 	/* Check for transfers that need multiple DMA segments */
 | |
| 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 | |
| 
 | |
| 		/* reject already-mapped transfers; PIO won't always work */
 | |
| 		if (message->is_dma_mapped
 | |
| 				|| transfer->rx_dma || transfer->tx_dma) {
 | |
| 			dev_err(&drv_data->pdev->dev,
 | |
| 				"pump_transfers: mapped transfer length "
 | |
| 				"of %u is greater than %d\n",
 | |
| 				transfer->len, MAX_DMA_LEN);
 | |
| 			message->status = -EINVAL;
 | |
| 			giveback(drv_data);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* warn ... we force this to PIO mode */
 | |
| 		if (printk_ratelimit())
 | |
| 			dev_warn(&message->spi->dev, "pump_transfers: "
 | |
| 				"DMA disabled for transfer length %ld "
 | |
| 				"greater than %d\n",
 | |
| 				(long)drv_data->len, MAX_DMA_LEN);
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the transfer state based on the type of transfer */
 | |
| 	if (flush(drv_data) == 0) {
 | |
| 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
 | |
| 		message->status = -EIO;
 | |
| 		giveback(drv_data);
 | |
| 		return;
 | |
| 	}
 | |
| 	drv_data->n_bytes = chip->n_bytes;
 | |
| 	drv_data->dma_width = chip->dma_width;
 | |
| 	drv_data->tx = (void *)transfer->tx_buf;
 | |
| 	drv_data->tx_end = drv_data->tx + transfer->len;
 | |
| 	drv_data->rx = transfer->rx_buf;
 | |
| 	drv_data->rx_end = drv_data->rx + transfer->len;
 | |
| 	drv_data->rx_dma = transfer->rx_dma;
 | |
| 	drv_data->tx_dma = transfer->tx_dma;
 | |
| 	drv_data->len = transfer->len & DCMD_LENGTH;
 | |
| 	drv_data->write = drv_data->tx ? chip->write : null_writer;
 | |
| 	drv_data->read = drv_data->rx ? chip->read : null_reader;
 | |
| 
 | |
| 	/* Change speed and bit per word on a per transfer */
 | |
| 	cr0 = chip->cr0;
 | |
| 	if (transfer->speed_hz || transfer->bits_per_word) {
 | |
| 
 | |
| 		bits = chip->bits_per_word;
 | |
| 		speed = chip->speed_hz;
 | |
| 
 | |
| 		if (transfer->speed_hz)
 | |
| 			speed = transfer->speed_hz;
 | |
| 
 | |
| 		if (transfer->bits_per_word)
 | |
| 			bits = transfer->bits_per_word;
 | |
| 
 | |
| 		clk_div = ssp_get_clk_div(ssp, speed);
 | |
| 
 | |
| 		if (bits <= 8) {
 | |
| 			drv_data->n_bytes = 1;
 | |
| 			drv_data->dma_width = DCMD_WIDTH1;
 | |
| 			drv_data->read = drv_data->read != null_reader ?
 | |
| 						u8_reader : null_reader;
 | |
| 			drv_data->write = drv_data->write != null_writer ?
 | |
| 						u8_writer : null_writer;
 | |
| 		} else if (bits <= 16) {
 | |
| 			drv_data->n_bytes = 2;
 | |
| 			drv_data->dma_width = DCMD_WIDTH2;
 | |
| 			drv_data->read = drv_data->read != null_reader ?
 | |
| 						u16_reader : null_reader;
 | |
| 			drv_data->write = drv_data->write != null_writer ?
 | |
| 						u16_writer : null_writer;
 | |
| 		} else if (bits <= 32) {
 | |
| 			drv_data->n_bytes = 4;
 | |
| 			drv_data->dma_width = DCMD_WIDTH4;
 | |
| 			drv_data->read = drv_data->read != null_reader ?
 | |
| 						u32_reader : null_reader;
 | |
| 			drv_data->write = drv_data->write != null_writer ?
 | |
| 						u32_writer : null_writer;
 | |
| 		}
 | |
| 		/* if bits/word is changed in dma mode, then must check the
 | |
| 		 * thresholds and burst also */
 | |
| 		if (chip->enable_dma) {
 | |
| 			if (set_dma_burst_and_threshold(chip, message->spi,
 | |
| 							bits, &dma_burst,
 | |
| 							&dma_thresh))
 | |
| 				if (printk_ratelimit())
 | |
| 					dev_warn(&message->spi->dev,
 | |
| 						"pump_transfers: "
 | |
| 						"DMA burst size reduced to "
 | |
| 						"match bits_per_word\n");
 | |
| 		}
 | |
| 
 | |
| 		cr0 = clk_div
 | |
| 			| SSCR0_Motorola
 | |
| 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 | |
| 			| SSCR0_SSE
 | |
| 			| (bits > 16 ? SSCR0_EDSS : 0);
 | |
| 	}
 | |
| 
 | |
| 	message->state = RUNNING_STATE;
 | |
| 
 | |
| 	/* Try to map dma buffer and do a dma transfer if successful, but
 | |
| 	 * only if the length is non-zero and less than MAX_DMA_LEN.
 | |
| 	 *
 | |
| 	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
 | |
| 	 * of PIO instead.  Care is needed above because the transfer may
 | |
| 	 * have have been passed with buffers that are already dma mapped.
 | |
| 	 * A zero-length transfer in PIO mode will not try to write/read
 | |
| 	 * to/from the buffers
 | |
| 	 *
 | |
| 	 * REVISIT large transfers are exactly where we most want to be
 | |
| 	 * using DMA.  If this happens much, split those transfers into
 | |
| 	 * multiple DMA segments rather than forcing PIO.
 | |
| 	 */
 | |
| 	drv_data->dma_mapped = 0;
 | |
| 	if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
 | |
| 		drv_data->dma_mapped = map_dma_buffers(drv_data);
 | |
| 	if (drv_data->dma_mapped) {
 | |
| 
 | |
| 		/* Ensure we have the correct interrupt handler */
 | |
| 		drv_data->transfer_handler = dma_transfer;
 | |
| 
 | |
| 		/* Setup rx DMA Channel */
 | |
| 		DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
 | |
| 		DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
 | |
| 		DTADR(drv_data->rx_channel) = drv_data->rx_dma;
 | |
| 		if (drv_data->rx == drv_data->null_dma_buf)
 | |
| 			/* No target address increment */
 | |
| 			DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
 | |
| 							| drv_data->dma_width
 | |
| 							| dma_burst
 | |
| 							| drv_data->len;
 | |
| 		else
 | |
| 			DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
 | |
| 							| DCMD_FLOWSRC
 | |
| 							| drv_data->dma_width
 | |
| 							| dma_burst
 | |
| 							| drv_data->len;
 | |
| 
 | |
| 		/* Setup tx DMA Channel */
 | |
| 		DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
 | |
| 		DSADR(drv_data->tx_channel) = drv_data->tx_dma;
 | |
| 		DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
 | |
| 		if (drv_data->tx == drv_data->null_dma_buf)
 | |
| 			/* No source address increment */
 | |
| 			DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
 | |
| 							| drv_data->dma_width
 | |
| 							| dma_burst
 | |
| 							| drv_data->len;
 | |
| 		else
 | |
| 			DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
 | |
| 							| DCMD_FLOWTRG
 | |
| 							| drv_data->dma_width
 | |
| 							| dma_burst
 | |
| 							| drv_data->len;
 | |
| 
 | |
| 		/* Enable dma end irqs on SSP to detect end of transfer */
 | |
| 		if (drv_data->ssp_type == PXA25x_SSP)
 | |
| 			DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
 | |
| 
 | |
| 		/* Clear status and start DMA engine */
 | |
| 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
 | |
| 		write_SSSR(drv_data->clear_sr, reg);
 | |
| 		DCSR(drv_data->rx_channel) |= DCSR_RUN;
 | |
| 		DCSR(drv_data->tx_channel) |= DCSR_RUN;
 | |
| 	} else {
 | |
| 		/* Ensure we have the correct interrupt handler	*/
 | |
| 		drv_data->transfer_handler = interrupt_transfer;
 | |
| 
 | |
| 		/* Clear status  */
 | |
| 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
 | |
| 		write_SSSR(drv_data->clear_sr, reg);
 | |
| 	}
 | |
| 
 | |
| 	/* see if we need to reload the config registers */
 | |
| 	if ((read_SSCR0(reg) != cr0)
 | |
| 		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
 | |
| 			(cr1 & SSCR1_CHANGE_MASK)) {
 | |
| 
 | |
| 		/* stop the SSP, and update the other bits */
 | |
| 		write_SSCR0(cr0 & ~SSCR0_SSE, reg);
 | |
| 		if (drv_data->ssp_type != PXA25x_SSP)
 | |
| 			write_SSTO(chip->timeout, reg);
 | |
| 		/* first set CR1 without interrupt and service enables */
 | |
| 		write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
 | |
| 		/* restart the SSP */
 | |
| 		write_SSCR0(cr0, reg);
 | |
| 
 | |
| 	} else {
 | |
| 		if (drv_data->ssp_type != PXA25x_SSP)
 | |
| 			write_SSTO(chip->timeout, reg);
 | |
| 	}
 | |
| 
 | |
| 	cs_assert(drv_data);
 | |
| 
 | |
| 	/* after chip select, release the data by enabling service
 | |
| 	 * requests and interrupts, without changing any mode bits */
 | |
| 	write_SSCR1(cr1, reg);
 | |
| }
 | |
| 
 | |
| static void pump_messages(struct work_struct *work)
 | |
| {
 | |
| 	struct driver_data *drv_data =
 | |
| 		container_of(work, struct driver_data, pump_messages);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Lock queue and check for queue work */
 | |
| 	spin_lock_irqsave(&drv_data->lock, flags);
 | |
| 	if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
 | |
| 		drv_data->busy = 0;
 | |
| 		spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure we are not already running a message */
 | |
| 	if (drv_data->cur_msg) {
 | |
| 		spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Extract head of queue */
 | |
| 	drv_data->cur_msg = list_entry(drv_data->queue.next,
 | |
| 					struct spi_message, queue);
 | |
| 	list_del_init(&drv_data->cur_msg->queue);
 | |
| 
 | |
| 	/* Initial message state*/
 | |
| 	drv_data->cur_msg->state = START_STATE;
 | |
| 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
 | |
| 						struct spi_transfer,
 | |
| 						transfer_list);
 | |
| 
 | |
| 	/* prepare to setup the SSP, in pump_transfers, using the per
 | |
| 	 * chip configuration */
 | |
| 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
 | |
| 
 | |
| 	/* Mark as busy and launch transfers */
 | |
| 	tasklet_schedule(&drv_data->pump_transfers);
 | |
| 
 | |
| 	drv_data->busy = 1;
 | |
| 	spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| }
 | |
| 
 | |
| static int transfer(struct spi_device *spi, struct spi_message *msg)
 | |
| {
 | |
| 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&drv_data->lock, flags);
 | |
| 
 | |
| 	if (drv_data->run == QUEUE_STOPPED) {
 | |
| 		spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| 		return -ESHUTDOWN;
 | |
| 	}
 | |
| 
 | |
| 	msg->actual_length = 0;
 | |
| 	msg->status = -EINPROGRESS;
 | |
| 	msg->state = START_STATE;
 | |
| 
 | |
| 	list_add_tail(&msg->queue, &drv_data->queue);
 | |
| 
 | |
| 	if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
 | |
| 		queue_work(drv_data->workqueue, &drv_data->pump_messages);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* the spi->mode bits understood by this driver: */
 | |
| #define MODEBITS (SPI_CPOL | SPI_CPHA)
 | |
| 
 | |
| static int setup_cs(struct spi_device *spi, struct chip_data *chip,
 | |
| 		    struct pxa2xx_spi_chip *chip_info)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (chip == NULL || chip_info == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* NOTE: setup() can be called multiple times, possibly with
 | |
| 	 * different chip_info, release previously requested GPIO
 | |
| 	 */
 | |
| 	if (gpio_is_valid(chip->gpio_cs))
 | |
| 		gpio_free(chip->gpio_cs);
 | |
| 
 | |
| 	/* If (*cs_control) is provided, ignore GPIO chip select */
 | |
| 	if (chip_info->cs_control) {
 | |
| 		chip->cs_control = chip_info->cs_control;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (gpio_is_valid(chip_info->gpio_cs)) {
 | |
| 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
 | |
| 		if (err) {
 | |
| 			dev_err(&spi->dev, "failed to request chip select "
 | |
| 					"GPIO%d\n", chip_info->gpio_cs);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		chip->gpio_cs = chip_info->gpio_cs;
 | |
| 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
 | |
| 
 | |
| 		err = gpio_direction_output(chip->gpio_cs,
 | |
| 					!chip->gpio_cs_inverted);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int setup(struct spi_device *spi)
 | |
| {
 | |
| 	struct pxa2xx_spi_chip *chip_info = NULL;
 | |
| 	struct chip_data *chip;
 | |
| 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
 | |
| 	struct ssp_device *ssp = drv_data->ssp;
 | |
| 	unsigned int clk_div;
 | |
| 	uint tx_thres = TX_THRESH_DFLT;
 | |
| 	uint rx_thres = RX_THRESH_DFLT;
 | |
| 
 | |
| 	if (!spi->bits_per_word)
 | |
| 		spi->bits_per_word = 8;
 | |
| 
 | |
| 	if (drv_data->ssp_type != PXA25x_SSP
 | |
| 		&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
 | |
| 		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
 | |
| 				"b/w not 4-32 for type non-PXA25x_SSP\n",
 | |
| 				drv_data->ssp_type, spi->bits_per_word);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	else if (drv_data->ssp_type == PXA25x_SSP
 | |
| 			&& (spi->bits_per_word < 4
 | |
| 				|| spi->bits_per_word > 16)) {
 | |
| 		dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
 | |
| 				"b/w not 4-16 for type PXA25x_SSP\n",
 | |
| 				drv_data->ssp_type, spi->bits_per_word);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (spi->mode & ~MODEBITS) {
 | |
| 		dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
 | |
| 			spi->mode & ~MODEBITS);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Only alloc on first setup */
 | |
| 	chip = spi_get_ctldata(spi);
 | |
| 	if (!chip) {
 | |
| 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
 | |
| 		if (!chip) {
 | |
| 			dev_err(&spi->dev,
 | |
| 				"failed setup: can't allocate chip data\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		chip->gpio_cs = -1;
 | |
| 		chip->enable_dma = 0;
 | |
| 		chip->timeout = TIMOUT_DFLT;
 | |
| 		chip->dma_burst_size = drv_data->master_info->enable_dma ?
 | |
| 					DCMD_BURST8 : 0;
 | |
| 	}
 | |
| 
 | |
| 	/* protocol drivers may change the chip settings, so...
 | |
| 	 * if chip_info exists, use it */
 | |
| 	chip_info = spi->controller_data;
 | |
| 
 | |
| 	/* chip_info isn't always needed */
 | |
| 	chip->cr1 = 0;
 | |
| 	if (chip_info) {
 | |
| 		if (chip_info->timeout)
 | |
| 			chip->timeout = chip_info->timeout;
 | |
| 		if (chip_info->tx_threshold)
 | |
| 			tx_thres = chip_info->tx_threshold;
 | |
| 		if (chip_info->rx_threshold)
 | |
| 			rx_thres = chip_info->rx_threshold;
 | |
| 		chip->enable_dma = drv_data->master_info->enable_dma;
 | |
| 		chip->dma_threshold = 0;
 | |
| 		if (chip_info->enable_loopback)
 | |
| 			chip->cr1 = SSCR1_LBM;
 | |
| 	}
 | |
| 
 | |
| 	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
 | |
| 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
 | |
| 
 | |
| 	/* set dma burst and threshold outside of chip_info path so that if
 | |
| 	 * chip_info goes away after setting chip->enable_dma, the
 | |
| 	 * burst and threshold can still respond to changes in bits_per_word */
 | |
| 	if (chip->enable_dma) {
 | |
| 		/* set up legal burst and threshold for dma */
 | |
| 		if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
 | |
| 						&chip->dma_burst_size,
 | |
| 						&chip->dma_threshold)) {
 | |
| 			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
 | |
| 					"to match bits_per_word\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
 | |
| 	chip->speed_hz = spi->max_speed_hz;
 | |
| 
 | |
| 	chip->cr0 = clk_div
 | |
| 			| SSCR0_Motorola
 | |
| 			| SSCR0_DataSize(spi->bits_per_word > 16 ?
 | |
| 				spi->bits_per_word - 16 : spi->bits_per_word)
 | |
| 			| SSCR0_SSE
 | |
| 			| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
 | |
| 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
 | |
| 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
 | |
| 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
 | |
| 
 | |
| 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
 | |
| 	if (drv_data->ssp_type != PXA25x_SSP)
 | |
| 		dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
 | |
| 				spi->bits_per_word,
 | |
| 				clk_get_rate(ssp->clk)
 | |
| 					/ (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
 | |
| 				spi->mode & 0x3,
 | |
| 				chip->enable_dma ? "DMA" : "PIO");
 | |
| 	else
 | |
| 		dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
 | |
| 				spi->bits_per_word,
 | |
| 				clk_get_rate(ssp->clk) / 2
 | |
| 					/ (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
 | |
| 				spi->mode & 0x3,
 | |
| 				chip->enable_dma ? "DMA" : "PIO");
 | |
| 
 | |
| 	if (spi->bits_per_word <= 8) {
 | |
| 		chip->n_bytes = 1;
 | |
| 		chip->dma_width = DCMD_WIDTH1;
 | |
| 		chip->read = u8_reader;
 | |
| 		chip->write = u8_writer;
 | |
| 	} else if (spi->bits_per_word <= 16) {
 | |
| 		chip->n_bytes = 2;
 | |
| 		chip->dma_width = DCMD_WIDTH2;
 | |
| 		chip->read = u16_reader;
 | |
| 		chip->write = u16_writer;
 | |
| 	} else if (spi->bits_per_word <= 32) {
 | |
| 		chip->cr0 |= SSCR0_EDSS;
 | |
| 		chip->n_bytes = 4;
 | |
| 		chip->dma_width = DCMD_WIDTH4;
 | |
| 		chip->read = u32_reader;
 | |
| 		chip->write = u32_writer;
 | |
| 	} else {
 | |
| 		dev_err(&spi->dev, "invalid wordsize\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	chip->bits_per_word = spi->bits_per_word;
 | |
| 
 | |
| 	spi_set_ctldata(spi, chip);
 | |
| 
 | |
| 	return setup_cs(spi, chip, chip_info);
 | |
| }
 | |
| 
 | |
| static void cleanup(struct spi_device *spi)
 | |
| {
 | |
| 	struct chip_data *chip = spi_get_ctldata(spi);
 | |
| 
 | |
| 	if (gpio_is_valid(chip->gpio_cs))
 | |
| 		gpio_free(chip->gpio_cs);
 | |
| 
 | |
| 	kfree(chip);
 | |
| }
 | |
| 
 | |
| static int __init init_queue(struct driver_data *drv_data)
 | |
| {
 | |
| 	INIT_LIST_HEAD(&drv_data->queue);
 | |
| 	spin_lock_init(&drv_data->lock);
 | |
| 
 | |
| 	drv_data->run = QUEUE_STOPPED;
 | |
| 	drv_data->busy = 0;
 | |
| 
 | |
| 	tasklet_init(&drv_data->pump_transfers,
 | |
| 			pump_transfers,	(unsigned long)drv_data);
 | |
| 
 | |
| 	INIT_WORK(&drv_data->pump_messages, pump_messages);
 | |
| 	drv_data->workqueue = create_singlethread_workqueue(
 | |
| 				dev_name(drv_data->master->dev.parent));
 | |
| 	if (drv_data->workqueue == NULL)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int start_queue(struct driver_data *drv_data)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&drv_data->lock, flags);
 | |
| 
 | |
| 	if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
 | |
| 		spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	drv_data->run = QUEUE_RUNNING;
 | |
| 	drv_data->cur_msg = NULL;
 | |
| 	drv_data->cur_transfer = NULL;
 | |
| 	drv_data->cur_chip = NULL;
 | |
| 	spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| 
 | |
| 	queue_work(drv_data->workqueue, &drv_data->pump_messages);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stop_queue(struct driver_data *drv_data)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned limit = 500;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&drv_data->lock, flags);
 | |
| 
 | |
| 	/* This is a bit lame, but is optimized for the common execution path.
 | |
| 	 * A wait_queue on the drv_data->busy could be used, but then the common
 | |
| 	 * execution path (pump_messages) would be required to call wake_up or
 | |
| 	 * friends on every SPI message. Do this instead */
 | |
| 	drv_data->run = QUEUE_STOPPED;
 | |
| 	while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
 | |
| 		spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| 		msleep(10);
 | |
| 		spin_lock_irqsave(&drv_data->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&drv_data->queue) || drv_data->busy)
 | |
| 		status = -EBUSY;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&drv_data->lock, flags);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int destroy_queue(struct driver_data *drv_data)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	status = stop_queue(drv_data);
 | |
| 	/* we are unloading the module or failing to load (only two calls
 | |
| 	 * to this routine), and neither call can handle a return value.
 | |
| 	 * However, destroy_workqueue calls flush_workqueue, and that will
 | |
| 	 * block until all work is done.  If the reason that stop_queue
 | |
| 	 * timed out is that the work will never finish, then it does no
 | |
| 	 * good to call destroy_workqueue, so return anyway. */
 | |
| 	if (status != 0)
 | |
| 		return status;
 | |
| 
 | |
| 	destroy_workqueue(drv_data->workqueue);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init pxa2xx_spi_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct pxa2xx_spi_master *platform_info;
 | |
| 	struct spi_master *master;
 | |
| 	struct driver_data *drv_data;
 | |
| 	struct ssp_device *ssp;
 | |
| 	int status;
 | |
| 
 | |
| 	platform_info = dev->platform_data;
 | |
| 
 | |
| 	ssp = ssp_request(pdev->id, pdev->name);
 | |
| 	if (ssp == NULL) {
 | |
| 		dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate master with space for drv_data and null dma buffer */
 | |
| 	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
 | |
| 	if (!master) {
 | |
| 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
 | |
| 		ssp_free(ssp);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	drv_data = spi_master_get_devdata(master);
 | |
| 	drv_data->master = master;
 | |
| 	drv_data->master_info = platform_info;
 | |
| 	drv_data->pdev = pdev;
 | |
| 	drv_data->ssp = ssp;
 | |
| 
 | |
| 	master->bus_num = pdev->id;
 | |
| 	master->num_chipselect = platform_info->num_chipselect;
 | |
| 	master->dma_alignment = DMA_ALIGNMENT;
 | |
| 	master->cleanup = cleanup;
 | |
| 	master->setup = setup;
 | |
| 	master->transfer = transfer;
 | |
| 
 | |
| 	drv_data->ssp_type = ssp->type;
 | |
| 	drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
 | |
| 						sizeof(struct driver_data)), 8);
 | |
| 
 | |
| 	drv_data->ioaddr = ssp->mmio_base;
 | |
| 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
 | |
| 	if (ssp->type == PXA25x_SSP) {
 | |
| 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
 | |
| 		drv_data->dma_cr1 = 0;
 | |
| 		drv_data->clear_sr = SSSR_ROR;
 | |
| 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
 | |
| 	} else {
 | |
| 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
 | |
| 		drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
 | |
| 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
 | |
| 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
 | |
| 	}
 | |
| 
 | |
| 	status = request_irq(ssp->irq, ssp_int, 0, dev_name(dev), drv_data);
 | |
| 	if (status < 0) {
 | |
| 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
 | |
| 		goto out_error_master_alloc;
 | |
| 	}
 | |
| 
 | |
| 	/* Setup DMA if requested */
 | |
| 	drv_data->tx_channel = -1;
 | |
| 	drv_data->rx_channel = -1;
 | |
| 	if (platform_info->enable_dma) {
 | |
| 
 | |
| 		/* Get two DMA channels	(rx and tx) */
 | |
| 		drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
 | |
| 							DMA_PRIO_HIGH,
 | |
| 							dma_handler,
 | |
| 							drv_data);
 | |
| 		if (drv_data->rx_channel < 0) {
 | |
| 			dev_err(dev, "problem (%d) requesting rx channel\n",
 | |
| 				drv_data->rx_channel);
 | |
| 			status = -ENODEV;
 | |
| 			goto out_error_irq_alloc;
 | |
| 		}
 | |
| 		drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
 | |
| 							DMA_PRIO_MEDIUM,
 | |
| 							dma_handler,
 | |
| 							drv_data);
 | |
| 		if (drv_data->tx_channel < 0) {
 | |
| 			dev_err(dev, "problem (%d) requesting tx channel\n",
 | |
| 				drv_data->tx_channel);
 | |
| 			status = -ENODEV;
 | |
| 			goto out_error_dma_alloc;
 | |
| 		}
 | |
| 
 | |
| 		DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
 | |
| 		DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable SOC clock */
 | |
| 	clk_enable(ssp->clk);
 | |
| 
 | |
| 	/* Load default SSP configuration */
 | |
| 	write_SSCR0(0, drv_data->ioaddr);
 | |
| 	write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
 | |
| 				SSCR1_TxTresh(TX_THRESH_DFLT),
 | |
| 				drv_data->ioaddr);
 | |
| 	write_SSCR0(SSCR0_SerClkDiv(2)
 | |
| 			| SSCR0_Motorola
 | |
| 			| SSCR0_DataSize(8),
 | |
| 			drv_data->ioaddr);
 | |
| 	if (drv_data->ssp_type != PXA25x_SSP)
 | |
| 		write_SSTO(0, drv_data->ioaddr);
 | |
| 	write_SSPSP(0, drv_data->ioaddr);
 | |
| 
 | |
| 	/* Initial and start queue */
 | |
| 	status = init_queue(drv_data);
 | |
| 	if (status != 0) {
 | |
| 		dev_err(&pdev->dev, "problem initializing queue\n");
 | |
| 		goto out_error_clock_enabled;
 | |
| 	}
 | |
| 	status = start_queue(drv_data);
 | |
| 	if (status != 0) {
 | |
| 		dev_err(&pdev->dev, "problem starting queue\n");
 | |
| 		goto out_error_clock_enabled;
 | |
| 	}
 | |
| 
 | |
| 	/* Register with the SPI framework */
 | |
| 	platform_set_drvdata(pdev, drv_data);
 | |
| 	status = spi_register_master(master);
 | |
| 	if (status != 0) {
 | |
| 		dev_err(&pdev->dev, "problem registering spi master\n");
 | |
| 		goto out_error_queue_alloc;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| 
 | |
| out_error_queue_alloc:
 | |
| 	destroy_queue(drv_data);
 | |
| 
 | |
| out_error_clock_enabled:
 | |
| 	clk_disable(ssp->clk);
 | |
| 
 | |
| out_error_dma_alloc:
 | |
| 	if (drv_data->tx_channel != -1)
 | |
| 		pxa_free_dma(drv_data->tx_channel);
 | |
| 	if (drv_data->rx_channel != -1)
 | |
| 		pxa_free_dma(drv_data->rx_channel);
 | |
| 
 | |
| out_error_irq_alloc:
 | |
| 	free_irq(ssp->irq, drv_data);
 | |
| 
 | |
| out_error_master_alloc:
 | |
| 	spi_master_put(master);
 | |
| 	ssp_free(ssp);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int pxa2xx_spi_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct driver_data *drv_data = platform_get_drvdata(pdev);
 | |
| 	struct ssp_device *ssp;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	if (!drv_data)
 | |
| 		return 0;
 | |
| 	ssp = drv_data->ssp;
 | |
| 
 | |
| 	/* Remove the queue */
 | |
| 	status = destroy_queue(drv_data);
 | |
| 	if (status != 0)
 | |
| 		/* the kernel does not check the return status of this
 | |
| 		 * this routine (mod->exit, within the kernel).  Therefore
 | |
| 		 * nothing is gained by returning from here, the module is
 | |
| 		 * going away regardless, and we should not leave any more
 | |
| 		 * resources allocated than necessary.  We cannot free the
 | |
| 		 * message memory in drv_data->queue, but we can release the
 | |
| 		 * resources below.  I think the kernel should honor -EBUSY
 | |
| 		 * returns but... */
 | |
| 		dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
 | |
| 			"complete, message memory not freed\n");
 | |
| 
 | |
| 	/* Disable the SSP at the peripheral and SOC level */
 | |
| 	write_SSCR0(0, drv_data->ioaddr);
 | |
| 	clk_disable(ssp->clk);
 | |
| 
 | |
| 	/* Release DMA */
 | |
| 	if (drv_data->master_info->enable_dma) {
 | |
| 		DRCMR(ssp->drcmr_rx) = 0;
 | |
| 		DRCMR(ssp->drcmr_tx) = 0;
 | |
| 		pxa_free_dma(drv_data->tx_channel);
 | |
| 		pxa_free_dma(drv_data->rx_channel);
 | |
| 	}
 | |
| 
 | |
| 	/* Release IRQ */
 | |
| 	free_irq(ssp->irq, drv_data);
 | |
| 
 | |
| 	/* Release SSP */
 | |
| 	ssp_free(ssp);
 | |
| 
 | |
| 	/* Disconnect from the SPI framework */
 | |
| 	spi_unregister_master(drv_data->master);
 | |
| 
 | |
| 	/* Prevent double remove */
 | |
| 	platform_set_drvdata(pdev, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pxa2xx_spi_shutdown(struct platform_device *pdev)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
 | |
| 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| 
 | |
| static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
 | |
| {
 | |
| 	struct driver_data *drv_data = platform_get_drvdata(pdev);
 | |
| 	struct ssp_device *ssp = drv_data->ssp;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	status = stop_queue(drv_data);
 | |
| 	if (status != 0)
 | |
| 		return status;
 | |
| 	write_SSCR0(0, drv_data->ioaddr);
 | |
| 	clk_disable(ssp->clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pxa2xx_spi_resume(struct platform_device *pdev)
 | |
| {
 | |
| 	struct driver_data *drv_data = platform_get_drvdata(pdev);
 | |
| 	struct ssp_device *ssp = drv_data->ssp;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	/* Enable the SSP clock */
 | |
| 	clk_enable(ssp->clk);
 | |
| 
 | |
| 	/* Start the queue running */
 | |
| 	status = start_queue(drv_data);
 | |
| 	if (status != 0) {
 | |
| 		dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| #define pxa2xx_spi_suspend NULL
 | |
| #define pxa2xx_spi_resume NULL
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| static struct platform_driver driver = {
 | |
| 	.driver = {
 | |
| 		.name = "pxa2xx-spi",
 | |
| 		.owner = THIS_MODULE,
 | |
| 	},
 | |
| 	.remove = pxa2xx_spi_remove,
 | |
| 	.shutdown = pxa2xx_spi_shutdown,
 | |
| 	.suspend = pxa2xx_spi_suspend,
 | |
| 	.resume = pxa2xx_spi_resume,
 | |
| };
 | |
| 
 | |
| static int __init pxa2xx_spi_init(void)
 | |
| {
 | |
| 	return platform_driver_probe(&driver, pxa2xx_spi_probe);
 | |
| }
 | |
| module_init(pxa2xx_spi_init);
 | |
| 
 | |
| static void __exit pxa2xx_spi_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&driver);
 | |
| }
 | |
| module_exit(pxa2xx_spi_exit);
 |