mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 11:03:14 +00:00 
			
		
		
		
	 26f0cf9181
			
		
	
	
		26f0cf9181
		
	
	
	
	
		
			
			* 'stable/xen-swiotlb-0.8.6' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
  x86: Detect whether we should use Xen SWIOTLB.
  pci-swiotlb-xen: Add glue code to setup dma_ops utilizing xen_swiotlb_* functions.
  swiotlb-xen: SWIOTLB library for Xen PV guest with PCI passthrough.
  xen/mmu: inhibit vmap aliases rather than trying to clear them out
  vmap: add flag to allow lazy unmap to be disabled at runtime
  xen: Add xen_create_contiguous_region
  xen: Rename the balloon lock
  xen: Allow unprivileged Xen domains to create iomap pages
  xen: use _PAGE_IOMAP in ioremap to do machine mappings
Fix up trivial conflicts (adding both xen swiotlb and xen pci platform
driver setup close to each other) in drivers/xen/{Kconfig,Makefile} and
include/xen/xen-ops.h
		
	
			
		
			
				
	
	
		
			2473 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2473 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/vmalloc.c
 | |
|  *
 | |
|  *  Copyright (C) 1993  Linus Torvalds
 | |
|  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 | |
|  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 | |
|  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
 | |
|  *  Numa awareness, Christoph Lameter, SGI, June 2005
 | |
|  */
 | |
| 
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/debugobjects.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/radix-tree.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <asm/atomic.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/shmparam.h>
 | |
| 
 | |
| bool vmap_lazy_unmap __read_mostly = true;
 | |
| 
 | |
| /*** Page table manipulation functions ***/
 | |
| 
 | |
| static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	do {
 | |
| 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 | |
| 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| }
 | |
| 
 | |
| static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none_or_clear_bad(pmd))
 | |
| 			continue;
 | |
| 		vunmap_pte_range(pmd, addr, next);
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		vunmap_pmd_range(pud, addr, next);
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void vunmap_page_range(unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	BUG_ON(addr >= end);
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		vunmap_pud_range(pgd, addr, next);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	/*
 | |
| 	 * nr is a running index into the array which helps higher level
 | |
| 	 * callers keep track of where we're up to.
 | |
| 	 */
 | |
| 
 | |
| 	pte = pte_alloc_kernel(pmd, addr);
 | |
| 	if (!pte)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		struct page *page = pages[*nr];
 | |
| 
 | |
| 		if (WARN_ON(!pte_none(*pte)))
 | |
| 			return -EBUSY;
 | |
| 		if (WARN_ON(!page))
 | |
| 			return -ENOMEM;
 | |
| 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 | |
| 		(*nr)++;
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pmd = pmd_alloc(&init_mm, pud, addr);
 | |
| 	if (!pmd)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pud = pud_alloc(&init_mm, pgd, addr);
 | |
| 	if (!pud)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 | |
|  * will have pfns corresponding to the "pages" array.
 | |
|  *
 | |
|  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 | |
|  */
 | |
| static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 | |
| 				   pgprot_t prot, struct page **pages)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 	unsigned long addr = start;
 | |
| 	int err = 0;
 | |
| 	int nr = 0;
 | |
| 
 | |
| 	BUG_ON(addr >= end);
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static int vmap_page_range(unsigned long start, unsigned long end,
 | |
| 			   pgprot_t prot, struct page **pages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = vmap_page_range_noflush(start, end, prot, pages);
 | |
| 	flush_cache_vmap(start, end);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int is_vmalloc_or_module_addr(const void *x)
 | |
| {
 | |
| 	/*
 | |
| 	 * ARM, x86-64 and sparc64 put modules in a special place,
 | |
| 	 * and fall back on vmalloc() if that fails. Others
 | |
| 	 * just put it in the vmalloc space.
 | |
| 	 */
 | |
| #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 | |
| 	unsigned long addr = (unsigned long)x;
 | |
| 	if (addr >= MODULES_VADDR && addr < MODULES_END)
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return is_vmalloc_addr(x);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk a vmap address to the struct page it maps.
 | |
|  */
 | |
| struct page *vmalloc_to_page(const void *vmalloc_addr)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long) vmalloc_addr;
 | |
| 	struct page *page = NULL;
 | |
| 	pgd_t *pgd = pgd_offset_k(addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 | |
| 	 * architectures that do not vmalloc module space
 | |
| 	 */
 | |
| 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 | |
| 
 | |
| 	if (!pgd_none(*pgd)) {
 | |
| 		pud_t *pud = pud_offset(pgd, addr);
 | |
| 		if (!pud_none(*pud)) {
 | |
| 			pmd_t *pmd = pmd_offset(pud, addr);
 | |
| 			if (!pmd_none(*pmd)) {
 | |
| 				pte_t *ptep, pte;
 | |
| 
 | |
| 				ptep = pte_offset_map(pmd, addr);
 | |
| 				pte = *ptep;
 | |
| 				if (pte_present(pte))
 | |
| 					page = pte_page(pte);
 | |
| 				pte_unmap(ptep);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_to_page);
 | |
| 
 | |
| /*
 | |
|  * Map a vmalloc()-space virtual address to the physical page frame number.
 | |
|  */
 | |
| unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 | |
| {
 | |
| 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_to_pfn);
 | |
| 
 | |
| 
 | |
| /*** Global kva allocator ***/
 | |
| 
 | |
| #define VM_LAZY_FREE	0x01
 | |
| #define VM_LAZY_FREEING	0x02
 | |
| #define VM_VM_AREA	0x04
 | |
| 
 | |
| struct vmap_area {
 | |
| 	unsigned long va_start;
 | |
| 	unsigned long va_end;
 | |
| 	unsigned long flags;
 | |
| 	struct rb_node rb_node;		/* address sorted rbtree */
 | |
| 	struct list_head list;		/* address sorted list */
 | |
| 	struct list_head purge_list;	/* "lazy purge" list */
 | |
| 	void *private;
 | |
| 	struct rcu_head rcu_head;
 | |
| };
 | |
| 
 | |
| static DEFINE_SPINLOCK(vmap_area_lock);
 | |
| static struct rb_root vmap_area_root = RB_ROOT;
 | |
| static LIST_HEAD(vmap_area_list);
 | |
| static unsigned long vmap_area_pcpu_hole;
 | |
| 
 | |
| static struct vmap_area *__find_vmap_area(unsigned long addr)
 | |
| {
 | |
| 	struct rb_node *n = vmap_area_root.rb_node;
 | |
| 
 | |
| 	while (n) {
 | |
| 		struct vmap_area *va;
 | |
| 
 | |
| 		va = rb_entry(n, struct vmap_area, rb_node);
 | |
| 		if (addr < va->va_start)
 | |
| 			n = n->rb_left;
 | |
| 		else if (addr > va->va_start)
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			return va;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void __insert_vmap_area(struct vmap_area *va)
 | |
| {
 | |
| 	struct rb_node **p = &vmap_area_root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct rb_node *tmp;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		struct vmap_area *tmp;
 | |
| 
 | |
| 		parent = *p;
 | |
| 		tmp = rb_entry(parent, struct vmap_area, rb_node);
 | |
| 		if (va->va_start < tmp->va_end)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (va->va_end > tmp->va_start)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&va->rb_node, parent, p);
 | |
| 	rb_insert_color(&va->rb_node, &vmap_area_root);
 | |
| 
 | |
| 	/* address-sort this list so it is usable like the vmlist */
 | |
| 	tmp = rb_prev(&va->rb_node);
 | |
| 	if (tmp) {
 | |
| 		struct vmap_area *prev;
 | |
| 		prev = rb_entry(tmp, struct vmap_area, rb_node);
 | |
| 		list_add_rcu(&va->list, &prev->list);
 | |
| 	} else
 | |
| 		list_add_rcu(&va->list, &vmap_area_list);
 | |
| }
 | |
| 
 | |
| static void purge_vmap_area_lazy(void);
 | |
| 
 | |
| /*
 | |
|  * Allocate a region of KVA of the specified size and alignment, within the
 | |
|  * vstart and vend.
 | |
|  */
 | |
| static struct vmap_area *alloc_vmap_area(unsigned long size,
 | |
| 				unsigned long align,
 | |
| 				unsigned long vstart, unsigned long vend,
 | |
| 				int node, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct rb_node *n;
 | |
| 	unsigned long addr;
 | |
| 	int purged = 0;
 | |
| 
 | |
| 	BUG_ON(!size);
 | |
| 	BUG_ON(size & ~PAGE_MASK);
 | |
| 
 | |
| 	va = kmalloc_node(sizeof(struct vmap_area),
 | |
| 			gfp_mask & GFP_RECLAIM_MASK, node);
 | |
| 	if (unlikely(!va))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| retry:
 | |
| 	addr = ALIGN(vstart, align);
 | |
| 
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	if (addr + size - 1 < addr)
 | |
| 		goto overflow;
 | |
| 
 | |
| 	/* XXX: could have a last_hole cache */
 | |
| 	n = vmap_area_root.rb_node;
 | |
| 	if (n) {
 | |
| 		struct vmap_area *first = NULL;
 | |
| 
 | |
| 		do {
 | |
| 			struct vmap_area *tmp;
 | |
| 			tmp = rb_entry(n, struct vmap_area, rb_node);
 | |
| 			if (tmp->va_end >= addr) {
 | |
| 				if (!first && tmp->va_start < addr + size)
 | |
| 					first = tmp;
 | |
| 				n = n->rb_left;
 | |
| 			} else {
 | |
| 				first = tmp;
 | |
| 				n = n->rb_right;
 | |
| 			}
 | |
| 		} while (n);
 | |
| 
 | |
| 		if (!first)
 | |
| 			goto found;
 | |
| 
 | |
| 		if (first->va_end < addr) {
 | |
| 			n = rb_next(&first->rb_node);
 | |
| 			if (n)
 | |
| 				first = rb_entry(n, struct vmap_area, rb_node);
 | |
| 			else
 | |
| 				goto found;
 | |
| 		}
 | |
| 
 | |
| 		while (addr + size > first->va_start && addr + size <= vend) {
 | |
| 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
 | |
| 			if (addr + size - 1 < addr)
 | |
| 				goto overflow;
 | |
| 
 | |
| 			n = rb_next(&first->rb_node);
 | |
| 			if (n)
 | |
| 				first = rb_entry(n, struct vmap_area, rb_node);
 | |
| 			else
 | |
| 				goto found;
 | |
| 		}
 | |
| 	}
 | |
| found:
 | |
| 	if (addr + size > vend) {
 | |
| overflow:
 | |
| 		spin_unlock(&vmap_area_lock);
 | |
| 		if (!purged) {
 | |
| 			purge_vmap_area_lazy();
 | |
| 			purged = 1;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		if (printk_ratelimit())
 | |
| 			printk(KERN_WARNING
 | |
| 				"vmap allocation for size %lu failed: "
 | |
| 				"use vmalloc=<size> to increase size.\n", size);
 | |
| 		kfree(va);
 | |
| 		return ERR_PTR(-EBUSY);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(addr & (align-1));
 | |
| 
 | |
| 	va->va_start = addr;
 | |
| 	va->va_end = addr + size;
 | |
| 	va->flags = 0;
 | |
| 	__insert_vmap_area(va);
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| static void rcu_free_va(struct rcu_head *head)
 | |
| {
 | |
| 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
 | |
| 
 | |
| 	kfree(va);
 | |
| }
 | |
| 
 | |
| static void __free_vmap_area(struct vmap_area *va)
 | |
| {
 | |
| 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 | |
| 	rb_erase(&va->rb_node, &vmap_area_root);
 | |
| 	RB_CLEAR_NODE(&va->rb_node);
 | |
| 	list_del_rcu(&va->list);
 | |
| 
 | |
| 	/*
 | |
| 	 * Track the highest possible candidate for pcpu area
 | |
| 	 * allocation.  Areas outside of vmalloc area can be returned
 | |
| 	 * here too, consider only end addresses which fall inside
 | |
| 	 * vmalloc area proper.
 | |
| 	 */
 | |
| 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 | |
| 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 | |
| 
 | |
| 	call_rcu(&va->rcu_head, rcu_free_va);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a region of KVA allocated by alloc_vmap_area
 | |
|  */
 | |
| static void free_vmap_area(struct vmap_area *va)
 | |
| {
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	__free_vmap_area(va);
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the pagetable entries of a given vmap_area
 | |
|  */
 | |
| static void unmap_vmap_area(struct vmap_area *va)
 | |
| {
 | |
| 	vunmap_page_range(va->va_start, va->va_end);
 | |
| }
 | |
| 
 | |
| static void vmap_debug_free_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	/*
 | |
| 	 * Unmap page tables and force a TLB flush immediately if
 | |
| 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 | |
| 	 * bugs similarly to those in linear kernel virtual address
 | |
| 	 * space after a page has been freed.
 | |
| 	 *
 | |
| 	 * All the lazy freeing logic is still retained, in order to
 | |
| 	 * minimise intrusiveness of this debugging feature.
 | |
| 	 *
 | |
| 	 * This is going to be *slow* (linear kernel virtual address
 | |
| 	 * debugging doesn't do a broadcast TLB flush so it is a lot
 | |
| 	 * faster).
 | |
| 	 */
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	vunmap_page_range(start, end);
 | |
| 	flush_tlb_kernel_range(start, end);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lazy_max_pages is the maximum amount of virtual address space we gather up
 | |
|  * before attempting to purge with a TLB flush.
 | |
|  *
 | |
|  * There is a tradeoff here: a larger number will cover more kernel page tables
 | |
|  * and take slightly longer to purge, but it will linearly reduce the number of
 | |
|  * global TLB flushes that must be performed. It would seem natural to scale
 | |
|  * this number up linearly with the number of CPUs (because vmapping activity
 | |
|  * could also scale linearly with the number of CPUs), however it is likely
 | |
|  * that in practice, workloads might be constrained in other ways that mean
 | |
|  * vmap activity will not scale linearly with CPUs. Also, I want to be
 | |
|  * conservative and not introduce a big latency on huge systems, so go with
 | |
|  * a less aggressive log scale. It will still be an improvement over the old
 | |
|  * code, and it will be simple to change the scale factor if we find that it
 | |
|  * becomes a problem on bigger systems.
 | |
|  */
 | |
| static unsigned long lazy_max_pages(void)
 | |
| {
 | |
| 	unsigned int log;
 | |
| 
 | |
| 	if (!vmap_lazy_unmap)
 | |
| 		return 0;
 | |
| 
 | |
| 	log = fls(num_online_cpus());
 | |
| 
 | |
| 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 | |
| 
 | |
| /* for per-CPU blocks */
 | |
| static void purge_fragmented_blocks_allcpus(void);
 | |
| 
 | |
| /*
 | |
|  * Purges all lazily-freed vmap areas.
 | |
|  *
 | |
|  * If sync is 0 then don't purge if there is already a purge in progress.
 | |
|  * If force_flush is 1, then flush kernel TLBs between *start and *end even
 | |
|  * if we found no lazy vmap areas to unmap (callers can use this to optimise
 | |
|  * their own TLB flushing).
 | |
|  * Returns with *start = min(*start, lowest purged address)
 | |
|  *              *end = max(*end, highest purged address)
 | |
|  */
 | |
| static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 | |
| 					int sync, int force_flush)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(purge_lock);
 | |
| 	LIST_HEAD(valist);
 | |
| 	struct vmap_area *va;
 | |
| 	struct vmap_area *n_va;
 | |
| 	int nr = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 | |
| 	 * should not expect such behaviour. This just simplifies locking for
 | |
| 	 * the case that isn't actually used at the moment anyway.
 | |
| 	 */
 | |
| 	if (!sync && !force_flush) {
 | |
| 		if (!spin_trylock(&purge_lock))
 | |
| 			return;
 | |
| 	} else
 | |
| 		spin_lock(&purge_lock);
 | |
| 
 | |
| 	if (sync)
 | |
| 		purge_fragmented_blocks_allcpus();
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
 | |
| 		if (va->flags & VM_LAZY_FREE) {
 | |
| 			if (va->va_start < *start)
 | |
| 				*start = va->va_start;
 | |
| 			if (va->va_end > *end)
 | |
| 				*end = va->va_end;
 | |
| 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 | |
| 			unmap_vmap_area(va);
 | |
| 			list_add_tail(&va->purge_list, &valist);
 | |
| 			va->flags |= VM_LAZY_FREEING;
 | |
| 			va->flags &= ~VM_LAZY_FREE;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (nr)
 | |
| 		atomic_sub(nr, &vmap_lazy_nr);
 | |
| 
 | |
| 	if (nr || force_flush)
 | |
| 		flush_tlb_kernel_range(*start, *end);
 | |
| 
 | |
| 	if (nr) {
 | |
| 		spin_lock(&vmap_area_lock);
 | |
| 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
 | |
| 			__free_vmap_area(va);
 | |
| 		spin_unlock(&vmap_area_lock);
 | |
| 	}
 | |
| 	spin_unlock(&purge_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 | |
|  * is already purging.
 | |
|  */
 | |
| static void try_purge_vmap_area_lazy(void)
 | |
| {
 | |
| 	unsigned long start = ULONG_MAX, end = 0;
 | |
| 
 | |
| 	__purge_vmap_area_lazy(&start, &end, 0, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick off a purge of the outstanding lazy areas.
 | |
|  */
 | |
| static void purge_vmap_area_lazy(void)
 | |
| {
 | |
| 	unsigned long start = ULONG_MAX, end = 0;
 | |
| 
 | |
| 	__purge_vmap_area_lazy(&start, &end, 1, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 | |
|  * called for the correct range previously.
 | |
|  */
 | |
| static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 | |
| {
 | |
| 	va->flags |= VM_LAZY_FREE;
 | |
| 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 | |
| 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 | |
| 		try_purge_vmap_area_lazy();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free and unmap a vmap area
 | |
|  */
 | |
| static void free_unmap_vmap_area(struct vmap_area *va)
 | |
| {
 | |
| 	flush_cache_vunmap(va->va_start, va->va_end);
 | |
| 	free_unmap_vmap_area_noflush(va);
 | |
| }
 | |
| 
 | |
| static struct vmap_area *find_vmap_area(unsigned long addr)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 	va = __find_vmap_area(addr);
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| static void free_unmap_vmap_area_addr(unsigned long addr)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	va = find_vmap_area(addr);
 | |
| 	BUG_ON(!va);
 | |
| 	free_unmap_vmap_area(va);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*** Per cpu kva allocator ***/
 | |
| 
 | |
| /*
 | |
|  * vmap space is limited especially on 32 bit architectures. Ensure there is
 | |
|  * room for at least 16 percpu vmap blocks per CPU.
 | |
|  */
 | |
| /*
 | |
|  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 | |
|  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 | |
|  * instead (we just need a rough idea)
 | |
|  */
 | |
| #if BITS_PER_LONG == 32
 | |
| #define VMALLOC_SPACE		(128UL*1024*1024)
 | |
| #else
 | |
| #define VMALLOC_SPACE		(128UL*1024*1024*1024)
 | |
| #endif
 | |
| 
 | |
| #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 | |
| #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 | |
| #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 | |
| #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 | |
| #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 | |
| #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 | |
| #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
 | |
| 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 | |
| 						VMALLOC_PAGES / NR_CPUS / 16))
 | |
| 
 | |
| #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 | |
| 
 | |
| static bool vmap_initialized __read_mostly = false;
 | |
| 
 | |
| struct vmap_block_queue {
 | |
| 	spinlock_t lock;
 | |
| 	struct list_head free;
 | |
| };
 | |
| 
 | |
| struct vmap_block {
 | |
| 	spinlock_t lock;
 | |
| 	struct vmap_area *va;
 | |
| 	struct vmap_block_queue *vbq;
 | |
| 	unsigned long free, dirty;
 | |
| 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
 | |
| 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 | |
| 	struct list_head free_list;
 | |
| 	struct rcu_head rcu_head;
 | |
| 	struct list_head purge;
 | |
| };
 | |
| 
 | |
| /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 | |
| static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 | |
| 
 | |
| /*
 | |
|  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 | |
|  * in the free path. Could get rid of this if we change the API to return a
 | |
|  * "cookie" from alloc, to be passed to free. But no big deal yet.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(vmap_block_tree_lock);
 | |
| static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 | |
| 
 | |
| /*
 | |
|  * We should probably have a fallback mechanism to allocate virtual memory
 | |
|  * out of partially filled vmap blocks. However vmap block sizing should be
 | |
|  * fairly reasonable according to the vmalloc size, so it shouldn't be a
 | |
|  * big problem.
 | |
|  */
 | |
| 
 | |
| static unsigned long addr_to_vb_idx(unsigned long addr)
 | |
| {
 | |
| 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 | |
| 	addr /= VMAP_BLOCK_SIZE;
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 | |
| {
 | |
| 	struct vmap_block_queue *vbq;
 | |
| 	struct vmap_block *vb;
 | |
| 	struct vmap_area *va;
 | |
| 	unsigned long vb_idx;
 | |
| 	int node, err;
 | |
| 
 | |
| 	node = numa_node_id();
 | |
| 
 | |
| 	vb = kmalloc_node(sizeof(struct vmap_block),
 | |
| 			gfp_mask & GFP_RECLAIM_MASK, node);
 | |
| 	if (unlikely(!vb))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 | |
| 					VMALLOC_START, VMALLOC_END,
 | |
| 					node, gfp_mask);
 | |
| 	if (unlikely(IS_ERR(va))) {
 | |
| 		kfree(vb);
 | |
| 		return ERR_CAST(va);
 | |
| 	}
 | |
| 
 | |
| 	err = radix_tree_preload(gfp_mask);
 | |
| 	if (unlikely(err)) {
 | |
| 		kfree(vb);
 | |
| 		free_vmap_area(va);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&vb->lock);
 | |
| 	vb->va = va;
 | |
| 	vb->free = VMAP_BBMAP_BITS;
 | |
| 	vb->dirty = 0;
 | |
| 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
 | |
| 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 | |
| 	INIT_LIST_HEAD(&vb->free_list);
 | |
| 
 | |
| 	vb_idx = addr_to_vb_idx(va->va_start);
 | |
| 	spin_lock(&vmap_block_tree_lock);
 | |
| 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 | |
| 	spin_unlock(&vmap_block_tree_lock);
 | |
| 	BUG_ON(err);
 | |
| 	radix_tree_preload_end();
 | |
| 
 | |
| 	vbq = &get_cpu_var(vmap_block_queue);
 | |
| 	vb->vbq = vbq;
 | |
| 	spin_lock(&vbq->lock);
 | |
| 	list_add_rcu(&vb->free_list, &vbq->free);
 | |
| 	spin_unlock(&vbq->lock);
 | |
| 	put_cpu_var(vmap_block_queue);
 | |
| 
 | |
| 	return vb;
 | |
| }
 | |
| 
 | |
| static void rcu_free_vb(struct rcu_head *head)
 | |
| {
 | |
| 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
 | |
| 
 | |
| 	kfree(vb);
 | |
| }
 | |
| 
 | |
| static void free_vmap_block(struct vmap_block *vb)
 | |
| {
 | |
| 	struct vmap_block *tmp;
 | |
| 	unsigned long vb_idx;
 | |
| 
 | |
| 	vb_idx = addr_to_vb_idx(vb->va->va_start);
 | |
| 	spin_lock(&vmap_block_tree_lock);
 | |
| 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 | |
| 	spin_unlock(&vmap_block_tree_lock);
 | |
| 	BUG_ON(tmp != vb);
 | |
| 
 | |
| 	free_unmap_vmap_area_noflush(vb->va);
 | |
| 	call_rcu(&vb->rcu_head, rcu_free_vb);
 | |
| }
 | |
| 
 | |
| static void purge_fragmented_blocks(int cpu)
 | |
| {
 | |
| 	LIST_HEAD(purge);
 | |
| 	struct vmap_block *vb;
 | |
| 	struct vmap_block *n_vb;
 | |
| 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | |
| 
 | |
| 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&vb->lock);
 | |
| 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 | |
| 			vb->free = 0; /* prevent further allocs after releasing lock */
 | |
| 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 | |
| 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
 | |
| 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 | |
| 			spin_lock(&vbq->lock);
 | |
| 			list_del_rcu(&vb->free_list);
 | |
| 			spin_unlock(&vbq->lock);
 | |
| 			spin_unlock(&vb->lock);
 | |
| 			list_add_tail(&vb->purge, &purge);
 | |
| 		} else
 | |
| 			spin_unlock(&vb->lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 | |
| 		list_del(&vb->purge);
 | |
| 		free_vmap_block(vb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void purge_fragmented_blocks_thiscpu(void)
 | |
| {
 | |
| 	purge_fragmented_blocks(smp_processor_id());
 | |
| }
 | |
| 
 | |
| static void purge_fragmented_blocks_allcpus(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		purge_fragmented_blocks(cpu);
 | |
| }
 | |
| 
 | |
| static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct vmap_block_queue *vbq;
 | |
| 	struct vmap_block *vb;
 | |
| 	unsigned long addr = 0;
 | |
| 	unsigned int order;
 | |
| 	int purge = 0;
 | |
| 
 | |
| 	BUG_ON(size & ~PAGE_MASK);
 | |
| 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 | |
| 	order = get_order(size);
 | |
| 
 | |
| again:
 | |
| 	rcu_read_lock();
 | |
| 	vbq = &get_cpu_var(vmap_block_queue);
 | |
| 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | |
| 		int i;
 | |
| 
 | |
| 		spin_lock(&vb->lock);
 | |
| 		if (vb->free < 1UL << order)
 | |
| 			goto next;
 | |
| 
 | |
| 		i = bitmap_find_free_region(vb->alloc_map,
 | |
| 						VMAP_BBMAP_BITS, order);
 | |
| 
 | |
| 		if (i < 0) {
 | |
| 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
 | |
| 				/* fragmented and no outstanding allocations */
 | |
| 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
 | |
| 				purge = 1;
 | |
| 			}
 | |
| 			goto next;
 | |
| 		}
 | |
| 		addr = vb->va->va_start + (i << PAGE_SHIFT);
 | |
| 		BUG_ON(addr_to_vb_idx(addr) !=
 | |
| 				addr_to_vb_idx(vb->va->va_start));
 | |
| 		vb->free -= 1UL << order;
 | |
| 		if (vb->free == 0) {
 | |
| 			spin_lock(&vbq->lock);
 | |
| 			list_del_rcu(&vb->free_list);
 | |
| 			spin_unlock(&vbq->lock);
 | |
| 		}
 | |
| 		spin_unlock(&vb->lock);
 | |
| 		break;
 | |
| next:
 | |
| 		spin_unlock(&vb->lock);
 | |
| 	}
 | |
| 
 | |
| 	if (purge)
 | |
| 		purge_fragmented_blocks_thiscpu();
 | |
| 
 | |
| 	put_cpu_var(vmap_block_queue);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!addr) {
 | |
| 		vb = new_vmap_block(gfp_mask);
 | |
| 		if (IS_ERR(vb))
 | |
| 			return vb;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return (void *)addr;
 | |
| }
 | |
| 
 | |
| static void vb_free(const void *addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 	unsigned long vb_idx;
 | |
| 	unsigned int order;
 | |
| 	struct vmap_block *vb;
 | |
| 
 | |
| 	BUG_ON(size & ~PAGE_MASK);
 | |
| 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 | |
| 
 | |
| 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 | |
| 
 | |
| 	order = get_order(size);
 | |
| 
 | |
| 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 | |
| 
 | |
| 	vb_idx = addr_to_vb_idx((unsigned long)addr);
 | |
| 	rcu_read_lock();
 | |
| 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 | |
| 	rcu_read_unlock();
 | |
| 	BUG_ON(!vb);
 | |
| 
 | |
| 	spin_lock(&vb->lock);
 | |
| 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
 | |
| 
 | |
| 	vb->dirty += 1UL << order;
 | |
| 	if (vb->dirty == VMAP_BBMAP_BITS) {
 | |
| 		BUG_ON(vb->free);
 | |
| 		spin_unlock(&vb->lock);
 | |
| 		free_vmap_block(vb);
 | |
| 	} else
 | |
| 		spin_unlock(&vb->lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 | |
|  *
 | |
|  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 | |
|  * to amortize TLB flushing overheads. What this means is that any page you
 | |
|  * have now, may, in a former life, have been mapped into kernel virtual
 | |
|  * address by the vmap layer and so there might be some CPUs with TLB entries
 | |
|  * still referencing that page (additional to the regular 1:1 kernel mapping).
 | |
|  *
 | |
|  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 | |
|  * be sure that none of the pages we have control over will have any aliases
 | |
|  * from the vmap layer.
 | |
|  */
 | |
| void vm_unmap_aliases(void)
 | |
| {
 | |
| 	unsigned long start = ULONG_MAX, end = 0;
 | |
| 	int cpu;
 | |
| 	int flush = 0;
 | |
| 
 | |
| 	if (unlikely(!vmap_initialized))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 | |
| 		struct vmap_block *vb;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | |
| 			int i;
 | |
| 
 | |
| 			spin_lock(&vb->lock);
 | |
| 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
 | |
| 			while (i < VMAP_BBMAP_BITS) {
 | |
| 				unsigned long s, e;
 | |
| 				int j;
 | |
| 				j = find_next_zero_bit(vb->dirty_map,
 | |
| 					VMAP_BBMAP_BITS, i);
 | |
| 
 | |
| 				s = vb->va->va_start + (i << PAGE_SHIFT);
 | |
| 				e = vb->va->va_start + (j << PAGE_SHIFT);
 | |
| 				vunmap_page_range(s, e);
 | |
| 				flush = 1;
 | |
| 
 | |
| 				if (s < start)
 | |
| 					start = s;
 | |
| 				if (e > end)
 | |
| 					end = e;
 | |
| 
 | |
| 				i = j;
 | |
| 				i = find_next_bit(vb->dirty_map,
 | |
| 							VMAP_BBMAP_BITS, i);
 | |
| 			}
 | |
| 			spin_unlock(&vb->lock);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	__purge_vmap_area_lazy(&start, &end, 1, flush);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 | |
| 
 | |
| /**
 | |
|  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 | |
|  * @mem: the pointer returned by vm_map_ram
 | |
|  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 | |
|  */
 | |
| void vm_unmap_ram(const void *mem, unsigned int count)
 | |
| {
 | |
| 	unsigned long size = count << PAGE_SHIFT;
 | |
| 	unsigned long addr = (unsigned long)mem;
 | |
| 
 | |
| 	BUG_ON(!addr);
 | |
| 	BUG_ON(addr < VMALLOC_START);
 | |
| 	BUG_ON(addr > VMALLOC_END);
 | |
| 	BUG_ON(addr & (PAGE_SIZE-1));
 | |
| 
 | |
| 	debug_check_no_locks_freed(mem, size);
 | |
| 	vmap_debug_free_range(addr, addr+size);
 | |
| 
 | |
| 	if (likely(count <= VMAP_MAX_ALLOC))
 | |
| 		vb_free(mem, size);
 | |
| 	else
 | |
| 		free_unmap_vmap_area_addr(addr);
 | |
| }
 | |
| EXPORT_SYMBOL(vm_unmap_ram);
 | |
| 
 | |
| /**
 | |
|  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 | |
|  * @pages: an array of pointers to the pages to be mapped
 | |
|  * @count: number of pages
 | |
|  * @node: prefer to allocate data structures on this node
 | |
|  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
 | |
|  *
 | |
|  * Returns: a pointer to the address that has been mapped, or %NULL on failure
 | |
|  */
 | |
| void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 | |
| {
 | |
| 	unsigned long size = count << PAGE_SHIFT;
 | |
| 	unsigned long addr;
 | |
| 	void *mem;
 | |
| 
 | |
| 	if (likely(count <= VMAP_MAX_ALLOC)) {
 | |
| 		mem = vb_alloc(size, GFP_KERNEL);
 | |
| 		if (IS_ERR(mem))
 | |
| 			return NULL;
 | |
| 		addr = (unsigned long)mem;
 | |
| 	} else {
 | |
| 		struct vmap_area *va;
 | |
| 		va = alloc_vmap_area(size, PAGE_SIZE,
 | |
| 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
 | |
| 		if (IS_ERR(va))
 | |
| 			return NULL;
 | |
| 
 | |
| 		addr = va->va_start;
 | |
| 		mem = (void *)addr;
 | |
| 	}
 | |
| 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
 | |
| 		vm_unmap_ram(mem, count);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return mem;
 | |
| }
 | |
| EXPORT_SYMBOL(vm_map_ram);
 | |
| 
 | |
| /**
 | |
|  * vm_area_register_early - register vmap area early during boot
 | |
|  * @vm: vm_struct to register
 | |
|  * @align: requested alignment
 | |
|  *
 | |
|  * This function is used to register kernel vm area before
 | |
|  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 | |
|  * proper values on entry and other fields should be zero.  On return,
 | |
|  * vm->addr contains the allocated address.
 | |
|  *
 | |
|  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 | |
|  */
 | |
| void __init vm_area_register_early(struct vm_struct *vm, size_t align)
 | |
| {
 | |
| 	static size_t vm_init_off __initdata;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
 | |
| 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
 | |
| 
 | |
| 	vm->addr = (void *)addr;
 | |
| 
 | |
| 	vm->next = vmlist;
 | |
| 	vmlist = vm;
 | |
| }
 | |
| 
 | |
| void __init vmalloc_init(void)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct vm_struct *tmp;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct vmap_block_queue *vbq;
 | |
| 
 | |
| 		vbq = &per_cpu(vmap_block_queue, i);
 | |
| 		spin_lock_init(&vbq->lock);
 | |
| 		INIT_LIST_HEAD(&vbq->free);
 | |
| 	}
 | |
| 
 | |
| 	/* Import existing vmlist entries. */
 | |
| 	for (tmp = vmlist; tmp; tmp = tmp->next) {
 | |
| 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
 | |
| 		va->flags = tmp->flags | VM_VM_AREA;
 | |
| 		va->va_start = (unsigned long)tmp->addr;
 | |
| 		va->va_end = va->va_start + tmp->size;
 | |
| 		__insert_vmap_area(va);
 | |
| 	}
 | |
| 
 | |
| 	vmap_area_pcpu_hole = VMALLOC_END;
 | |
| 
 | |
| 	vmap_initialized = true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * map_kernel_range_noflush - map kernel VM area with the specified pages
 | |
|  * @addr: start of the VM area to map
 | |
|  * @size: size of the VM area to map
 | |
|  * @prot: page protection flags to use
 | |
|  * @pages: pages to map
 | |
|  *
 | |
|  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 | |
|  * specify should have been allocated using get_vm_area() and its
 | |
|  * friends.
 | |
|  *
 | |
|  * NOTE:
 | |
|  * This function does NOT do any cache flushing.  The caller is
 | |
|  * responsible for calling flush_cache_vmap() on to-be-mapped areas
 | |
|  * before calling this function.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * The number of pages mapped on success, -errno on failure.
 | |
|  */
 | |
| int map_kernel_range_noflush(unsigned long addr, unsigned long size,
 | |
| 			     pgprot_t prot, struct page **pages)
 | |
| {
 | |
| 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unmap_kernel_range_noflush - unmap kernel VM area
 | |
|  * @addr: start of the VM area to unmap
 | |
|  * @size: size of the VM area to unmap
 | |
|  *
 | |
|  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 | |
|  * specify should have been allocated using get_vm_area() and its
 | |
|  * friends.
 | |
|  *
 | |
|  * NOTE:
 | |
|  * This function does NOT do any cache flushing.  The caller is
 | |
|  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 | |
|  * before calling this function and flush_tlb_kernel_range() after.
 | |
|  */
 | |
| void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
 | |
| {
 | |
| 	vunmap_page_range(addr, addr + size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 | |
|  * @addr: start of the VM area to unmap
 | |
|  * @size: size of the VM area to unmap
 | |
|  *
 | |
|  * Similar to unmap_kernel_range_noflush() but flushes vcache before
 | |
|  * the unmapping and tlb after.
 | |
|  */
 | |
| void unmap_kernel_range(unsigned long addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long end = addr + size;
 | |
| 
 | |
| 	flush_cache_vunmap(addr, end);
 | |
| 	vunmap_page_range(addr, end);
 | |
| 	flush_tlb_kernel_range(addr, end);
 | |
| }
 | |
| 
 | |
| int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)area->addr;
 | |
| 	unsigned long end = addr + area->size - PAGE_SIZE;
 | |
| 	int err;
 | |
| 
 | |
| 	err = vmap_page_range(addr, end, prot, *pages);
 | |
| 	if (err > 0) {
 | |
| 		*pages += err;
 | |
| 		err = 0;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(map_vm_area);
 | |
| 
 | |
| /*** Old vmalloc interfaces ***/
 | |
| DEFINE_RWLOCK(vmlist_lock);
 | |
| struct vm_struct *vmlist;
 | |
| 
 | |
| static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
 | |
| 			      unsigned long flags, void *caller)
 | |
| {
 | |
| 	struct vm_struct *tmp, **p;
 | |
| 
 | |
| 	vm->flags = flags;
 | |
| 	vm->addr = (void *)va->va_start;
 | |
| 	vm->size = va->va_end - va->va_start;
 | |
| 	vm->caller = caller;
 | |
| 	va->private = vm;
 | |
| 	va->flags |= VM_VM_AREA;
 | |
| 
 | |
| 	write_lock(&vmlist_lock);
 | |
| 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
 | |
| 		if (tmp->addr >= vm->addr)
 | |
| 			break;
 | |
| 	}
 | |
| 	vm->next = *p;
 | |
| 	*p = vm;
 | |
| 	write_unlock(&vmlist_lock);
 | |
| }
 | |
| 
 | |
| static struct vm_struct *__get_vm_area_node(unsigned long size,
 | |
| 		unsigned long align, unsigned long flags, unsigned long start,
 | |
| 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
 | |
| {
 | |
| 	static struct vmap_area *va;
 | |
| 	struct vm_struct *area;
 | |
| 
 | |
| 	BUG_ON(in_interrupt());
 | |
| 	if (flags & VM_IOREMAP) {
 | |
| 		int bit = fls(size);
 | |
| 
 | |
| 		if (bit > IOREMAP_MAX_ORDER)
 | |
| 			bit = IOREMAP_MAX_ORDER;
 | |
| 		else if (bit < PAGE_SHIFT)
 | |
| 			bit = PAGE_SHIFT;
 | |
| 
 | |
| 		align = 1ul << bit;
 | |
| 	}
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 	if (unlikely(!size))
 | |
| 		return NULL;
 | |
| 
 | |
| 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
 | |
| 	if (unlikely(!area))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We always allocate a guard page.
 | |
| 	 */
 | |
| 	size += PAGE_SIZE;
 | |
| 
 | |
| 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
 | |
| 	if (IS_ERR(va)) {
 | |
| 		kfree(area);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	insert_vmalloc_vm(area, va, flags, caller);
 | |
| 	return area;
 | |
| }
 | |
| 
 | |
| struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
 | |
| 				unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
 | |
| 						__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__get_vm_area);
 | |
| 
 | |
| struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
 | |
| 				       unsigned long start, unsigned long end,
 | |
| 				       void *caller)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
 | |
| 				  caller);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	get_vm_area  -  reserve a contiguous kernel virtual area
 | |
|  *	@size:		size of the area
 | |
|  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 | |
|  *
 | |
|  *	Search an area of @size in the kernel virtual mapping area,
 | |
|  *	and reserved it for out purposes.  Returns the area descriptor
 | |
|  *	on success or %NULL on failure.
 | |
|  */
 | |
| struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 | |
| 				-1, GFP_KERNEL, __builtin_return_address(0));
 | |
| }
 | |
| 
 | |
| struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
 | |
| 				void *caller)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 | |
| 						-1, GFP_KERNEL, caller);
 | |
| }
 | |
| 
 | |
| struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
 | |
| 				   int node, gfp_t gfp_mask)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 | |
| 				  node, gfp_mask, __builtin_return_address(0));
 | |
| }
 | |
| 
 | |
| static struct vm_struct *find_vm_area(const void *addr)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	va = find_vmap_area((unsigned long)addr);
 | |
| 	if (va && va->flags & VM_VM_AREA)
 | |
| 		return va->private;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	remove_vm_area  -  find and remove a continuous kernel virtual area
 | |
|  *	@addr:		base address
 | |
|  *
 | |
|  *	Search for the kernel VM area starting at @addr, and remove it.
 | |
|  *	This function returns the found VM area, but using it is NOT safe
 | |
|  *	on SMP machines, except for its size or flags.
 | |
|  */
 | |
| struct vm_struct *remove_vm_area(const void *addr)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	va = find_vmap_area((unsigned long)addr);
 | |
| 	if (va && va->flags & VM_VM_AREA) {
 | |
| 		struct vm_struct *vm = va->private;
 | |
| 		struct vm_struct *tmp, **p;
 | |
| 		/*
 | |
| 		 * remove from list and disallow access to this vm_struct
 | |
| 		 * before unmap. (address range confliction is maintained by
 | |
| 		 * vmap.)
 | |
| 		 */
 | |
| 		write_lock(&vmlist_lock);
 | |
| 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
 | |
| 			;
 | |
| 		*p = tmp->next;
 | |
| 		write_unlock(&vmlist_lock);
 | |
| 
 | |
| 		vmap_debug_free_range(va->va_start, va->va_end);
 | |
| 		free_unmap_vmap_area(va);
 | |
| 		vm->size -= PAGE_SIZE;
 | |
| 
 | |
| 		return vm;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void __vunmap(const void *addr, int deallocate_pages)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return;
 | |
| 
 | |
| 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
 | |
| 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	area = remove_vm_area(addr);
 | |
| 	if (unlikely(!area)) {
 | |
| 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
 | |
| 				addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	debug_check_no_locks_freed(addr, area->size);
 | |
| 	debug_check_no_obj_freed(addr, area->size);
 | |
| 
 | |
| 	if (deallocate_pages) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < area->nr_pages; i++) {
 | |
| 			struct page *page = area->pages[i];
 | |
| 
 | |
| 			BUG_ON(!page);
 | |
| 			__free_page(page);
 | |
| 		}
 | |
| 
 | |
| 		if (area->flags & VM_VPAGES)
 | |
| 			vfree(area->pages);
 | |
| 		else
 | |
| 			kfree(area->pages);
 | |
| 	}
 | |
| 
 | |
| 	kfree(area);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	vfree  -  release memory allocated by vmalloc()
 | |
|  *	@addr:		memory base address
 | |
|  *
 | |
|  *	Free the virtually continuous memory area starting at @addr, as
 | |
|  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 | |
|  *	NULL, no operation is performed.
 | |
|  *
 | |
|  *	Must not be called in interrupt context.
 | |
|  */
 | |
| void vfree(const void *addr)
 | |
| {
 | |
| 	BUG_ON(in_interrupt());
 | |
| 
 | |
| 	kmemleak_free(addr);
 | |
| 
 | |
| 	__vunmap(addr, 1);
 | |
| }
 | |
| EXPORT_SYMBOL(vfree);
 | |
| 
 | |
| /**
 | |
|  *	vunmap  -  release virtual mapping obtained by vmap()
 | |
|  *	@addr:		memory base address
 | |
|  *
 | |
|  *	Free the virtually contiguous memory area starting at @addr,
 | |
|  *	which was created from the page array passed to vmap().
 | |
|  *
 | |
|  *	Must not be called in interrupt context.
 | |
|  */
 | |
| void vunmap(const void *addr)
 | |
| {
 | |
| 	BUG_ON(in_interrupt());
 | |
| 	might_sleep();
 | |
| 	__vunmap(addr, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(vunmap);
 | |
| 
 | |
| /**
 | |
|  *	vmap  -  map an array of pages into virtually contiguous space
 | |
|  *	@pages:		array of page pointers
 | |
|  *	@count:		number of pages to map
 | |
|  *	@flags:		vm_area->flags
 | |
|  *	@prot:		page protection for the mapping
 | |
|  *
 | |
|  *	Maps @count pages from @pages into contiguous kernel virtual
 | |
|  *	space.
 | |
|  */
 | |
| void *vmap(struct page **pages, unsigned int count,
 | |
| 		unsigned long flags, pgprot_t prot)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (count > totalram_pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
 | |
| 					__builtin_return_address(0));
 | |
| 	if (!area)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (map_vm_area(area, prot, &pages)) {
 | |
| 		vunmap(area->addr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return area->addr;
 | |
| }
 | |
| EXPORT_SYMBOL(vmap);
 | |
| 
 | |
| static void *__vmalloc_node(unsigned long size, unsigned long align,
 | |
| 			    gfp_t gfp_mask, pgprot_t prot,
 | |
| 			    int node, void *caller);
 | |
| static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
 | |
| 				 pgprot_t prot, int node, void *caller)
 | |
| {
 | |
| 	struct page **pages;
 | |
| 	unsigned int nr_pages, array_size, i;
 | |
| 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
 | |
| 
 | |
| 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
 | |
| 	array_size = (nr_pages * sizeof(struct page *));
 | |
| 
 | |
| 	area->nr_pages = nr_pages;
 | |
| 	/* Please note that the recursion is strictly bounded. */
 | |
| 	if (array_size > PAGE_SIZE) {
 | |
| 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
 | |
| 				PAGE_KERNEL, node, caller);
 | |
| 		area->flags |= VM_VPAGES;
 | |
| 	} else {
 | |
| 		pages = kmalloc_node(array_size, nested_gfp, node);
 | |
| 	}
 | |
| 	area->pages = pages;
 | |
| 	area->caller = caller;
 | |
| 	if (!area->pages) {
 | |
| 		remove_vm_area(area->addr);
 | |
| 		kfree(area);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < area->nr_pages; i++) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (node < 0)
 | |
| 			page = alloc_page(gfp_mask);
 | |
| 		else
 | |
| 			page = alloc_pages_node(node, gfp_mask, 0);
 | |
| 
 | |
| 		if (unlikely(!page)) {
 | |
| 			/* Successfully allocated i pages, free them in __vunmap() */
 | |
| 			area->nr_pages = i;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		area->pages[i] = page;
 | |
| 	}
 | |
| 
 | |
| 	if (map_vm_area(area, prot, &pages))
 | |
| 		goto fail;
 | |
| 	return area->addr;
 | |
| 
 | |
| fail:
 | |
| 	vfree(area->addr);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
 | |
| {
 | |
| 	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
 | |
| 					 __builtin_return_address(0));
 | |
| 
 | |
| 	/*
 | |
| 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
 | |
| 	 * structures allocated in the __get_vm_area_node() function contain
 | |
| 	 * references to the virtual address of the vmalloc'ed block.
 | |
| 	 */
 | |
| 	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	__vmalloc_node  -  allocate virtually contiguous memory
 | |
|  *	@size:		allocation size
 | |
|  *	@align:		desired alignment
 | |
|  *	@gfp_mask:	flags for the page level allocator
 | |
|  *	@prot:		protection mask for the allocated pages
 | |
|  *	@node:		node to use for allocation or -1
 | |
|  *	@caller:	caller's return address
 | |
|  *
 | |
|  *	Allocate enough pages to cover @size from the page level
 | |
|  *	allocator with @gfp_mask flags.  Map them into contiguous
 | |
|  *	kernel virtual space, using a pagetable protection of @prot.
 | |
|  */
 | |
| static void *__vmalloc_node(unsigned long size, unsigned long align,
 | |
| 			    gfp_t gfp_mask, pgprot_t prot,
 | |
| 			    int node, void *caller)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	void *addr;
 | |
| 	unsigned long real_size = size;
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
 | |
| 				  VMALLOC_END, node, gfp_mask, caller);
 | |
| 
 | |
| 	if (!area)
 | |
| 		return NULL;
 | |
| 
 | |
| 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
 | |
| 
 | |
| 	/*
 | |
| 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
 | |
| 	 * structures allocated in the __get_vm_area_node() function contain
 | |
| 	 * references to the virtual address of the vmalloc'ed block.
 | |
| 	 */
 | |
| 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(__vmalloc);
 | |
| 
 | |
| /**
 | |
|  *	vmalloc  -  allocate virtually contiguous memory
 | |
|  *	@size:		allocation size
 | |
|  *	Allocate enough pages to cover @size from the page level
 | |
|  *	allocator and map them into contiguous kernel virtual space.
 | |
|  *
 | |
|  *	For tight control over page level allocator and protection flags
 | |
|  *	use __vmalloc() instead.
 | |
|  */
 | |
| void *vmalloc(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
 | |
| 					-1, __builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc);
 | |
| 
 | |
| /**
 | |
|  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 | |
|  * @size: allocation size
 | |
|  *
 | |
|  * The resulting memory area is zeroed so it can be mapped to userspace
 | |
|  * without leaking data.
 | |
|  */
 | |
| void *vmalloc_user(unsigned long size)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	void *ret;
 | |
| 
 | |
| 	ret = __vmalloc_node(size, SHMLBA,
 | |
| 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 | |
| 			     PAGE_KERNEL, -1, __builtin_return_address(0));
 | |
| 	if (ret) {
 | |
| 		area = find_vm_area(ret);
 | |
| 		area->flags |= VM_USERMAP;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_user);
 | |
| 
 | |
| /**
 | |
|  *	vmalloc_node  -  allocate memory on a specific node
 | |
|  *	@size:		allocation size
 | |
|  *	@node:		numa node
 | |
|  *
 | |
|  *	Allocate enough pages to cover @size from the page level
 | |
|  *	allocator and map them into contiguous kernel virtual space.
 | |
|  *
 | |
|  *	For tight control over page level allocator and protection flags
 | |
|  *	use __vmalloc() instead.
 | |
|  */
 | |
| void *vmalloc_node(unsigned long size, int node)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
 | |
| 					node, __builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_node);
 | |
| 
 | |
| #ifndef PAGE_KERNEL_EXEC
 | |
| # define PAGE_KERNEL_EXEC PAGE_KERNEL
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 | |
|  *	@size:		allocation size
 | |
|  *
 | |
|  *	Kernel-internal function to allocate enough pages to cover @size
 | |
|  *	the page level allocator and map them into contiguous and
 | |
|  *	executable kernel virtual space.
 | |
|  *
 | |
|  *	For tight control over page level allocator and protection flags
 | |
|  *	use __vmalloc() instead.
 | |
|  */
 | |
| 
 | |
| void *vmalloc_exec(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
 | |
| 			      -1, __builtin_return_address(0));
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
 | |
| #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
 | |
| #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
 | |
| #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
 | |
| #else
 | |
| #define GFP_VMALLOC32 GFP_KERNEL
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 | |
|  *	@size:		allocation size
 | |
|  *
 | |
|  *	Allocate enough 32bit PA addressable pages to cover @size from the
 | |
|  *	page level allocator and map them into contiguous kernel virtual space.
 | |
|  */
 | |
| void *vmalloc_32(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
 | |
| 			      -1, __builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_32);
 | |
| 
 | |
| /**
 | |
|  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 | |
|  *	@size:		allocation size
 | |
|  *
 | |
|  * The resulting memory area is 32bit addressable and zeroed so it can be
 | |
|  * mapped to userspace without leaking data.
 | |
|  */
 | |
| void *vmalloc_32_user(unsigned long size)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	void *ret;
 | |
| 
 | |
| 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
 | |
| 			     -1, __builtin_return_address(0));
 | |
| 	if (ret) {
 | |
| 		area = find_vm_area(ret);
 | |
| 		area->flags |= VM_USERMAP;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_32_user);
 | |
| 
 | |
| /*
 | |
|  * small helper routine , copy contents to buf from addr.
 | |
|  * If the page is not present, fill zero.
 | |
|  */
 | |
| 
 | |
| static int aligned_vread(char *buf, char *addr, unsigned long count)
 | |
| {
 | |
| 	struct page *p;
 | |
| 	int copied = 0;
 | |
| 
 | |
| 	while (count) {
 | |
| 		unsigned long offset, length;
 | |
| 
 | |
| 		offset = (unsigned long)addr & ~PAGE_MASK;
 | |
| 		length = PAGE_SIZE - offset;
 | |
| 		if (length > count)
 | |
| 			length = count;
 | |
| 		p = vmalloc_to_page(addr);
 | |
| 		/*
 | |
| 		 * To do safe access to this _mapped_ area, we need
 | |
| 		 * lock. But adding lock here means that we need to add
 | |
| 		 * overhead of vmalloc()/vfree() calles for this _debug_
 | |
| 		 * interface, rarely used. Instead of that, we'll use
 | |
| 		 * kmap() and get small overhead in this access function.
 | |
| 		 */
 | |
| 		if (p) {
 | |
| 			/*
 | |
| 			 * we can expect USER0 is not used (see vread/vwrite's
 | |
| 			 * function description)
 | |
| 			 */
 | |
| 			void *map = kmap_atomic(p, KM_USER0);
 | |
| 			memcpy(buf, map + offset, length);
 | |
| 			kunmap_atomic(map, KM_USER0);
 | |
| 		} else
 | |
| 			memset(buf, 0, length);
 | |
| 
 | |
| 		addr += length;
 | |
| 		buf += length;
 | |
| 		copied += length;
 | |
| 		count -= length;
 | |
| 	}
 | |
| 	return copied;
 | |
| }
 | |
| 
 | |
| static int aligned_vwrite(char *buf, char *addr, unsigned long count)
 | |
| {
 | |
| 	struct page *p;
 | |
| 	int copied = 0;
 | |
| 
 | |
| 	while (count) {
 | |
| 		unsigned long offset, length;
 | |
| 
 | |
| 		offset = (unsigned long)addr & ~PAGE_MASK;
 | |
| 		length = PAGE_SIZE - offset;
 | |
| 		if (length > count)
 | |
| 			length = count;
 | |
| 		p = vmalloc_to_page(addr);
 | |
| 		/*
 | |
| 		 * To do safe access to this _mapped_ area, we need
 | |
| 		 * lock. But adding lock here means that we need to add
 | |
| 		 * overhead of vmalloc()/vfree() calles for this _debug_
 | |
| 		 * interface, rarely used. Instead of that, we'll use
 | |
| 		 * kmap() and get small overhead in this access function.
 | |
| 		 */
 | |
| 		if (p) {
 | |
| 			/*
 | |
| 			 * we can expect USER0 is not used (see vread/vwrite's
 | |
| 			 * function description)
 | |
| 			 */
 | |
| 			void *map = kmap_atomic(p, KM_USER0);
 | |
| 			memcpy(map + offset, buf, length);
 | |
| 			kunmap_atomic(map, KM_USER0);
 | |
| 		}
 | |
| 		addr += length;
 | |
| 		buf += length;
 | |
| 		copied += length;
 | |
| 		count -= length;
 | |
| 	}
 | |
| 	return copied;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	vread() -  read vmalloc area in a safe way.
 | |
|  *	@buf:		buffer for reading data
 | |
|  *	@addr:		vm address.
 | |
|  *	@count:		number of bytes to be read.
 | |
|  *
 | |
|  *	Returns # of bytes which addr and buf should be increased.
 | |
|  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
 | |
|  *	includes any intersect with alive vmalloc area.
 | |
|  *
 | |
|  *	This function checks that addr is a valid vmalloc'ed area, and
 | |
|  *	copy data from that area to a given buffer. If the given memory range
 | |
|  *	of [addr...addr+count) includes some valid address, data is copied to
 | |
|  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
 | |
|  *	IOREMAP area is treated as memory hole and no copy is done.
 | |
|  *
 | |
|  *	If [addr...addr+count) doesn't includes any intersects with alive
 | |
|  *	vm_struct area, returns 0.
 | |
|  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
 | |
|  *	the caller should guarantee KM_USER0 is not used.
 | |
|  *
 | |
|  *	Note: In usual ops, vread() is never necessary because the caller
 | |
|  *	should know vmalloc() area is valid and can use memcpy().
 | |
|  *	This is for routines which have to access vmalloc area without
 | |
|  *	any informaion, as /dev/kmem.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| long vread(char *buf, char *addr, unsigned long count)
 | |
| {
 | |
| 	struct vm_struct *tmp;
 | |
| 	char *vaddr, *buf_start = buf;
 | |
| 	unsigned long buflen = count;
 | |
| 	unsigned long n;
 | |
| 
 | |
| 	/* Don't allow overflow */
 | |
| 	if ((unsigned long) addr + count < count)
 | |
| 		count = -(unsigned long) addr;
 | |
| 
 | |
| 	read_lock(&vmlist_lock);
 | |
| 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
 | |
| 		vaddr = (char *) tmp->addr;
 | |
| 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
 | |
| 			continue;
 | |
| 		while (addr < vaddr) {
 | |
| 			if (count == 0)
 | |
| 				goto finished;
 | |
| 			*buf = '\0';
 | |
| 			buf++;
 | |
| 			addr++;
 | |
| 			count--;
 | |
| 		}
 | |
| 		n = vaddr + tmp->size - PAGE_SIZE - addr;
 | |
| 		if (n > count)
 | |
| 			n = count;
 | |
| 		if (!(tmp->flags & VM_IOREMAP))
 | |
| 			aligned_vread(buf, addr, n);
 | |
| 		else /* IOREMAP area is treated as memory hole */
 | |
| 			memset(buf, 0, n);
 | |
| 		buf += n;
 | |
| 		addr += n;
 | |
| 		count -= n;
 | |
| 	}
 | |
| finished:
 | |
| 	read_unlock(&vmlist_lock);
 | |
| 
 | |
| 	if (buf == buf_start)
 | |
| 		return 0;
 | |
| 	/* zero-fill memory holes */
 | |
| 	if (buf != buf_start + buflen)
 | |
| 		memset(buf, 0, buflen - (buf - buf_start));
 | |
| 
 | |
| 	return buflen;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	vwrite() -  write vmalloc area in a safe way.
 | |
|  *	@buf:		buffer for source data
 | |
|  *	@addr:		vm address.
 | |
|  *	@count:		number of bytes to be read.
 | |
|  *
 | |
|  *	Returns # of bytes which addr and buf should be incresed.
 | |
|  *	(same number to @count).
 | |
|  *	If [addr...addr+count) doesn't includes any intersect with valid
 | |
|  *	vmalloc area, returns 0.
 | |
|  *
 | |
|  *	This function checks that addr is a valid vmalloc'ed area, and
 | |
|  *	copy data from a buffer to the given addr. If specified range of
 | |
|  *	[addr...addr+count) includes some valid address, data is copied from
 | |
|  *	proper area of @buf. If there are memory holes, no copy to hole.
 | |
|  *	IOREMAP area is treated as memory hole and no copy is done.
 | |
|  *
 | |
|  *	If [addr...addr+count) doesn't includes any intersects with alive
 | |
|  *	vm_struct area, returns 0.
 | |
|  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
 | |
|  *	the caller should guarantee KM_USER0 is not used.
 | |
|  *
 | |
|  *	Note: In usual ops, vwrite() is never necessary because the caller
 | |
|  *	should know vmalloc() area is valid and can use memcpy().
 | |
|  *	This is for routines which have to access vmalloc area without
 | |
|  *	any informaion, as /dev/kmem.
 | |
|  *
 | |
|  *	The caller should guarantee KM_USER1 is not used.
 | |
|  */
 | |
| 
 | |
| long vwrite(char *buf, char *addr, unsigned long count)
 | |
| {
 | |
| 	struct vm_struct *tmp;
 | |
| 	char *vaddr;
 | |
| 	unsigned long n, buflen;
 | |
| 	int copied = 0;
 | |
| 
 | |
| 	/* Don't allow overflow */
 | |
| 	if ((unsigned long) addr + count < count)
 | |
| 		count = -(unsigned long) addr;
 | |
| 	buflen = count;
 | |
| 
 | |
| 	read_lock(&vmlist_lock);
 | |
| 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
 | |
| 		vaddr = (char *) tmp->addr;
 | |
| 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
 | |
| 			continue;
 | |
| 		while (addr < vaddr) {
 | |
| 			if (count == 0)
 | |
| 				goto finished;
 | |
| 			buf++;
 | |
| 			addr++;
 | |
| 			count--;
 | |
| 		}
 | |
| 		n = vaddr + tmp->size - PAGE_SIZE - addr;
 | |
| 		if (n > count)
 | |
| 			n = count;
 | |
| 		if (!(tmp->flags & VM_IOREMAP)) {
 | |
| 			aligned_vwrite(buf, addr, n);
 | |
| 			copied++;
 | |
| 		}
 | |
| 		buf += n;
 | |
| 		addr += n;
 | |
| 		count -= n;
 | |
| 	}
 | |
| finished:
 | |
| 	read_unlock(&vmlist_lock);
 | |
| 	if (!copied)
 | |
| 		return 0;
 | |
| 	return buflen;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	remap_vmalloc_range  -  map vmalloc pages to userspace
 | |
|  *	@vma:		vma to cover (map full range of vma)
 | |
|  *	@addr:		vmalloc memory
 | |
|  *	@pgoff:		number of pages into addr before first page to map
 | |
|  *
 | |
|  *	Returns:	0 for success, -Exxx on failure
 | |
|  *
 | |
|  *	This function checks that addr is a valid vmalloc'ed area, and
 | |
|  *	that it is big enough to cover the vma. Will return failure if
 | |
|  *	that criteria isn't met.
 | |
|  *
 | |
|  *	Similar to remap_pfn_range() (see mm/memory.c)
 | |
|  */
 | |
| int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
 | |
| 						unsigned long pgoff)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	unsigned long uaddr = vma->vm_start;
 | |
| 	unsigned long usize = vma->vm_end - vma->vm_start;
 | |
| 
 | |
| 	if ((PAGE_SIZE-1) & (unsigned long)addr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	area = find_vm_area(addr);
 | |
| 	if (!area)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!(area->flags & VM_USERMAP))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	addr += pgoff << PAGE_SHIFT;
 | |
| 	do {
 | |
| 		struct page *page = vmalloc_to_page(addr);
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = vm_insert_page(vma, uaddr, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		uaddr += PAGE_SIZE;
 | |
| 		addr += PAGE_SIZE;
 | |
| 		usize -= PAGE_SIZE;
 | |
| 	} while (usize > 0);
 | |
| 
 | |
| 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
 | |
| 	vma->vm_flags |= VM_RESERVED;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(remap_vmalloc_range);
 | |
| 
 | |
| /*
 | |
|  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 | |
|  * have one.
 | |
|  */
 | |
| void  __attribute__((weak)) vmalloc_sync_all(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
 | |
| {
 | |
| 	/* apply_to_page_range() does all the hard work. */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	alloc_vm_area - allocate a range of kernel address space
 | |
|  *	@size:		size of the area
 | |
|  *
 | |
|  *	Returns:	NULL on failure, vm_struct on success
 | |
|  *
 | |
|  *	This function reserves a range of kernel address space, and
 | |
|  *	allocates pagetables to map that range.  No actual mappings
 | |
|  *	are created.  If the kernel address space is not shared
 | |
|  *	between processes, it syncs the pagetable across all
 | |
|  *	processes.
 | |
|  */
 | |
| struct vm_struct *alloc_vm_area(size_t size)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 
 | |
| 	area = get_vm_area_caller(size, VM_IOREMAP,
 | |
| 				__builtin_return_address(0));
 | |
| 	if (area == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * This ensures that page tables are constructed for this region
 | |
| 	 * of kernel virtual address space and mapped into init_mm.
 | |
| 	 */
 | |
| 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
 | |
| 				area->size, f, NULL)) {
 | |
| 		free_vm_area(area);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure the pagetables are constructed in process kernel
 | |
| 	   mappings */
 | |
| 	vmalloc_sync_all();
 | |
| 
 | |
| 	return area;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(alloc_vm_area);
 | |
| 
 | |
| void free_vm_area(struct vm_struct *area)
 | |
| {
 | |
| 	struct vm_struct *ret;
 | |
| 	ret = remove_vm_area(area->addr);
 | |
| 	BUG_ON(ret != area);
 | |
| 	kfree(area);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(free_vm_area);
 | |
| 
 | |
| static struct vmap_area *node_to_va(struct rb_node *n)
 | |
| {
 | |
| 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
 | |
|  * @end: target address
 | |
|  * @pnext: out arg for the next vmap_area
 | |
|  * @pprev: out arg for the previous vmap_area
 | |
|  *
 | |
|  * Returns: %true if either or both of next and prev are found,
 | |
|  *	    %false if no vmap_area exists
 | |
|  *
 | |
|  * Find vmap_areas end addresses of which enclose @end.  ie. if not
 | |
|  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
 | |
|  */
 | |
| static bool pvm_find_next_prev(unsigned long end,
 | |
| 			       struct vmap_area **pnext,
 | |
| 			       struct vmap_area **pprev)
 | |
| {
 | |
| 	struct rb_node *n = vmap_area_root.rb_node;
 | |
| 	struct vmap_area *va = NULL;
 | |
| 
 | |
| 	while (n) {
 | |
| 		va = rb_entry(n, struct vmap_area, rb_node);
 | |
| 		if (end < va->va_end)
 | |
| 			n = n->rb_left;
 | |
| 		else if (end > va->va_end)
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!va)
 | |
| 		return false;
 | |
| 
 | |
| 	if (va->va_end > end) {
 | |
| 		*pnext = va;
 | |
| 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
 | |
| 	} else {
 | |
| 		*pprev = va;
 | |
| 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pvm_determine_end - find the highest aligned address between two vmap_areas
 | |
|  * @pnext: in/out arg for the next vmap_area
 | |
|  * @pprev: in/out arg for the previous vmap_area
 | |
|  * @align: alignment
 | |
|  *
 | |
|  * Returns: determined end address
 | |
|  *
 | |
|  * Find the highest aligned address between *@pnext and *@pprev below
 | |
|  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
 | |
|  * down address is between the end addresses of the two vmap_areas.
 | |
|  *
 | |
|  * Please note that the address returned by this function may fall
 | |
|  * inside *@pnext vmap_area.  The caller is responsible for checking
 | |
|  * that.
 | |
|  */
 | |
| static unsigned long pvm_determine_end(struct vmap_area **pnext,
 | |
| 				       struct vmap_area **pprev,
 | |
| 				       unsigned long align)
 | |
| {
 | |
| 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	if (*pnext)
 | |
| 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
 | |
| 	else
 | |
| 		addr = vmalloc_end;
 | |
| 
 | |
| 	while (*pprev && (*pprev)->va_end > addr) {
 | |
| 		*pnext = *pprev;
 | |
| 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
 | |
| 	}
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 | |
|  * @offsets: array containing offset of each area
 | |
|  * @sizes: array containing size of each area
 | |
|  * @nr_vms: the number of areas to allocate
 | |
|  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 | |
|  * @gfp_mask: allocation mask
 | |
|  *
 | |
|  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 | |
|  *	    vm_structs on success, %NULL on failure
 | |
|  *
 | |
|  * Percpu allocator wants to use congruent vm areas so that it can
 | |
|  * maintain the offsets among percpu areas.  This function allocates
 | |
|  * congruent vmalloc areas for it.  These areas tend to be scattered
 | |
|  * pretty far, distance between two areas easily going up to
 | |
|  * gigabytes.  To avoid interacting with regular vmallocs, these areas
 | |
|  * are allocated from top.
 | |
|  *
 | |
|  * Despite its complicated look, this allocator is rather simple.  It
 | |
|  * does everything top-down and scans areas from the end looking for
 | |
|  * matching slot.  While scanning, if any of the areas overlaps with
 | |
|  * existing vmap_area, the base address is pulled down to fit the
 | |
|  * area.  Scanning is repeated till all the areas fit and then all
 | |
|  * necessary data structres are inserted and the result is returned.
 | |
|  */
 | |
| struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
 | |
| 				     const size_t *sizes, int nr_vms,
 | |
| 				     size_t align, gfp_t gfp_mask)
 | |
| {
 | |
| 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
 | |
| 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
 | |
| 	struct vmap_area **vas, *prev, *next;
 | |
| 	struct vm_struct **vms;
 | |
| 	int area, area2, last_area, term_area;
 | |
| 	unsigned long base, start, end, last_end;
 | |
| 	bool purged = false;
 | |
| 
 | |
| 	gfp_mask &= GFP_RECLAIM_MASK;
 | |
| 
 | |
| 	/* verify parameters and allocate data structures */
 | |
| 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
 | |
| 	for (last_area = 0, area = 0; area < nr_vms; area++) {
 | |
| 		start = offsets[area];
 | |
| 		end = start + sizes[area];
 | |
| 
 | |
| 		/* is everything aligned properly? */
 | |
| 		BUG_ON(!IS_ALIGNED(offsets[area], align));
 | |
| 		BUG_ON(!IS_ALIGNED(sizes[area], align));
 | |
| 
 | |
| 		/* detect the area with the highest address */
 | |
| 		if (start > offsets[last_area])
 | |
| 			last_area = area;
 | |
| 
 | |
| 		for (area2 = 0; area2 < nr_vms; area2++) {
 | |
| 			unsigned long start2 = offsets[area2];
 | |
| 			unsigned long end2 = start2 + sizes[area2];
 | |
| 
 | |
| 			if (area2 == area)
 | |
| 				continue;
 | |
| 
 | |
| 			BUG_ON(start2 >= start && start2 < end);
 | |
| 			BUG_ON(end2 <= end && end2 > start);
 | |
| 		}
 | |
| 	}
 | |
| 	last_end = offsets[last_area] + sizes[last_area];
 | |
| 
 | |
| 	if (vmalloc_end - vmalloc_start < last_end) {
 | |
| 		WARN_ON(true);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
 | |
| 	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
 | |
| 	if (!vas || !vms)
 | |
| 		goto err_free;
 | |
| 
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
 | |
| 		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
 | |
| 		if (!vas[area] || !vms[area])
 | |
| 			goto err_free;
 | |
| 	}
 | |
| retry:
 | |
| 	spin_lock(&vmap_area_lock);
 | |
| 
 | |
| 	/* start scanning - we scan from the top, begin with the last area */
 | |
| 	area = term_area = last_area;
 | |
| 	start = offsets[area];
 | |
| 	end = start + sizes[area];
 | |
| 
 | |
| 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
 | |
| 		base = vmalloc_end - last_end;
 | |
| 		goto found;
 | |
| 	}
 | |
| 	base = pvm_determine_end(&next, &prev, align) - end;
 | |
| 
 | |
| 	while (true) {
 | |
| 		BUG_ON(next && next->va_end <= base + end);
 | |
| 		BUG_ON(prev && prev->va_end > base + end);
 | |
| 
 | |
| 		/*
 | |
| 		 * base might have underflowed, add last_end before
 | |
| 		 * comparing.
 | |
| 		 */
 | |
| 		if (base + last_end < vmalloc_start + last_end) {
 | |
| 			spin_unlock(&vmap_area_lock);
 | |
| 			if (!purged) {
 | |
| 				purge_vmap_area_lazy();
 | |
| 				purged = true;
 | |
| 				goto retry;
 | |
| 			}
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If next overlaps, move base downwards so that it's
 | |
| 		 * right below next and then recheck.
 | |
| 		 */
 | |
| 		if (next && next->va_start < base + end) {
 | |
| 			base = pvm_determine_end(&next, &prev, align) - end;
 | |
| 			term_area = area;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If prev overlaps, shift down next and prev and move
 | |
| 		 * base so that it's right below new next and then
 | |
| 		 * recheck.
 | |
| 		 */
 | |
| 		if (prev && prev->va_end > base + start)  {
 | |
| 			next = prev;
 | |
| 			prev = node_to_va(rb_prev(&next->rb_node));
 | |
| 			base = pvm_determine_end(&next, &prev, align) - end;
 | |
| 			term_area = area;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This area fits, move on to the previous one.  If
 | |
| 		 * the previous one is the terminal one, we're done.
 | |
| 		 */
 | |
| 		area = (area + nr_vms - 1) % nr_vms;
 | |
| 		if (area == term_area)
 | |
| 			break;
 | |
| 		start = offsets[area];
 | |
| 		end = start + sizes[area];
 | |
| 		pvm_find_next_prev(base + end, &next, &prev);
 | |
| 	}
 | |
| found:
 | |
| 	/* we've found a fitting base, insert all va's */
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		struct vmap_area *va = vas[area];
 | |
| 
 | |
| 		va->va_start = base + offsets[area];
 | |
| 		va->va_end = va->va_start + sizes[area];
 | |
| 		__insert_vmap_area(va);
 | |
| 	}
 | |
| 
 | |
| 	vmap_area_pcpu_hole = base + offsets[last_area];
 | |
| 
 | |
| 	spin_unlock(&vmap_area_lock);
 | |
| 
 | |
| 	/* insert all vm's */
 | |
| 	for (area = 0; area < nr_vms; area++)
 | |
| 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
 | |
| 				  pcpu_get_vm_areas);
 | |
| 
 | |
| 	kfree(vas);
 | |
| 	return vms;
 | |
| 
 | |
| err_free:
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		if (vas)
 | |
| 			kfree(vas[area]);
 | |
| 		if (vms)
 | |
| 			kfree(vms[area]);
 | |
| 	}
 | |
| 	kfree(vas);
 | |
| 	kfree(vms);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 | |
|  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 | |
|  * @nr_vms: the number of allocated areas
 | |
|  *
 | |
|  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 | |
|  */
 | |
| void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_vms; i++)
 | |
| 		free_vm_area(vms[i]);
 | |
| 	kfree(vms);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static void *s_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	loff_t n = *pos;
 | |
| 	struct vm_struct *v;
 | |
| 
 | |
| 	read_lock(&vmlist_lock);
 | |
| 	v = vmlist;
 | |
| 	while (n > 0 && v) {
 | |
| 		n--;
 | |
| 		v = v->next;
 | |
| 	}
 | |
| 	if (!n)
 | |
| 		return v;
 | |
| 
 | |
| 	return NULL;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void *s_next(struct seq_file *m, void *p, loff_t *pos)
 | |
| {
 | |
| 	struct vm_struct *v = p;
 | |
| 
 | |
| 	++*pos;
 | |
| 	return v->next;
 | |
| }
 | |
| 
 | |
| static void s_stop(struct seq_file *m, void *p)
 | |
| {
 | |
| 	read_unlock(&vmlist_lock);
 | |
| }
 | |
| 
 | |
| static void show_numa_info(struct seq_file *m, struct vm_struct *v)
 | |
| {
 | |
| 	if (NUMA_BUILD) {
 | |
| 		unsigned int nr, *counters = m->private;
 | |
| 
 | |
| 		if (!counters)
 | |
| 			return;
 | |
| 
 | |
| 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
 | |
| 
 | |
| 		for (nr = 0; nr < v->nr_pages; nr++)
 | |
| 			counters[page_to_nid(v->pages[nr])]++;
 | |
| 
 | |
| 		for_each_node_state(nr, N_HIGH_MEMORY)
 | |
| 			if (counters[nr])
 | |
| 				seq_printf(m, " N%u=%u", nr, counters[nr]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int s_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct vm_struct *v = p;
 | |
| 
 | |
| 	seq_printf(m, "0x%p-0x%p %7ld",
 | |
| 		v->addr, v->addr + v->size, v->size);
 | |
| 
 | |
| 	if (v->caller) {
 | |
| 		char buff[KSYM_SYMBOL_LEN];
 | |
| 
 | |
| 		seq_putc(m, ' ');
 | |
| 		sprint_symbol(buff, (unsigned long)v->caller);
 | |
| 		seq_puts(m, buff);
 | |
| 	}
 | |
| 
 | |
| 	if (v->nr_pages)
 | |
| 		seq_printf(m, " pages=%d", v->nr_pages);
 | |
| 
 | |
| 	if (v->phys_addr)
 | |
| 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
 | |
| 
 | |
| 	if (v->flags & VM_IOREMAP)
 | |
| 		seq_printf(m, " ioremap");
 | |
| 
 | |
| 	if (v->flags & VM_ALLOC)
 | |
| 		seq_printf(m, " vmalloc");
 | |
| 
 | |
| 	if (v->flags & VM_MAP)
 | |
| 		seq_printf(m, " vmap");
 | |
| 
 | |
| 	if (v->flags & VM_USERMAP)
 | |
| 		seq_printf(m, " user");
 | |
| 
 | |
| 	if (v->flags & VM_VPAGES)
 | |
| 		seq_printf(m, " vpages");
 | |
| 
 | |
| 	show_numa_info(m, v);
 | |
| 	seq_putc(m, '\n');
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations vmalloc_op = {
 | |
| 	.start = s_start,
 | |
| 	.next = s_next,
 | |
| 	.stop = s_stop,
 | |
| 	.show = s_show,
 | |
| };
 | |
| 
 | |
| static int vmalloc_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	unsigned int *ptr = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (NUMA_BUILD) {
 | |
| 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
 | |
| 		if (ptr == NULL)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	ret = seq_open(file, &vmalloc_op);
 | |
| 	if (!ret) {
 | |
| 		struct seq_file *m = file->private_data;
 | |
| 		m->private = ptr;
 | |
| 	} else
 | |
| 		kfree(ptr);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_vmalloc_operations = {
 | |
| 	.open		= vmalloc_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release_private,
 | |
| };
 | |
| 
 | |
| static int __init proc_vmalloc_init(void)
 | |
| {
 | |
| 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
 | |
| 	return 0;
 | |
| }
 | |
| module_init(proc_vmalloc_init);
 | |
| #endif
 | |
| 
 |