mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 08:26:29 +00:00 
			
		
		
		
	 596d7cfa2b
			
		
	
	
		596d7cfa2b
		
	
	
	
	
		
			
			migrate_pages() is using >500 bytes stack. Reduce it. mm/mempolicy.c: In function 'sys_migrate_pages': mm/mempolicy.c:1344: warning: the frame size of 528 bytes is larger than 512 bytes [akpm@linux-foundation.org: don't play with a might-be-NULL pointer] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2674 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2674 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Simple NUMA memory policy for the Linux kernel.
 | |
|  *
 | |
|  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
 | |
|  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 | |
|  * Subject to the GNU Public License, version 2.
 | |
|  *
 | |
|  * NUMA policy allows the user to give hints in which node(s) memory should
 | |
|  * be allocated.
 | |
|  *
 | |
|  * Support four policies per VMA and per process:
 | |
|  *
 | |
|  * The VMA policy has priority over the process policy for a page fault.
 | |
|  *
 | |
|  * interleave     Allocate memory interleaved over a set of nodes,
 | |
|  *                with normal fallback if it fails.
 | |
|  *                For VMA based allocations this interleaves based on the
 | |
|  *                offset into the backing object or offset into the mapping
 | |
|  *                for anonymous memory. For process policy an process counter
 | |
|  *                is used.
 | |
|  *
 | |
|  * bind           Only allocate memory on a specific set of nodes,
 | |
|  *                no fallback.
 | |
|  *                FIXME: memory is allocated starting with the first node
 | |
|  *                to the last. It would be better if bind would truly restrict
 | |
|  *                the allocation to memory nodes instead
 | |
|  *
 | |
|  * preferred       Try a specific node first before normal fallback.
 | |
|  *                As a special case node -1 here means do the allocation
 | |
|  *                on the local CPU. This is normally identical to default,
 | |
|  *                but useful to set in a VMA when you have a non default
 | |
|  *                process policy.
 | |
|  *
 | |
|  * default        Allocate on the local node first, or when on a VMA
 | |
|  *                use the process policy. This is what Linux always did
 | |
|  *		  in a NUMA aware kernel and still does by, ahem, default.
 | |
|  *
 | |
|  * The process policy is applied for most non interrupt memory allocations
 | |
|  * in that process' context. Interrupts ignore the policies and always
 | |
|  * try to allocate on the local CPU. The VMA policy is only applied for memory
 | |
|  * allocations for a VMA in the VM.
 | |
|  *
 | |
|  * Currently there are a few corner cases in swapping where the policy
 | |
|  * is not applied, but the majority should be handled. When process policy
 | |
|  * is used it is not remembered over swap outs/swap ins.
 | |
|  *
 | |
|  * Only the highest zone in the zone hierarchy gets policied. Allocations
 | |
|  * requesting a lower zone just use default policy. This implies that
 | |
|  * on systems with highmem kernel lowmem allocation don't get policied.
 | |
|  * Same with GFP_DMA allocations.
 | |
|  *
 | |
|  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
 | |
|  * all users and remembered even when nobody has memory mapped.
 | |
|  */
 | |
| 
 | |
| /* Notebook:
 | |
|    fix mmap readahead to honour policy and enable policy for any page cache
 | |
|    object
 | |
|    statistics for bigpages
 | |
|    global policy for page cache? currently it uses process policy. Requires
 | |
|    first item above.
 | |
|    handle mremap for shared memory (currently ignored for the policy)
 | |
|    grows down?
 | |
|    make bind policy root only? It can trigger oom much faster and the
 | |
|    kernel is not always grateful with that.
 | |
| */
 | |
| 
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/mm_inline.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /* Internal flags */
 | |
| #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 | |
| #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 | |
| #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
 | |
| 
 | |
| static struct kmem_cache *policy_cache;
 | |
| static struct kmem_cache *sn_cache;
 | |
| 
 | |
| /* Highest zone. An specific allocation for a zone below that is not
 | |
|    policied. */
 | |
| enum zone_type policy_zone = 0;
 | |
| 
 | |
| /*
 | |
|  * run-time system-wide default policy => local allocation
 | |
|  */
 | |
| struct mempolicy default_policy = {
 | |
| 	.refcnt = ATOMIC_INIT(1), /* never free it */
 | |
| 	.mode = MPOL_PREFERRED,
 | |
| 	.flags = MPOL_F_LOCAL,
 | |
| };
 | |
| 
 | |
| static const struct mempolicy_operations {
 | |
| 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 | |
| 	/*
 | |
| 	 * If read-side task has no lock to protect task->mempolicy, write-side
 | |
| 	 * task will rebind the task->mempolicy by two step. The first step is
 | |
| 	 * setting all the newly nodes, and the second step is cleaning all the
 | |
| 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
 | |
| 	 * page.
 | |
| 	 * If we have a lock to protect task->mempolicy in read-side, we do
 | |
| 	 * rebind directly.
 | |
| 	 *
 | |
| 	 * step:
 | |
| 	 * 	MPOL_REBIND_ONCE - do rebind work at once
 | |
| 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
 | |
| 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 | |
| 	 */
 | |
| 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 | |
| 			enum mpol_rebind_step step);
 | |
| } mpol_ops[MPOL_MAX];
 | |
| 
 | |
| /* Check that the nodemask contains at least one populated zone */
 | |
| static int is_valid_nodemask(const nodemask_t *nodemask)
 | |
| {
 | |
| 	int nd, k;
 | |
| 
 | |
| 	for_each_node_mask(nd, *nodemask) {
 | |
| 		struct zone *z;
 | |
| 
 | |
| 		for (k = 0; k <= policy_zone; k++) {
 | |
| 			z = &NODE_DATA(nd)->node_zones[k];
 | |
| 			if (z->present_pages > 0)
 | |
| 				return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 | |
| {
 | |
| 	return pol->flags & MPOL_MODE_FLAGS;
 | |
| }
 | |
| 
 | |
| static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 | |
| 				   const nodemask_t *rel)
 | |
| {
 | |
| 	nodemask_t tmp;
 | |
| 	nodes_fold(tmp, *orig, nodes_weight(*rel));
 | |
| 	nodes_onto(*ret, tmp, *rel);
 | |
| }
 | |
| 
 | |
| static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 | |
| {
 | |
| 	if (nodes_empty(*nodes))
 | |
| 		return -EINVAL;
 | |
| 	pol->v.nodes = *nodes;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 | |
| {
 | |
| 	if (!nodes)
 | |
| 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 | |
| 	else if (nodes_empty(*nodes))
 | |
| 		return -EINVAL;			/*  no allowed nodes */
 | |
| 	else
 | |
| 		pol->v.preferred_node = first_node(*nodes);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 | |
| {
 | |
| 	if (!is_valid_nodemask(nodes))
 | |
| 		return -EINVAL;
 | |
| 	pol->v.nodes = *nodes;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 | |
|  * any, for the new policy.  mpol_new() has already validated the nodes
 | |
|  * parameter with respect to the policy mode and flags.  But, we need to
 | |
|  * handle an empty nodemask with MPOL_PREFERRED here.
 | |
|  *
 | |
|  * Must be called holding task's alloc_lock to protect task's mems_allowed
 | |
|  * and mempolicy.  May also be called holding the mmap_semaphore for write.
 | |
|  */
 | |
| static int mpol_set_nodemask(struct mempolicy *pol,
 | |
| 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 | |
| 	if (pol == NULL)
 | |
| 		return 0;
 | |
| 	/* Check N_HIGH_MEMORY */
 | |
| 	nodes_and(nsc->mask1,
 | |
| 		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
 | |
| 
 | |
| 	VM_BUG_ON(!nodes);
 | |
| 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 | |
| 		nodes = NULL;	/* explicit local allocation */
 | |
| 	else {
 | |
| 		if (pol->flags & MPOL_F_RELATIVE_NODES)
 | |
| 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 | |
| 		else
 | |
| 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 | |
| 
 | |
| 		if (mpol_store_user_nodemask(pol))
 | |
| 			pol->w.user_nodemask = *nodes;
 | |
| 		else
 | |
| 			pol->w.cpuset_mems_allowed =
 | |
| 						cpuset_current_mems_allowed;
 | |
| 	}
 | |
| 
 | |
| 	if (nodes)
 | |
| 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 | |
| 	else
 | |
| 		ret = mpol_ops[pol->mode].create(pol, NULL);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function just creates a new policy, does some check and simple
 | |
|  * initialization. You must invoke mpol_set_nodemask() to set nodes.
 | |
|  */
 | |
| static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 | |
| 				  nodemask_t *nodes)
 | |
| {
 | |
| 	struct mempolicy *policy;
 | |
| 
 | |
| 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 | |
| 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
 | |
| 
 | |
| 	if (mode == MPOL_DEFAULT) {
 | |
| 		if (nodes && !nodes_empty(*nodes))
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 		return NULL;	/* simply delete any existing policy */
 | |
| 	}
 | |
| 	VM_BUG_ON(!nodes);
 | |
| 
 | |
| 	/*
 | |
| 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 | |
| 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 | |
| 	 * All other modes require a valid pointer to a non-empty nodemask.
 | |
| 	 */
 | |
| 	if (mode == MPOL_PREFERRED) {
 | |
| 		if (nodes_empty(*nodes)) {
 | |
| 			if (((flags & MPOL_F_STATIC_NODES) ||
 | |
| 			     (flags & MPOL_F_RELATIVE_NODES)))
 | |
| 				return ERR_PTR(-EINVAL);
 | |
| 		}
 | |
| 	} else if (nodes_empty(*nodes))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 | |
| 	if (!policy)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	atomic_set(&policy->refcnt, 1);
 | |
| 	policy->mode = mode;
 | |
| 	policy->flags = flags;
 | |
| 
 | |
| 	return policy;
 | |
| }
 | |
| 
 | |
| /* Slow path of a mpol destructor. */
 | |
| void __mpol_put(struct mempolicy *p)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&p->refcnt))
 | |
| 		return;
 | |
| 	kmem_cache_free(policy_cache, p);
 | |
| }
 | |
| 
 | |
| static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 | |
| 				enum mpol_rebind_step step)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * step:
 | |
|  * 	MPOL_REBIND_ONCE  - do rebind work at once
 | |
|  * 	MPOL_REBIND_STEP1 - set all the newly nodes
 | |
|  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 | |
|  */
 | |
| static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 | |
| 				 enum mpol_rebind_step step)
 | |
| {
 | |
| 	nodemask_t tmp;
 | |
| 
 | |
| 	if (pol->flags & MPOL_F_STATIC_NODES)
 | |
| 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 | |
| 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 | |
| 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 | |
| 		 * result
 | |
| 		 */
 | |
| 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 | |
| 			nodes_remap(tmp, pol->v.nodes,
 | |
| 					pol->w.cpuset_mems_allowed, *nodes);
 | |
| 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 | |
| 		} else if (step == MPOL_REBIND_STEP2) {
 | |
| 			tmp = pol->w.cpuset_mems_allowed;
 | |
| 			pol->w.cpuset_mems_allowed = *nodes;
 | |
| 		} else
 | |
| 			BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (nodes_empty(tmp))
 | |
| 		tmp = *nodes;
 | |
| 
 | |
| 	if (step == MPOL_REBIND_STEP1)
 | |
| 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 | |
| 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 | |
| 		pol->v.nodes = tmp;
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	if (!node_isset(current->il_next, tmp)) {
 | |
| 		current->il_next = next_node(current->il_next, tmp);
 | |
| 		if (current->il_next >= MAX_NUMNODES)
 | |
| 			current->il_next = first_node(tmp);
 | |
| 		if (current->il_next >= MAX_NUMNODES)
 | |
| 			current->il_next = numa_node_id();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mpol_rebind_preferred(struct mempolicy *pol,
 | |
| 				  const nodemask_t *nodes,
 | |
| 				  enum mpol_rebind_step step)
 | |
| {
 | |
| 	nodemask_t tmp;
 | |
| 
 | |
| 	if (pol->flags & MPOL_F_STATIC_NODES) {
 | |
| 		int node = first_node(pol->w.user_nodemask);
 | |
| 
 | |
| 		if (node_isset(node, *nodes)) {
 | |
| 			pol->v.preferred_node = node;
 | |
| 			pol->flags &= ~MPOL_F_LOCAL;
 | |
| 		} else
 | |
| 			pol->flags |= MPOL_F_LOCAL;
 | |
| 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 | |
| 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 | |
| 		pol->v.preferred_node = first_node(tmp);
 | |
| 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 | |
| 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 | |
| 						   pol->w.cpuset_mems_allowed,
 | |
| 						   *nodes);
 | |
| 		pol->w.cpuset_mems_allowed = *nodes;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mpol_rebind_policy - Migrate a policy to a different set of nodes
 | |
|  *
 | |
|  * If read-side task has no lock to protect task->mempolicy, write-side
 | |
|  * task will rebind the task->mempolicy by two step. The first step is
 | |
|  * setting all the newly nodes, and the second step is cleaning all the
 | |
|  * disallowed nodes. In this way, we can avoid finding no node to alloc
 | |
|  * page.
 | |
|  * If we have a lock to protect task->mempolicy in read-side, we do
 | |
|  * rebind directly.
 | |
|  *
 | |
|  * step:
 | |
|  * 	MPOL_REBIND_ONCE  - do rebind work at once
 | |
|  * 	MPOL_REBIND_STEP1 - set all the newly nodes
 | |
|  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
 | |
|  */
 | |
| static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 | |
| 				enum mpol_rebind_step step)
 | |
| {
 | |
| 	if (!pol)
 | |
| 		return;
 | |
| 	if (!mpol_store_user_nodemask(pol) && step == 0 &&
 | |
| 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 | |
| 		return;
 | |
| 
 | |
| 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 | |
| 		return;
 | |
| 
 | |
| 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 | |
| 		BUG();
 | |
| 
 | |
| 	if (step == MPOL_REBIND_STEP1)
 | |
| 		pol->flags |= MPOL_F_REBINDING;
 | |
| 	else if (step == MPOL_REBIND_STEP2)
 | |
| 		pol->flags &= ~MPOL_F_REBINDING;
 | |
| 	else if (step >= MPOL_REBIND_NSTEP)
 | |
| 		BUG();
 | |
| 
 | |
| 	mpol_ops[pol->mode].rebind(pol, newmask, step);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper for mpol_rebind_policy() that just requires task
 | |
|  * pointer, and updates task mempolicy.
 | |
|  *
 | |
|  * Called with task's alloc_lock held.
 | |
|  */
 | |
| 
 | |
| void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 | |
| 			enum mpol_rebind_step step)
 | |
| {
 | |
| 	mpol_rebind_policy(tsk->mempolicy, new, step);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rebind each vma in mm to new nodemask.
 | |
|  *
 | |
|  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 | |
|  */
 | |
| 
 | |
| void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	for (vma = mm->mmap; vma; vma = vma->vm_next)
 | |
| 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 | |
| 	up_write(&mm->mmap_sem);
 | |
| }
 | |
| 
 | |
| static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 | |
| 	[MPOL_DEFAULT] = {
 | |
| 		.rebind = mpol_rebind_default,
 | |
| 	},
 | |
| 	[MPOL_INTERLEAVE] = {
 | |
| 		.create = mpol_new_interleave,
 | |
| 		.rebind = mpol_rebind_nodemask,
 | |
| 	},
 | |
| 	[MPOL_PREFERRED] = {
 | |
| 		.create = mpol_new_preferred,
 | |
| 		.rebind = mpol_rebind_preferred,
 | |
| 	},
 | |
| 	[MPOL_BIND] = {
 | |
| 		.create = mpol_new_bind,
 | |
| 		.rebind = mpol_rebind_nodemask,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static void gather_stats(struct page *, void *, int pte_dirty);
 | |
| static void migrate_page_add(struct page *page, struct list_head *pagelist,
 | |
| 				unsigned long flags);
 | |
| 
 | |
| /* Scan through pages checking if pages follow certain conditions. */
 | |
| static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long addr, unsigned long end,
 | |
| 		const nodemask_t *nodes, unsigned long flags,
 | |
| 		void *private)
 | |
| {
 | |
| 	pte_t *orig_pte;
 | |
| 	pte_t *pte;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		int nid;
 | |
| 
 | |
| 		if (!pte_present(*pte))
 | |
| 			continue;
 | |
| 		page = vm_normal_page(vma, addr, *pte);
 | |
| 		if (!page)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * vm_normal_page() filters out zero pages, but there might
 | |
| 		 * still be PageReserved pages to skip, perhaps in a VDSO.
 | |
| 		 * And we cannot move PageKsm pages sensibly or safely yet.
 | |
| 		 */
 | |
| 		if (PageReserved(page) || PageKsm(page))
 | |
| 			continue;
 | |
| 		nid = page_to_nid(page);
 | |
| 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 | |
| 			continue;
 | |
| 
 | |
| 		if (flags & MPOL_MF_STATS)
 | |
| 			gather_stats(page, private, pte_dirty(*pte));
 | |
| 		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 | |
| 			migrate_page_add(page, private, flags);
 | |
| 		else
 | |
| 			break;
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	pte_unmap_unlock(orig_pte, ptl);
 | |
| 	return addr != end;
 | |
| }
 | |
| 
 | |
| static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 | |
| 		unsigned long addr, unsigned long end,
 | |
| 		const nodemask_t *nodes, unsigned long flags,
 | |
| 		void *private)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none_or_clear_bad(pmd))
 | |
| 			continue;
 | |
| 		if (check_pte_range(vma, pmd, addr, next, nodes,
 | |
| 				    flags, private))
 | |
| 			return -EIO;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 | |
| 		unsigned long addr, unsigned long end,
 | |
| 		const nodemask_t *nodes, unsigned long flags,
 | |
| 		void *private)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		if (check_pmd_range(vma, pud, addr, next, nodes,
 | |
| 				    flags, private))
 | |
| 			return -EIO;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int check_pgd_range(struct vm_area_struct *vma,
 | |
| 		unsigned long addr, unsigned long end,
 | |
| 		const nodemask_t *nodes, unsigned long flags,
 | |
| 		void *private)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		if (check_pud_range(vma, pgd, addr, next, nodes,
 | |
| 				    flags, private))
 | |
| 			return -EIO;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if all pages in a range are on a set of nodes.
 | |
|  * If pagelist != NULL then isolate pages from the LRU and
 | |
|  * put them on the pagelist.
 | |
|  */
 | |
| static struct vm_area_struct *
 | |
| check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 | |
| 		const nodemask_t *nodes, unsigned long flags, void *private)
 | |
| {
 | |
| 	int err;
 | |
| 	struct vm_area_struct *first, *vma, *prev;
 | |
| 
 | |
| 
 | |
| 	first = find_vma(mm, start);
 | |
| 	if (!first)
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	prev = NULL;
 | |
| 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 | |
| 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 | |
| 			if (!vma->vm_next && vma->vm_end < end)
 | |
| 				return ERR_PTR(-EFAULT);
 | |
| 			if (prev && prev->vm_end < vma->vm_start)
 | |
| 				return ERR_PTR(-EFAULT);
 | |
| 		}
 | |
| 		if (!is_vm_hugetlb_page(vma) &&
 | |
| 		    ((flags & MPOL_MF_STRICT) ||
 | |
| 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 | |
| 				vma_migratable(vma)))) {
 | |
| 			unsigned long endvma = vma->vm_end;
 | |
| 
 | |
| 			if (endvma > end)
 | |
| 				endvma = end;
 | |
| 			if (vma->vm_start > start)
 | |
| 				start = vma->vm_start;
 | |
| 			err = check_pgd_range(vma, start, endvma, nodes,
 | |
| 						flags, private);
 | |
| 			if (err) {
 | |
| 				first = ERR_PTR(err);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		prev = vma;
 | |
| 	}
 | |
| 	return first;
 | |
| }
 | |
| 
 | |
| /* Apply policy to a single VMA */
 | |
| static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct mempolicy *old = vma->vm_policy;
 | |
| 
 | |
| 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 | |
| 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 | |
| 		 vma->vm_ops, vma->vm_file,
 | |
| 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 | |
| 
 | |
| 	if (vma->vm_ops && vma->vm_ops->set_policy)
 | |
| 		err = vma->vm_ops->set_policy(vma, new);
 | |
| 	if (!err) {
 | |
| 		mpol_get(new);
 | |
| 		vma->vm_policy = new;
 | |
| 		mpol_put(old);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Step 2: apply policy to a range and do splits. */
 | |
| static int mbind_range(struct mm_struct *mm, unsigned long start,
 | |
| 		       unsigned long end, struct mempolicy *new_pol)
 | |
| {
 | |
| 	struct vm_area_struct *next;
 | |
| 	struct vm_area_struct *prev;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int err = 0;
 | |
| 	pgoff_t pgoff;
 | |
| 	unsigned long vmstart;
 | |
| 	unsigned long vmend;
 | |
| 
 | |
| 	vma = find_vma_prev(mm, start, &prev);
 | |
| 	if (!vma || vma->vm_start > start)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 | |
| 		next = vma->vm_next;
 | |
| 		vmstart = max(start, vma->vm_start);
 | |
| 		vmend   = min(end, vma->vm_end);
 | |
| 
 | |
| 		pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 | |
| 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 | |
| 				  vma->anon_vma, vma->vm_file, pgoff, new_pol);
 | |
| 		if (prev) {
 | |
| 			vma = prev;
 | |
| 			next = vma->vm_next;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (vma->vm_start != vmstart) {
 | |
| 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		if (vma->vm_end != vmend) {
 | |
| 			err = split_vma(vma->vm_mm, vma, vmend, 0);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		err = policy_vma(vma, new_pol);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update task->flags PF_MEMPOLICY bit: set iff non-default
 | |
|  * mempolicy.  Allows more rapid checking of this (combined perhaps
 | |
|  * with other PF_* flag bits) on memory allocation hot code paths.
 | |
|  *
 | |
|  * If called from outside this file, the task 'p' should -only- be
 | |
|  * a newly forked child not yet visible on the task list, because
 | |
|  * manipulating the task flags of a visible task is not safe.
 | |
|  *
 | |
|  * The above limitation is why this routine has the funny name
 | |
|  * mpol_fix_fork_child_flag().
 | |
|  *
 | |
|  * It is also safe to call this with a task pointer of current,
 | |
|  * which the static wrapper mpol_set_task_struct_flag() does,
 | |
|  * for use within this file.
 | |
|  */
 | |
| 
 | |
| void mpol_fix_fork_child_flag(struct task_struct *p)
 | |
| {
 | |
| 	if (p->mempolicy)
 | |
| 		p->flags |= PF_MEMPOLICY;
 | |
| 	else
 | |
| 		p->flags &= ~PF_MEMPOLICY;
 | |
| }
 | |
| 
 | |
| static void mpol_set_task_struct_flag(void)
 | |
| {
 | |
| 	mpol_fix_fork_child_flag(current);
 | |
| }
 | |
| 
 | |
| /* Set the process memory policy */
 | |
| static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 | |
| 			     nodemask_t *nodes)
 | |
| {
 | |
| 	struct mempolicy *new, *old;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	NODEMASK_SCRATCH(scratch);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!scratch)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	new = mpol_new(mode, flags, nodes);
 | |
| 	if (IS_ERR(new)) {
 | |
| 		ret = PTR_ERR(new);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * prevent changing our mempolicy while show_numa_maps()
 | |
| 	 * is using it.
 | |
| 	 * Note:  do_set_mempolicy() can be called at init time
 | |
| 	 * with no 'mm'.
 | |
| 	 */
 | |
| 	if (mm)
 | |
| 		down_write(&mm->mmap_sem);
 | |
| 	task_lock(current);
 | |
| 	ret = mpol_set_nodemask(new, nodes, scratch);
 | |
| 	if (ret) {
 | |
| 		task_unlock(current);
 | |
| 		if (mm)
 | |
| 			up_write(&mm->mmap_sem);
 | |
| 		mpol_put(new);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	old = current->mempolicy;
 | |
| 	current->mempolicy = new;
 | |
| 	mpol_set_task_struct_flag();
 | |
| 	if (new && new->mode == MPOL_INTERLEAVE &&
 | |
| 	    nodes_weight(new->v.nodes))
 | |
| 		current->il_next = first_node(new->v.nodes);
 | |
| 	task_unlock(current);
 | |
| 	if (mm)
 | |
| 		up_write(&mm->mmap_sem);
 | |
| 
 | |
| 	mpol_put(old);
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	NODEMASK_SCRATCH_FREE(scratch);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return nodemask for policy for get_mempolicy() query
 | |
|  *
 | |
|  * Called with task's alloc_lock held
 | |
|  */
 | |
| static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 | |
| {
 | |
| 	nodes_clear(*nodes);
 | |
| 	if (p == &default_policy)
 | |
| 		return;
 | |
| 
 | |
| 	switch (p->mode) {
 | |
| 	case MPOL_BIND:
 | |
| 		/* Fall through */
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		*nodes = p->v.nodes;
 | |
| 		break;
 | |
| 	case MPOL_PREFERRED:
 | |
| 		if (!(p->flags & MPOL_F_LOCAL))
 | |
| 			node_set(p->v.preferred_node, *nodes);
 | |
| 		/* else return empty node mask for local allocation */
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int lookup_node(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	struct page *p;
 | |
| 	int err;
 | |
| 
 | |
| 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 | |
| 	if (err >= 0) {
 | |
| 		err = page_to_nid(p);
 | |
| 		put_page(p);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Retrieve NUMA policy */
 | |
| static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 | |
| 			     unsigned long addr, unsigned long flags)
 | |
| {
 | |
| 	int err;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *vma = NULL;
 | |
| 	struct mempolicy *pol = current->mempolicy;
 | |
| 
 | |
| 	if (flags &
 | |
| 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (flags & MPOL_F_MEMS_ALLOWED) {
 | |
| 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 | |
| 			return -EINVAL;
 | |
| 		*policy = 0;	/* just so it's initialized */
 | |
| 		task_lock(current);
 | |
| 		*nmask  = cpuset_current_mems_allowed;
 | |
| 		task_unlock(current);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & MPOL_F_ADDR) {
 | |
| 		/*
 | |
| 		 * Do NOT fall back to task policy if the
 | |
| 		 * vma/shared policy at addr is NULL.  We
 | |
| 		 * want to return MPOL_DEFAULT in this case.
 | |
| 		 */
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 		vma = find_vma_intersection(mm, addr, addr+1);
 | |
| 		if (!vma) {
 | |
| 			up_read(&mm->mmap_sem);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		if (vma->vm_ops && vma->vm_ops->get_policy)
 | |
| 			pol = vma->vm_ops->get_policy(vma, addr);
 | |
| 		else
 | |
| 			pol = vma->vm_policy;
 | |
| 	} else if (addr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!pol)
 | |
| 		pol = &default_policy;	/* indicates default behavior */
 | |
| 
 | |
| 	if (flags & MPOL_F_NODE) {
 | |
| 		if (flags & MPOL_F_ADDR) {
 | |
| 			err = lookup_node(mm, addr);
 | |
| 			if (err < 0)
 | |
| 				goto out;
 | |
| 			*policy = err;
 | |
| 		} else if (pol == current->mempolicy &&
 | |
| 				pol->mode == MPOL_INTERLEAVE) {
 | |
| 			*policy = current->il_next;
 | |
| 		} else {
 | |
| 			err = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		*policy = pol == &default_policy ? MPOL_DEFAULT :
 | |
| 						pol->mode;
 | |
| 		/*
 | |
| 		 * Internal mempolicy flags must be masked off before exposing
 | |
| 		 * the policy to userspace.
 | |
| 		 */
 | |
| 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 | |
| 	}
 | |
| 
 | |
| 	if (vma) {
 | |
| 		up_read(¤t->mm->mmap_sem);
 | |
| 		vma = NULL;
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (nmask) {
 | |
| 		if (mpol_store_user_nodemask(pol)) {
 | |
| 			*nmask = pol->w.user_nodemask;
 | |
| 		} else {
 | |
| 			task_lock(current);
 | |
| 			get_policy_nodemask(pol, nmask);
 | |
| 			task_unlock(current);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	mpol_cond_put(pol);
 | |
| 	if (vma)
 | |
| 		up_read(¤t->mm->mmap_sem);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| /*
 | |
|  * page migration
 | |
|  */
 | |
| static void migrate_page_add(struct page *page, struct list_head *pagelist,
 | |
| 				unsigned long flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Avoid migrating a page that is shared with others.
 | |
| 	 */
 | |
| 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 | |
| 		if (!isolate_lru_page(page)) {
 | |
| 			list_add_tail(&page->lru, pagelist);
 | |
| 			inc_zone_page_state(page, NR_ISOLATED_ANON +
 | |
| 					    page_is_file_cache(page));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 | |
| {
 | |
| 	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Migrate pages from one node to a target node.
 | |
|  * Returns error or the number of pages not migrated.
 | |
|  */
 | |
| static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 | |
| 			   int flags)
 | |
| {
 | |
| 	nodemask_t nmask;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	nodes_clear(nmask);
 | |
| 	node_set(source, nmask);
 | |
| 
 | |
| 	check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 | |
| 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 | |
| 
 | |
| 	if (!list_empty(&pagelist))
 | |
| 		err = migrate_pages(&pagelist, new_node_page, dest, 0);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move pages between the two nodesets so as to preserve the physical
 | |
|  * layout as much as possible.
 | |
|  *
 | |
|  * Returns the number of page that could not be moved.
 | |
|  */
 | |
| int do_migrate_pages(struct mm_struct *mm,
 | |
| 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 | |
| {
 | |
| 	int busy = 0;
 | |
| 	int err;
 | |
| 	nodemask_t tmp;
 | |
| 
 | |
| 	err = migrate_prep();
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 
 | |
| 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 | |
| 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 | |
| 	 * bit in 'tmp', and return that <source, dest> pair for migration.
 | |
| 	 * The pair of nodemasks 'to' and 'from' define the map.
 | |
| 	 *
 | |
| 	 * If no pair of bits is found that way, fallback to picking some
 | |
| 	 * pair of 'source' and 'dest' bits that are not the same.  If the
 | |
| 	 * 'source' and 'dest' bits are the same, this represents a node
 | |
| 	 * that will be migrating to itself, so no pages need move.
 | |
| 	 *
 | |
| 	 * If no bits are left in 'tmp', or if all remaining bits left
 | |
| 	 * in 'tmp' correspond to the same bit in 'to', return false
 | |
| 	 * (nothing left to migrate).
 | |
| 	 *
 | |
| 	 * This lets us pick a pair of nodes to migrate between, such that
 | |
| 	 * if possible the dest node is not already occupied by some other
 | |
| 	 * source node, minimizing the risk of overloading the memory on a
 | |
| 	 * node that would happen if we migrated incoming memory to a node
 | |
| 	 * before migrating outgoing memory source that same node.
 | |
| 	 *
 | |
| 	 * A single scan of tmp is sufficient.  As we go, we remember the
 | |
| 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
 | |
| 	 * that not only moved, but what's better, moved to an empty slot
 | |
| 	 * (d is not set in tmp), then we break out then, with that pair.
 | |
| 	 * Otherwise when we finish scannng from_tmp, we at least have the
 | |
| 	 * most recent <s, d> pair that moved.  If we get all the way through
 | |
| 	 * the scan of tmp without finding any node that moved, much less
 | |
| 	 * moved to an empty node, then there is nothing left worth migrating.
 | |
| 	 */
 | |
| 
 | |
| 	tmp = *from_nodes;
 | |
| 	while (!nodes_empty(tmp)) {
 | |
| 		int s,d;
 | |
| 		int source = -1;
 | |
| 		int dest = 0;
 | |
| 
 | |
| 		for_each_node_mask(s, tmp) {
 | |
| 			d = node_remap(s, *from_nodes, *to_nodes);
 | |
| 			if (s == d)
 | |
| 				continue;
 | |
| 
 | |
| 			source = s;	/* Node moved. Memorize */
 | |
| 			dest = d;
 | |
| 
 | |
| 			/* dest not in remaining from nodes? */
 | |
| 			if (!node_isset(dest, tmp))
 | |
| 				break;
 | |
| 		}
 | |
| 		if (source == -1)
 | |
| 			break;
 | |
| 
 | |
| 		node_clear(source, tmp);
 | |
| 		err = migrate_to_node(mm, source, dest, flags);
 | |
| 		if (err > 0)
 | |
| 			busy += err;
 | |
| 		if (err < 0)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	return busy;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new page for page migration based on vma policy.
 | |
|  * Start assuming that page is mapped by vma pointed to by @private.
 | |
|  * Search forward from there, if not.  N.B., this assumes that the
 | |
|  * list of pages handed to migrate_pages()--which is how we get here--
 | |
|  * is in virtual address order.
 | |
|  */
 | |
| static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
 | |
| {
 | |
| 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
 | |
| 	unsigned long uninitialized_var(address);
 | |
| 
 | |
| 	while (vma) {
 | |
| 		address = page_address_in_vma(page, vma);
 | |
| 		if (address != -EFAULT)
 | |
| 			break;
 | |
| 		vma = vma->vm_next;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if !vma, alloc_page_vma() will use task or system default policy
 | |
| 	 */
 | |
| 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 | |
| }
 | |
| #else
 | |
| 
 | |
| static void migrate_page_add(struct page *page, struct list_head *pagelist,
 | |
| 				unsigned long flags)
 | |
| {
 | |
| }
 | |
| 
 | |
| int do_migrate_pages(struct mm_struct *mm,
 | |
| 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static long do_mbind(unsigned long start, unsigned long len,
 | |
| 		     unsigned short mode, unsigned short mode_flags,
 | |
| 		     nodemask_t *nmask, unsigned long flags)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct mempolicy *new;
 | |
| 	unsigned long end;
 | |
| 	int err;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 
 | |
| 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
 | |
| 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 | |
| 		return -EINVAL;
 | |
| 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (start & ~PAGE_MASK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (mode == MPOL_DEFAULT)
 | |
| 		flags &= ~MPOL_MF_STRICT;
 | |
| 
 | |
| 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
 | |
| 	end = start + len;
 | |
| 
 | |
| 	if (end < start)
 | |
| 		return -EINVAL;
 | |
| 	if (end == start)
 | |
| 		return 0;
 | |
| 
 | |
| 	new = mpol_new(mode, mode_flags, nmask);
 | |
| 	if (IS_ERR(new))
 | |
| 		return PTR_ERR(new);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are using the default policy then operation
 | |
| 	 * on discontinuous address spaces is okay after all
 | |
| 	 */
 | |
| 	if (!new)
 | |
| 		flags |= MPOL_MF_DISCONTIG_OK;
 | |
| 
 | |
| 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
 | |
| 		 start, start + len, mode, mode_flags,
 | |
| 		 nmask ? nodes_addr(*nmask)[0] : -1);
 | |
| 
 | |
| 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 | |
| 
 | |
| 		err = migrate_prep();
 | |
| 		if (err)
 | |
| 			goto mpol_out;
 | |
| 	}
 | |
| 	{
 | |
| 		NODEMASK_SCRATCH(scratch);
 | |
| 		if (scratch) {
 | |
| 			down_write(&mm->mmap_sem);
 | |
| 			task_lock(current);
 | |
| 			err = mpol_set_nodemask(new, nmask, scratch);
 | |
| 			task_unlock(current);
 | |
| 			if (err)
 | |
| 				up_write(&mm->mmap_sem);
 | |
| 		} else
 | |
| 			err = -ENOMEM;
 | |
| 		NODEMASK_SCRATCH_FREE(scratch);
 | |
| 	}
 | |
| 	if (err)
 | |
| 		goto mpol_out;
 | |
| 
 | |
| 	vma = check_range(mm, start, end, nmask,
 | |
| 			  flags | MPOL_MF_INVERT, &pagelist);
 | |
| 
 | |
| 	err = PTR_ERR(vma);
 | |
| 	if (!IS_ERR(vma)) {
 | |
| 		int nr_failed = 0;
 | |
| 
 | |
| 		err = mbind_range(mm, start, end, new);
 | |
| 
 | |
| 		if (!list_empty(&pagelist))
 | |
| 			nr_failed = migrate_pages(&pagelist, new_vma_page,
 | |
| 						(unsigned long)vma, 0);
 | |
| 
 | |
| 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
 | |
| 			err = -EIO;
 | |
| 	} else
 | |
| 		putback_lru_pages(&pagelist);
 | |
| 
 | |
| 	up_write(&mm->mmap_sem);
 | |
|  mpol_out:
 | |
| 	mpol_put(new);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * User space interface with variable sized bitmaps for nodelists.
 | |
|  */
 | |
| 
 | |
| /* Copy a node mask from user space. */
 | |
| static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
 | |
| 		     unsigned long maxnode)
 | |
| {
 | |
| 	unsigned long k;
 | |
| 	unsigned long nlongs;
 | |
| 	unsigned long endmask;
 | |
| 
 | |
| 	--maxnode;
 | |
| 	nodes_clear(*nodes);
 | |
| 	if (maxnode == 0 || !nmask)
 | |
| 		return 0;
 | |
| 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	nlongs = BITS_TO_LONGS(maxnode);
 | |
| 	if ((maxnode % BITS_PER_LONG) == 0)
 | |
| 		endmask = ~0UL;
 | |
| 	else
 | |
| 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
 | |
| 
 | |
| 	/* When the user specified more nodes than supported just check
 | |
| 	   if the non supported part is all zero. */
 | |
| 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
 | |
| 		if (nlongs > PAGE_SIZE/sizeof(long))
 | |
| 			return -EINVAL;
 | |
| 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
 | |
| 			unsigned long t;
 | |
| 			if (get_user(t, nmask + k))
 | |
| 				return -EFAULT;
 | |
| 			if (k == nlongs - 1) {
 | |
| 				if (t & endmask)
 | |
| 					return -EINVAL;
 | |
| 			} else if (t)
 | |
| 				return -EINVAL;
 | |
| 		}
 | |
| 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
 | |
| 		endmask = ~0UL;
 | |
| 	}
 | |
| 
 | |
| 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
 | |
| 		return -EFAULT;
 | |
| 	nodes_addr(*nodes)[nlongs-1] &= endmask;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Copy a kernel node mask to user space */
 | |
| static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
 | |
| 			      nodemask_t *nodes)
 | |
| {
 | |
| 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
 | |
| 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
 | |
| 
 | |
| 	if (copy > nbytes) {
 | |
| 		if (copy > PAGE_SIZE)
 | |
| 			return -EINVAL;
 | |
| 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
 | |
| 			return -EFAULT;
 | |
| 		copy = nbytes;
 | |
| 	}
 | |
| 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
 | |
| 		unsigned long, mode, unsigned long __user *, nmask,
 | |
| 		unsigned long, maxnode, unsigned, flags)
 | |
| {
 | |
| 	nodemask_t nodes;
 | |
| 	int err;
 | |
| 	unsigned short mode_flags;
 | |
| 
 | |
| 	mode_flags = mode & MPOL_MODE_FLAGS;
 | |
| 	mode &= ~MPOL_MODE_FLAGS;
 | |
| 	if (mode >= MPOL_MAX)
 | |
| 		return -EINVAL;
 | |
| 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
 | |
| 	    (mode_flags & MPOL_F_RELATIVE_NODES))
 | |
| 		return -EINVAL;
 | |
| 	err = get_nodes(&nodes, nmask, maxnode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
 | |
| }
 | |
| 
 | |
| /* Set the process memory policy */
 | |
| SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
 | |
| 		unsigned long, maxnode)
 | |
| {
 | |
| 	int err;
 | |
| 	nodemask_t nodes;
 | |
| 	unsigned short flags;
 | |
| 
 | |
| 	flags = mode & MPOL_MODE_FLAGS;
 | |
| 	mode &= ~MPOL_MODE_FLAGS;
 | |
| 	if ((unsigned int)mode >= MPOL_MAX)
 | |
| 		return -EINVAL;
 | |
| 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
 | |
| 		return -EINVAL;
 | |
| 	err = get_nodes(&nodes, nmask, maxnode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return do_set_mempolicy(mode, flags, &nodes);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
 | |
| 		const unsigned long __user *, old_nodes,
 | |
| 		const unsigned long __user *, new_nodes)
 | |
| {
 | |
| 	const struct cred *cred = current_cred(), *tcred;
 | |
| 	struct mm_struct *mm = NULL;
 | |
| 	struct task_struct *task;
 | |
| 	nodemask_t task_nodes;
 | |
| 	int err;
 | |
| 	nodemask_t *old;
 | |
| 	nodemask_t *new;
 | |
| 	NODEMASK_SCRATCH(scratch);
 | |
| 
 | |
| 	if (!scratch)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	old = &scratch->mask1;
 | |
| 	new = &scratch->mask2;
 | |
| 
 | |
| 	err = get_nodes(old, old_nodes, maxnode);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = get_nodes(new, new_nodes, maxnode);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Find the mm_struct */
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	task = pid ? find_task_by_vpid(pid) : current;
 | |
| 	if (!task) {
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		err = -ESRCH;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	mm = get_task_mm(task);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (!mm)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if this process has the right to modify the specified
 | |
| 	 * process. The right exists if the process has administrative
 | |
| 	 * capabilities, superuser privileges or the same
 | |
| 	 * userid as the target process.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	tcred = __task_cred(task);
 | |
| 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
 | |
| 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
 | |
| 	    !capable(CAP_SYS_NICE)) {
 | |
| 		rcu_read_unlock();
 | |
| 		err = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	task_nodes = cpuset_mems_allowed(task);
 | |
| 	/* Is the user allowed to access the target nodes? */
 | |
| 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
 | |
| 		err = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = security_task_movememory(task);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = do_migrate_pages(mm, old, new,
 | |
| 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
 | |
| out:
 | |
| 	if (mm)
 | |
| 		mmput(mm);
 | |
| 	NODEMASK_SCRATCH_FREE(scratch);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Retrieve NUMA policy */
 | |
| SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
 | |
| 		unsigned long __user *, nmask, unsigned long, maxnode,
 | |
| 		unsigned long, addr, unsigned long, flags)
 | |
| {
 | |
| 	int err;
 | |
| 	int uninitialized_var(pval);
 | |
| 	nodemask_t nodes;
 | |
| 
 | |
| 	if (nmask != NULL && maxnode < MAX_NUMNODES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (policy && put_user(pval, policy))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (nmask)
 | |
| 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| 
 | |
| asmlinkage long compat_sys_get_mempolicy(int __user *policy,
 | |
| 				     compat_ulong_t __user *nmask,
 | |
| 				     compat_ulong_t maxnode,
 | |
| 				     compat_ulong_t addr, compat_ulong_t flags)
 | |
| {
 | |
| 	long err;
 | |
| 	unsigned long __user *nm = NULL;
 | |
| 	unsigned long nr_bits, alloc_size;
 | |
| 	DECLARE_BITMAP(bm, MAX_NUMNODES);
 | |
| 
 | |
| 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
 | |
| 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
 | |
| 
 | |
| 	if (nmask)
 | |
| 		nm = compat_alloc_user_space(alloc_size);
 | |
| 
 | |
| 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
 | |
| 
 | |
| 	if (!err && nmask) {
 | |
| 		err = copy_from_user(bm, nm, alloc_size);
 | |
| 		/* ensure entire bitmap is zeroed */
 | |
| 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
 | |
| 		err |= compat_put_bitmap(nmask, bm, nr_bits);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
 | |
| 				     compat_ulong_t maxnode)
 | |
| {
 | |
| 	long err = 0;
 | |
| 	unsigned long __user *nm = NULL;
 | |
| 	unsigned long nr_bits, alloc_size;
 | |
| 	DECLARE_BITMAP(bm, MAX_NUMNODES);
 | |
| 
 | |
| 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
 | |
| 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
 | |
| 
 | |
| 	if (nmask) {
 | |
| 		err = compat_get_bitmap(bm, nmask, nr_bits);
 | |
| 		nm = compat_alloc_user_space(alloc_size);
 | |
| 		err |= copy_to_user(nm, bm, alloc_size);
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return sys_set_mempolicy(mode, nm, nr_bits+1);
 | |
| }
 | |
| 
 | |
| asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
 | |
| 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
 | |
| 			     compat_ulong_t maxnode, compat_ulong_t flags)
 | |
| {
 | |
| 	long err = 0;
 | |
| 	unsigned long __user *nm = NULL;
 | |
| 	unsigned long nr_bits, alloc_size;
 | |
| 	nodemask_t bm;
 | |
| 
 | |
| 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
 | |
| 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
 | |
| 
 | |
| 	if (nmask) {
 | |
| 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
 | |
| 		nm = compat_alloc_user_space(alloc_size);
 | |
| 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * get_vma_policy(@task, @vma, @addr)
 | |
|  * @task - task for fallback if vma policy == default
 | |
|  * @vma   - virtual memory area whose policy is sought
 | |
|  * @addr  - address in @vma for shared policy lookup
 | |
|  *
 | |
|  * Returns effective policy for a VMA at specified address.
 | |
|  * Falls back to @task or system default policy, as necessary.
 | |
|  * Current or other task's task mempolicy and non-shared vma policies
 | |
|  * are protected by the task's mmap_sem, which must be held for read by
 | |
|  * the caller.
 | |
|  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
 | |
|  * count--added by the get_policy() vm_op, as appropriate--to protect against
 | |
|  * freeing by another task.  It is the caller's responsibility to free the
 | |
|  * extra reference for shared policies.
 | |
|  */
 | |
| static struct mempolicy *get_vma_policy(struct task_struct *task,
 | |
| 		struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	struct mempolicy *pol = task->mempolicy;
 | |
| 
 | |
| 	if (vma) {
 | |
| 		if (vma->vm_ops && vma->vm_ops->get_policy) {
 | |
| 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
 | |
| 									addr);
 | |
| 			if (vpol)
 | |
| 				pol = vpol;
 | |
| 		} else if (vma->vm_policy)
 | |
| 			pol = vma->vm_policy;
 | |
| 	}
 | |
| 	if (!pol)
 | |
| 		pol = &default_policy;
 | |
| 	return pol;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a nodemask representing a mempolicy for filtering nodes for
 | |
|  * page allocation
 | |
|  */
 | |
| static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
 | |
| {
 | |
| 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
 | |
| 	if (unlikely(policy->mode == MPOL_BIND) &&
 | |
| 			gfp_zone(gfp) >= policy_zone &&
 | |
| 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
 | |
| 		return &policy->v.nodes;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Return a zonelist indicated by gfp for node representing a mempolicy */
 | |
| static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
 | |
| {
 | |
| 	int nd = numa_node_id();
 | |
| 
 | |
| 	switch (policy->mode) {
 | |
| 	case MPOL_PREFERRED:
 | |
| 		if (!(policy->flags & MPOL_F_LOCAL))
 | |
| 			nd = policy->v.preferred_node;
 | |
| 		break;
 | |
| 	case MPOL_BIND:
 | |
| 		/*
 | |
| 		 * Normally, MPOL_BIND allocations are node-local within the
 | |
| 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
 | |
| 		 * current node isn't part of the mask, we use the zonelist for
 | |
| 		 * the first node in the mask instead.
 | |
| 		 */
 | |
| 		if (unlikely(gfp & __GFP_THISNODE) &&
 | |
| 				unlikely(!node_isset(nd, policy->v.nodes)))
 | |
| 			nd = first_node(policy->v.nodes);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 	return node_zonelist(nd, gfp);
 | |
| }
 | |
| 
 | |
| /* Do dynamic interleaving for a process */
 | |
| static unsigned interleave_nodes(struct mempolicy *policy)
 | |
| {
 | |
| 	unsigned nid, next;
 | |
| 	struct task_struct *me = current;
 | |
| 
 | |
| 	nid = me->il_next;
 | |
| 	next = next_node(nid, policy->v.nodes);
 | |
| 	if (next >= MAX_NUMNODES)
 | |
| 		next = first_node(policy->v.nodes);
 | |
| 	if (next < MAX_NUMNODES)
 | |
| 		me->il_next = next;
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Depending on the memory policy provide a node from which to allocate the
 | |
|  * next slab entry.
 | |
|  * @policy must be protected by freeing by the caller.  If @policy is
 | |
|  * the current task's mempolicy, this protection is implicit, as only the
 | |
|  * task can change it's policy.  The system default policy requires no
 | |
|  * such protection.
 | |
|  */
 | |
| unsigned slab_node(struct mempolicy *policy)
 | |
| {
 | |
| 	if (!policy || policy->flags & MPOL_F_LOCAL)
 | |
| 		return numa_node_id();
 | |
| 
 | |
| 	switch (policy->mode) {
 | |
| 	case MPOL_PREFERRED:
 | |
| 		/*
 | |
| 		 * handled MPOL_F_LOCAL above
 | |
| 		 */
 | |
| 		return policy->v.preferred_node;
 | |
| 
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		return interleave_nodes(policy);
 | |
| 
 | |
| 	case MPOL_BIND: {
 | |
| 		/*
 | |
| 		 * Follow bind policy behavior and start allocation at the
 | |
| 		 * first node.
 | |
| 		 */
 | |
| 		struct zonelist *zonelist;
 | |
| 		struct zone *zone;
 | |
| 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
 | |
| 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
 | |
| 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
 | |
| 							&policy->v.nodes,
 | |
| 							&zone);
 | |
| 		return zone->node;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Do static interleaving for a VMA with known offset. */
 | |
| static unsigned offset_il_node(struct mempolicy *pol,
 | |
| 		struct vm_area_struct *vma, unsigned long off)
 | |
| {
 | |
| 	unsigned nnodes = nodes_weight(pol->v.nodes);
 | |
| 	unsigned target;
 | |
| 	int c;
 | |
| 	int nid = -1;
 | |
| 
 | |
| 	if (!nnodes)
 | |
| 		return numa_node_id();
 | |
| 	target = (unsigned int)off % nnodes;
 | |
| 	c = 0;
 | |
| 	do {
 | |
| 		nid = next_node(nid, pol->v.nodes);
 | |
| 		c++;
 | |
| 	} while (c <= target);
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /* Determine a node number for interleave */
 | |
| static inline unsigned interleave_nid(struct mempolicy *pol,
 | |
| 		 struct vm_area_struct *vma, unsigned long addr, int shift)
 | |
| {
 | |
| 	if (vma) {
 | |
| 		unsigned long off;
 | |
| 
 | |
| 		/*
 | |
| 		 * for small pages, there is no difference between
 | |
| 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
 | |
| 		 * for huge pages, since vm_pgoff is in units of small
 | |
| 		 * pages, we need to shift off the always 0 bits to get
 | |
| 		 * a useful offset.
 | |
| 		 */
 | |
| 		BUG_ON(shift < PAGE_SHIFT);
 | |
| 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
 | |
| 		off += (addr - vma->vm_start) >> shift;
 | |
| 		return offset_il_node(pol, vma, off);
 | |
| 	} else
 | |
| 		return interleave_nodes(pol);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLBFS
 | |
| /*
 | |
|  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
 | |
|  * @vma = virtual memory area whose policy is sought
 | |
|  * @addr = address in @vma for shared policy lookup and interleave policy
 | |
|  * @gfp_flags = for requested zone
 | |
|  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
 | |
|  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
 | |
|  *
 | |
|  * Returns a zonelist suitable for a huge page allocation and a pointer
 | |
|  * to the struct mempolicy for conditional unref after allocation.
 | |
|  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
 | |
|  * @nodemask for filtering the zonelist.
 | |
|  *
 | |
|  * Must be protected by get_mems_allowed()
 | |
|  */
 | |
| struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
 | |
| 				gfp_t gfp_flags, struct mempolicy **mpol,
 | |
| 				nodemask_t **nodemask)
 | |
| {
 | |
| 	struct zonelist *zl;
 | |
| 
 | |
| 	*mpol = get_vma_policy(current, vma, addr);
 | |
| 	*nodemask = NULL;	/* assume !MPOL_BIND */
 | |
| 
 | |
| 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
 | |
| 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
 | |
| 				huge_page_shift(hstate_vma(vma))), gfp_flags);
 | |
| 	} else {
 | |
| 		zl = policy_zonelist(gfp_flags, *mpol);
 | |
| 		if ((*mpol)->mode == MPOL_BIND)
 | |
| 			*nodemask = &(*mpol)->v.nodes;
 | |
| 	}
 | |
| 	return zl;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * init_nodemask_of_mempolicy
 | |
|  *
 | |
|  * If the current task's mempolicy is "default" [NULL], return 'false'
 | |
|  * to indicate default policy.  Otherwise, extract the policy nodemask
 | |
|  * for 'bind' or 'interleave' policy into the argument nodemask, or
 | |
|  * initialize the argument nodemask to contain the single node for
 | |
|  * 'preferred' or 'local' policy and return 'true' to indicate presence
 | |
|  * of non-default mempolicy.
 | |
|  *
 | |
|  * We don't bother with reference counting the mempolicy [mpol_get/put]
 | |
|  * because the current task is examining it's own mempolicy and a task's
 | |
|  * mempolicy is only ever changed by the task itself.
 | |
|  *
 | |
|  * N.B., it is the caller's responsibility to free a returned nodemask.
 | |
|  */
 | |
| bool init_nodemask_of_mempolicy(nodemask_t *mask)
 | |
| {
 | |
| 	struct mempolicy *mempolicy;
 | |
| 	int nid;
 | |
| 
 | |
| 	if (!(mask && current->mempolicy))
 | |
| 		return false;
 | |
| 
 | |
| 	task_lock(current);
 | |
| 	mempolicy = current->mempolicy;
 | |
| 	switch (mempolicy->mode) {
 | |
| 	case MPOL_PREFERRED:
 | |
| 		if (mempolicy->flags & MPOL_F_LOCAL)
 | |
| 			nid = numa_node_id();
 | |
| 		else
 | |
| 			nid = mempolicy->v.preferred_node;
 | |
| 		init_nodemask_of_node(mask, nid);
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_BIND:
 | |
| 		/* Fall through */
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		*mask =  mempolicy->v.nodes;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 	task_unlock(current);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * mempolicy_nodemask_intersects
 | |
|  *
 | |
|  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
 | |
|  * policy.  Otherwise, check for intersection between mask and the policy
 | |
|  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
 | |
|  * policy, always return true since it may allocate elsewhere on fallback.
 | |
|  *
 | |
|  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
 | |
|  */
 | |
| bool mempolicy_nodemask_intersects(struct task_struct *tsk,
 | |
| 					const nodemask_t *mask)
 | |
| {
 | |
| 	struct mempolicy *mempolicy;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	if (!mask)
 | |
| 		return ret;
 | |
| 	task_lock(tsk);
 | |
| 	mempolicy = tsk->mempolicy;
 | |
| 	if (!mempolicy)
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (mempolicy->mode) {
 | |
| 	case MPOL_PREFERRED:
 | |
| 		/*
 | |
| 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
 | |
| 		 * allocate from, they may fallback to other nodes when oom.
 | |
| 		 * Thus, it's possible for tsk to have allocated memory from
 | |
| 		 * nodes in mask.
 | |
| 		 */
 | |
| 		break;
 | |
| 	case MPOL_BIND:
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| out:
 | |
| 	task_unlock(tsk);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Allocate a page in interleaved policy.
 | |
|    Own path because it needs to do special accounting. */
 | |
| static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
 | |
| 					unsigned nid)
 | |
| {
 | |
| 	struct zonelist *zl;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	zl = node_zonelist(nid, gfp);
 | |
| 	page = __alloc_pages(gfp, order, zl);
 | |
| 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
 | |
| 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 	alloc_page_vma	- Allocate a page for a VMA.
 | |
|  *
 | |
|  * 	@gfp:
 | |
|  *      %GFP_USER    user allocation.
 | |
|  *      %GFP_KERNEL  kernel allocations,
 | |
|  *      %GFP_HIGHMEM highmem/user allocations,
 | |
|  *      %GFP_FS      allocation should not call back into a file system.
 | |
|  *      %GFP_ATOMIC  don't sleep.
 | |
|  *
 | |
|  * 	@vma:  Pointer to VMA or NULL if not available.
 | |
|  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
 | |
|  *
 | |
|  * 	This function allocates a page from the kernel page pool and applies
 | |
|  *	a NUMA policy associated with the VMA or the current process.
 | |
|  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
 | |
|  *	mm_struct of the VMA to prevent it from going away. Should be used for
 | |
|  *	all allocations for pages that will be mapped into
 | |
|  * 	user space. Returns NULL when no page can be allocated.
 | |
|  *
 | |
|  *	Should be called with the mm_sem of the vma hold.
 | |
|  */
 | |
| struct page *
 | |
| alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
 | |
| 	struct zonelist *zl;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	get_mems_allowed();
 | |
| 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
 | |
| 		unsigned nid;
 | |
| 
 | |
| 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
 | |
| 		mpol_cond_put(pol);
 | |
| 		page = alloc_page_interleave(gfp, 0, nid);
 | |
| 		put_mems_allowed();
 | |
| 		return page;
 | |
| 	}
 | |
| 	zl = policy_zonelist(gfp, pol);
 | |
| 	if (unlikely(mpol_needs_cond_ref(pol))) {
 | |
| 		/*
 | |
| 		 * slow path: ref counted shared policy
 | |
| 		 */
 | |
| 		struct page *page =  __alloc_pages_nodemask(gfp, 0,
 | |
| 						zl, policy_nodemask(gfp, pol));
 | |
| 		__mpol_put(pol);
 | |
| 		put_mems_allowed();
 | |
| 		return page;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * fast path:  default or task policy
 | |
| 	 */
 | |
| 	page = __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
 | |
| 	put_mems_allowed();
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 	alloc_pages_current - Allocate pages.
 | |
|  *
 | |
|  *	@gfp:
 | |
|  *		%GFP_USER   user allocation,
 | |
|  *      	%GFP_KERNEL kernel allocation,
 | |
|  *      	%GFP_HIGHMEM highmem allocation,
 | |
|  *      	%GFP_FS     don't call back into a file system.
 | |
|  *      	%GFP_ATOMIC don't sleep.
 | |
|  *	@order: Power of two of allocation size in pages. 0 is a single page.
 | |
|  *
 | |
|  *	Allocate a page from the kernel page pool.  When not in
 | |
|  *	interrupt context and apply the current process NUMA policy.
 | |
|  *	Returns NULL when no page can be allocated.
 | |
|  *
 | |
|  *	Don't call cpuset_update_task_memory_state() unless
 | |
|  *	1) it's ok to take cpuset_sem (can WAIT), and
 | |
|  *	2) allocating for current task (not interrupt).
 | |
|  */
 | |
| struct page *alloc_pages_current(gfp_t gfp, unsigned order)
 | |
| {
 | |
| 	struct mempolicy *pol = current->mempolicy;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
 | |
| 		pol = &default_policy;
 | |
| 
 | |
| 	get_mems_allowed();
 | |
| 	/*
 | |
| 	 * No reference counting needed for current->mempolicy
 | |
| 	 * nor system default_policy
 | |
| 	 */
 | |
| 	if (pol->mode == MPOL_INTERLEAVE)
 | |
| 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
 | |
| 	else
 | |
| 		page = __alloc_pages_nodemask(gfp, order,
 | |
| 			policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
 | |
| 	put_mems_allowed();
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(alloc_pages_current);
 | |
| 
 | |
| /*
 | |
|  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
 | |
|  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
 | |
|  * with the mems_allowed returned by cpuset_mems_allowed().  This
 | |
|  * keeps mempolicies cpuset relative after its cpuset moves.  See
 | |
|  * further kernel/cpuset.c update_nodemask().
 | |
|  *
 | |
|  * current's mempolicy may be rebinded by the other task(the task that changes
 | |
|  * cpuset's mems), so we needn't do rebind work for current task.
 | |
|  */
 | |
| 
 | |
| /* Slow path of a mempolicy duplicate */
 | |
| struct mempolicy *__mpol_dup(struct mempolicy *old)
 | |
| {
 | |
| 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 | |
| 
 | |
| 	if (!new)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/* task's mempolicy is protected by alloc_lock */
 | |
| 	if (old == current->mempolicy) {
 | |
| 		task_lock(current);
 | |
| 		*new = *old;
 | |
| 		task_unlock(current);
 | |
| 	} else
 | |
| 		*new = *old;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (current_cpuset_is_being_rebound()) {
 | |
| 		nodemask_t mems = cpuset_mems_allowed(current);
 | |
| 		if (new->flags & MPOL_F_REBINDING)
 | |
| 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
 | |
| 		else
 | |
| 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	atomic_set(&new->refcnt, 1);
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
 | |
|  * eliminate the * MPOL_F_* flags that require conditional ref and
 | |
|  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
 | |
|  * after return.  Use the returned value.
 | |
|  *
 | |
|  * Allows use of a mempolicy for, e.g., multiple allocations with a single
 | |
|  * policy lookup, even if the policy needs/has extra ref on lookup.
 | |
|  * shmem_readahead needs this.
 | |
|  */
 | |
| struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
 | |
| 						struct mempolicy *frompol)
 | |
| {
 | |
| 	if (!mpol_needs_cond_ref(frompol))
 | |
| 		return frompol;
 | |
| 
 | |
| 	*tompol = *frompol;
 | |
| 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
 | |
| 	__mpol_put(frompol);
 | |
| 	return tompol;
 | |
| }
 | |
| 
 | |
| /* Slow path of a mempolicy comparison */
 | |
| int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
 | |
| {
 | |
| 	if (!a || !b)
 | |
| 		return 0;
 | |
| 	if (a->mode != b->mode)
 | |
| 		return 0;
 | |
| 	if (a->flags != b->flags)
 | |
| 		return 0;
 | |
| 	if (mpol_store_user_nodemask(a))
 | |
| 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
 | |
| 			return 0;
 | |
| 
 | |
| 	switch (a->mode) {
 | |
| 	case MPOL_BIND:
 | |
| 		/* Fall through */
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		return nodes_equal(a->v.nodes, b->v.nodes);
 | |
| 	case MPOL_PREFERRED:
 | |
| 		return a->v.preferred_node == b->v.preferred_node &&
 | |
| 			a->flags == b->flags;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shared memory backing store policy support.
 | |
|  *
 | |
|  * Remember policies even when nobody has shared memory mapped.
 | |
|  * The policies are kept in Red-Black tree linked from the inode.
 | |
|  * They are protected by the sp->lock spinlock, which should be held
 | |
|  * for any accesses to the tree.
 | |
|  */
 | |
| 
 | |
| /* lookup first element intersecting start-end */
 | |
| /* Caller holds sp->lock */
 | |
| static struct sp_node *
 | |
| sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	struct rb_node *n = sp->root.rb_node;
 | |
| 
 | |
| 	while (n) {
 | |
| 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
 | |
| 
 | |
| 		if (start >= p->end)
 | |
| 			n = n->rb_right;
 | |
| 		else if (end <= p->start)
 | |
| 			n = n->rb_left;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 	for (;;) {
 | |
| 		struct sp_node *w = NULL;
 | |
| 		struct rb_node *prev = rb_prev(n);
 | |
| 		if (!prev)
 | |
| 			break;
 | |
| 		w = rb_entry(prev, struct sp_node, nd);
 | |
| 		if (w->end <= start)
 | |
| 			break;
 | |
| 		n = prev;
 | |
| 	}
 | |
| 	return rb_entry(n, struct sp_node, nd);
 | |
| }
 | |
| 
 | |
| /* Insert a new shared policy into the list. */
 | |
| /* Caller holds sp->lock */
 | |
| static void sp_insert(struct shared_policy *sp, struct sp_node *new)
 | |
| {
 | |
| 	struct rb_node **p = &sp->root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct sp_node *nd;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		nd = rb_entry(parent, struct sp_node, nd);
 | |
| 		if (new->start < nd->start)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (new->end > nd->end)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| 	rb_link_node(&new->nd, parent, p);
 | |
| 	rb_insert_color(&new->nd, &sp->root);
 | |
| 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
 | |
| 		 new->policy ? new->policy->mode : 0);
 | |
| }
 | |
| 
 | |
| /* Find shared policy intersecting idx */
 | |
| struct mempolicy *
 | |
| mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
 | |
| {
 | |
| 	struct mempolicy *pol = NULL;
 | |
| 	struct sp_node *sn;
 | |
| 
 | |
| 	if (!sp->root.rb_node)
 | |
| 		return NULL;
 | |
| 	spin_lock(&sp->lock);
 | |
| 	sn = sp_lookup(sp, idx, idx+1);
 | |
| 	if (sn) {
 | |
| 		mpol_get(sn->policy);
 | |
| 		pol = sn->policy;
 | |
| 	}
 | |
| 	spin_unlock(&sp->lock);
 | |
| 	return pol;
 | |
| }
 | |
| 
 | |
| static void sp_delete(struct shared_policy *sp, struct sp_node *n)
 | |
| {
 | |
| 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
 | |
| 	rb_erase(&n->nd, &sp->root);
 | |
| 	mpol_put(n->policy);
 | |
| 	kmem_cache_free(sn_cache, n);
 | |
| }
 | |
| 
 | |
| static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
 | |
| 				struct mempolicy *pol)
 | |
| {
 | |
| 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
 | |
| 
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 	n->start = start;
 | |
| 	n->end = end;
 | |
| 	mpol_get(pol);
 | |
| 	pol->flags |= MPOL_F_SHARED;	/* for unref */
 | |
| 	n->policy = pol;
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| /* Replace a policy range. */
 | |
| static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
 | |
| 				 unsigned long end, struct sp_node *new)
 | |
| {
 | |
| 	struct sp_node *n, *new2 = NULL;
 | |
| 
 | |
| restart:
 | |
| 	spin_lock(&sp->lock);
 | |
| 	n = sp_lookup(sp, start, end);
 | |
| 	/* Take care of old policies in the same range. */
 | |
| 	while (n && n->start < end) {
 | |
| 		struct rb_node *next = rb_next(&n->nd);
 | |
| 		if (n->start >= start) {
 | |
| 			if (n->end <= end)
 | |
| 				sp_delete(sp, n);
 | |
| 			else
 | |
| 				n->start = end;
 | |
| 		} else {
 | |
| 			/* Old policy spanning whole new range. */
 | |
| 			if (n->end > end) {
 | |
| 				if (!new2) {
 | |
| 					spin_unlock(&sp->lock);
 | |
| 					new2 = sp_alloc(end, n->end, n->policy);
 | |
| 					if (!new2)
 | |
| 						return -ENOMEM;
 | |
| 					goto restart;
 | |
| 				}
 | |
| 				n->end = start;
 | |
| 				sp_insert(sp, new2);
 | |
| 				new2 = NULL;
 | |
| 				break;
 | |
| 			} else
 | |
| 				n->end = start;
 | |
| 		}
 | |
| 		if (!next)
 | |
| 			break;
 | |
| 		n = rb_entry(next, struct sp_node, nd);
 | |
| 	}
 | |
| 	if (new)
 | |
| 		sp_insert(sp, new);
 | |
| 	spin_unlock(&sp->lock);
 | |
| 	if (new2) {
 | |
| 		mpol_put(new2->policy);
 | |
| 		kmem_cache_free(sn_cache, new2);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mpol_shared_policy_init - initialize shared policy for inode
 | |
|  * @sp: pointer to inode shared policy
 | |
|  * @mpol:  struct mempolicy to install
 | |
|  *
 | |
|  * Install non-NULL @mpol in inode's shared policy rb-tree.
 | |
|  * On entry, the current task has a reference on a non-NULL @mpol.
 | |
|  * This must be released on exit.
 | |
|  * This is called at get_inode() calls and we can use GFP_KERNEL.
 | |
|  */
 | |
| void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
 | |
| 	spin_lock_init(&sp->lock);
 | |
| 
 | |
| 	if (mpol) {
 | |
| 		struct vm_area_struct pvma;
 | |
| 		struct mempolicy *new;
 | |
| 		NODEMASK_SCRATCH(scratch);
 | |
| 
 | |
| 		if (!scratch)
 | |
| 			goto put_mpol;
 | |
| 		/* contextualize the tmpfs mount point mempolicy */
 | |
| 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
 | |
| 		if (IS_ERR(new))
 | |
| 			goto free_scratch; /* no valid nodemask intersection */
 | |
| 
 | |
| 		task_lock(current);
 | |
| 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
 | |
| 		task_unlock(current);
 | |
| 		if (ret)
 | |
| 			goto put_new;
 | |
| 
 | |
| 		/* Create pseudo-vma that contains just the policy */
 | |
| 		memset(&pvma, 0, sizeof(struct vm_area_struct));
 | |
| 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
 | |
| 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
 | |
| 
 | |
| put_new:
 | |
| 		mpol_put(new);			/* drop initial ref */
 | |
| free_scratch:
 | |
| 		NODEMASK_SCRATCH_FREE(scratch);
 | |
| put_mpol:
 | |
| 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int mpol_set_shared_policy(struct shared_policy *info,
 | |
| 			struct vm_area_struct *vma, struct mempolicy *npol)
 | |
| {
 | |
| 	int err;
 | |
| 	struct sp_node *new = NULL;
 | |
| 	unsigned long sz = vma_pages(vma);
 | |
| 
 | |
| 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
 | |
| 		 vma->vm_pgoff,
 | |
| 		 sz, npol ? npol->mode : -1,
 | |
| 		 npol ? npol->flags : -1,
 | |
| 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
 | |
| 
 | |
| 	if (npol) {
 | |
| 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
 | |
| 		if (!new)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
 | |
| 	if (err && new)
 | |
| 		kmem_cache_free(sn_cache, new);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Free a backing policy store on inode delete. */
 | |
| void mpol_free_shared_policy(struct shared_policy *p)
 | |
| {
 | |
| 	struct sp_node *n;
 | |
| 	struct rb_node *next;
 | |
| 
 | |
| 	if (!p->root.rb_node)
 | |
| 		return;
 | |
| 	spin_lock(&p->lock);
 | |
| 	next = rb_first(&p->root);
 | |
| 	while (next) {
 | |
| 		n = rb_entry(next, struct sp_node, nd);
 | |
| 		next = rb_next(&n->nd);
 | |
| 		rb_erase(&n->nd, &p->root);
 | |
| 		mpol_put(n->policy);
 | |
| 		kmem_cache_free(sn_cache, n);
 | |
| 	}
 | |
| 	spin_unlock(&p->lock);
 | |
| }
 | |
| 
 | |
| /* assumes fs == KERNEL_DS */
 | |
| void __init numa_policy_init(void)
 | |
| {
 | |
| 	nodemask_t interleave_nodes;
 | |
| 	unsigned long largest = 0;
 | |
| 	int nid, prefer = 0;
 | |
| 
 | |
| 	policy_cache = kmem_cache_create("numa_policy",
 | |
| 					 sizeof(struct mempolicy),
 | |
| 					 0, SLAB_PANIC, NULL);
 | |
| 
 | |
| 	sn_cache = kmem_cache_create("shared_policy_node",
 | |
| 				     sizeof(struct sp_node),
 | |
| 				     0, SLAB_PANIC, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set interleaving policy for system init. Interleaving is only
 | |
| 	 * enabled across suitably sized nodes (default is >= 16MB), or
 | |
| 	 * fall back to the largest node if they're all smaller.
 | |
| 	 */
 | |
| 	nodes_clear(interleave_nodes);
 | |
| 	for_each_node_state(nid, N_HIGH_MEMORY) {
 | |
| 		unsigned long total_pages = node_present_pages(nid);
 | |
| 
 | |
| 		/* Preserve the largest node */
 | |
| 		if (largest < total_pages) {
 | |
| 			largest = total_pages;
 | |
| 			prefer = nid;
 | |
| 		}
 | |
| 
 | |
| 		/* Interleave this node? */
 | |
| 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
 | |
| 			node_set(nid, interleave_nodes);
 | |
| 	}
 | |
| 
 | |
| 	/* All too small, use the largest */
 | |
| 	if (unlikely(nodes_empty(interleave_nodes)))
 | |
| 		node_set(prefer, interleave_nodes);
 | |
| 
 | |
| 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
 | |
| 		printk("numa_policy_init: interleaving failed\n");
 | |
| }
 | |
| 
 | |
| /* Reset policy of current process to default */
 | |
| void numa_default_policy(void)
 | |
| {
 | |
| 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse and format mempolicy from/to strings
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
 | |
|  * Used only for mpol_parse_str() and mpol_to_str()
 | |
|  */
 | |
| #define MPOL_LOCAL MPOL_MAX
 | |
| static const char * const policy_modes[] =
 | |
| {
 | |
| 	[MPOL_DEFAULT]    = "default",
 | |
| 	[MPOL_PREFERRED]  = "prefer",
 | |
| 	[MPOL_BIND]       = "bind",
 | |
| 	[MPOL_INTERLEAVE] = "interleave",
 | |
| 	[MPOL_LOCAL]      = "local"
 | |
| };
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_TMPFS
 | |
| /**
 | |
|  * mpol_parse_str - parse string to mempolicy
 | |
|  * @str:  string containing mempolicy to parse
 | |
|  * @mpol:  pointer to struct mempolicy pointer, returned on success.
 | |
|  * @no_context:  flag whether to "contextualize" the mempolicy
 | |
|  *
 | |
|  * Format of input:
 | |
|  *	<mode>[=<flags>][:<nodelist>]
 | |
|  *
 | |
|  * if @no_context is true, save the input nodemask in w.user_nodemask in
 | |
|  * the returned mempolicy.  This will be used to "clone" the mempolicy in
 | |
|  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
 | |
|  * mount option.  Note that if 'static' or 'relative' mode flags were
 | |
|  * specified, the input nodemask will already have been saved.  Saving
 | |
|  * it again is redundant, but safe.
 | |
|  *
 | |
|  * On success, returns 0, else 1
 | |
|  */
 | |
| int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
 | |
| {
 | |
| 	struct mempolicy *new = NULL;
 | |
| 	unsigned short mode;
 | |
| 	unsigned short uninitialized_var(mode_flags);
 | |
| 	nodemask_t nodes;
 | |
| 	char *nodelist = strchr(str, ':');
 | |
| 	char *flags = strchr(str, '=');
 | |
| 	int err = 1;
 | |
| 
 | |
| 	if (nodelist) {
 | |
| 		/* NUL-terminate mode or flags string */
 | |
| 		*nodelist++ = '\0';
 | |
| 		if (nodelist_parse(nodelist, nodes))
 | |
| 			goto out;
 | |
| 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		nodes_clear(nodes);
 | |
| 
 | |
| 	if (flags)
 | |
| 		*flags++ = '\0';	/* terminate mode string */
 | |
| 
 | |
| 	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
 | |
| 		if (!strcmp(str, policy_modes[mode])) {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (mode > MPOL_LOCAL)
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MPOL_PREFERRED:
 | |
| 		/*
 | |
| 		 * Insist on a nodelist of one node only
 | |
| 		 */
 | |
| 		if (nodelist) {
 | |
| 			char *rest = nodelist;
 | |
| 			while (isdigit(*rest))
 | |
| 				rest++;
 | |
| 			if (*rest)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		/*
 | |
| 		 * Default to online nodes with memory if no nodelist
 | |
| 		 */
 | |
| 		if (!nodelist)
 | |
| 			nodes = node_states[N_HIGH_MEMORY];
 | |
| 		break;
 | |
| 	case MPOL_LOCAL:
 | |
| 		/*
 | |
| 		 * Don't allow a nodelist;  mpol_new() checks flags
 | |
| 		 */
 | |
| 		if (nodelist)
 | |
| 			goto out;
 | |
| 		mode = MPOL_PREFERRED;
 | |
| 		break;
 | |
| 	case MPOL_DEFAULT:
 | |
| 		/*
 | |
| 		 * Insist on a empty nodelist
 | |
| 		 */
 | |
| 		if (!nodelist)
 | |
| 			err = 0;
 | |
| 		goto out;
 | |
| 	case MPOL_BIND:
 | |
| 		/*
 | |
| 		 * Insist on a nodelist
 | |
| 		 */
 | |
| 		if (!nodelist)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	mode_flags = 0;
 | |
| 	if (flags) {
 | |
| 		/*
 | |
| 		 * Currently, we only support two mutually exclusive
 | |
| 		 * mode flags.
 | |
| 		 */
 | |
| 		if (!strcmp(flags, "static"))
 | |
| 			mode_flags |= MPOL_F_STATIC_NODES;
 | |
| 		else if (!strcmp(flags, "relative"))
 | |
| 			mode_flags |= MPOL_F_RELATIVE_NODES;
 | |
| 		else
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	new = mpol_new(mode, mode_flags, &nodes);
 | |
| 	if (IS_ERR(new))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (no_context) {
 | |
| 		/* save for contextualization */
 | |
| 		new->w.user_nodemask = nodes;
 | |
| 	} else {
 | |
| 		int ret;
 | |
| 		NODEMASK_SCRATCH(scratch);
 | |
| 		if (scratch) {
 | |
| 			task_lock(current);
 | |
| 			ret = mpol_set_nodemask(new, &nodes, scratch);
 | |
| 			task_unlock(current);
 | |
| 		} else
 | |
| 			ret = -ENOMEM;
 | |
| 		NODEMASK_SCRATCH_FREE(scratch);
 | |
| 		if (ret) {
 | |
| 			mpol_put(new);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	err = 0;
 | |
| 
 | |
| out:
 | |
| 	/* Restore string for error message */
 | |
| 	if (nodelist)
 | |
| 		*--nodelist = ':';
 | |
| 	if (flags)
 | |
| 		*--flags = '=';
 | |
| 	if (!err)
 | |
| 		*mpol = new;
 | |
| 	return err;
 | |
| }
 | |
| #endif /* CONFIG_TMPFS */
 | |
| 
 | |
| /**
 | |
|  * mpol_to_str - format a mempolicy structure for printing
 | |
|  * @buffer:  to contain formatted mempolicy string
 | |
|  * @maxlen:  length of @buffer
 | |
|  * @pol:  pointer to mempolicy to be formatted
 | |
|  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
 | |
|  *
 | |
|  * Convert a mempolicy into a string.
 | |
|  * Returns the number of characters in buffer (if positive)
 | |
|  * or an error (negative)
 | |
|  */
 | |
| int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
 | |
| {
 | |
| 	char *p = buffer;
 | |
| 	int l;
 | |
| 	nodemask_t nodes;
 | |
| 	unsigned short mode;
 | |
| 	unsigned short flags = pol ? pol->flags : 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity check:  room for longest mode, flag and some nodes
 | |
| 	 */
 | |
| 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
 | |
| 
 | |
| 	if (!pol || pol == &default_policy)
 | |
| 		mode = MPOL_DEFAULT;
 | |
| 	else
 | |
| 		mode = pol->mode;
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MPOL_DEFAULT:
 | |
| 		nodes_clear(nodes);
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_PREFERRED:
 | |
| 		nodes_clear(nodes);
 | |
| 		if (flags & MPOL_F_LOCAL)
 | |
| 			mode = MPOL_LOCAL;	/* pseudo-policy */
 | |
| 		else
 | |
| 			node_set(pol->v.preferred_node, nodes);
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_BIND:
 | |
| 		/* Fall through */
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		if (no_context)
 | |
| 			nodes = pol->w.user_nodemask;
 | |
| 		else
 | |
| 			nodes = pol->v.nodes;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	l = strlen(policy_modes[mode]);
 | |
| 	if (buffer + maxlen < p + l + 1)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	strcpy(p, policy_modes[mode]);
 | |
| 	p += l;
 | |
| 
 | |
| 	if (flags & MPOL_MODE_FLAGS) {
 | |
| 		if (buffer + maxlen < p + 2)
 | |
| 			return -ENOSPC;
 | |
| 		*p++ = '=';
 | |
| 
 | |
| 		/*
 | |
| 		 * Currently, the only defined flags are mutually exclusive
 | |
| 		 */
 | |
| 		if (flags & MPOL_F_STATIC_NODES)
 | |
| 			p += snprintf(p, buffer + maxlen - p, "static");
 | |
| 		else if (flags & MPOL_F_RELATIVE_NODES)
 | |
| 			p += snprintf(p, buffer + maxlen - p, "relative");
 | |
| 	}
 | |
| 
 | |
| 	if (!nodes_empty(nodes)) {
 | |
| 		if (buffer + maxlen < p + 2)
 | |
| 			return -ENOSPC;
 | |
| 		*p++ = ':';
 | |
| 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
 | |
| 	}
 | |
| 	return p - buffer;
 | |
| }
 | |
| 
 | |
| struct numa_maps {
 | |
| 	unsigned long pages;
 | |
| 	unsigned long anon;
 | |
| 	unsigned long active;
 | |
| 	unsigned long writeback;
 | |
| 	unsigned long mapcount_max;
 | |
| 	unsigned long dirty;
 | |
| 	unsigned long swapcache;
 | |
| 	unsigned long node[MAX_NUMNODES];
 | |
| };
 | |
| 
 | |
| static void gather_stats(struct page *page, void *private, int pte_dirty)
 | |
| {
 | |
| 	struct numa_maps *md = private;
 | |
| 	int count = page_mapcount(page);
 | |
| 
 | |
| 	md->pages++;
 | |
| 	if (pte_dirty || PageDirty(page))
 | |
| 		md->dirty++;
 | |
| 
 | |
| 	if (PageSwapCache(page))
 | |
| 		md->swapcache++;
 | |
| 
 | |
| 	if (PageActive(page) || PageUnevictable(page))
 | |
| 		md->active++;
 | |
| 
 | |
| 	if (PageWriteback(page))
 | |
| 		md->writeback++;
 | |
| 
 | |
| 	if (PageAnon(page))
 | |
| 		md->anon++;
 | |
| 
 | |
| 	if (count > md->mapcount_max)
 | |
| 		md->mapcount_max = count;
 | |
| 
 | |
| 	md->node[page_to_nid(page)]++;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| static void check_huge_range(struct vm_area_struct *vma,
 | |
| 		unsigned long start, unsigned long end,
 | |
| 		struct numa_maps *md)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	struct page *page;
 | |
| 	struct hstate *h = hstate_vma(vma);
 | |
| 	unsigned long sz = huge_page_size(h);
 | |
| 
 | |
| 	for (addr = start; addr < end; addr += sz) {
 | |
| 		pte_t *ptep = huge_pte_offset(vma->vm_mm,
 | |
| 						addr & huge_page_mask(h));
 | |
| 		pte_t pte;
 | |
| 
 | |
| 		if (!ptep)
 | |
| 			continue;
 | |
| 
 | |
| 		pte = *ptep;
 | |
| 		if (pte_none(pte))
 | |
| 			continue;
 | |
| 
 | |
| 		page = pte_page(pte);
 | |
| 		if (!page)
 | |
| 			continue;
 | |
| 
 | |
| 		gather_stats(page, md, pte_dirty(*ptep));
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void check_huge_range(struct vm_area_struct *vma,
 | |
| 		unsigned long start, unsigned long end,
 | |
| 		struct numa_maps *md)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Display pages allocated per node and memory policy via /proc.
 | |
|  */
 | |
| int show_numa_map(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct proc_maps_private *priv = m->private;
 | |
| 	struct vm_area_struct *vma = v;
 | |
| 	struct numa_maps *md;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct mempolicy *pol;
 | |
| 	int n;
 | |
| 	char buffer[50];
 | |
| 
 | |
| 	if (!mm)
 | |
| 		return 0;
 | |
| 
 | |
| 	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
 | |
| 	if (!md)
 | |
| 		return 0;
 | |
| 
 | |
| 	pol = get_vma_policy(priv->task, vma, vma->vm_start);
 | |
| 	mpol_to_str(buffer, sizeof(buffer), pol, 0);
 | |
| 	mpol_cond_put(pol);
 | |
| 
 | |
| 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
 | |
| 
 | |
| 	if (file) {
 | |
| 		seq_printf(m, " file=");
 | |
| 		seq_path(m, &file->f_path, "\n\t= ");
 | |
| 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
 | |
| 		seq_printf(m, " heap");
 | |
| 	} else if (vma->vm_start <= mm->start_stack &&
 | |
| 			vma->vm_end >= mm->start_stack) {
 | |
| 		seq_printf(m, " stack");
 | |
| 	}
 | |
| 
 | |
| 	if (is_vm_hugetlb_page(vma)) {
 | |
| 		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
 | |
| 		seq_printf(m, " huge");
 | |
| 	} else {
 | |
| 		check_pgd_range(vma, vma->vm_start, vma->vm_end,
 | |
| 			&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
 | |
| 	}
 | |
| 
 | |
| 	if (!md->pages)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (md->anon)
 | |
| 		seq_printf(m," anon=%lu",md->anon);
 | |
| 
 | |
| 	if (md->dirty)
 | |
| 		seq_printf(m," dirty=%lu",md->dirty);
 | |
| 
 | |
| 	if (md->pages != md->anon && md->pages != md->dirty)
 | |
| 		seq_printf(m, " mapped=%lu", md->pages);
 | |
| 
 | |
| 	if (md->mapcount_max > 1)
 | |
| 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
 | |
| 
 | |
| 	if (md->swapcache)
 | |
| 		seq_printf(m," swapcache=%lu", md->swapcache);
 | |
| 
 | |
| 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
 | |
| 		seq_printf(m," active=%lu", md->active);
 | |
| 
 | |
| 	if (md->writeback)
 | |
| 		seq_printf(m," writeback=%lu", md->writeback);
 | |
| 
 | |
| 	for_each_node_state(n, N_HIGH_MEMORY)
 | |
| 		if (md->node[n])
 | |
| 			seq_printf(m, " N%d=%lu", n, md->node[n]);
 | |
| out:
 | |
| 	seq_putc(m, '\n');
 | |
| 	kfree(md);
 | |
| 
 | |
| 	if (m->count < m->size)
 | |
| 		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
 | |
| 	return 0;
 | |
| }
 |