mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 11:03:14 +00:00 
			
		
		
		
	 13d7e3a2db
			
		
	
	
		13d7e3a2db
		
	
	
	
	
		
			
			We have zone_to_nid(). this patch convert all existing users of zone->zone_pgdat->node_id. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nishimura Daisuke <d-nishimura@mtf.biglobe.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			4730 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4730 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* memcontrol.c - Memory Controller
 | |
|  *
 | |
|  * Copyright IBM Corporation, 2007
 | |
|  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 | |
|  *
 | |
|  * Copyright 2007 OpenVZ SWsoft Inc
 | |
|  * Author: Pavel Emelianov <xemul@openvz.org>
 | |
|  *
 | |
|  * Memory thresholds
 | |
|  * Copyright (C) 2009 Nokia Corporation
 | |
|  * Author: Kirill A. Shutemov
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/res_counter.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/limits.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/eventfd.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/page_cgroup.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/oom.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| #include <trace/events/vmscan.h>
 | |
| 
 | |
| struct cgroup_subsys mem_cgroup_subsys __read_mostly;
 | |
| #define MEM_CGROUP_RECLAIM_RETRIES	5
 | |
| struct mem_cgroup *root_mem_cgroup __read_mostly;
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | |
| /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
 | |
| int do_swap_account __read_mostly;
 | |
| static int really_do_swap_account __initdata = 1; /* for remember boot option*/
 | |
| #else
 | |
| #define do_swap_account		(0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Per memcg event counter is incremented at every pagein/pageout. This counter
 | |
|  * is used for trigger some periodic events. This is straightforward and better
 | |
|  * than using jiffies etc. to handle periodic memcg event.
 | |
|  *
 | |
|  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 | |
|  */
 | |
| #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
 | |
| #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
 | |
| 
 | |
| /*
 | |
|  * Statistics for memory cgroup.
 | |
|  */
 | |
| enum mem_cgroup_stat_index {
 | |
| 	/*
 | |
| 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
 | |
| 	 */
 | |
| 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
 | |
| 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
 | |
| 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
 | |
| 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
 | |
| 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
 | |
| 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
 | |
| 	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
 | |
| 
 | |
| 	MEM_CGROUP_STAT_NSTATS,
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_stat_cpu {
 | |
| 	s64 count[MEM_CGROUP_STAT_NSTATS];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * per-zone information in memory controller.
 | |
|  */
 | |
| struct mem_cgroup_per_zone {
 | |
| 	/*
 | |
| 	 * spin_lock to protect the per cgroup LRU
 | |
| 	 */
 | |
| 	struct list_head	lists[NR_LRU_LISTS];
 | |
| 	unsigned long		count[NR_LRU_LISTS];
 | |
| 
 | |
| 	struct zone_reclaim_stat reclaim_stat;
 | |
| 	struct rb_node		tree_node;	/* RB tree node */
 | |
| 	unsigned long long	usage_in_excess;/* Set to the value by which */
 | |
| 						/* the soft limit is exceeded*/
 | |
| 	bool			on_tree;
 | |
| 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
 | |
| 						/* use container_of	   */
 | |
| };
 | |
| /* Macro for accessing counter */
 | |
| #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
 | |
| 
 | |
| struct mem_cgroup_per_node {
 | |
| 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_lru_info {
 | |
| 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Cgroups above their limits are maintained in a RB-Tree, independent of
 | |
|  * their hierarchy representation
 | |
|  */
 | |
| 
 | |
| struct mem_cgroup_tree_per_zone {
 | |
| 	struct rb_root rb_root;
 | |
| 	spinlock_t lock;
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_tree_per_node {
 | |
| 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_tree {
 | |
| 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 | |
| };
 | |
| 
 | |
| static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 | |
| 
 | |
| struct mem_cgroup_threshold {
 | |
| 	struct eventfd_ctx *eventfd;
 | |
| 	u64 threshold;
 | |
| };
 | |
| 
 | |
| /* For threshold */
 | |
| struct mem_cgroup_threshold_ary {
 | |
| 	/* An array index points to threshold just below usage. */
 | |
| 	int current_threshold;
 | |
| 	/* Size of entries[] */
 | |
| 	unsigned int size;
 | |
| 	/* Array of thresholds */
 | |
| 	struct mem_cgroup_threshold entries[0];
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_thresholds {
 | |
| 	/* Primary thresholds array */
 | |
| 	struct mem_cgroup_threshold_ary *primary;
 | |
| 	/*
 | |
| 	 * Spare threshold array.
 | |
| 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
 | |
| 	 * It must be able to store at least primary->size - 1 entries.
 | |
| 	 */
 | |
| 	struct mem_cgroup_threshold_ary *spare;
 | |
| };
 | |
| 
 | |
| /* for OOM */
 | |
| struct mem_cgroup_eventfd_list {
 | |
| 	struct list_head list;
 | |
| 	struct eventfd_ctx *eventfd;
 | |
| };
 | |
| 
 | |
| static void mem_cgroup_threshold(struct mem_cgroup *mem);
 | |
| static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
 | |
| 
 | |
| /*
 | |
|  * The memory controller data structure. The memory controller controls both
 | |
|  * page cache and RSS per cgroup. We would eventually like to provide
 | |
|  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 | |
|  * to help the administrator determine what knobs to tune.
 | |
|  *
 | |
|  * TODO: Add a water mark for the memory controller. Reclaim will begin when
 | |
|  * we hit the water mark. May be even add a low water mark, such that
 | |
|  * no reclaim occurs from a cgroup at it's low water mark, this is
 | |
|  * a feature that will be implemented much later in the future.
 | |
|  */
 | |
| struct mem_cgroup {
 | |
| 	struct cgroup_subsys_state css;
 | |
| 	/*
 | |
| 	 * the counter to account for memory usage
 | |
| 	 */
 | |
| 	struct res_counter res;
 | |
| 	/*
 | |
| 	 * the counter to account for mem+swap usage.
 | |
| 	 */
 | |
| 	struct res_counter memsw;
 | |
| 	/*
 | |
| 	 * Per cgroup active and inactive list, similar to the
 | |
| 	 * per zone LRU lists.
 | |
| 	 */
 | |
| 	struct mem_cgroup_lru_info info;
 | |
| 
 | |
| 	/*
 | |
| 	  protect against reclaim related member.
 | |
| 	*/
 | |
| 	spinlock_t reclaim_param_lock;
 | |
| 
 | |
| 	/*
 | |
| 	 * While reclaiming in a hierarchy, we cache the last child we
 | |
| 	 * reclaimed from.
 | |
| 	 */
 | |
| 	int last_scanned_child;
 | |
| 	/*
 | |
| 	 * Should the accounting and control be hierarchical, per subtree?
 | |
| 	 */
 | |
| 	bool use_hierarchy;
 | |
| 	atomic_t	oom_lock;
 | |
| 	atomic_t	refcnt;
 | |
| 
 | |
| 	unsigned int	swappiness;
 | |
| 	/* OOM-Killer disable */
 | |
| 	int		oom_kill_disable;
 | |
| 
 | |
| 	/* set when res.limit == memsw.limit */
 | |
| 	bool		memsw_is_minimum;
 | |
| 
 | |
| 	/* protect arrays of thresholds */
 | |
| 	struct mutex thresholds_lock;
 | |
| 
 | |
| 	/* thresholds for memory usage. RCU-protected */
 | |
| 	struct mem_cgroup_thresholds thresholds;
 | |
| 
 | |
| 	/* thresholds for mem+swap usage. RCU-protected */
 | |
| 	struct mem_cgroup_thresholds memsw_thresholds;
 | |
| 
 | |
| 	/* For oom notifier event fd */
 | |
| 	struct list_head oom_notify;
 | |
| 
 | |
| 	/*
 | |
| 	 * Should we move charges of a task when a task is moved into this
 | |
| 	 * mem_cgroup ? And what type of charges should we move ?
 | |
| 	 */
 | |
| 	unsigned long 	move_charge_at_immigrate;
 | |
| 	/*
 | |
| 	 * percpu counter.
 | |
| 	 */
 | |
| 	struct mem_cgroup_stat_cpu *stat;
 | |
| };
 | |
| 
 | |
| /* Stuffs for move charges at task migration. */
 | |
| /*
 | |
|  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 | |
|  * left-shifted bitmap of these types.
 | |
|  */
 | |
| enum move_type {
 | |
| 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
 | |
| 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
 | |
| 	NR_MOVE_TYPE,
 | |
| };
 | |
| 
 | |
| /* "mc" and its members are protected by cgroup_mutex */
 | |
| static struct move_charge_struct {
 | |
| 	spinlock_t	  lock; /* for from, to, moving_task */
 | |
| 	struct mem_cgroup *from;
 | |
| 	struct mem_cgroup *to;
 | |
| 	unsigned long precharge;
 | |
| 	unsigned long moved_charge;
 | |
| 	unsigned long moved_swap;
 | |
| 	struct task_struct *moving_task;	/* a task moving charges */
 | |
| 	wait_queue_head_t waitq;		/* a waitq for other context */
 | |
| } mc = {
 | |
| 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 | |
| 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 | |
| };
 | |
| 
 | |
| static bool move_anon(void)
 | |
| {
 | |
| 	return test_bit(MOVE_CHARGE_TYPE_ANON,
 | |
| 					&mc.to->move_charge_at_immigrate);
 | |
| }
 | |
| 
 | |
| static bool move_file(void)
 | |
| {
 | |
| 	return test_bit(MOVE_CHARGE_TYPE_FILE,
 | |
| 					&mc.to->move_charge_at_immigrate);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 | |
|  * limit reclaim to prevent infinite loops, if they ever occur.
 | |
|  */
 | |
| #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
 | |
| #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
 | |
| 
 | |
| enum charge_type {
 | |
| 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 | |
| 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
 | |
| 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
 | |
| 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
 | |
| 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 | |
| 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 | |
| 	NR_CHARGE_TYPE,
 | |
| };
 | |
| 
 | |
| /* only for here (for easy reading.) */
 | |
| #define PCGF_CACHE	(1UL << PCG_CACHE)
 | |
| #define PCGF_USED	(1UL << PCG_USED)
 | |
| #define PCGF_LOCK	(1UL << PCG_LOCK)
 | |
| /* Not used, but added here for completeness */
 | |
| #define PCGF_ACCT	(1UL << PCG_ACCT)
 | |
| 
 | |
| /* for encoding cft->private value on file */
 | |
| #define _MEM			(0)
 | |
| #define _MEMSWAP		(1)
 | |
| #define _OOM_TYPE		(2)
 | |
| #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
 | |
| #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
 | |
| #define MEMFILE_ATTR(val)	((val) & 0xffff)
 | |
| /* Used for OOM nofiier */
 | |
| #define OOM_CONTROL		(0)
 | |
| 
 | |
| /*
 | |
|  * Reclaim flags for mem_cgroup_hierarchical_reclaim
 | |
|  */
 | |
| #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
 | |
| #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 | |
| #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
 | |
| #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 | |
| #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
 | |
| #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
 | |
| 
 | |
| static void mem_cgroup_get(struct mem_cgroup *mem);
 | |
| static void mem_cgroup_put(struct mem_cgroup *mem);
 | |
| static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
 | |
| static void drain_all_stock_async(void);
 | |
| 
 | |
| static struct mem_cgroup_per_zone *
 | |
| mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
 | |
| {
 | |
| 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
 | |
| {
 | |
| 	return &mem->css;
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_zone *
 | |
| page_cgroup_zoneinfo(struct page_cgroup *pc)
 | |
| {
 | |
| 	struct mem_cgroup *mem = pc->mem_cgroup;
 | |
| 	int nid = page_cgroup_nid(pc);
 | |
| 	int zid = page_cgroup_zid(pc);
 | |
| 
 | |
| 	if (!mem)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return mem_cgroup_zoneinfo(mem, nid, zid);
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_tree_per_zone *
 | |
| soft_limit_tree_node_zone(int nid, int zid)
 | |
| {
 | |
| 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_tree_per_zone *
 | |
| soft_limit_tree_from_page(struct page *page)
 | |
| {
 | |
| 	int nid = page_to_nid(page);
 | |
| 	int zid = page_zonenum(page);
 | |
| 
 | |
| 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 | |
| }
 | |
| 
 | |
| static void
 | |
| __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
 | |
| 				struct mem_cgroup_per_zone *mz,
 | |
| 				struct mem_cgroup_tree_per_zone *mctz,
 | |
| 				unsigned long long new_usage_in_excess)
 | |
| {
 | |
| 	struct rb_node **p = &mctz->rb_root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct mem_cgroup_per_zone *mz_node;
 | |
| 
 | |
| 	if (mz->on_tree)
 | |
| 		return;
 | |
| 
 | |
| 	mz->usage_in_excess = new_usage_in_excess;
 | |
| 	if (!mz->usage_in_excess)
 | |
| 		return;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 | |
| 					tree_node);
 | |
| 		if (mz->usage_in_excess < mz_node->usage_in_excess)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		/*
 | |
| 		 * We can't avoid mem cgroups that are over their soft
 | |
| 		 * limit by the same amount
 | |
| 		 */
 | |
| 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 | |
| 			p = &(*p)->rb_right;
 | |
| 	}
 | |
| 	rb_link_node(&mz->tree_node, parent, p);
 | |
| 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 | |
| 	mz->on_tree = true;
 | |
| }
 | |
| 
 | |
| static void
 | |
| __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 | |
| 				struct mem_cgroup_per_zone *mz,
 | |
| 				struct mem_cgroup_tree_per_zone *mctz)
 | |
| {
 | |
| 	if (!mz->on_tree)
 | |
| 		return;
 | |
| 	rb_erase(&mz->tree_node, &mctz->rb_root);
 | |
| 	mz->on_tree = false;
 | |
| }
 | |
| 
 | |
| static void
 | |
| mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 | |
| 				struct mem_cgroup_per_zone *mz,
 | |
| 				struct mem_cgroup_tree_per_zone *mctz)
 | |
| {
 | |
| 	spin_lock(&mctz->lock);
 | |
| 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
 | |
| 	spin_unlock(&mctz->lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
 | |
| {
 | |
| 	unsigned long long excess;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	struct mem_cgroup_tree_per_zone *mctz;
 | |
| 	int nid = page_to_nid(page);
 | |
| 	int zid = page_zonenum(page);
 | |
| 	mctz = soft_limit_tree_from_page(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Necessary to update all ancestors when hierarchy is used.
 | |
| 	 * because their event counter is not touched.
 | |
| 	 */
 | |
| 	for (; mem; mem = parent_mem_cgroup(mem)) {
 | |
| 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
 | |
| 		excess = res_counter_soft_limit_excess(&mem->res);
 | |
| 		/*
 | |
| 		 * We have to update the tree if mz is on RB-tree or
 | |
| 		 * mem is over its softlimit.
 | |
| 		 */
 | |
| 		if (excess || mz->on_tree) {
 | |
| 			spin_lock(&mctz->lock);
 | |
| 			/* if on-tree, remove it */
 | |
| 			if (mz->on_tree)
 | |
| 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
 | |
| 			/*
 | |
| 			 * Insert again. mz->usage_in_excess will be updated.
 | |
| 			 * If excess is 0, no tree ops.
 | |
| 			 */
 | |
| 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
 | |
| 			spin_unlock(&mctz->lock);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
 | |
| {
 | |
| 	int node, zone;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	struct mem_cgroup_tree_per_zone *mctz;
 | |
| 
 | |
| 	for_each_node_state(node, N_POSSIBLE) {
 | |
| 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | |
| 			mz = mem_cgroup_zoneinfo(mem, node, zone);
 | |
| 			mctz = soft_limit_tree_node_zone(node, zone);
 | |
| 			mem_cgroup_remove_exceeded(mem, mz, mctz);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
 | |
| {
 | |
| 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_zone *
 | |
| __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 | |
| {
 | |
| 	struct rb_node *rightmost = NULL;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| retry:
 | |
| 	mz = NULL;
 | |
| 	rightmost = rb_last(&mctz->rb_root);
 | |
| 	if (!rightmost)
 | |
| 		goto done;		/* Nothing to reclaim from */
 | |
| 
 | |
| 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 | |
| 	/*
 | |
| 	 * Remove the node now but someone else can add it back,
 | |
| 	 * we will to add it back at the end of reclaim to its correct
 | |
| 	 * position in the tree.
 | |
| 	 */
 | |
| 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
 | |
| 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
 | |
| 		!css_tryget(&mz->mem->css))
 | |
| 		goto retry;
 | |
| done:
 | |
| 	return mz;
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_zone *
 | |
| mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 | |
| {
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| 	spin_lock(&mctz->lock);
 | |
| 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 | |
| 	spin_unlock(&mctz->lock);
 | |
| 	return mz;
 | |
| }
 | |
| 
 | |
| static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
 | |
| 		enum mem_cgroup_stat_index idx)
 | |
| {
 | |
| 	int cpu;
 | |
| 	s64 val = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		val += per_cpu(mem->stat->count[idx], cpu);
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
 | |
| {
 | |
| 	s64 ret;
 | |
| 
 | |
| 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
 | |
| 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
 | |
| 					 bool charge)
 | |
| {
 | |
| 	int val = (charge) ? 1 : -1;
 | |
| 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
 | |
| 					 struct page_cgroup *pc,
 | |
| 					 bool charge)
 | |
| {
 | |
| 	int val = (charge) ? 1 : -1;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	if (PageCgroupCache(pc))
 | |
| 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
 | |
| 	else
 | |
| 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
 | |
| 
 | |
| 	if (charge)
 | |
| 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
 | |
| 	else
 | |
| 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
 | |
| 	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
 | |
| 					enum lru_list idx)
 | |
| {
 | |
| 	int nid, zid;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	u64 total = 0;
 | |
| 
 | |
| 	for_each_online_node(nid)
 | |
| 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | |
| 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
 | |
| 			total += MEM_CGROUP_ZSTAT(mz, idx);
 | |
| 		}
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
 | |
| {
 | |
| 	s64 val;
 | |
| 
 | |
| 	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
 | |
| 
 | |
| 	return !(val & ((1 << event_mask_shift) - 1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check events in order.
 | |
|  *
 | |
|  */
 | |
| static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
 | |
| {
 | |
| 	/* threshold event is triggered in finer grain than soft limit */
 | |
| 	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
 | |
| 		mem_cgroup_threshold(mem);
 | |
| 		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
 | |
| 			mem_cgroup_update_tree(mem, page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 | |
| {
 | |
| 	return container_of(cgroup_subsys_state(cont,
 | |
| 				mem_cgroup_subsys_id), struct mem_cgroup,
 | |
| 				css);
 | |
| }
 | |
| 
 | |
| struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * mm_update_next_owner() may clear mm->owner to NULL
 | |
| 	 * if it races with swapoff, page migration, etc.
 | |
| 	 * So this can be called with p == NULL.
 | |
| 	 */
 | |
| 	if (unlikely(!p))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 | |
| 				struct mem_cgroup, css);
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 
 | |
| 	if (!mm)
 | |
| 		return NULL;
 | |
| 	/*
 | |
| 	 * Because we have no locks, mm->owner's may be being moved to other
 | |
| 	 * cgroup. We use css_tryget() here even if this looks
 | |
| 	 * pessimistic (rather than adding locks here).
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	do {
 | |
| 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | |
| 		if (unlikely(!mem))
 | |
| 			break;
 | |
| 	} while (!css_tryget(&mem->css));
 | |
| 	rcu_read_unlock();
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call callback function against all cgroup under hierarchy tree.
 | |
|  */
 | |
| static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
 | |
| 			  int (*func)(struct mem_cgroup *, void *))
 | |
| {
 | |
| 	int found, ret, nextid;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct mem_cgroup *mem;
 | |
| 
 | |
| 	if (!root->use_hierarchy)
 | |
| 		return (*func)(root, data);
 | |
| 
 | |
| 	nextid = 1;
 | |
| 	do {
 | |
| 		ret = 0;
 | |
| 		mem = NULL;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
 | |
| 				   &found);
 | |
| 		if (css && css_tryget(css))
 | |
| 			mem = container_of(css, struct mem_cgroup, css);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		if (mem) {
 | |
| 			ret = (*func)(mem, data);
 | |
| 			css_put(&mem->css);
 | |
| 		}
 | |
| 		nextid = found + 1;
 | |
| 	} while (!ret && css);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
 | |
| {
 | |
| 	return (mem == root_mem_cgroup);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Following LRU functions are allowed to be used without PCG_LOCK.
 | |
|  * Operations are called by routine of global LRU independently from memcg.
 | |
|  * What we have to take care of here is validness of pc->mem_cgroup.
 | |
|  *
 | |
|  * Changes to pc->mem_cgroup happens when
 | |
|  * 1. charge
 | |
|  * 2. moving account
 | |
|  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 | |
|  * It is added to LRU before charge.
 | |
|  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 | |
|  * When moving account, the page is not on LRU. It's isolated.
 | |
|  */
 | |
| 
 | |
| void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	/* can happen while we handle swapcache. */
 | |
| 	if (!TestClearPageCgroupAcctLRU(pc))
 | |
| 		return;
 | |
| 	VM_BUG_ON(!pc->mem_cgroup);
 | |
| 	/*
 | |
| 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
 | |
| 	 * removed from global LRU.
 | |
| 	 */
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
 | |
| 	if (mem_cgroup_is_root(pc->mem_cgroup))
 | |
| 		return;
 | |
| 	VM_BUG_ON(list_empty(&pc->lru));
 | |
| 	list_del_init(&pc->lru);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| void mem_cgroup_del_lru(struct page *page)
 | |
| {
 | |
| 	mem_cgroup_del_lru_list(page, page_lru(page));
 | |
| }
 | |
| 
 | |
| void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
 | |
| {
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	struct page_cgroup *pc;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	/*
 | |
| 	 * Used bit is set without atomic ops but after smp_wmb().
 | |
| 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	/* unused or root page is not rotated. */
 | |
| 	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
 | |
| 		return;
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	list_move(&pc->lru, &mz->lists[lru]);
 | |
| }
 | |
| 
 | |
| void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	VM_BUG_ON(PageCgroupAcctLRU(pc));
 | |
| 	/*
 | |
| 	 * Used bit is set without atomic ops but after smp_wmb().
 | |
| 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	if (!PageCgroupUsed(pc))
 | |
| 		return;
 | |
| 
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
 | |
| 	SetPageCgroupAcctLRU(pc);
 | |
| 	if (mem_cgroup_is_root(pc->mem_cgroup))
 | |
| 		return;
 | |
| 	list_add(&pc->lru, &mz->lists[lru]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 | |
|  * lru because the page may.be reused after it's fully uncharged (because of
 | |
|  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 | |
|  * it again. This function is only used to charge SwapCache. It's done under
 | |
|  * lock_page and expected that zone->lru_lock is never held.
 | |
|  */
 | |
| static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	struct page_cgroup *pc = lookup_page_cgroup(page);
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 	/*
 | |
| 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
 | |
| 	 * is guarded by lock_page() because the page is SwapCache.
 | |
| 	 */
 | |
| 	if (!PageCgroupUsed(pc))
 | |
| 		mem_cgroup_del_lru_list(page, page_lru(page));
 | |
| 	spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	struct page_cgroup *pc = lookup_page_cgroup(page);
 | |
| 
 | |
| 	spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 	/* link when the page is linked to LRU but page_cgroup isn't */
 | |
| 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
 | |
| 		mem_cgroup_add_lru_list(page, page_lru(page));
 | |
| 	spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| }
 | |
| 
 | |
| 
 | |
| void mem_cgroup_move_lists(struct page *page,
 | |
| 			   enum lru_list from, enum lru_list to)
 | |
| {
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	mem_cgroup_del_lru_list(page, from);
 | |
| 	mem_cgroup_add_lru_list(page, to);
 | |
| }
 | |
| 
 | |
| int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct mem_cgroup *curr = NULL;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	p = find_lock_task_mm(task);
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 	curr = try_get_mem_cgroup_from_mm(p->mm);
 | |
| 	task_unlock(p);
 | |
| 	if (!curr)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We should check use_hierarchy of "mem" not "curr". Because checking
 | |
| 	 * use_hierarchy of "curr" here make this function true if hierarchy is
 | |
| 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
 | |
| 	 * hierarchy(even if use_hierarchy is disabled in "mem").
 | |
| 	 */
 | |
| 	if (mem->use_hierarchy)
 | |
| 		ret = css_is_ancestor(&curr->css, &mem->css);
 | |
| 	else
 | |
| 		ret = (curr == mem);
 | |
| 	css_put(&curr->css);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
 | |
| {
 | |
| 	unsigned long active;
 | |
| 	unsigned long inactive;
 | |
| 	unsigned long gb;
 | |
| 	unsigned long inactive_ratio;
 | |
| 
 | |
| 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
 | |
| 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
 | |
| 
 | |
| 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
 | |
| 	if (gb)
 | |
| 		inactive_ratio = int_sqrt(10 * gb);
 | |
| 	else
 | |
| 		inactive_ratio = 1;
 | |
| 
 | |
| 	if (present_pages) {
 | |
| 		present_pages[0] = inactive;
 | |
| 		present_pages[1] = active;
 | |
| 	}
 | |
| 
 | |
| 	return inactive_ratio;
 | |
| }
 | |
| 
 | |
| int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long active;
 | |
| 	unsigned long inactive;
 | |
| 	unsigned long present_pages[2];
 | |
| 	unsigned long inactive_ratio;
 | |
| 
 | |
| 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
 | |
| 
 | |
| 	inactive = present_pages[0];
 | |
| 	active = present_pages[1];
 | |
| 
 | |
| 	if (inactive * inactive_ratio < active)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	unsigned long active;
 | |
| 	unsigned long inactive;
 | |
| 
 | |
| 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
 | |
| 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
 | |
| 
 | |
| 	return (active > inactive);
 | |
| }
 | |
| 
 | |
| unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
 | |
| 				       struct zone *zone,
 | |
| 				       enum lru_list lru)
 | |
| {
 | |
| 	int nid = zone_to_nid(zone);
 | |
| 	int zid = zone_idx(zone);
 | |
| 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 | |
| 
 | |
| 	return MEM_CGROUP_ZSTAT(mz, lru);
 | |
| }
 | |
| 
 | |
| struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
 | |
| 						      struct zone *zone)
 | |
| {
 | |
| 	int nid = zone_to_nid(zone);
 | |
| 	int zid = zone_idx(zone);
 | |
| 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 | |
| 
 | |
| 	return &mz->reclaim_stat;
 | |
| }
 | |
| 
 | |
| struct zone_reclaim_stat *
 | |
| mem_cgroup_get_reclaim_stat_from_page(struct page *page)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	/*
 | |
| 	 * Used bit is set without atomic ops but after smp_wmb().
 | |
| 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	if (!PageCgroupUsed(pc))
 | |
| 		return NULL;
 | |
| 
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	if (!mz)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return &mz->reclaim_stat;
 | |
| }
 | |
| 
 | |
| unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
 | |
| 					struct list_head *dst,
 | |
| 					unsigned long *scanned, int order,
 | |
| 					int mode, struct zone *z,
 | |
| 					struct mem_cgroup *mem_cont,
 | |
| 					int active, int file)
 | |
| {
 | |
| 	unsigned long nr_taken = 0;
 | |
| 	struct page *page;
 | |
| 	unsigned long scan;
 | |
| 	LIST_HEAD(pc_list);
 | |
| 	struct list_head *src;
 | |
| 	struct page_cgroup *pc, *tmp;
 | |
| 	int nid = zone_to_nid(z);
 | |
| 	int zid = zone_idx(z);
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	int lru = LRU_FILE * file + active;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(!mem_cont);
 | |
| 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
 | |
| 	src = &mz->lists[lru];
 | |
| 
 | |
| 	scan = 0;
 | |
| 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
 | |
| 		if (scan >= nr_to_scan)
 | |
| 			break;
 | |
| 
 | |
| 		page = pc->page;
 | |
| 		if (unlikely(!PageCgroupUsed(pc)))
 | |
| 			continue;
 | |
| 		if (unlikely(!PageLRU(page)))
 | |
| 			continue;
 | |
| 
 | |
| 		scan++;
 | |
| 		ret = __isolate_lru_page(page, mode, file);
 | |
| 		switch (ret) {
 | |
| 		case 0:
 | |
| 			list_move(&page->lru, dst);
 | |
| 			mem_cgroup_del_lru(page);
 | |
| 			nr_taken++;
 | |
| 			break;
 | |
| 		case -EBUSY:
 | |
| 			/* we don't affect global LRU but rotate in our LRU */
 | |
| 			mem_cgroup_rotate_lru_list(page, page_lru(page));
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*scanned = scan;
 | |
| 
 | |
| 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
 | |
| 				      0, 0, 0, mode);
 | |
| 
 | |
| 	return nr_taken;
 | |
| }
 | |
| 
 | |
| #define mem_cgroup_from_res_counter(counter, member)	\
 | |
| 	container_of(counter, struct mem_cgroup, member)
 | |
| 
 | |
| static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (do_swap_account) {
 | |
| 		if (res_counter_check_under_limit(&mem->res) &&
 | |
| 			res_counter_check_under_limit(&mem->memsw))
 | |
| 			return true;
 | |
| 	} else
 | |
| 		if (res_counter_check_under_limit(&mem->res))
 | |
| 			return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static unsigned int get_swappiness(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct cgroup *cgrp = memcg->css.cgroup;
 | |
| 	unsigned int swappiness;
 | |
| 
 | |
| 	/* root ? */
 | |
| 	if (cgrp->parent == NULL)
 | |
| 		return vm_swappiness;
 | |
| 
 | |
| 	spin_lock(&memcg->reclaim_param_lock);
 | |
| 	swappiness = memcg->swappiness;
 | |
| 	spin_unlock(&memcg->reclaim_param_lock);
 | |
| 
 | |
| 	return swappiness;
 | |
| }
 | |
| 
 | |
| /* A routine for testing mem is not under move_account */
 | |
| 
 | |
| static bool mem_cgroup_under_move(struct mem_cgroup *mem)
 | |
| {
 | |
| 	struct mem_cgroup *from;
 | |
| 	struct mem_cgroup *to;
 | |
| 	bool ret = false;
 | |
| 	/*
 | |
| 	 * Unlike task_move routines, we access mc.to, mc.from not under
 | |
| 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
 | |
| 	 */
 | |
| 	spin_lock(&mc.lock);
 | |
| 	from = mc.from;
 | |
| 	to = mc.to;
 | |
| 	if (!from)
 | |
| 		goto unlock;
 | |
| 	if (from == mem || to == mem
 | |
| 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
 | |
| 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
 | |
| 		ret = true;
 | |
| unlock:
 | |
| 	spin_unlock(&mc.lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (mc.moving_task && current != mc.moving_task) {
 | |
| 		if (mem_cgroup_under_move(mem)) {
 | |
| 			DEFINE_WAIT(wait);
 | |
| 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
 | |
| 			/* moving charge context might have finished. */
 | |
| 			if (mc.moving_task)
 | |
| 				schedule();
 | |
| 			finish_wait(&mc.waitq, &wait);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
 | |
| {
 | |
| 	int *val = data;
 | |
| 	(*val)++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
 | |
|  * @memcg: The memory cgroup that went over limit
 | |
|  * @p: Task that is going to be killed
 | |
|  *
 | |
|  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 | |
|  * enabled
 | |
|  */
 | |
| void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
 | |
| {
 | |
| 	struct cgroup *task_cgrp;
 | |
| 	struct cgroup *mem_cgrp;
 | |
| 	/*
 | |
| 	 * Need a buffer in BSS, can't rely on allocations. The code relies
 | |
| 	 * on the assumption that OOM is serialized for memory controller.
 | |
| 	 * If this assumption is broken, revisit this code.
 | |
| 	 */
 | |
| 	static char memcg_name[PATH_MAX];
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!memcg || !p)
 | |
| 		return;
 | |
| 
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	mem_cgrp = memcg->css.cgroup;
 | |
| 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
 | |
| 
 | |
| 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
 | |
| 	if (ret < 0) {
 | |
| 		/*
 | |
| 		 * Unfortunately, we are unable to convert to a useful name
 | |
| 		 * But we'll still print out the usage information
 | |
| 		 */
 | |
| 		rcu_read_unlock();
 | |
| 		goto done;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	printk(KERN_INFO "Task in %s killed", memcg_name);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
 | |
| 	if (ret < 0) {
 | |
| 		rcu_read_unlock();
 | |
| 		goto done;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Continues from above, so we don't need an KERN_ level
 | |
| 	 */
 | |
| 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
 | |
| done:
 | |
| 
 | |
| 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
 | |
| 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
 | |
| 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
 | |
| 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
 | |
| 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
 | |
| 		"failcnt %llu\n",
 | |
| 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
 | |
| 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
 | |
| 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function returns the number of memcg under hierarchy tree. Returns
 | |
|  * 1(self count) if no children.
 | |
|  */
 | |
| static int mem_cgroup_count_children(struct mem_cgroup *mem)
 | |
| {
 | |
| 	int num = 0;
 | |
|  	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the memory (and swap, if configured) limit for a memcg.
 | |
|  */
 | |
| u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	u64 limit;
 | |
| 	u64 memsw;
 | |
| 
 | |
| 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
 | |
| 			total_swap_pages;
 | |
| 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | |
| 	/*
 | |
| 	 * If memsw is finite and limits the amount of swap space available
 | |
| 	 * to this memcg, return that limit.
 | |
| 	 */
 | |
| 	return min(limit, memsw);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Visit the first child (need not be the first child as per the ordering
 | |
|  * of the cgroup list, since we track last_scanned_child) of @mem and use
 | |
|  * that to reclaim free pages from.
 | |
|  */
 | |
| static struct mem_cgroup *
 | |
| mem_cgroup_select_victim(struct mem_cgroup *root_mem)
 | |
| {
 | |
| 	struct mem_cgroup *ret = NULL;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	int nextid, found;
 | |
| 
 | |
| 	if (!root_mem->use_hierarchy) {
 | |
| 		css_get(&root_mem->css);
 | |
| 		ret = root_mem;
 | |
| 	}
 | |
| 
 | |
| 	while (!ret) {
 | |
| 		rcu_read_lock();
 | |
| 		nextid = root_mem->last_scanned_child + 1;
 | |
| 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
 | |
| 				   &found);
 | |
| 		if (css && css_tryget(css))
 | |
| 			ret = container_of(css, struct mem_cgroup, css);
 | |
| 
 | |
| 		rcu_read_unlock();
 | |
| 		/* Updates scanning parameter */
 | |
| 		spin_lock(&root_mem->reclaim_param_lock);
 | |
| 		if (!css) {
 | |
| 			/* this means start scan from ID:1 */
 | |
| 			root_mem->last_scanned_child = 0;
 | |
| 		} else
 | |
| 			root_mem->last_scanned_child = found;
 | |
| 		spin_unlock(&root_mem->reclaim_param_lock);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan the hierarchy if needed to reclaim memory. We remember the last child
 | |
|  * we reclaimed from, so that we don't end up penalizing one child extensively
 | |
|  * based on its position in the children list.
 | |
|  *
 | |
|  * root_mem is the original ancestor that we've been reclaim from.
 | |
|  *
 | |
|  * We give up and return to the caller when we visit root_mem twice.
 | |
|  * (other groups can be removed while we're walking....)
 | |
|  *
 | |
|  * If shrink==true, for avoiding to free too much, this returns immedieately.
 | |
|  */
 | |
| static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
 | |
| 						struct zone *zone,
 | |
| 						gfp_t gfp_mask,
 | |
| 						unsigned long reclaim_options)
 | |
| {
 | |
| 	struct mem_cgroup *victim;
 | |
| 	int ret, total = 0;
 | |
| 	int loop = 0;
 | |
| 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
 | |
| 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
 | |
| 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
 | |
| 	unsigned long excess = mem_cgroup_get_excess(root_mem);
 | |
| 
 | |
| 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
 | |
| 	if (root_mem->memsw_is_minimum)
 | |
| 		noswap = true;
 | |
| 
 | |
| 	while (1) {
 | |
| 		victim = mem_cgroup_select_victim(root_mem);
 | |
| 		if (victim == root_mem) {
 | |
| 			loop++;
 | |
| 			if (loop >= 1)
 | |
| 				drain_all_stock_async();
 | |
| 			if (loop >= 2) {
 | |
| 				/*
 | |
| 				 * If we have not been able to reclaim
 | |
| 				 * anything, it might because there are
 | |
| 				 * no reclaimable pages under this hierarchy
 | |
| 				 */
 | |
| 				if (!check_soft || !total) {
 | |
| 					css_put(&victim->css);
 | |
| 					break;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * We want to do more targetted reclaim.
 | |
| 				 * excess >> 2 is not to excessive so as to
 | |
| 				 * reclaim too much, nor too less that we keep
 | |
| 				 * coming back to reclaim from this cgroup
 | |
| 				 */
 | |
| 				if (total >= (excess >> 2) ||
 | |
| 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
 | |
| 					css_put(&victim->css);
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if (!mem_cgroup_local_usage(victim)) {
 | |
| 			/* this cgroup's local usage == 0 */
 | |
| 			css_put(&victim->css);
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* we use swappiness of local cgroup */
 | |
| 		if (check_soft)
 | |
| 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
 | |
| 				noswap, get_swappiness(victim), zone);
 | |
| 		else
 | |
| 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
 | |
| 						noswap, get_swappiness(victim));
 | |
| 		css_put(&victim->css);
 | |
| 		/*
 | |
| 		 * At shrinking usage, we can't check we should stop here or
 | |
| 		 * reclaim more. It's depends on callers. last_scanned_child
 | |
| 		 * will work enough for keeping fairness under tree.
 | |
| 		 */
 | |
| 		if (shrink)
 | |
| 			return ret;
 | |
| 		total += ret;
 | |
| 		if (check_soft) {
 | |
| 			if (res_counter_check_under_soft_limit(&root_mem->res))
 | |
| 				return total;
 | |
| 		} else if (mem_cgroup_check_under_limit(root_mem))
 | |
| 			return 1 + total;
 | |
| 	}
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
 | |
| {
 | |
| 	int *val = (int *)data;
 | |
| 	int x;
 | |
| 	/*
 | |
| 	 * Logically, we can stop scanning immediately when we find
 | |
| 	 * a memcg is already locked. But condidering unlock ops and
 | |
| 	 * creation/removal of memcg, scan-all is simple operation.
 | |
| 	 */
 | |
| 	x = atomic_inc_return(&mem->oom_lock);
 | |
| 	*val = max(x, *val);
 | |
| 	return 0;
 | |
| }
 | |
| /*
 | |
|  * Check OOM-Killer is already running under our hierarchy.
 | |
|  * If someone is running, return false.
 | |
|  */
 | |
| static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
 | |
| {
 | |
| 	int lock_count = 0;
 | |
| 
 | |
| 	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
 | |
| 
 | |
| 	if (lock_count == 1)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
 | |
| {
 | |
| 	/*
 | |
| 	 * When a new child is created while the hierarchy is under oom,
 | |
| 	 * mem_cgroup_oom_lock() may not be called. We have to use
 | |
| 	 * atomic_add_unless() here.
 | |
| 	 */
 | |
| 	atomic_add_unless(&mem->oom_lock, -1, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
 | |
| {
 | |
| 	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(memcg_oom_mutex);
 | |
| static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
 | |
| 
 | |
| struct oom_wait_info {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	wait_queue_t	wait;
 | |
| };
 | |
| 
 | |
| static int memcg_oom_wake_function(wait_queue_t *wait,
 | |
| 	unsigned mode, int sync, void *arg)
 | |
| {
 | |
| 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
 | |
| 	struct oom_wait_info *oom_wait_info;
 | |
| 
 | |
| 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
 | |
| 
 | |
| 	if (oom_wait_info->mem == wake_mem)
 | |
| 		goto wakeup;
 | |
| 	/* if no hierarchy, no match */
 | |
| 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
 | |
| 	 * Then we can use css_is_ancestor without taking care of RCU.
 | |
| 	 */
 | |
| 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
 | |
| 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
 | |
| 		return 0;
 | |
| 
 | |
| wakeup:
 | |
| 	return autoremove_wake_function(wait, mode, sync, arg);
 | |
| }
 | |
| 
 | |
| static void memcg_wakeup_oom(struct mem_cgroup *mem)
 | |
| {
 | |
| 	/* for filtering, pass "mem" as argument. */
 | |
| 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
 | |
| }
 | |
| 
 | |
| static void memcg_oom_recover(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (mem && atomic_read(&mem->oom_lock))
 | |
| 		memcg_wakeup_oom(mem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 | |
|  */
 | |
| bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
 | |
| {
 | |
| 	struct oom_wait_info owait;
 | |
| 	bool locked, need_to_kill;
 | |
| 
 | |
| 	owait.mem = mem;
 | |
| 	owait.wait.flags = 0;
 | |
| 	owait.wait.func = memcg_oom_wake_function;
 | |
| 	owait.wait.private = current;
 | |
| 	INIT_LIST_HEAD(&owait.wait.task_list);
 | |
| 	need_to_kill = true;
 | |
| 	/* At first, try to OOM lock hierarchy under mem.*/
 | |
| 	mutex_lock(&memcg_oom_mutex);
 | |
| 	locked = mem_cgroup_oom_lock(mem);
 | |
| 	/*
 | |
| 	 * Even if signal_pending(), we can't quit charge() loop without
 | |
| 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
 | |
| 	 * under OOM is always welcomed, use TASK_KILLABLE here.
 | |
| 	 */
 | |
| 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
 | |
| 	if (!locked || mem->oom_kill_disable)
 | |
| 		need_to_kill = false;
 | |
| 	if (locked)
 | |
| 		mem_cgroup_oom_notify(mem);
 | |
| 	mutex_unlock(&memcg_oom_mutex);
 | |
| 
 | |
| 	if (need_to_kill) {
 | |
| 		finish_wait(&memcg_oom_waitq, &owait.wait);
 | |
| 		mem_cgroup_out_of_memory(mem, mask);
 | |
| 	} else {
 | |
| 		schedule();
 | |
| 		finish_wait(&memcg_oom_waitq, &owait.wait);
 | |
| 	}
 | |
| 	mutex_lock(&memcg_oom_mutex);
 | |
| 	mem_cgroup_oom_unlock(mem);
 | |
| 	memcg_wakeup_oom(mem);
 | |
| 	mutex_unlock(&memcg_oom_mutex);
 | |
| 
 | |
| 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
 | |
| 		return false;
 | |
| 	/* Give chance to dying process */
 | |
| 	schedule_timeout(1);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Currently used to update mapped file statistics, but the routine can be
 | |
|  * generalized to update other statistics as well.
 | |
|  */
 | |
| void mem_cgroup_update_file_mapped(struct page *page, int val)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	struct page_cgroup *pc;
 | |
| 
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	if (unlikely(!pc))
 | |
| 		return;
 | |
| 
 | |
| 	lock_page_cgroup(pc);
 | |
| 	mem = pc->mem_cgroup;
 | |
| 	if (!mem || !PageCgroupUsed(pc))
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * Preemption is already disabled. We can use __this_cpu_xxx
 | |
| 	 */
 | |
| 	if (val > 0) {
 | |
| 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
 | |
| 		SetPageCgroupFileMapped(pc);
 | |
| 	} else {
 | |
| 		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
 | |
| 		ClearPageCgroupFileMapped(pc);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	unlock_page_cgroup(pc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * size of first charge trial. "32" comes from vmscan.c's magic value.
 | |
|  * TODO: maybe necessary to use big numbers in big irons.
 | |
|  */
 | |
| #define CHARGE_SIZE	(32 * PAGE_SIZE)
 | |
| struct memcg_stock_pcp {
 | |
| 	struct mem_cgroup *cached; /* this never be root cgroup */
 | |
| 	int charge;
 | |
| 	struct work_struct work;
 | |
| };
 | |
| static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
 | |
| static atomic_t memcg_drain_count;
 | |
| 
 | |
| /*
 | |
|  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 | |
|  * from local stock and true is returned. If the stock is 0 or charges from a
 | |
|  * cgroup which is not current target, returns false. This stock will be
 | |
|  * refilled.
 | |
|  */
 | |
| static bool consume_stock(struct mem_cgroup *mem)
 | |
| {
 | |
| 	struct memcg_stock_pcp *stock;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	stock = &get_cpu_var(memcg_stock);
 | |
| 	if (mem == stock->cached && stock->charge)
 | |
| 		stock->charge -= PAGE_SIZE;
 | |
| 	else /* need to call res_counter_charge */
 | |
| 		ret = false;
 | |
| 	put_cpu_var(memcg_stock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns stocks cached in percpu to res_counter and reset cached information.
 | |
|  */
 | |
| static void drain_stock(struct memcg_stock_pcp *stock)
 | |
| {
 | |
| 	struct mem_cgroup *old = stock->cached;
 | |
| 
 | |
| 	if (stock->charge) {
 | |
| 		res_counter_uncharge(&old->res, stock->charge);
 | |
| 		if (do_swap_account)
 | |
| 			res_counter_uncharge(&old->memsw, stock->charge);
 | |
| 	}
 | |
| 	stock->cached = NULL;
 | |
| 	stock->charge = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must be called under preempt disabled or must be called by
 | |
|  * a thread which is pinned to local cpu.
 | |
|  */
 | |
| static void drain_local_stock(struct work_struct *dummy)
 | |
| {
 | |
| 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
 | |
| 	drain_stock(stock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cache charges(val) which is from res_counter, to local per_cpu area.
 | |
|  * This will be consumed by consume_stock() function, later.
 | |
|  */
 | |
| static void refill_stock(struct mem_cgroup *mem, int val)
 | |
| {
 | |
| 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
 | |
| 
 | |
| 	if (stock->cached != mem) { /* reset if necessary */
 | |
| 		drain_stock(stock);
 | |
| 		stock->cached = mem;
 | |
| 	}
 | |
| 	stock->charge += val;
 | |
| 	put_cpu_var(memcg_stock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tries to drain stocked charges in other cpus. This function is asynchronous
 | |
|  * and just put a work per cpu for draining localy on each cpu. Caller can
 | |
|  * expects some charges will be back to res_counter later but cannot wait for
 | |
|  * it.
 | |
|  */
 | |
| static void drain_all_stock_async(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	/* This function is for scheduling "drain" in asynchronous way.
 | |
| 	 * The result of "drain" is not directly handled by callers. Then,
 | |
| 	 * if someone is calling drain, we don't have to call drain more.
 | |
| 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
 | |
| 	 * there is a race. We just do loose check here.
 | |
| 	 */
 | |
| 	if (atomic_read(&memcg_drain_count))
 | |
| 		return;
 | |
| 	/* Notify other cpus that system-wide "drain" is running */
 | |
| 	atomic_inc(&memcg_drain_count);
 | |
| 	get_online_cpus();
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
 | |
| 		schedule_work_on(cpu, &stock->work);
 | |
| 	}
 | |
|  	put_online_cpus();
 | |
| 	atomic_dec(&memcg_drain_count);
 | |
| 	/* We don't wait for flush_work */
 | |
| }
 | |
| 
 | |
| /* This is a synchronous drain interface. */
 | |
| static void drain_all_stock_sync(void)
 | |
| {
 | |
| 	/* called when force_empty is called */
 | |
| 	atomic_inc(&memcg_drain_count);
 | |
| 	schedule_on_each_cpu(drain_local_stock);
 | |
| 	atomic_dec(&memcg_drain_count);
 | |
| }
 | |
| 
 | |
| static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
 | |
| 					unsigned long action,
 | |
| 					void *hcpu)
 | |
| {
 | |
| 	int cpu = (unsigned long)hcpu;
 | |
| 	struct memcg_stock_pcp *stock;
 | |
| 
 | |
| 	if (action != CPU_DEAD)
 | |
| 		return NOTIFY_OK;
 | |
| 	stock = &per_cpu(memcg_stock, cpu);
 | |
| 	drain_stock(stock);
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* See __mem_cgroup_try_charge() for details */
 | |
| enum {
 | |
| 	CHARGE_OK,		/* success */
 | |
| 	CHARGE_RETRY,		/* need to retry but retry is not bad */
 | |
| 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
 | |
| 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
 | |
| 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
 | |
| };
 | |
| 
 | |
| static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
 | |
| 				int csize, bool oom_check)
 | |
| {
 | |
| 	struct mem_cgroup *mem_over_limit;
 | |
| 	struct res_counter *fail_res;
 | |
| 	unsigned long flags = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = res_counter_charge(&mem->res, csize, &fail_res);
 | |
| 
 | |
| 	if (likely(!ret)) {
 | |
| 		if (!do_swap_account)
 | |
| 			return CHARGE_OK;
 | |
| 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
 | |
| 		if (likely(!ret))
 | |
| 			return CHARGE_OK;
 | |
| 
 | |
| 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
 | |
| 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
 | |
| 	} else
 | |
| 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
 | |
| 
 | |
| 	if (csize > PAGE_SIZE) /* change csize and retry */
 | |
| 		return CHARGE_RETRY;
 | |
| 
 | |
| 	if (!(gfp_mask & __GFP_WAIT))
 | |
| 		return CHARGE_WOULDBLOCK;
 | |
| 
 | |
| 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
 | |
| 					gfp_mask, flags);
 | |
| 	/*
 | |
| 	 * try_to_free_mem_cgroup_pages() might not give us a full
 | |
| 	 * picture of reclaim. Some pages are reclaimed and might be
 | |
| 	 * moved to swap cache or just unmapped from the cgroup.
 | |
| 	 * Check the limit again to see if the reclaim reduced the
 | |
| 	 * current usage of the cgroup before giving up
 | |
| 	 */
 | |
| 	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
 | |
| 		return CHARGE_RETRY;
 | |
| 
 | |
| 	/*
 | |
| 	 * At task move, charge accounts can be doubly counted. So, it's
 | |
| 	 * better to wait until the end of task_move if something is going on.
 | |
| 	 */
 | |
| 	if (mem_cgroup_wait_acct_move(mem_over_limit))
 | |
| 		return CHARGE_RETRY;
 | |
| 
 | |
| 	/* If we don't need to call oom-killer at el, return immediately */
 | |
| 	if (!oom_check)
 | |
| 		return CHARGE_NOMEM;
 | |
| 	/* check OOM */
 | |
| 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
 | |
| 		return CHARGE_OOM_DIE;
 | |
| 
 | |
| 	return CHARGE_RETRY;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlike exported interface, "oom" parameter is added. if oom==true,
 | |
|  * oom-killer can be invoked.
 | |
|  */
 | |
| static int __mem_cgroup_try_charge(struct mm_struct *mm,
 | |
| 		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
 | |
| {
 | |
| 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 	int ret;
 | |
| 	int csize = CHARGE_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
 | |
| 	 * in system level. So, allow to go ahead dying process in addition to
 | |
| 	 * MEMDIE process.
 | |
| 	 */
 | |
| 	if (unlikely(test_thread_flag(TIF_MEMDIE)
 | |
| 		     || fatal_signal_pending(current)))
 | |
| 		goto bypass;
 | |
| 
 | |
| 	/*
 | |
| 	 * We always charge the cgroup the mm_struct belongs to.
 | |
| 	 * The mm_struct's mem_cgroup changes on task migration if the
 | |
| 	 * thread group leader migrates. It's possible that mm is not
 | |
| 	 * set, if so charge the init_mm (happens for pagecache usage).
 | |
| 	 */
 | |
| 	if (!*memcg && !mm)
 | |
| 		goto bypass;
 | |
| again:
 | |
| 	if (*memcg) { /* css should be a valid one */
 | |
| 		mem = *memcg;
 | |
| 		VM_BUG_ON(css_is_removed(&mem->css));
 | |
| 		if (mem_cgroup_is_root(mem))
 | |
| 			goto done;
 | |
| 		if (consume_stock(mem))
 | |
| 			goto done;
 | |
| 		css_get(&mem->css);
 | |
| 	} else {
 | |
| 		struct task_struct *p;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		p = rcu_dereference(mm->owner);
 | |
| 		VM_BUG_ON(!p);
 | |
| 		/*
 | |
| 		 * because we don't have task_lock(), "p" can exit while
 | |
| 		 * we're here. In that case, "mem" can point to root
 | |
| 		 * cgroup but never be NULL. (and task_struct itself is freed
 | |
| 		 * by RCU, cgroup itself is RCU safe.) Then, we have small
 | |
| 		 * risk here to get wrong cgroup. But such kind of mis-account
 | |
| 		 * by race always happens because we don't have cgroup_mutex().
 | |
| 		 * It's overkill and we allow that small race, here.
 | |
| 		 */
 | |
| 		mem = mem_cgroup_from_task(p);
 | |
| 		VM_BUG_ON(!mem);
 | |
| 		if (mem_cgroup_is_root(mem)) {
 | |
| 			rcu_read_unlock();
 | |
| 			goto done;
 | |
| 		}
 | |
| 		if (consume_stock(mem)) {
 | |
| 			/*
 | |
| 			 * It seems dagerous to access memcg without css_get().
 | |
| 			 * But considering how consume_stok works, it's not
 | |
| 			 * necessary. If consume_stock success, some charges
 | |
| 			 * from this memcg are cached on this cpu. So, we
 | |
| 			 * don't need to call css_get()/css_tryget() before
 | |
| 			 * calling consume_stock().
 | |
| 			 */
 | |
| 			rcu_read_unlock();
 | |
| 			goto done;
 | |
| 		}
 | |
| 		/* after here, we may be blocked. we need to get refcnt */
 | |
| 		if (!css_tryget(&mem->css)) {
 | |
| 			rcu_read_unlock();
 | |
| 			goto again;
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		bool oom_check;
 | |
| 
 | |
| 		/* If killed, bypass charge */
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			css_put(&mem->css);
 | |
| 			goto bypass;
 | |
| 		}
 | |
| 
 | |
| 		oom_check = false;
 | |
| 		if (oom && !nr_oom_retries) {
 | |
| 			oom_check = true;
 | |
| 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 		}
 | |
| 
 | |
| 		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
 | |
| 
 | |
| 		switch (ret) {
 | |
| 		case CHARGE_OK:
 | |
| 			break;
 | |
| 		case CHARGE_RETRY: /* not in OOM situation but retry */
 | |
| 			csize = PAGE_SIZE;
 | |
| 			css_put(&mem->css);
 | |
| 			mem = NULL;
 | |
| 			goto again;
 | |
| 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
 | |
| 			css_put(&mem->css);
 | |
| 			goto nomem;
 | |
| 		case CHARGE_NOMEM: /* OOM routine works */
 | |
| 			if (!oom) {
 | |
| 				css_put(&mem->css);
 | |
| 				goto nomem;
 | |
| 			}
 | |
| 			/* If oom, we never return -ENOMEM */
 | |
| 			nr_oom_retries--;
 | |
| 			break;
 | |
| 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
 | |
| 			css_put(&mem->css);
 | |
| 			goto bypass;
 | |
| 		}
 | |
| 	} while (ret != CHARGE_OK);
 | |
| 
 | |
| 	if (csize > PAGE_SIZE)
 | |
| 		refill_stock(mem, csize - PAGE_SIZE);
 | |
| 	css_put(&mem->css);
 | |
| done:
 | |
| 	*memcg = mem;
 | |
| 	return 0;
 | |
| nomem:
 | |
| 	*memcg = NULL;
 | |
| 	return -ENOMEM;
 | |
| bypass:
 | |
| 	*memcg = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Somemtimes we have to undo a charge we got by try_charge().
 | |
|  * This function is for that and do uncharge, put css's refcnt.
 | |
|  * gotten by try_charge().
 | |
|  */
 | |
| static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
 | |
| 							unsigned long count)
 | |
| {
 | |
| 	if (!mem_cgroup_is_root(mem)) {
 | |
| 		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
 | |
| 		if (do_swap_account)
 | |
| 			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
 | |
| {
 | |
| 	__mem_cgroup_cancel_charge(mem, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A helper function to get mem_cgroup from ID. must be called under
 | |
|  * rcu_read_lock(). The caller must check css_is_removed() or some if
 | |
|  * it's concern. (dropping refcnt from swap can be called against removed
 | |
|  * memcg.)
 | |
|  */
 | |
| static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
 | |
| {
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 
 | |
| 	/* ID 0 is unused ID */
 | |
| 	if (!id)
 | |
| 		return NULL;
 | |
| 	css = css_lookup(&mem_cgroup_subsys, id);
 | |
| 	if (!css)
 | |
| 		return NULL;
 | |
| 	return container_of(css, struct mem_cgroup, css);
 | |
| }
 | |
| 
 | |
| struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
 | |
| {
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 	struct page_cgroup *pc;
 | |
| 	unsigned short id;
 | |
| 	swp_entry_t ent;
 | |
| 
 | |
| 	VM_BUG_ON(!PageLocked(page));
 | |
| 
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	lock_page_cgroup(pc);
 | |
| 	if (PageCgroupUsed(pc)) {
 | |
| 		mem = pc->mem_cgroup;
 | |
| 		if (mem && !css_tryget(&mem->css))
 | |
| 			mem = NULL;
 | |
| 	} else if (PageSwapCache(page)) {
 | |
| 		ent.val = page_private(page);
 | |
| 		id = lookup_swap_cgroup(ent);
 | |
| 		rcu_read_lock();
 | |
| 		mem = mem_cgroup_lookup(id);
 | |
| 		if (mem && !css_tryget(&mem->css))
 | |
| 			mem = NULL;
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	unlock_page_cgroup(pc);
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
 | |
|  * USED state. If already USED, uncharge and return.
 | |
|  */
 | |
| 
 | |
| static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
 | |
| 				     struct page_cgroup *pc,
 | |
| 				     enum charge_type ctype)
 | |
| {
 | |
| 	/* try_charge() can return NULL to *memcg, taking care of it. */
 | |
| 	if (!mem)
 | |
| 		return;
 | |
| 
 | |
| 	lock_page_cgroup(pc);
 | |
| 	if (unlikely(PageCgroupUsed(pc))) {
 | |
| 		unlock_page_cgroup(pc);
 | |
| 		mem_cgroup_cancel_charge(mem);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pc->mem_cgroup = mem;
 | |
| 	/*
 | |
| 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
 | |
| 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
 | |
| 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
 | |
| 	 * before USED bit, we need memory barrier here.
 | |
| 	 * See mem_cgroup_add_lru_list(), etc.
 | |
|  	 */
 | |
| 	smp_wmb();
 | |
| 	switch (ctype) {
 | |
| 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
 | |
| 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
 | |
| 		SetPageCgroupCache(pc);
 | |
| 		SetPageCgroupUsed(pc);
 | |
| 		break;
 | |
| 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
 | |
| 		ClearPageCgroupCache(pc);
 | |
| 		SetPageCgroupUsed(pc);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	mem_cgroup_charge_statistics(mem, pc, true);
 | |
| 
 | |
| 	unlock_page_cgroup(pc);
 | |
| 	/*
 | |
| 	 * "charge_statistics" updated event counter. Then, check it.
 | |
| 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
 | |
| 	 * if they exceeds softlimit.
 | |
| 	 */
 | |
| 	memcg_check_events(mem, pc->page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __mem_cgroup_move_account - move account of the page
 | |
|  * @pc:	page_cgroup of the page.
 | |
|  * @from: mem_cgroup which the page is moved from.
 | |
|  * @to:	mem_cgroup which the page is moved to. @from != @to.
 | |
|  * @uncharge: whether we should call uncharge and css_put against @from.
 | |
|  *
 | |
|  * The caller must confirm following.
 | |
|  * - page is not on LRU (isolate_page() is useful.)
 | |
|  * - the pc is locked, used, and ->mem_cgroup points to @from.
 | |
|  *
 | |
|  * This function doesn't do "charge" nor css_get to new cgroup. It should be
 | |
|  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 | |
|  * true, this function does "uncharge" from old cgroup, but it doesn't if
 | |
|  * @uncharge is false, so a caller should do "uncharge".
 | |
|  */
 | |
| 
 | |
| static void __mem_cgroup_move_account(struct page_cgroup *pc,
 | |
| 	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
 | |
| {
 | |
| 	VM_BUG_ON(from == to);
 | |
| 	VM_BUG_ON(PageLRU(pc->page));
 | |
| 	VM_BUG_ON(!PageCgroupLocked(pc));
 | |
| 	VM_BUG_ON(!PageCgroupUsed(pc));
 | |
| 	VM_BUG_ON(pc->mem_cgroup != from);
 | |
| 
 | |
| 	if (PageCgroupFileMapped(pc)) {
 | |
| 		/* Update mapped_file data for mem_cgroup */
 | |
| 		preempt_disable();
 | |
| 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
 | |
| 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| 	mem_cgroup_charge_statistics(from, pc, false);
 | |
| 	if (uncharge)
 | |
| 		/* This is not "cancel", but cancel_charge does all we need. */
 | |
| 		mem_cgroup_cancel_charge(from);
 | |
| 
 | |
| 	/* caller should have done css_get */
 | |
| 	pc->mem_cgroup = to;
 | |
| 	mem_cgroup_charge_statistics(to, pc, true);
 | |
| 	/*
 | |
| 	 * We charges against "to" which may not have any tasks. Then, "to"
 | |
| 	 * can be under rmdir(). But in current implementation, caller of
 | |
| 	 * this function is just force_empty() and move charge, so it's
 | |
| 	 * garanteed that "to" is never removed. So, we don't check rmdir
 | |
| 	 * status here.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check whether the @pc is valid for moving account and call
 | |
|  * __mem_cgroup_move_account()
 | |
|  */
 | |
| static int mem_cgroup_move_account(struct page_cgroup *pc,
 | |
| 		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 	lock_page_cgroup(pc);
 | |
| 	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
 | |
| 		__mem_cgroup_move_account(pc, from, to, uncharge);
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 	unlock_page_cgroup(pc);
 | |
| 	/*
 | |
| 	 * check events
 | |
| 	 */
 | |
| 	memcg_check_events(to, pc->page);
 | |
| 	memcg_check_events(from, pc->page);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * move charges to its parent.
 | |
|  */
 | |
| 
 | |
| static int mem_cgroup_move_parent(struct page_cgroup *pc,
 | |
| 				  struct mem_cgroup *child,
 | |
| 				  gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page *page = pc->page;
 | |
| 	struct cgroup *cg = child->css.cgroup;
 | |
| 	struct cgroup *pcg = cg->parent;
 | |
| 	struct mem_cgroup *parent;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Is ROOT ? */
 | |
| 	if (!pcg)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = -EBUSY;
 | |
| 	if (!get_page_unless_zero(page))
 | |
| 		goto out;
 | |
| 	if (isolate_lru_page(page))
 | |
| 		goto put;
 | |
| 
 | |
| 	parent = mem_cgroup_from_cont(pcg);
 | |
| 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
 | |
| 	if (ret || !parent)
 | |
| 		goto put_back;
 | |
| 
 | |
| 	ret = mem_cgroup_move_account(pc, child, parent, true);
 | |
| 	if (ret)
 | |
| 		mem_cgroup_cancel_charge(parent);
 | |
| put_back:
 | |
| 	putback_lru_page(page);
 | |
| put:
 | |
| 	put_page(page);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Charge the memory controller for page usage.
 | |
|  * Return
 | |
|  * 0 if the charge was successful
 | |
|  * < 0 if the cgroup is over its limit
 | |
|  */
 | |
| static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
 | |
| 				gfp_t gfp_mask, enum charge_type ctype)
 | |
| {
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 	struct page_cgroup *pc;
 | |
| 	int ret;
 | |
| 
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	/* can happen at boot */
 | |
| 	if (unlikely(!pc))
 | |
| 		return 0;
 | |
| 	prefetchw(pc);
 | |
| 
 | |
| 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
 | |
| 	if (ret || !mem)
 | |
| 		return ret;
 | |
| 
 | |
| 	__mem_cgroup_commit_charge(mem, pc, ctype);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int mem_cgroup_newpage_charge(struct page *page,
 | |
| 			      struct mm_struct *mm, gfp_t gfp_mask)
 | |
| {
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 	if (PageCompound(page))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If already mapped, we don't have to account.
 | |
| 	 * If page cache, page->mapping has address_space.
 | |
| 	 * But page->mapping may have out-of-use anon_vma pointer,
 | |
| 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
 | |
| 	 * is NULL.
 | |
|   	 */
 | |
| 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
 | |
| 		return 0;
 | |
| 	if (unlikely(!mm))
 | |
| 		mm = &init_mm;
 | |
| 	return mem_cgroup_charge_common(page, mm, gfp_mask,
 | |
| 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
 | |
| 					enum charge_type ctype);
 | |
| 
 | |
| int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
 | |
| 				gfp_t gfp_mask)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 	if (PageCompound(page))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Corner case handling. This is called from add_to_page_cache()
 | |
| 	 * in usual. But some FS (shmem) precharges this page before calling it
 | |
| 	 * and call add_to_page_cache() with GFP_NOWAIT.
 | |
| 	 *
 | |
| 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
 | |
| 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
 | |
| 	 * charge twice. (It works but has to pay a bit larger cost.)
 | |
| 	 * And when the page is SwapCache, it should take swap information
 | |
| 	 * into account. This is under lock_page() now.
 | |
| 	 */
 | |
| 	if (!(gfp_mask & __GFP_WAIT)) {
 | |
| 		struct page_cgroup *pc;
 | |
| 
 | |
| 		pc = lookup_page_cgroup(page);
 | |
| 		if (!pc)
 | |
| 			return 0;
 | |
| 		lock_page_cgroup(pc);
 | |
| 		if (PageCgroupUsed(pc)) {
 | |
| 			unlock_page_cgroup(pc);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		unlock_page_cgroup(pc);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!mm))
 | |
| 		mm = &init_mm;
 | |
| 
 | |
| 	if (page_is_file_cache(page))
 | |
| 		return mem_cgroup_charge_common(page, mm, gfp_mask,
 | |
| 				MEM_CGROUP_CHARGE_TYPE_CACHE);
 | |
| 
 | |
| 	/* shmem */
 | |
| 	if (PageSwapCache(page)) {
 | |
| 		struct mem_cgroup *mem = NULL;
 | |
| 
 | |
| 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
 | |
| 		if (!ret)
 | |
| 			__mem_cgroup_commit_charge_swapin(page, mem,
 | |
| 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
 | |
| 	} else
 | |
| 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
 | |
| 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * While swap-in, try_charge -> commit or cancel, the page is locked.
 | |
|  * And when try_charge() successfully returns, one refcnt to memcg without
 | |
|  * struct page_cgroup is acquired. This refcnt will be consumed by
 | |
|  * "commit()" or removed by "cancel()"
 | |
|  */
 | |
| int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
 | |
| 				 struct page *page,
 | |
| 				 gfp_t mask, struct mem_cgroup **ptr)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!do_swap_account)
 | |
| 		goto charge_cur_mm;
 | |
| 	/*
 | |
| 	 * A racing thread's fault, or swapoff, may have already updated
 | |
| 	 * the pte, and even removed page from swap cache: in those cases
 | |
| 	 * do_swap_page()'s pte_same() test will fail; but there's also a
 | |
| 	 * KSM case which does need to charge the page.
 | |
| 	 */
 | |
| 	if (!PageSwapCache(page))
 | |
| 		goto charge_cur_mm;
 | |
| 	mem = try_get_mem_cgroup_from_page(page);
 | |
| 	if (!mem)
 | |
| 		goto charge_cur_mm;
 | |
| 	*ptr = mem;
 | |
| 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
 | |
| 	css_put(&mem->css);
 | |
| 	return ret;
 | |
| charge_cur_mm:
 | |
| 	if (unlikely(!mm))
 | |
| 		mm = &init_mm;
 | |
| 	return __mem_cgroup_try_charge(mm, mask, ptr, true);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
 | |
| 					enum charge_type ctype)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	if (!ptr)
 | |
| 		return;
 | |
| 	cgroup_exclude_rmdir(&ptr->css);
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	mem_cgroup_lru_del_before_commit_swapcache(page);
 | |
| 	__mem_cgroup_commit_charge(ptr, pc, ctype);
 | |
| 	mem_cgroup_lru_add_after_commit_swapcache(page);
 | |
| 	/*
 | |
| 	 * Now swap is on-memory. This means this page may be
 | |
| 	 * counted both as mem and swap....double count.
 | |
| 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
 | |
| 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
 | |
| 	 * may call delete_from_swap_cache() before reach here.
 | |
| 	 */
 | |
| 	if (do_swap_account && PageSwapCache(page)) {
 | |
| 		swp_entry_t ent = {.val = page_private(page)};
 | |
| 		unsigned short id;
 | |
| 		struct mem_cgroup *memcg;
 | |
| 
 | |
| 		id = swap_cgroup_record(ent, 0);
 | |
| 		rcu_read_lock();
 | |
| 		memcg = mem_cgroup_lookup(id);
 | |
| 		if (memcg) {
 | |
| 			/*
 | |
| 			 * This recorded memcg can be obsolete one. So, avoid
 | |
| 			 * calling css_tryget
 | |
| 			 */
 | |
| 			if (!mem_cgroup_is_root(memcg))
 | |
| 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
 | |
| 			mem_cgroup_swap_statistics(memcg, false);
 | |
| 			mem_cgroup_put(memcg);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	/*
 | |
| 	 * At swapin, we may charge account against cgroup which has no tasks.
 | |
| 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
 | |
| 	 * In that case, we need to call pre_destroy() again. check it here.
 | |
| 	 */
 | |
| 	cgroup_release_and_wakeup_rmdir(&ptr->css);
 | |
| }
 | |
| 
 | |
| void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
 | |
| {
 | |
| 	__mem_cgroup_commit_charge_swapin(page, ptr,
 | |
| 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
 | |
| }
 | |
| 
 | |
| void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return;
 | |
| 	if (!mem)
 | |
| 		return;
 | |
| 	mem_cgroup_cancel_charge(mem);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
 | |
| {
 | |
| 	struct memcg_batch_info *batch = NULL;
 | |
| 	bool uncharge_memsw = true;
 | |
| 	/* If swapout, usage of swap doesn't decrease */
 | |
| 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
 | |
| 		uncharge_memsw = false;
 | |
| 
 | |
| 	batch = ¤t->memcg_batch;
 | |
| 	/*
 | |
| 	 * In usual, we do css_get() when we remember memcg pointer.
 | |
| 	 * But in this case, we keep res->usage until end of a series of
 | |
| 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
 | |
| 	 */
 | |
| 	if (!batch->memcg)
 | |
| 		batch->memcg = mem;
 | |
| 	/*
 | |
| 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
 | |
| 	 * In those cases, all pages freed continously can be expected to be in
 | |
| 	 * the same cgroup and we have chance to coalesce uncharges.
 | |
| 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
 | |
| 	 * because we want to do uncharge as soon as possible.
 | |
| 	 */
 | |
| 
 | |
| 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
 | |
| 		goto direct_uncharge;
 | |
| 
 | |
| 	/*
 | |
| 	 * In typical case, batch->memcg == mem. This means we can
 | |
| 	 * merge a series of uncharges to an uncharge of res_counter.
 | |
| 	 * If not, we uncharge res_counter ony by one.
 | |
| 	 */
 | |
| 	if (batch->memcg != mem)
 | |
| 		goto direct_uncharge;
 | |
| 	/* remember freed charge and uncharge it later */
 | |
| 	batch->bytes += PAGE_SIZE;
 | |
| 	if (uncharge_memsw)
 | |
| 		batch->memsw_bytes += PAGE_SIZE;
 | |
| 	return;
 | |
| direct_uncharge:
 | |
| 	res_counter_uncharge(&mem->res, PAGE_SIZE);
 | |
| 	if (uncharge_memsw)
 | |
| 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
 | |
| 	if (unlikely(batch->memcg != mem))
 | |
| 		memcg_oom_recover(mem);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * uncharge if !page_mapped(page)
 | |
|  */
 | |
| static struct mem_cgroup *
 | |
| __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (PageSwapCache(page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if our page_cgroup is valid
 | |
| 	 */
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	if (unlikely(!pc || !PageCgroupUsed(pc)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	lock_page_cgroup(pc);
 | |
| 
 | |
| 	mem = pc->mem_cgroup;
 | |
| 
 | |
| 	if (!PageCgroupUsed(pc))
 | |
| 		goto unlock_out;
 | |
| 
 | |
| 	switch (ctype) {
 | |
| 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
 | |
| 	case MEM_CGROUP_CHARGE_TYPE_DROP:
 | |
| 		/* See mem_cgroup_prepare_migration() */
 | |
| 		if (page_mapped(page) || PageCgroupMigration(pc))
 | |
| 			goto unlock_out;
 | |
| 		break;
 | |
| 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
 | |
| 		if (!PageAnon(page)) {	/* Shared memory */
 | |
| 			if (page->mapping && !page_is_file_cache(page))
 | |
| 				goto unlock_out;
 | |
| 		} else if (page_mapped(page)) /* Anon */
 | |
| 				goto unlock_out;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	mem_cgroup_charge_statistics(mem, pc, false);
 | |
| 
 | |
| 	ClearPageCgroupUsed(pc);
 | |
| 	/*
 | |
| 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
 | |
| 	 * freed from LRU. This is safe because uncharged page is expected not
 | |
| 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
 | |
| 	 * special functions.
 | |
| 	 */
 | |
| 
 | |
| 	unlock_page_cgroup(pc);
 | |
| 	/*
 | |
| 	 * even after unlock, we have mem->res.usage here and this memcg
 | |
| 	 * will never be freed.
 | |
| 	 */
 | |
| 	memcg_check_events(mem, page);
 | |
| 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
 | |
| 		mem_cgroup_swap_statistics(mem, true);
 | |
| 		mem_cgroup_get(mem);
 | |
| 	}
 | |
| 	if (!mem_cgroup_is_root(mem))
 | |
| 		__do_uncharge(mem, ctype);
 | |
| 
 | |
| 	return mem;
 | |
| 
 | |
| unlock_out:
 | |
| 	unlock_page_cgroup(pc);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void mem_cgroup_uncharge_page(struct page *page)
 | |
| {
 | |
| 	/* early check. */
 | |
| 	if (page_mapped(page))
 | |
| 		return;
 | |
| 	if (page->mapping && !PageAnon(page))
 | |
| 		return;
 | |
| 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
 | |
| }
 | |
| 
 | |
| void mem_cgroup_uncharge_cache_page(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON(page_mapped(page));
 | |
| 	VM_BUG_ON(page->mapping);
 | |
| 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 | |
|  * In that cases, pages are freed continuously and we can expect pages
 | |
|  * are in the same memcg. All these calls itself limits the number of
 | |
|  * pages freed at once, then uncharge_start/end() is called properly.
 | |
|  * This may be called prural(2) times in a context,
 | |
|  */
 | |
| 
 | |
| void mem_cgroup_uncharge_start(void)
 | |
| {
 | |
| 	current->memcg_batch.do_batch++;
 | |
| 	/* We can do nest. */
 | |
| 	if (current->memcg_batch.do_batch == 1) {
 | |
| 		current->memcg_batch.memcg = NULL;
 | |
| 		current->memcg_batch.bytes = 0;
 | |
| 		current->memcg_batch.memsw_bytes = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void mem_cgroup_uncharge_end(void)
 | |
| {
 | |
| 	struct memcg_batch_info *batch = ¤t->memcg_batch;
 | |
| 
 | |
| 	if (!batch->do_batch)
 | |
| 		return;
 | |
| 
 | |
| 	batch->do_batch--;
 | |
| 	if (batch->do_batch) /* If stacked, do nothing. */
 | |
| 		return;
 | |
| 
 | |
| 	if (!batch->memcg)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * This "batch->memcg" is valid without any css_get/put etc...
 | |
| 	 * bacause we hide charges behind us.
 | |
| 	 */
 | |
| 	if (batch->bytes)
 | |
| 		res_counter_uncharge(&batch->memcg->res, batch->bytes);
 | |
| 	if (batch->memsw_bytes)
 | |
| 		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
 | |
| 	memcg_oom_recover(batch->memcg);
 | |
| 	/* forget this pointer (for sanity check) */
 | |
| 	batch->memcg = NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SWAP
 | |
| /*
 | |
|  * called after __delete_from_swap_cache() and drop "page" account.
 | |
|  * memcg information is recorded to swap_cgroup of "ent"
 | |
|  */
 | |
| void
 | |
| mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
 | |
| 
 | |
| 	if (!swapout) /* this was a swap cache but the swap is unused ! */
 | |
| 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
 | |
| 
 | |
| 	memcg = __mem_cgroup_uncharge_common(page, ctype);
 | |
| 
 | |
| 	/*
 | |
| 	 * record memcg information,  if swapout && memcg != NULL,
 | |
| 	 * mem_cgroup_get() was called in uncharge().
 | |
| 	 */
 | |
| 	if (do_swap_account && swapout && memcg)
 | |
| 		swap_cgroup_record(ent, css_id(&memcg->css));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | |
| /*
 | |
|  * called from swap_entry_free(). remove record in swap_cgroup and
 | |
|  * uncharge "memsw" account.
 | |
|  */
 | |
| void mem_cgroup_uncharge_swap(swp_entry_t ent)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned short id;
 | |
| 
 | |
| 	if (!do_swap_account)
 | |
| 		return;
 | |
| 
 | |
| 	id = swap_cgroup_record(ent, 0);
 | |
| 	rcu_read_lock();
 | |
| 	memcg = mem_cgroup_lookup(id);
 | |
| 	if (memcg) {
 | |
| 		/*
 | |
| 		 * We uncharge this because swap is freed.
 | |
| 		 * This memcg can be obsolete one. We avoid calling css_tryget
 | |
| 		 */
 | |
| 		if (!mem_cgroup_is_root(memcg))
 | |
| 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
 | |
| 		mem_cgroup_swap_statistics(memcg, false);
 | |
| 		mem_cgroup_put(memcg);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 | |
|  * @entry: swap entry to be moved
 | |
|  * @from:  mem_cgroup which the entry is moved from
 | |
|  * @to:  mem_cgroup which the entry is moved to
 | |
|  * @need_fixup: whether we should fixup res_counters and refcounts.
 | |
|  *
 | |
|  * It succeeds only when the swap_cgroup's record for this entry is the same
 | |
|  * as the mem_cgroup's id of @from.
 | |
|  *
 | |
|  * Returns 0 on success, -EINVAL on failure.
 | |
|  *
 | |
|  * The caller must have charged to @to, IOW, called res_counter_charge() about
 | |
|  * both res and memsw, and called css_get().
 | |
|  */
 | |
| static int mem_cgroup_move_swap_account(swp_entry_t entry,
 | |
| 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
 | |
| {
 | |
| 	unsigned short old_id, new_id;
 | |
| 
 | |
| 	old_id = css_id(&from->css);
 | |
| 	new_id = css_id(&to->css);
 | |
| 
 | |
| 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
 | |
| 		mem_cgroup_swap_statistics(from, false);
 | |
| 		mem_cgroup_swap_statistics(to, true);
 | |
| 		/*
 | |
| 		 * This function is only called from task migration context now.
 | |
| 		 * It postpones res_counter and refcount handling till the end
 | |
| 		 * of task migration(mem_cgroup_clear_mc()) for performance
 | |
| 		 * improvement. But we cannot postpone mem_cgroup_get(to)
 | |
| 		 * because if the process that has been moved to @to does
 | |
| 		 * swap-in, the refcount of @to might be decreased to 0.
 | |
| 		 */
 | |
| 		mem_cgroup_get(to);
 | |
| 		if (need_fixup) {
 | |
| 			if (!mem_cgroup_is_root(from))
 | |
| 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
 | |
| 			mem_cgroup_put(from);
 | |
| 			/*
 | |
| 			 * we charged both to->res and to->memsw, so we should
 | |
| 			 * uncharge to->res.
 | |
| 			 */
 | |
| 			if (!mem_cgroup_is_root(to))
 | |
| 				res_counter_uncharge(&to->res, PAGE_SIZE);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #else
 | |
| static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
 | |
| 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 | |
|  * page belongs to.
 | |
|  */
 | |
| int mem_cgroup_prepare_migration(struct page *page,
 | |
| 	struct page *newpage, struct mem_cgroup **ptr)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 	enum charge_type ctype;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	pc = lookup_page_cgroup(page);
 | |
| 	lock_page_cgroup(pc);
 | |
| 	if (PageCgroupUsed(pc)) {
 | |
| 		mem = pc->mem_cgroup;
 | |
| 		css_get(&mem->css);
 | |
| 		/*
 | |
| 		 * At migrating an anonymous page, its mapcount goes down
 | |
| 		 * to 0 and uncharge() will be called. But, even if it's fully
 | |
| 		 * unmapped, migration may fail and this page has to be
 | |
| 		 * charged again. We set MIGRATION flag here and delay uncharge
 | |
| 		 * until end_migration() is called
 | |
| 		 *
 | |
| 		 * Corner Case Thinking
 | |
| 		 * A)
 | |
| 		 * When the old page was mapped as Anon and it's unmap-and-freed
 | |
| 		 * while migration was ongoing.
 | |
| 		 * If unmap finds the old page, uncharge() of it will be delayed
 | |
| 		 * until end_migration(). If unmap finds a new page, it's
 | |
| 		 * uncharged when it make mapcount to be 1->0. If unmap code
 | |
| 		 * finds swap_migration_entry, the new page will not be mapped
 | |
| 		 * and end_migration() will find it(mapcount==0).
 | |
| 		 *
 | |
| 		 * B)
 | |
| 		 * When the old page was mapped but migraion fails, the kernel
 | |
| 		 * remaps it. A charge for it is kept by MIGRATION flag even
 | |
| 		 * if mapcount goes down to 0. We can do remap successfully
 | |
| 		 * without charging it again.
 | |
| 		 *
 | |
| 		 * C)
 | |
| 		 * The "old" page is under lock_page() until the end of
 | |
| 		 * migration, so, the old page itself will not be swapped-out.
 | |
| 		 * If the new page is swapped out before end_migraton, our
 | |
| 		 * hook to usual swap-out path will catch the event.
 | |
| 		 */
 | |
| 		if (PageAnon(page))
 | |
| 			SetPageCgroupMigration(pc);
 | |
| 	}
 | |
| 	unlock_page_cgroup(pc);
 | |
| 	/*
 | |
| 	 * If the page is not charged at this point,
 | |
| 	 * we return here.
 | |
| 	 */
 | |
| 	if (!mem)
 | |
| 		return 0;
 | |
| 
 | |
| 	*ptr = mem;
 | |
| 	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
 | |
| 	css_put(&mem->css);/* drop extra refcnt */
 | |
| 	if (ret || *ptr == NULL) {
 | |
| 		if (PageAnon(page)) {
 | |
| 			lock_page_cgroup(pc);
 | |
| 			ClearPageCgroupMigration(pc);
 | |
| 			unlock_page_cgroup(pc);
 | |
| 			/*
 | |
| 			 * The old page may be fully unmapped while we kept it.
 | |
| 			 */
 | |
| 			mem_cgroup_uncharge_page(page);
 | |
| 		}
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We charge new page before it's used/mapped. So, even if unlock_page()
 | |
| 	 * is called before end_migration, we can catch all events on this new
 | |
| 	 * page. In the case new page is migrated but not remapped, new page's
 | |
| 	 * mapcount will be finally 0 and we call uncharge in end_migration().
 | |
| 	 */
 | |
| 	pc = lookup_page_cgroup(newpage);
 | |
| 	if (PageAnon(page))
 | |
| 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
 | |
| 	else if (page_is_file_cache(page))
 | |
| 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
 | |
| 	else
 | |
| 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
 | |
| 	__mem_cgroup_commit_charge(mem, pc, ctype);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* remove redundant charge if migration failed*/
 | |
| void mem_cgroup_end_migration(struct mem_cgroup *mem,
 | |
| 	struct page *oldpage, struct page *newpage)
 | |
| {
 | |
| 	struct page *used, *unused;
 | |
| 	struct page_cgroup *pc;
 | |
| 
 | |
| 	if (!mem)
 | |
| 		return;
 | |
| 	/* blocks rmdir() */
 | |
| 	cgroup_exclude_rmdir(&mem->css);
 | |
| 	/* at migration success, oldpage->mapping is NULL. */
 | |
| 	if (oldpage->mapping) {
 | |
| 		used = oldpage;
 | |
| 		unused = newpage;
 | |
| 	} else {
 | |
| 		used = newpage;
 | |
| 		unused = oldpage;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We disallowed uncharge of pages under migration because mapcount
 | |
| 	 * of the page goes down to zero, temporarly.
 | |
| 	 * Clear the flag and check the page should be charged.
 | |
| 	 */
 | |
| 	pc = lookup_page_cgroup(oldpage);
 | |
| 	lock_page_cgroup(pc);
 | |
| 	ClearPageCgroupMigration(pc);
 | |
| 	unlock_page_cgroup(pc);
 | |
| 
 | |
| 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If a page is a file cache, radix-tree replacement is very atomic
 | |
| 	 * and we can skip this check. When it was an Anon page, its mapcount
 | |
| 	 * goes down to 0. But because we added MIGRATION flage, it's not
 | |
| 	 * uncharged yet. There are several case but page->mapcount check
 | |
| 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
 | |
| 	 * check. (see prepare_charge() also)
 | |
| 	 */
 | |
| 	if (PageAnon(used))
 | |
| 		mem_cgroup_uncharge_page(used);
 | |
| 	/*
 | |
| 	 * At migration, we may charge account against cgroup which has no
 | |
| 	 * tasks.
 | |
| 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
 | |
| 	 * In that case, we need to call pre_destroy() again. check it here.
 | |
| 	 */
 | |
| 	cgroup_release_and_wakeup_rmdir(&mem->css);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A call to try to shrink memory usage on charge failure at shmem's swapin.
 | |
|  * Calling hierarchical_reclaim is not enough because we should update
 | |
|  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 | |
|  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 | |
|  * not from the memcg which this page would be charged to.
 | |
|  * try_charge_swapin does all of these works properly.
 | |
|  */
 | |
| int mem_cgroup_shmem_charge_fallback(struct page *page,
 | |
| 			    struct mm_struct *mm,
 | |
| 			    gfp_t gfp_mask)
 | |
| {
 | |
| 	struct mem_cgroup *mem = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mem_cgroup_disabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
 | |
| 	if (!ret)
 | |
| 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(set_limit_mutex);
 | |
| 
 | |
| static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
 | |
| 				unsigned long long val)
 | |
| {
 | |
| 	int retry_count;
 | |
| 	u64 memswlimit, memlimit;
 | |
| 	int ret = 0;
 | |
| 	int children = mem_cgroup_count_children(memcg);
 | |
| 	u64 curusage, oldusage;
 | |
| 	int enlarge;
 | |
| 
 | |
| 	/*
 | |
| 	 * For keeping hierarchical_reclaim simple, how long we should retry
 | |
| 	 * is depends on callers. We set our retry-count to be function
 | |
| 	 * of # of children which we should visit in this loop.
 | |
| 	 */
 | |
| 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
 | |
| 
 | |
| 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
 | |
| 
 | |
| 	enlarge = 0;
 | |
| 	while (retry_count) {
 | |
| 		if (signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Rather than hide all in some function, I do this in
 | |
| 		 * open coded manner. You see what this really does.
 | |
| 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
 | |
| 		 */
 | |
| 		mutex_lock(&set_limit_mutex);
 | |
| 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | |
| 		if (memswlimit < val) {
 | |
| 			ret = -EINVAL;
 | |
| 			mutex_unlock(&set_limit_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | |
| 		if (memlimit < val)
 | |
| 			enlarge = 1;
 | |
| 
 | |
| 		ret = res_counter_set_limit(&memcg->res, val);
 | |
| 		if (!ret) {
 | |
| 			if (memswlimit == val)
 | |
| 				memcg->memsw_is_minimum = true;
 | |
| 			else
 | |
| 				memcg->memsw_is_minimum = false;
 | |
| 		}
 | |
| 		mutex_unlock(&set_limit_mutex);
 | |
| 
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 
 | |
| 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
 | |
| 						MEM_CGROUP_RECLAIM_SHRINK);
 | |
| 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
 | |
| 		/* Usage is reduced ? */
 | |
|   		if (curusage >= oldusage)
 | |
| 			retry_count--;
 | |
| 		else
 | |
| 			oldusage = curusage;
 | |
| 	}
 | |
| 	if (!ret && enlarge)
 | |
| 		memcg_oom_recover(memcg);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
 | |
| 					unsigned long long val)
 | |
| {
 | |
| 	int retry_count;
 | |
| 	u64 memlimit, memswlimit, oldusage, curusage;
 | |
| 	int children = mem_cgroup_count_children(memcg);
 | |
| 	int ret = -EBUSY;
 | |
| 	int enlarge = 0;
 | |
| 
 | |
| 	/* see mem_cgroup_resize_res_limit */
 | |
|  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
 | |
| 	while (retry_count) {
 | |
| 		if (signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Rather than hide all in some function, I do this in
 | |
| 		 * open coded manner. You see what this really does.
 | |
| 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
 | |
| 		 */
 | |
| 		mutex_lock(&set_limit_mutex);
 | |
| 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | |
| 		if (memlimit > val) {
 | |
| 			ret = -EINVAL;
 | |
| 			mutex_unlock(&set_limit_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | |
| 		if (memswlimit < val)
 | |
| 			enlarge = 1;
 | |
| 		ret = res_counter_set_limit(&memcg->memsw, val);
 | |
| 		if (!ret) {
 | |
| 			if (memlimit == val)
 | |
| 				memcg->memsw_is_minimum = true;
 | |
| 			else
 | |
| 				memcg->memsw_is_minimum = false;
 | |
| 		}
 | |
| 		mutex_unlock(&set_limit_mutex);
 | |
| 
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 
 | |
| 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
 | |
| 						MEM_CGROUP_RECLAIM_NOSWAP |
 | |
| 						MEM_CGROUP_RECLAIM_SHRINK);
 | |
| 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
 | |
| 		/* Usage is reduced ? */
 | |
| 		if (curusage >= oldusage)
 | |
| 			retry_count--;
 | |
| 		else
 | |
| 			oldusage = curusage;
 | |
| 	}
 | |
| 	if (!ret && enlarge)
 | |
| 		memcg_oom_recover(memcg);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
 | |
| 					    gfp_t gfp_mask)
 | |
| {
 | |
| 	unsigned long nr_reclaimed = 0;
 | |
| 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
 | |
| 	unsigned long reclaimed;
 | |
| 	int loop = 0;
 | |
| 	struct mem_cgroup_tree_per_zone *mctz;
 | |
| 	unsigned long long excess;
 | |
| 
 | |
| 	if (order > 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
 | |
| 	/*
 | |
| 	 * This loop can run a while, specially if mem_cgroup's continuously
 | |
| 	 * keep exceeding their soft limit and putting the system under
 | |
| 	 * pressure
 | |
| 	 */
 | |
| 	do {
 | |
| 		if (next_mz)
 | |
| 			mz = next_mz;
 | |
| 		else
 | |
| 			mz = mem_cgroup_largest_soft_limit_node(mctz);
 | |
| 		if (!mz)
 | |
| 			break;
 | |
| 
 | |
| 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
 | |
| 						gfp_mask,
 | |
| 						MEM_CGROUP_RECLAIM_SOFT);
 | |
| 		nr_reclaimed += reclaimed;
 | |
| 		spin_lock(&mctz->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we failed to reclaim anything from this memory cgroup
 | |
| 		 * it is time to move on to the next cgroup
 | |
| 		 */
 | |
| 		next_mz = NULL;
 | |
| 		if (!reclaimed) {
 | |
| 			do {
 | |
| 				/*
 | |
| 				 * Loop until we find yet another one.
 | |
| 				 *
 | |
| 				 * By the time we get the soft_limit lock
 | |
| 				 * again, someone might have aded the
 | |
| 				 * group back on the RB tree. Iterate to
 | |
| 				 * make sure we get a different mem.
 | |
| 				 * mem_cgroup_largest_soft_limit_node returns
 | |
| 				 * NULL if no other cgroup is present on
 | |
| 				 * the tree
 | |
| 				 */
 | |
| 				next_mz =
 | |
| 				__mem_cgroup_largest_soft_limit_node(mctz);
 | |
| 				if (next_mz == mz) {
 | |
| 					css_put(&next_mz->mem->css);
 | |
| 					next_mz = NULL;
 | |
| 				} else /* next_mz == NULL or other memcg */
 | |
| 					break;
 | |
| 			} while (1);
 | |
| 		}
 | |
| 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
 | |
| 		excess = res_counter_soft_limit_excess(&mz->mem->res);
 | |
| 		/*
 | |
| 		 * One school of thought says that we should not add
 | |
| 		 * back the node to the tree if reclaim returns 0.
 | |
| 		 * But our reclaim could return 0, simply because due
 | |
| 		 * to priority we are exposing a smaller subset of
 | |
| 		 * memory to reclaim from. Consider this as a longer
 | |
| 		 * term TODO.
 | |
| 		 */
 | |
| 		/* If excess == 0, no tree ops */
 | |
| 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
 | |
| 		spin_unlock(&mctz->lock);
 | |
| 		css_put(&mz->mem->css);
 | |
| 		loop++;
 | |
| 		/*
 | |
| 		 * Could not reclaim anything and there are no more
 | |
| 		 * mem cgroups to try or we seem to be looping without
 | |
| 		 * reclaiming anything.
 | |
| 		 */
 | |
| 		if (!nr_reclaimed &&
 | |
| 			(next_mz == NULL ||
 | |
| 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
 | |
| 			break;
 | |
| 	} while (!nr_reclaimed);
 | |
| 	if (next_mz)
 | |
| 		css_put(&next_mz->mem->css);
 | |
| 	return nr_reclaimed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine traverse page_cgroup in given list and drop them all.
 | |
|  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 | |
|  */
 | |
| static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
 | |
| 				int node, int zid, enum lru_list lru)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	struct page_cgroup *pc, *busy;
 | |
| 	unsigned long flags, loop;
 | |
| 	struct list_head *list;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	zone = &NODE_DATA(node)->node_zones[zid];
 | |
| 	mz = mem_cgroup_zoneinfo(mem, node, zid);
 | |
| 	list = &mz->lists[lru];
 | |
| 
 | |
| 	loop = MEM_CGROUP_ZSTAT(mz, lru);
 | |
| 	/* give some margin against EBUSY etc...*/
 | |
| 	loop += 256;
 | |
| 	busy = NULL;
 | |
| 	while (loop--) {
 | |
| 		ret = 0;
 | |
| 		spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 		if (list_empty(list)) {
 | |
| 			spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 			break;
 | |
| 		}
 | |
| 		pc = list_entry(list->prev, struct page_cgroup, lru);
 | |
| 		if (busy == pc) {
 | |
| 			list_move(&pc->lru, list);
 | |
| 			busy = NULL;
 | |
| 			spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 
 | |
| 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
 | |
| 		if (ret == -ENOMEM)
 | |
| 			break;
 | |
| 
 | |
| 		if (ret == -EBUSY || ret == -EINVAL) {
 | |
| 			/* found lock contention or "pc" is obsolete. */
 | |
| 			busy = pc;
 | |
| 			cond_resched();
 | |
| 		} else
 | |
| 			busy = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret && !list_empty(list))
 | |
| 		return -EBUSY;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * make mem_cgroup's charge to be 0 if there is no task.
 | |
|  * This enables deleting this mem_cgroup.
 | |
|  */
 | |
| static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
 | |
| {
 | |
| 	int ret;
 | |
| 	int node, zid, shrink;
 | |
| 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	struct cgroup *cgrp = mem->css.cgroup;
 | |
| 
 | |
| 	css_get(&mem->css);
 | |
| 
 | |
| 	shrink = 0;
 | |
| 	/* should free all ? */
 | |
| 	if (free_all)
 | |
| 		goto try_to_free;
 | |
| move_account:
 | |
| 	do {
 | |
| 		ret = -EBUSY;
 | |
| 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
 | |
| 			goto out;
 | |
| 		ret = -EINTR;
 | |
| 		if (signal_pending(current))
 | |
| 			goto out;
 | |
| 		/* This is for making all *used* pages to be on LRU. */
 | |
| 		lru_add_drain_all();
 | |
| 		drain_all_stock_sync();
 | |
| 		ret = 0;
 | |
| 		for_each_node_state(node, N_HIGH_MEMORY) {
 | |
| 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
 | |
| 				enum lru_list l;
 | |
| 				for_each_lru(l) {
 | |
| 					ret = mem_cgroup_force_empty_list(mem,
 | |
| 							node, zid, l);
 | |
| 					if (ret)
 | |
| 						break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 		memcg_oom_recover(mem);
 | |
| 		/* it seems parent cgroup doesn't have enough mem */
 | |
| 		if (ret == -ENOMEM)
 | |
| 			goto try_to_free;
 | |
| 		cond_resched();
 | |
| 	/* "ret" should also be checked to ensure all lists are empty. */
 | |
| 	} while (mem->res.usage > 0 || ret);
 | |
| out:
 | |
| 	css_put(&mem->css);
 | |
| 	return ret;
 | |
| 
 | |
| try_to_free:
 | |
| 	/* returns EBUSY if there is a task or if we come here twice. */
 | |
| 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* we call try-to-free pages for make this cgroup empty */
 | |
| 	lru_add_drain_all();
 | |
| 	/* try to free all pages in this cgroup */
 | |
| 	shrink = 1;
 | |
| 	while (nr_retries && mem->res.usage > 0) {
 | |
| 		int progress;
 | |
| 
 | |
| 		if (signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
 | |
| 						false, get_swappiness(mem));
 | |
| 		if (!progress) {
 | |
| 			nr_retries--;
 | |
| 			/* maybe some writeback is necessary */
 | |
| 			congestion_wait(BLK_RW_ASYNC, HZ/10);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	lru_add_drain();
 | |
| 	/* try move_account...there may be some *locked* pages. */
 | |
| 	goto move_account;
 | |
| }
 | |
| 
 | |
| int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
 | |
| {
 | |
| 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
 | |
| }
 | |
| 
 | |
| 
 | |
| static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
 | |
| {
 | |
| 	return mem_cgroup_from_cont(cont)->use_hierarchy;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
 | |
| 					u64 val)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | |
| 	struct cgroup *parent = cont->parent;
 | |
| 	struct mem_cgroup *parent_mem = NULL;
 | |
| 
 | |
| 	if (parent)
 | |
| 		parent_mem = mem_cgroup_from_cont(parent);
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 	/*
 | |
| 	 * If parent's use_hierarchy is set, we can't make any modifications
 | |
| 	 * in the child subtrees. If it is unset, then the change can
 | |
| 	 * occur, provided the current cgroup has no children.
 | |
| 	 *
 | |
| 	 * For the root cgroup, parent_mem is NULL, we allow value to be
 | |
| 	 * set if there are no children.
 | |
| 	 */
 | |
| 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
 | |
| 				(val == 1 || val == 0)) {
 | |
| 		if (list_empty(&cont->children))
 | |
| 			mem->use_hierarchy = val;
 | |
| 		else
 | |
| 			retval = -EBUSY;
 | |
| 	} else
 | |
| 		retval = -EINVAL;
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| struct mem_cgroup_idx_data {
 | |
| 	s64 val;
 | |
| 	enum mem_cgroup_stat_index idx;
 | |
| };
 | |
| 
 | |
| static int
 | |
| mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
 | |
| {
 | |
| 	struct mem_cgroup_idx_data *d = data;
 | |
| 	d->val += mem_cgroup_read_stat(mem, d->idx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
 | |
| 				enum mem_cgroup_stat_index idx, s64 *val)
 | |
| {
 | |
| 	struct mem_cgroup_idx_data d;
 | |
| 	d.idx = idx;
 | |
| 	d.val = 0;
 | |
| 	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
 | |
| 	*val = d.val;
 | |
| }
 | |
| 
 | |
| static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
 | |
| {
 | |
| 	u64 idx_val, val;
 | |
| 
 | |
| 	if (!mem_cgroup_is_root(mem)) {
 | |
| 		if (!swap)
 | |
| 			return res_counter_read_u64(&mem->res, RES_USAGE);
 | |
| 		else
 | |
| 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
 | |
| 	}
 | |
| 
 | |
| 	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
 | |
| 	val = idx_val;
 | |
| 	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
 | |
| 	val += idx_val;
 | |
| 
 | |
| 	if (swap) {
 | |
| 		mem_cgroup_get_recursive_idx_stat(mem,
 | |
| 				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
 | |
| 		val += idx_val;
 | |
| 	}
 | |
| 
 | |
| 	return val << PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | |
| 	u64 val;
 | |
| 	int type, name;
 | |
| 
 | |
| 	type = MEMFILE_TYPE(cft->private);
 | |
| 	name = MEMFILE_ATTR(cft->private);
 | |
| 	switch (type) {
 | |
| 	case _MEM:
 | |
| 		if (name == RES_USAGE)
 | |
| 			val = mem_cgroup_usage(mem, false);
 | |
| 		else
 | |
| 			val = res_counter_read_u64(&mem->res, name);
 | |
| 		break;
 | |
| 	case _MEMSWAP:
 | |
| 		if (name == RES_USAGE)
 | |
| 			val = mem_cgroup_usage(mem, true);
 | |
| 		else
 | |
| 			val = res_counter_read_u64(&mem->memsw, name);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| 	return val;
 | |
| }
 | |
| /*
 | |
|  * The user of this function is...
 | |
|  * RES_LIMIT.
 | |
|  */
 | |
| static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
 | |
| 			    const char *buffer)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
 | |
| 	int type, name;
 | |
| 	unsigned long long val;
 | |
| 	int ret;
 | |
| 
 | |
| 	type = MEMFILE_TYPE(cft->private);
 | |
| 	name = MEMFILE_ATTR(cft->private);
 | |
| 	switch (name) {
 | |
| 	case RES_LIMIT:
 | |
| 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* This function does all necessary parse...reuse it */
 | |
| 		ret = res_counter_memparse_write_strategy(buffer, &val);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		if (type == _MEM)
 | |
| 			ret = mem_cgroup_resize_limit(memcg, val);
 | |
| 		else
 | |
| 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
 | |
| 		break;
 | |
| 	case RES_SOFT_LIMIT:
 | |
| 		ret = res_counter_memparse_write_strategy(buffer, &val);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * For memsw, soft limits are hard to implement in terms
 | |
| 		 * of semantics, for now, we support soft limits for
 | |
| 		 * control without swap
 | |
| 		 */
 | |
| 		if (type == _MEM)
 | |
| 			ret = res_counter_set_soft_limit(&memcg->res, val);
 | |
| 		else
 | |
| 			ret = -EINVAL;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL; /* should be BUG() ? */
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
 | |
| 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
 | |
| {
 | |
| 	struct cgroup *cgroup;
 | |
| 	unsigned long long min_limit, min_memsw_limit, tmp;
 | |
| 
 | |
| 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | |
| 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | |
| 	cgroup = memcg->css.cgroup;
 | |
| 	if (!memcg->use_hierarchy)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (cgroup->parent) {
 | |
| 		cgroup = cgroup->parent;
 | |
| 		memcg = mem_cgroup_from_cont(cgroup);
 | |
| 		if (!memcg->use_hierarchy)
 | |
| 			break;
 | |
| 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
 | |
| 		min_limit = min(min_limit, tmp);
 | |
| 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
 | |
| 		min_memsw_limit = min(min_memsw_limit, tmp);
 | |
| 	}
 | |
| out:
 | |
| 	*mem_limit = min_limit;
 | |
| 	*memsw_limit = min_memsw_limit;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	int type, name;
 | |
| 
 | |
| 	mem = mem_cgroup_from_cont(cont);
 | |
| 	type = MEMFILE_TYPE(event);
 | |
| 	name = MEMFILE_ATTR(event);
 | |
| 	switch (name) {
 | |
| 	case RES_MAX_USAGE:
 | |
| 		if (type == _MEM)
 | |
| 			res_counter_reset_max(&mem->res);
 | |
| 		else
 | |
| 			res_counter_reset_max(&mem->memsw);
 | |
| 		break;
 | |
| 	case RES_FAILCNT:
 | |
| 		if (type == _MEM)
 | |
| 			res_counter_reset_failcnt(&mem->res);
 | |
| 		else
 | |
| 			res_counter_reset_failcnt(&mem->memsw);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
 | |
| 					struct cftype *cft)
 | |
| {
 | |
| 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
 | |
| 					struct cftype *cft, u64 val)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
 | |
| 
 | |
| 	if (val >= (1 << NR_MOVE_TYPE))
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * We check this value several times in both in can_attach() and
 | |
| 	 * attach(), so we need cgroup lock to prevent this value from being
 | |
| 	 * inconsistent.
 | |
| 	 */
 | |
| 	cgroup_lock();
 | |
| 	mem->move_charge_at_immigrate = val;
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
 | |
| 					struct cftype *cft, u64 val)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* For read statistics */
 | |
| enum {
 | |
| 	MCS_CACHE,
 | |
| 	MCS_RSS,
 | |
| 	MCS_FILE_MAPPED,
 | |
| 	MCS_PGPGIN,
 | |
| 	MCS_PGPGOUT,
 | |
| 	MCS_SWAP,
 | |
| 	MCS_INACTIVE_ANON,
 | |
| 	MCS_ACTIVE_ANON,
 | |
| 	MCS_INACTIVE_FILE,
 | |
| 	MCS_ACTIVE_FILE,
 | |
| 	MCS_UNEVICTABLE,
 | |
| 	NR_MCS_STAT,
 | |
| };
 | |
| 
 | |
| struct mcs_total_stat {
 | |
| 	s64 stat[NR_MCS_STAT];
 | |
| };
 | |
| 
 | |
| struct {
 | |
| 	char *local_name;
 | |
| 	char *total_name;
 | |
| } memcg_stat_strings[NR_MCS_STAT] = {
 | |
| 	{"cache", "total_cache"},
 | |
| 	{"rss", "total_rss"},
 | |
| 	{"mapped_file", "total_mapped_file"},
 | |
| 	{"pgpgin", "total_pgpgin"},
 | |
| 	{"pgpgout", "total_pgpgout"},
 | |
| 	{"swap", "total_swap"},
 | |
| 	{"inactive_anon", "total_inactive_anon"},
 | |
| 	{"active_anon", "total_active_anon"},
 | |
| 	{"inactive_file", "total_inactive_file"},
 | |
| 	{"active_file", "total_active_file"},
 | |
| 	{"unevictable", "total_unevictable"}
 | |
| };
 | |
| 
 | |
| 
 | |
| static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
 | |
| {
 | |
| 	struct mcs_total_stat *s = data;
 | |
| 	s64 val;
 | |
| 
 | |
| 	/* per cpu stat */
 | |
| 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
 | |
| 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
 | |
| 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
 | |
| 	s->stat[MCS_RSS] += val * PAGE_SIZE;
 | |
| 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
 | |
| 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
 | |
| 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
 | |
| 	s->stat[MCS_PGPGIN] += val;
 | |
| 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
 | |
| 	s->stat[MCS_PGPGOUT] += val;
 | |
| 	if (do_swap_account) {
 | |
| 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
 | |
| 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	/* per zone stat */
 | |
| 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
 | |
| 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
 | |
| 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
 | |
| 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
 | |
| 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
 | |
| 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
 | |
| 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
 | |
| 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
 | |
| 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
 | |
| 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
 | |
| {
 | |
| 	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
 | |
| }
 | |
| 
 | |
| static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
 | |
| 				 struct cgroup_map_cb *cb)
 | |
| {
 | |
| 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
 | |
| 	struct mcs_total_stat mystat;
 | |
| 	int i;
 | |
| 
 | |
| 	memset(&mystat, 0, sizeof(mystat));
 | |
| 	mem_cgroup_get_local_stat(mem_cont, &mystat);
 | |
| 
 | |
| 	for (i = 0; i < NR_MCS_STAT; i++) {
 | |
| 		if (i == MCS_SWAP && !do_swap_account)
 | |
| 			continue;
 | |
| 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* Hierarchical information */
 | |
| 	{
 | |
| 		unsigned long long limit, memsw_limit;
 | |
| 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
 | |
| 		cb->fill(cb, "hierarchical_memory_limit", limit);
 | |
| 		if (do_swap_account)
 | |
| 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
 | |
| 	}
 | |
| 
 | |
| 	memset(&mystat, 0, sizeof(mystat));
 | |
| 	mem_cgroup_get_total_stat(mem_cont, &mystat);
 | |
| 	for (i = 0; i < NR_MCS_STAT; i++) {
 | |
| 		if (i == MCS_SWAP && !do_swap_account)
 | |
| 			continue;
 | |
| 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
 | |
| 
 | |
| 	{
 | |
| 		int nid, zid;
 | |
| 		struct mem_cgroup_per_zone *mz;
 | |
| 		unsigned long recent_rotated[2] = {0, 0};
 | |
| 		unsigned long recent_scanned[2] = {0, 0};
 | |
| 
 | |
| 		for_each_online_node(nid)
 | |
| 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | |
| 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
 | |
| 
 | |
| 				recent_rotated[0] +=
 | |
| 					mz->reclaim_stat.recent_rotated[0];
 | |
| 				recent_rotated[1] +=
 | |
| 					mz->reclaim_stat.recent_rotated[1];
 | |
| 				recent_scanned[0] +=
 | |
| 					mz->reclaim_stat.recent_scanned[0];
 | |
| 				recent_scanned[1] +=
 | |
| 					mz->reclaim_stat.recent_scanned[1];
 | |
| 			}
 | |
| 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
 | |
| 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
 | |
| 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
 | |
| 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 | |
| 
 | |
| 	return get_swappiness(memcg);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
 | |
| 				       u64 val)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 | |
| 	struct mem_cgroup *parent;
 | |
| 
 | |
| 	if (val > 100)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (cgrp->parent == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	parent = mem_cgroup_from_cont(cgrp->parent);
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 
 | |
| 	/* If under hierarchy, only empty-root can set this value */
 | |
| 	if ((parent->use_hierarchy) ||
 | |
| 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
 | |
| 		cgroup_unlock();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&memcg->reclaim_param_lock);
 | |
| 	memcg->swappiness = val;
 | |
| 	spin_unlock(&memcg->reclaim_param_lock);
 | |
| 
 | |
| 	cgroup_unlock();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
 | |
| {
 | |
| 	struct mem_cgroup_threshold_ary *t;
 | |
| 	u64 usage;
 | |
| 	int i;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!swap)
 | |
| 		t = rcu_dereference(memcg->thresholds.primary);
 | |
| 	else
 | |
| 		t = rcu_dereference(memcg->memsw_thresholds.primary);
 | |
| 
 | |
| 	if (!t)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	usage = mem_cgroup_usage(memcg, swap);
 | |
| 
 | |
| 	/*
 | |
| 	 * current_threshold points to threshold just below usage.
 | |
| 	 * If it's not true, a threshold was crossed after last
 | |
| 	 * call of __mem_cgroup_threshold().
 | |
| 	 */
 | |
| 	i = t->current_threshold;
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterate backward over array of thresholds starting from
 | |
| 	 * current_threshold and check if a threshold is crossed.
 | |
| 	 * If none of thresholds below usage is crossed, we read
 | |
| 	 * only one element of the array here.
 | |
| 	 */
 | |
| 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
 | |
| 		eventfd_signal(t->entries[i].eventfd, 1);
 | |
| 
 | |
| 	/* i = current_threshold + 1 */
 | |
| 	i++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterate forward over array of thresholds starting from
 | |
| 	 * current_threshold+1 and check if a threshold is crossed.
 | |
| 	 * If none of thresholds above usage is crossed, we read
 | |
| 	 * only one element of the array here.
 | |
| 	 */
 | |
| 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
 | |
| 		eventfd_signal(t->entries[i].eventfd, 1);
 | |
| 
 | |
| 	/* Update current_threshold */
 | |
| 	t->current_threshold = i - 1;
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_threshold(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	__mem_cgroup_threshold(memcg, false);
 | |
| 	if (do_swap_account)
 | |
| 		__mem_cgroup_threshold(memcg, true);
 | |
| }
 | |
| 
 | |
| static int compare_thresholds(const void *a, const void *b)
 | |
| {
 | |
| 	const struct mem_cgroup_threshold *_a = a;
 | |
| 	const struct mem_cgroup_threshold *_b = b;
 | |
| 
 | |
| 	return _a->threshold - _b->threshold;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
 | |
| {
 | |
| 	struct mem_cgroup_eventfd_list *ev;
 | |
| 
 | |
| 	list_for_each_entry(ev, &mem->oom_notify, list)
 | |
| 		eventfd_signal(ev->eventfd, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
 | |
| {
 | |
| 	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
 | |
| 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 | |
| 	struct mem_cgroup_thresholds *thresholds;
 | |
| 	struct mem_cgroup_threshold_ary *new;
 | |
| 	int type = MEMFILE_TYPE(cft->private);
 | |
| 	u64 threshold, usage;
 | |
| 	int i, size, ret;
 | |
| 
 | |
| 	ret = res_counter_memparse_write_strategy(args, &threshold);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&memcg->thresholds_lock);
 | |
| 
 | |
| 	if (type == _MEM)
 | |
| 		thresholds = &memcg->thresholds;
 | |
| 	else if (type == _MEMSWAP)
 | |
| 		thresholds = &memcg->memsw_thresholds;
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
 | |
| 
 | |
| 	/* Check if a threshold crossed before adding a new one */
 | |
| 	if (thresholds->primary)
 | |
| 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
 | |
| 
 | |
| 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
 | |
| 
 | |
| 	/* Allocate memory for new array of thresholds */
 | |
| 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
 | |
| 			GFP_KERNEL);
 | |
| 	if (!new) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	new->size = size;
 | |
| 
 | |
| 	/* Copy thresholds (if any) to new array */
 | |
| 	if (thresholds->primary) {
 | |
| 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
 | |
| 				sizeof(struct mem_cgroup_threshold));
 | |
| 	}
 | |
| 
 | |
| 	/* Add new threshold */
 | |
| 	new->entries[size - 1].eventfd = eventfd;
 | |
| 	new->entries[size - 1].threshold = threshold;
 | |
| 
 | |
| 	/* Sort thresholds. Registering of new threshold isn't time-critical */
 | |
| 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
 | |
| 			compare_thresholds, NULL);
 | |
| 
 | |
| 	/* Find current threshold */
 | |
| 	new->current_threshold = -1;
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		if (new->entries[i].threshold < usage) {
 | |
| 			/*
 | |
| 			 * new->current_threshold will not be used until
 | |
| 			 * rcu_assign_pointer(), so it's safe to increment
 | |
| 			 * it here.
 | |
| 			 */
 | |
| 			++new->current_threshold;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Free old spare buffer and save old primary buffer as spare */
 | |
| 	kfree(thresholds->spare);
 | |
| 	thresholds->spare = thresholds->primary;
 | |
| 
 | |
| 	rcu_assign_pointer(thresholds->primary, new);
 | |
| 
 | |
| 	/* To be sure that nobody uses thresholds */
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&memcg->thresholds_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
 | |
| 	struct cftype *cft, struct eventfd_ctx *eventfd)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 | |
| 	struct mem_cgroup_thresholds *thresholds;
 | |
| 	struct mem_cgroup_threshold_ary *new;
 | |
| 	int type = MEMFILE_TYPE(cft->private);
 | |
| 	u64 usage;
 | |
| 	int i, j, size;
 | |
| 
 | |
| 	mutex_lock(&memcg->thresholds_lock);
 | |
| 	if (type == _MEM)
 | |
| 		thresholds = &memcg->thresholds;
 | |
| 	else if (type == _MEMSWAP)
 | |
| 		thresholds = &memcg->memsw_thresholds;
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	/*
 | |
| 	 * Something went wrong if we trying to unregister a threshold
 | |
| 	 * if we don't have thresholds
 | |
| 	 */
 | |
| 	BUG_ON(!thresholds);
 | |
| 
 | |
| 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
 | |
| 
 | |
| 	/* Check if a threshold crossed before removing */
 | |
| 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
 | |
| 
 | |
| 	/* Calculate new number of threshold */
 | |
| 	size = 0;
 | |
| 	for (i = 0; i < thresholds->primary->size; i++) {
 | |
| 		if (thresholds->primary->entries[i].eventfd != eventfd)
 | |
| 			size++;
 | |
| 	}
 | |
| 
 | |
| 	new = thresholds->spare;
 | |
| 
 | |
| 	/* Set thresholds array to NULL if we don't have thresholds */
 | |
| 	if (!size) {
 | |
| 		kfree(new);
 | |
| 		new = NULL;
 | |
| 		goto swap_buffers;
 | |
| 	}
 | |
| 
 | |
| 	new->size = size;
 | |
| 
 | |
| 	/* Copy thresholds and find current threshold */
 | |
| 	new->current_threshold = -1;
 | |
| 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
 | |
| 		if (thresholds->primary->entries[i].eventfd == eventfd)
 | |
| 			continue;
 | |
| 
 | |
| 		new->entries[j] = thresholds->primary->entries[i];
 | |
| 		if (new->entries[j].threshold < usage) {
 | |
| 			/*
 | |
| 			 * new->current_threshold will not be used
 | |
| 			 * until rcu_assign_pointer(), so it's safe to increment
 | |
| 			 * it here.
 | |
| 			 */
 | |
| 			++new->current_threshold;
 | |
| 		}
 | |
| 		j++;
 | |
| 	}
 | |
| 
 | |
| swap_buffers:
 | |
| 	/* Swap primary and spare array */
 | |
| 	thresholds->spare = thresholds->primary;
 | |
| 	rcu_assign_pointer(thresholds->primary, new);
 | |
| 
 | |
| 	/* To be sure that nobody uses thresholds */
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	mutex_unlock(&memcg->thresholds_lock);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
 | |
| 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
 | |
| {
 | |
| 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
 | |
| 	struct mem_cgroup_eventfd_list *event;
 | |
| 	int type = MEMFILE_TYPE(cft->private);
 | |
| 
 | |
| 	BUG_ON(type != _OOM_TYPE);
 | |
| 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
 | |
| 	if (!event)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&memcg_oom_mutex);
 | |
| 
 | |
| 	event->eventfd = eventfd;
 | |
| 	list_add(&event->list, &memcg->oom_notify);
 | |
| 
 | |
| 	/* already in OOM ? */
 | |
| 	if (atomic_read(&memcg->oom_lock))
 | |
| 		eventfd_signal(eventfd, 1);
 | |
| 	mutex_unlock(&memcg_oom_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
 | |
| 	struct cftype *cft, struct eventfd_ctx *eventfd)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
 | |
| 	struct mem_cgroup_eventfd_list *ev, *tmp;
 | |
| 	int type = MEMFILE_TYPE(cft->private);
 | |
| 
 | |
| 	BUG_ON(type != _OOM_TYPE);
 | |
| 
 | |
| 	mutex_lock(&memcg_oom_mutex);
 | |
| 
 | |
| 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
 | |
| 		if (ev->eventfd == eventfd) {
 | |
| 			list_del(&ev->list);
 | |
| 			kfree(ev);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&memcg_oom_mutex);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
 | |
| 	struct cftype *cft,  struct cgroup_map_cb *cb)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
 | |
| 
 | |
| 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
 | |
| 
 | |
| 	if (atomic_read(&mem->oom_lock))
 | |
| 		cb->fill(cb, "under_oom", 1);
 | |
| 	else
 | |
| 		cb->fill(cb, "under_oom", 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
 | |
| 	struct cftype *cft, u64 val)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
 | |
| 	struct mem_cgroup *parent;
 | |
| 
 | |
| 	/* cannot set to root cgroup and only 0 and 1 are allowed */
 | |
| 	if (!cgrp->parent || !((val == 0) || (val == 1)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	parent = mem_cgroup_from_cont(cgrp->parent);
 | |
| 
 | |
| 	cgroup_lock();
 | |
| 	/* oom-kill-disable is a flag for subhierarchy. */
 | |
| 	if ((parent->use_hierarchy) ||
 | |
| 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
 | |
| 		cgroup_unlock();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	mem->oom_kill_disable = val;
 | |
| 	if (!val)
 | |
| 		memcg_oom_recover(mem);
 | |
| 	cgroup_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct cftype mem_cgroup_files[] = {
 | |
| 	{
 | |
| 		.name = "usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 		.register_event = mem_cgroup_usage_register_event,
 | |
| 		.unregister_event = mem_cgroup_usage_unregister_event,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
 | |
| 		.trigger = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
 | |
| 		.write_string = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "soft_limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
 | |
| 		.write_string = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
 | |
| 		.trigger = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "stat",
 | |
| 		.read_map = mem_control_stat_show,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "force_empty",
 | |
| 		.trigger = mem_cgroup_force_empty_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "use_hierarchy",
 | |
| 		.write_u64 = mem_cgroup_hierarchy_write,
 | |
| 		.read_u64 = mem_cgroup_hierarchy_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "swappiness",
 | |
| 		.read_u64 = mem_cgroup_swappiness_read,
 | |
| 		.write_u64 = mem_cgroup_swappiness_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "move_charge_at_immigrate",
 | |
| 		.read_u64 = mem_cgroup_move_charge_read,
 | |
| 		.write_u64 = mem_cgroup_move_charge_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "oom_control",
 | |
| 		.read_map = mem_cgroup_oom_control_read,
 | |
| 		.write_u64 = mem_cgroup_oom_control_write,
 | |
| 		.register_event = mem_cgroup_oom_register_event,
 | |
| 		.unregister_event = mem_cgroup_oom_unregister_event,
 | |
| 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
 | |
| 	},
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | |
| static struct cftype memsw_cgroup_files[] = {
 | |
| 	{
 | |
| 		.name = "memsw.usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 		.register_event = mem_cgroup_usage_register_event,
 | |
| 		.unregister_event = mem_cgroup_usage_unregister_event,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.max_usage_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
 | |
| 		.trigger = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.limit_in_bytes",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
 | |
| 		.write_string = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "memsw.failcnt",
 | |
| 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
 | |
| 		.trigger = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
 | |
| {
 | |
| 	if (!do_swap_account)
 | |
| 		return 0;
 | |
| 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
 | |
| 				ARRAY_SIZE(memsw_cgroup_files));
 | |
| };
 | |
| #else
 | |
| static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *pn;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	enum lru_list l;
 | |
| 	int zone, tmp = node;
 | |
| 	/*
 | |
| 	 * This routine is called against possible nodes.
 | |
| 	 * But it's BUG to call kmalloc() against offline node.
 | |
| 	 *
 | |
| 	 * TODO: this routine can waste much memory for nodes which will
 | |
| 	 *       never be onlined. It's better to use memory hotplug callback
 | |
| 	 *       function.
 | |
| 	 */
 | |
| 	if (!node_state(node, N_NORMAL_MEMORY))
 | |
| 		tmp = -1;
 | |
| 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
 | |
| 	if (!pn)
 | |
| 		return 1;
 | |
| 
 | |
| 	mem->info.nodeinfo[node] = pn;
 | |
| 	memset(pn, 0, sizeof(*pn));
 | |
| 
 | |
| 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | |
| 		mz = &pn->zoneinfo[zone];
 | |
| 		for_each_lru(l)
 | |
| 			INIT_LIST_HEAD(&mz->lists[l]);
 | |
| 		mz->usage_in_excess = 0;
 | |
| 		mz->on_tree = false;
 | |
| 		mz->mem = mem;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
 | |
| {
 | |
| 	kfree(mem->info.nodeinfo[node]);
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *mem_cgroup_alloc(void)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	int size = sizeof(struct mem_cgroup);
 | |
| 
 | |
| 	/* Can be very big if MAX_NUMNODES is very big */
 | |
| 	if (size < PAGE_SIZE)
 | |
| 		mem = kmalloc(size, GFP_KERNEL);
 | |
| 	else
 | |
| 		mem = vmalloc(size);
 | |
| 
 | |
| 	if (!mem)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(mem, 0, size);
 | |
| 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
 | |
| 	if (!mem->stat) {
 | |
| 		if (size < PAGE_SIZE)
 | |
| 			kfree(mem);
 | |
| 		else
 | |
| 			vfree(mem);
 | |
| 		mem = NULL;
 | |
| 	}
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * At destroying mem_cgroup, references from swap_cgroup can remain.
 | |
|  * (scanning all at force_empty is too costly...)
 | |
|  *
 | |
|  * Instead of clearing all references at force_empty, we remember
 | |
|  * the number of reference from swap_cgroup and free mem_cgroup when
 | |
|  * it goes down to 0.
 | |
|  *
 | |
|  * Removal of cgroup itself succeeds regardless of refs from swap.
 | |
|  */
 | |
| 
 | |
| static void __mem_cgroup_free(struct mem_cgroup *mem)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	mem_cgroup_remove_from_trees(mem);
 | |
| 	free_css_id(&mem_cgroup_subsys, &mem->css);
 | |
| 
 | |
| 	for_each_node_state(node, N_POSSIBLE)
 | |
| 		free_mem_cgroup_per_zone_info(mem, node);
 | |
| 
 | |
| 	free_percpu(mem->stat);
 | |
| 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
 | |
| 		kfree(mem);
 | |
| 	else
 | |
| 		vfree(mem);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_get(struct mem_cgroup *mem)
 | |
| {
 | |
| 	atomic_inc(&mem->refcnt);
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
 | |
| {
 | |
| 	if (atomic_sub_and_test(count, &mem->refcnt)) {
 | |
| 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
 | |
| 		__mem_cgroup_free(mem);
 | |
| 		if (parent)
 | |
| 			mem_cgroup_put(parent);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_put(struct mem_cgroup *mem)
 | |
| {
 | |
| 	__mem_cgroup_put(mem, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 | |
|  */
 | |
| static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (!mem->res.parent)
 | |
| 		return NULL;
 | |
| 	return mem_cgroup_from_res_counter(mem->res.parent, res);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | |
| static void __init enable_swap_cgroup(void)
 | |
| {
 | |
| 	if (!mem_cgroup_disabled() && really_do_swap_account)
 | |
| 		do_swap_account = 1;
 | |
| }
 | |
| #else
 | |
| static void __init enable_swap_cgroup(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int mem_cgroup_soft_limit_tree_init(void)
 | |
| {
 | |
| 	struct mem_cgroup_tree_per_node *rtpn;
 | |
| 	struct mem_cgroup_tree_per_zone *rtpz;
 | |
| 	int tmp, node, zone;
 | |
| 
 | |
| 	for_each_node_state(node, N_POSSIBLE) {
 | |
| 		tmp = node;
 | |
| 		if (!node_state(node, N_NORMAL_MEMORY))
 | |
| 			tmp = -1;
 | |
| 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
 | |
| 		if (!rtpn)
 | |
| 			return 1;
 | |
| 
 | |
| 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
 | |
| 
 | |
| 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | |
| 			rtpz = &rtpn->rb_tree_per_zone[zone];
 | |
| 			rtpz->rb_root = RB_ROOT;
 | |
| 			spin_lock_init(&rtpz->lock);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct cgroup_subsys_state * __ref
 | |
| mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
 | |
| {
 | |
| 	struct mem_cgroup *mem, *parent;
 | |
| 	long error = -ENOMEM;
 | |
| 	int node;
 | |
| 
 | |
| 	mem = mem_cgroup_alloc();
 | |
| 	if (!mem)
 | |
| 		return ERR_PTR(error);
 | |
| 
 | |
| 	for_each_node_state(node, N_POSSIBLE)
 | |
| 		if (alloc_mem_cgroup_per_zone_info(mem, node))
 | |
| 			goto free_out;
 | |
| 
 | |
| 	/* root ? */
 | |
| 	if (cont->parent == NULL) {
 | |
| 		int cpu;
 | |
| 		enable_swap_cgroup();
 | |
| 		parent = NULL;
 | |
| 		root_mem_cgroup = mem;
 | |
| 		if (mem_cgroup_soft_limit_tree_init())
 | |
| 			goto free_out;
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			struct memcg_stock_pcp *stock =
 | |
| 						&per_cpu(memcg_stock, cpu);
 | |
| 			INIT_WORK(&stock->work, drain_local_stock);
 | |
| 		}
 | |
| 		hotcpu_notifier(memcg_stock_cpu_callback, 0);
 | |
| 	} else {
 | |
| 		parent = mem_cgroup_from_cont(cont->parent);
 | |
| 		mem->use_hierarchy = parent->use_hierarchy;
 | |
| 		mem->oom_kill_disable = parent->oom_kill_disable;
 | |
| 	}
 | |
| 
 | |
| 	if (parent && parent->use_hierarchy) {
 | |
| 		res_counter_init(&mem->res, &parent->res);
 | |
| 		res_counter_init(&mem->memsw, &parent->memsw);
 | |
| 		/*
 | |
| 		 * We increment refcnt of the parent to ensure that we can
 | |
| 		 * safely access it on res_counter_charge/uncharge.
 | |
| 		 * This refcnt will be decremented when freeing this
 | |
| 		 * mem_cgroup(see mem_cgroup_put).
 | |
| 		 */
 | |
| 		mem_cgroup_get(parent);
 | |
| 	} else {
 | |
| 		res_counter_init(&mem->res, NULL);
 | |
| 		res_counter_init(&mem->memsw, NULL);
 | |
| 	}
 | |
| 	mem->last_scanned_child = 0;
 | |
| 	spin_lock_init(&mem->reclaim_param_lock);
 | |
| 	INIT_LIST_HEAD(&mem->oom_notify);
 | |
| 
 | |
| 	if (parent)
 | |
| 		mem->swappiness = get_swappiness(parent);
 | |
| 	atomic_set(&mem->refcnt, 1);
 | |
| 	mem->move_charge_at_immigrate = 0;
 | |
| 	mutex_init(&mem->thresholds_lock);
 | |
| 	return &mem->css;
 | |
| free_out:
 | |
| 	__mem_cgroup_free(mem);
 | |
| 	root_mem_cgroup = NULL;
 | |
| 	return ERR_PTR(error);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
 | |
| 					struct cgroup *cont)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | |
| 
 | |
| 	return mem_cgroup_force_empty(mem, false);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_destroy(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cont)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | |
| 
 | |
| 	mem_cgroup_put(mem);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_populate(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cont)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
 | |
| 				ARRAY_SIZE(mem_cgroup_files));
 | |
| 
 | |
| 	if (!ret)
 | |
| 		ret = register_memsw_files(cont, ss);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /* Handlers for move charge at task migration. */
 | |
| #define PRECHARGE_COUNT_AT_ONCE	256
 | |
| static int mem_cgroup_do_precharge(unsigned long count)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
 | |
| 	struct mem_cgroup *mem = mc.to;
 | |
| 
 | |
| 	if (mem_cgroup_is_root(mem)) {
 | |
| 		mc.precharge += count;
 | |
| 		/* we don't need css_get for root */
 | |
| 		return ret;
 | |
| 	}
 | |
| 	/* try to charge at once */
 | |
| 	if (count > 1) {
 | |
| 		struct res_counter *dummy;
 | |
| 		/*
 | |
| 		 * "mem" cannot be under rmdir() because we've already checked
 | |
| 		 * by cgroup_lock_live_cgroup() that it is not removed and we
 | |
| 		 * are still under the same cgroup_mutex. So we can postpone
 | |
| 		 * css_get().
 | |
| 		 */
 | |
| 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
 | |
| 			goto one_by_one;
 | |
| 		if (do_swap_account && res_counter_charge(&mem->memsw,
 | |
| 						PAGE_SIZE * count, &dummy)) {
 | |
| 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
 | |
| 			goto one_by_one;
 | |
| 		}
 | |
| 		mc.precharge += count;
 | |
| 		return ret;
 | |
| 	}
 | |
| one_by_one:
 | |
| 	/* fall back to one by one charge */
 | |
| 	while (count--) {
 | |
| 		if (signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!batch_count--) {
 | |
| 			batch_count = PRECHARGE_COUNT_AT_ONCE;
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
 | |
| 		if (ret || !mem)
 | |
| 			/* mem_cgroup_clear_mc() will do uncharge later */
 | |
| 			return -ENOMEM;
 | |
| 		mc.precharge++;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_target_pte_for_mc - check a pte whether it is valid for move charge
 | |
|  * @vma: the vma the pte to be checked belongs
 | |
|  * @addr: the address corresponding to the pte to be checked
 | |
|  * @ptent: the pte to be checked
 | |
|  * @target: the pointer the target page or swap ent will be stored(can be NULL)
 | |
|  *
 | |
|  * Returns
 | |
|  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 | |
|  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 | |
|  *     move charge. if @target is not NULL, the page is stored in target->page
 | |
|  *     with extra refcnt got(Callers should handle it).
 | |
|  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 | |
|  *     target for charge migration. if @target is not NULL, the entry is stored
 | |
|  *     in target->ent.
 | |
|  *
 | |
|  * Called with pte lock held.
 | |
|  */
 | |
| union mc_target {
 | |
| 	struct page	*page;
 | |
| 	swp_entry_t	ent;
 | |
| };
 | |
| 
 | |
| enum mc_target_type {
 | |
| 	MC_TARGET_NONE,	/* not used */
 | |
| 	MC_TARGET_PAGE,
 | |
| 	MC_TARGET_SWAP,
 | |
| };
 | |
| 
 | |
| static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
 | |
| 						unsigned long addr, pte_t ptent)
 | |
| {
 | |
| 	struct page *page = vm_normal_page(vma, addr, ptent);
 | |
| 
 | |
| 	if (!page || !page_mapped(page))
 | |
| 		return NULL;
 | |
| 	if (PageAnon(page)) {
 | |
| 		/* we don't move shared anon */
 | |
| 		if (!move_anon() || page_mapcount(page) > 2)
 | |
| 			return NULL;
 | |
| 	} else if (!move_file())
 | |
| 		/* we ignore mapcount for file pages */
 | |
| 		return NULL;
 | |
| 	if (!get_page_unless_zero(page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
 | |
| 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
 | |
| {
 | |
| 	int usage_count;
 | |
| 	struct page *page = NULL;
 | |
| 	swp_entry_t ent = pte_to_swp_entry(ptent);
 | |
| 
 | |
| 	if (!move_anon() || non_swap_entry(ent))
 | |
| 		return NULL;
 | |
| 	usage_count = mem_cgroup_count_swap_user(ent, &page);
 | |
| 	if (usage_count > 1) { /* we don't move shared anon */
 | |
| 		if (page)
 | |
| 			put_page(page);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (do_swap_account)
 | |
| 		entry->val = ent.val;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
 | |
| 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	struct inode *inode;
 | |
| 	struct address_space *mapping;
 | |
| 	pgoff_t pgoff;
 | |
| 
 | |
| 	if (!vma->vm_file) /* anonymous vma */
 | |
| 		return NULL;
 | |
| 	if (!move_file())
 | |
| 		return NULL;
 | |
| 
 | |
| 	inode = vma->vm_file->f_path.dentry->d_inode;
 | |
| 	mapping = vma->vm_file->f_mapping;
 | |
| 	if (pte_none(ptent))
 | |
| 		pgoff = linear_page_index(vma, addr);
 | |
| 	else /* pte_file(ptent) is true */
 | |
| 		pgoff = pte_to_pgoff(ptent);
 | |
| 
 | |
| 	/* page is moved even if it's not RSS of this task(page-faulted). */
 | |
| 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
 | |
| 		page = find_get_page(mapping, pgoff);
 | |
| 	} else { /* shmem/tmpfs file. we should take account of swap too. */
 | |
| 		swp_entry_t ent;
 | |
| 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
 | |
| 		if (do_swap_account)
 | |
| 			entry->val = ent.val;
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static int is_target_pte_for_mc(struct vm_area_struct *vma,
 | |
| 		unsigned long addr, pte_t ptent, union mc_target *target)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	struct page_cgroup *pc;
 | |
| 	int ret = 0;
 | |
| 	swp_entry_t ent = { .val = 0 };
 | |
| 
 | |
| 	if (pte_present(ptent))
 | |
| 		page = mc_handle_present_pte(vma, addr, ptent);
 | |
| 	else if (is_swap_pte(ptent))
 | |
| 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
 | |
| 	else if (pte_none(ptent) || pte_file(ptent))
 | |
| 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
 | |
| 
 | |
| 	if (!page && !ent.val)
 | |
| 		return 0;
 | |
| 	if (page) {
 | |
| 		pc = lookup_page_cgroup(page);
 | |
| 		/*
 | |
| 		 * Do only loose check w/o page_cgroup lock.
 | |
| 		 * mem_cgroup_move_account() checks the pc is valid or not under
 | |
| 		 * the lock.
 | |
| 		 */
 | |
| 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
 | |
| 			ret = MC_TARGET_PAGE;
 | |
| 			if (target)
 | |
| 				target->page = page;
 | |
| 		}
 | |
| 		if (!ret || !target)
 | |
| 			put_page(page);
 | |
| 	}
 | |
| 	/* There is a swap entry and a page doesn't exist or isn't charged */
 | |
| 	if (ent.val && !ret &&
 | |
| 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
 | |
| 		ret = MC_TARGET_SWAP;
 | |
| 		if (target)
 | |
| 			target->ent = ent;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
 | |
| 					unsigned long addr, unsigned long end,
 | |
| 					struct mm_walk *walk)
 | |
| {
 | |
| 	struct vm_area_struct *vma = walk->private;
 | |
| 	pte_t *pte;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	for (; addr != end; pte++, addr += PAGE_SIZE)
 | |
| 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
 | |
| 			mc.precharge++;	/* increment precharge temporarily */
 | |
| 	pte_unmap_unlock(pte - 1, ptl);
 | |
| 	cond_resched();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long precharge;
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | |
| 		struct mm_walk mem_cgroup_count_precharge_walk = {
 | |
| 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
 | |
| 			.mm = mm,
 | |
| 			.private = vma,
 | |
| 		};
 | |
| 		if (is_vm_hugetlb_page(vma))
 | |
| 			continue;
 | |
| 		walk_page_range(vma->vm_start, vma->vm_end,
 | |
| 					&mem_cgroup_count_precharge_walk);
 | |
| 	}
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 
 | |
| 	precharge = mc.precharge;
 | |
| 	mc.precharge = 0;
 | |
| 
 | |
| 	return precharge;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_precharge_mc(struct mm_struct *mm)
 | |
| {
 | |
| 	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_clear_mc(void)
 | |
| {
 | |
| 	struct mem_cgroup *from = mc.from;
 | |
| 	struct mem_cgroup *to = mc.to;
 | |
| 
 | |
| 	/* we must uncharge all the leftover precharges from mc.to */
 | |
| 	if (mc.precharge) {
 | |
| 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
 | |
| 		mc.precharge = 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
 | |
| 	 * we must uncharge here.
 | |
| 	 */
 | |
| 	if (mc.moved_charge) {
 | |
| 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
 | |
| 		mc.moved_charge = 0;
 | |
| 	}
 | |
| 	/* we must fixup refcnts and charges */
 | |
| 	if (mc.moved_swap) {
 | |
| 		/* uncharge swap account from the old cgroup */
 | |
| 		if (!mem_cgroup_is_root(mc.from))
 | |
| 			res_counter_uncharge(&mc.from->memsw,
 | |
| 						PAGE_SIZE * mc.moved_swap);
 | |
| 		__mem_cgroup_put(mc.from, mc.moved_swap);
 | |
| 
 | |
| 		if (!mem_cgroup_is_root(mc.to)) {
 | |
| 			/*
 | |
| 			 * we charged both to->res and to->memsw, so we should
 | |
| 			 * uncharge to->res.
 | |
| 			 */
 | |
| 			res_counter_uncharge(&mc.to->res,
 | |
| 						PAGE_SIZE * mc.moved_swap);
 | |
| 		}
 | |
| 		/* we've already done mem_cgroup_get(mc.to) */
 | |
| 
 | |
| 		mc.moved_swap = 0;
 | |
| 	}
 | |
| 	spin_lock(&mc.lock);
 | |
| 	mc.from = NULL;
 | |
| 	mc.to = NULL;
 | |
| 	mc.moving_task = NULL;
 | |
| 	spin_unlock(&mc.lock);
 | |
| 	memcg_oom_recover(from);
 | |
| 	memcg_oom_recover(to);
 | |
| 	wake_up_all(&mc.waitq);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cgroup,
 | |
| 				struct task_struct *p,
 | |
| 				bool threadgroup)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
 | |
| 
 | |
| 	if (mem->move_charge_at_immigrate) {
 | |
| 		struct mm_struct *mm;
 | |
| 		struct mem_cgroup *from = mem_cgroup_from_task(p);
 | |
| 
 | |
| 		VM_BUG_ON(from == mem);
 | |
| 
 | |
| 		mm = get_task_mm(p);
 | |
| 		if (!mm)
 | |
| 			return 0;
 | |
| 		/* We move charges only when we move a owner of the mm */
 | |
| 		if (mm->owner == p) {
 | |
| 			VM_BUG_ON(mc.from);
 | |
| 			VM_BUG_ON(mc.to);
 | |
| 			VM_BUG_ON(mc.precharge);
 | |
| 			VM_BUG_ON(mc.moved_charge);
 | |
| 			VM_BUG_ON(mc.moved_swap);
 | |
| 			VM_BUG_ON(mc.moving_task);
 | |
| 			spin_lock(&mc.lock);
 | |
| 			mc.from = from;
 | |
| 			mc.to = mem;
 | |
| 			mc.precharge = 0;
 | |
| 			mc.moved_charge = 0;
 | |
| 			mc.moved_swap = 0;
 | |
| 			mc.moving_task = current;
 | |
| 			spin_unlock(&mc.lock);
 | |
| 
 | |
| 			ret = mem_cgroup_precharge_mc(mm);
 | |
| 			if (ret)
 | |
| 				mem_cgroup_clear_mc();
 | |
| 		}
 | |
| 		mmput(mm);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cgroup,
 | |
| 				struct task_struct *p,
 | |
| 				bool threadgroup)
 | |
| {
 | |
| 	mem_cgroup_clear_mc();
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				struct mm_walk *walk)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct vm_area_struct *vma = walk->private;
 | |
| 	pte_t *pte;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| retry:
 | |
| 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	for (; addr != end; addr += PAGE_SIZE) {
 | |
| 		pte_t ptent = *(pte++);
 | |
| 		union mc_target target;
 | |
| 		int type;
 | |
| 		struct page *page;
 | |
| 		struct page_cgroup *pc;
 | |
| 		swp_entry_t ent;
 | |
| 
 | |
| 		if (!mc.precharge)
 | |
| 			break;
 | |
| 
 | |
| 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
 | |
| 		switch (type) {
 | |
| 		case MC_TARGET_PAGE:
 | |
| 			page = target.page;
 | |
| 			if (isolate_lru_page(page))
 | |
| 				goto put;
 | |
| 			pc = lookup_page_cgroup(page);
 | |
| 			if (!mem_cgroup_move_account(pc,
 | |
| 						mc.from, mc.to, false)) {
 | |
| 				mc.precharge--;
 | |
| 				/* we uncharge from mc.from later. */
 | |
| 				mc.moved_charge++;
 | |
| 			}
 | |
| 			putback_lru_page(page);
 | |
| put:			/* is_target_pte_for_mc() gets the page */
 | |
| 			put_page(page);
 | |
| 			break;
 | |
| 		case MC_TARGET_SWAP:
 | |
| 			ent = target.ent;
 | |
| 			if (!mem_cgroup_move_swap_account(ent,
 | |
| 						mc.from, mc.to, false)) {
 | |
| 				mc.precharge--;
 | |
| 				/* we fixup refcnts and charges later. */
 | |
| 				mc.moved_swap++;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	pte_unmap_unlock(pte - 1, ptl);
 | |
| 	cond_resched();
 | |
| 
 | |
| 	if (addr != end) {
 | |
| 		/*
 | |
| 		 * We have consumed all precharges we got in can_attach().
 | |
| 		 * We try charge one by one, but don't do any additional
 | |
| 		 * charges to mc.to if we have failed in charge once in attach()
 | |
| 		 * phase.
 | |
| 		 */
 | |
| 		ret = mem_cgroup_do_precharge(1);
 | |
| 		if (!ret)
 | |
| 			goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_move_charge(struct mm_struct *mm)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	lru_add_drain_all();
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | |
| 		int ret;
 | |
| 		struct mm_walk mem_cgroup_move_charge_walk = {
 | |
| 			.pmd_entry = mem_cgroup_move_charge_pte_range,
 | |
| 			.mm = mm,
 | |
| 			.private = vma,
 | |
| 		};
 | |
| 		if (is_vm_hugetlb_page(vma))
 | |
| 			continue;
 | |
| 		ret = walk_page_range(vma->vm_start, vma->vm_end,
 | |
| 						&mem_cgroup_move_charge_walk);
 | |
| 		if (ret)
 | |
| 			/*
 | |
| 			 * means we have consumed all precharges and failed in
 | |
| 			 * doing additional charge. Just abandon here.
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 	up_read(&mm->mmap_sem);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_move_task(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cont,
 | |
| 				struct cgroup *old_cont,
 | |
| 				struct task_struct *p,
 | |
| 				bool threadgroup)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	if (!mc.to)
 | |
| 		/* no need to move charge */
 | |
| 		return;
 | |
| 
 | |
| 	mm = get_task_mm(p);
 | |
| 	if (mm) {
 | |
| 		mem_cgroup_move_charge(mm);
 | |
| 		mmput(mm);
 | |
| 	}
 | |
| 	mem_cgroup_clear_mc();
 | |
| }
 | |
| #else	/* !CONFIG_MMU */
 | |
| static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cgroup,
 | |
| 				struct task_struct *p,
 | |
| 				bool threadgroup)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cgroup,
 | |
| 				struct task_struct *p,
 | |
| 				bool threadgroup)
 | |
| {
 | |
| }
 | |
| static void mem_cgroup_move_task(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cont,
 | |
| 				struct cgroup *old_cont,
 | |
| 				struct task_struct *p,
 | |
| 				bool threadgroup)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct cgroup_subsys mem_cgroup_subsys = {
 | |
| 	.name = "memory",
 | |
| 	.subsys_id = mem_cgroup_subsys_id,
 | |
| 	.create = mem_cgroup_create,
 | |
| 	.pre_destroy = mem_cgroup_pre_destroy,
 | |
| 	.destroy = mem_cgroup_destroy,
 | |
| 	.populate = mem_cgroup_populate,
 | |
| 	.can_attach = mem_cgroup_can_attach,
 | |
| 	.cancel_attach = mem_cgroup_cancel_attach,
 | |
| 	.attach = mem_cgroup_move_task,
 | |
| 	.early_init = 0,
 | |
| 	.use_id = 1,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 | |
| 
 | |
| static int __init disable_swap_account(char *s)
 | |
| {
 | |
| 	really_do_swap_account = 0;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noswapaccount", disable_swap_account);
 | |
| #endif
 |