mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-26 05:15:31 +00:00 
			
		
		
		
	 213765d7b4
			
		
	
	
		213765d7b4
		
	
	
	
	
		
			
			For best performance, codecs often setup linked triggered transfers with a contiguous block of params, and that is when this API is used. Setup/configuration of these parameter RAMs is most efficient if they are contiguous. There is an API to allocate a set of contiguous parameter RAMs and a corresponding API to free a set of contiguous parameter RAMs Signed-off-by: Sandeep Paulraj <s-paulraj@ti.com> Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
		
			
				
	
	
		
			1511 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1511 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * EDMA3 support for DaVinci
 | |
|  *
 | |
|  * Copyright (C) 2006-2009 Texas Instruments.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <mach/cputype.h>
 | |
| #include <mach/memory.h>
 | |
| #include <mach/hardware.h>
 | |
| #include <mach/irqs.h>
 | |
| #include <mach/edma.h>
 | |
| #include <mach/mux.h>
 | |
| 
 | |
| 
 | |
| /* Offsets matching "struct edmacc_param" */
 | |
| #define PARM_OPT		0x00
 | |
| #define PARM_SRC		0x04
 | |
| #define PARM_A_B_CNT		0x08
 | |
| #define PARM_DST		0x0c
 | |
| #define PARM_SRC_DST_BIDX	0x10
 | |
| #define PARM_LINK_BCNTRLD	0x14
 | |
| #define PARM_SRC_DST_CIDX	0x18
 | |
| #define PARM_CCNT		0x1c
 | |
| 
 | |
| #define PARM_SIZE		0x20
 | |
| 
 | |
| /* Offsets for EDMA CC global channel registers and their shadows */
 | |
| #define SH_ER		0x00	/* 64 bits */
 | |
| #define SH_ECR		0x08	/* 64 bits */
 | |
| #define SH_ESR		0x10	/* 64 bits */
 | |
| #define SH_CER		0x18	/* 64 bits */
 | |
| #define SH_EER		0x20	/* 64 bits */
 | |
| #define SH_EECR		0x28	/* 64 bits */
 | |
| #define SH_EESR		0x30	/* 64 bits */
 | |
| #define SH_SER		0x38	/* 64 bits */
 | |
| #define SH_SECR		0x40	/* 64 bits */
 | |
| #define SH_IER		0x50	/* 64 bits */
 | |
| #define SH_IECR		0x58	/* 64 bits */
 | |
| #define SH_IESR		0x60	/* 64 bits */
 | |
| #define SH_IPR		0x68	/* 64 bits */
 | |
| #define SH_ICR		0x70	/* 64 bits */
 | |
| #define SH_IEVAL	0x78
 | |
| #define SH_QER		0x80
 | |
| #define SH_QEER		0x84
 | |
| #define SH_QEECR	0x88
 | |
| #define SH_QEESR	0x8c
 | |
| #define SH_QSER		0x90
 | |
| #define SH_QSECR	0x94
 | |
| #define SH_SIZE		0x200
 | |
| 
 | |
| /* Offsets for EDMA CC global registers */
 | |
| #define EDMA_REV	0x0000
 | |
| #define EDMA_CCCFG	0x0004
 | |
| #define EDMA_QCHMAP	0x0200	/* 8 registers */
 | |
| #define EDMA_DMAQNUM	0x0240	/* 8 registers (4 on OMAP-L1xx) */
 | |
| #define EDMA_QDMAQNUM	0x0260
 | |
| #define EDMA_QUETCMAP	0x0280
 | |
| #define EDMA_QUEPRI	0x0284
 | |
| #define EDMA_EMR	0x0300	/* 64 bits */
 | |
| #define EDMA_EMCR	0x0308	/* 64 bits */
 | |
| #define EDMA_QEMR	0x0310
 | |
| #define EDMA_QEMCR	0x0314
 | |
| #define EDMA_CCERR	0x0318
 | |
| #define EDMA_CCERRCLR	0x031c
 | |
| #define EDMA_EEVAL	0x0320
 | |
| #define EDMA_DRAE	0x0340	/* 4 x 64 bits*/
 | |
| #define EDMA_QRAE	0x0380	/* 4 registers */
 | |
| #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
 | |
| #define EDMA_QSTAT	0x0600	/* 2 registers */
 | |
| #define EDMA_QWMTHRA	0x0620
 | |
| #define EDMA_QWMTHRB	0x0624
 | |
| #define EDMA_CCSTAT	0x0640
 | |
| 
 | |
| #define EDMA_M		0x1000	/* global channel registers */
 | |
| #define EDMA_ECR	0x1008
 | |
| #define EDMA_ECRH	0x100C
 | |
| #define EDMA_SHADOW0	0x2000	/* 4 regions shadowing global channels */
 | |
| #define EDMA_PARM	0x4000	/* 128 param entries */
 | |
| 
 | |
| #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
 | |
| 
 | |
| #define EDMA_DCHMAP	0x0100  /* 64 registers */
 | |
| #define CHMAP_EXIST	BIT(24)
 | |
| 
 | |
| #define EDMA_MAX_DMACH           64
 | |
| #define EDMA_MAX_PARAMENTRY     512
 | |
| #define EDMA_MAX_CC               2
 | |
| 
 | |
| 
 | |
| /*****************************************************************************/
 | |
| 
 | |
| static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
 | |
| 
 | |
| static inline unsigned int edma_read(unsigned ctlr, int offset)
 | |
| {
 | |
| 	return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
 | |
| }
 | |
| 
 | |
| static inline void edma_write(unsigned ctlr, int offset, int val)
 | |
| {
 | |
| 	__raw_writel(val, edmacc_regs_base[ctlr] + offset);
 | |
| }
 | |
| static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
 | |
| 		unsigned or)
 | |
| {
 | |
| 	unsigned val = edma_read(ctlr, offset);
 | |
| 	val &= and;
 | |
| 	val |= or;
 | |
| 	edma_write(ctlr, offset, val);
 | |
| }
 | |
| static inline void edma_and(unsigned ctlr, int offset, unsigned and)
 | |
| {
 | |
| 	unsigned val = edma_read(ctlr, offset);
 | |
| 	val &= and;
 | |
| 	edma_write(ctlr, offset, val);
 | |
| }
 | |
| static inline void edma_or(unsigned ctlr, int offset, unsigned or)
 | |
| {
 | |
| 	unsigned val = edma_read(ctlr, offset);
 | |
| 	val |= or;
 | |
| 	edma_write(ctlr, offset, val);
 | |
| }
 | |
| static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
 | |
| {
 | |
| 	return edma_read(ctlr, offset + (i << 2));
 | |
| }
 | |
| static inline void edma_write_array(unsigned ctlr, int offset, int i,
 | |
| 		unsigned val)
 | |
| {
 | |
| 	edma_write(ctlr, offset + (i << 2), val);
 | |
| }
 | |
| static inline void edma_modify_array(unsigned ctlr, int offset, int i,
 | |
| 		unsigned and, unsigned or)
 | |
| {
 | |
| 	edma_modify(ctlr, offset + (i << 2), and, or);
 | |
| }
 | |
| static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
 | |
| {
 | |
| 	edma_or(ctlr, offset + (i << 2), or);
 | |
| }
 | |
| static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
 | |
| 		unsigned or)
 | |
| {
 | |
| 	edma_or(ctlr, offset + ((i*2 + j) << 2), or);
 | |
| }
 | |
| static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
 | |
| 		unsigned val)
 | |
| {
 | |
| 	edma_write(ctlr, offset + ((i*2 + j) << 2), val);
 | |
| }
 | |
| static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
 | |
| {
 | |
| 	return edma_read(ctlr, EDMA_SHADOW0 + offset);
 | |
| }
 | |
| static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
 | |
| 		int i)
 | |
| {
 | |
| 	return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
 | |
| }
 | |
| static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
 | |
| {
 | |
| 	edma_write(ctlr, EDMA_SHADOW0 + offset, val);
 | |
| }
 | |
| static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
 | |
| 		unsigned val)
 | |
| {
 | |
| 	edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
 | |
| }
 | |
| static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
 | |
| 		int param_no)
 | |
| {
 | |
| 	return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
 | |
| }
 | |
| static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
 | |
| 		unsigned val)
 | |
| {
 | |
| 	edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
 | |
| }
 | |
| static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
 | |
| 		unsigned and, unsigned or)
 | |
| {
 | |
| 	edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
 | |
| }
 | |
| static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
 | |
| 		unsigned and)
 | |
| {
 | |
| 	edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
 | |
| }
 | |
| static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
 | |
| 		unsigned or)
 | |
| {
 | |
| 	edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
 | |
| }
 | |
| 
 | |
| /*****************************************************************************/
 | |
| 
 | |
| /* actual number of DMA channels and slots on this silicon */
 | |
| struct edma {
 | |
| 	/* how many dma resources of each type */
 | |
| 	unsigned	num_channels;
 | |
| 	unsigned	num_region;
 | |
| 	unsigned	num_slots;
 | |
| 	unsigned	num_tc;
 | |
| 	unsigned	num_cc;
 | |
| 	enum dma_event_q 	default_queue;
 | |
| 
 | |
| 	/* list of channels with no even trigger; terminated by "-1" */
 | |
| 	const s8	*noevent;
 | |
| 
 | |
| 	/* The edma_inuse bit for each PaRAM slot is clear unless the
 | |
| 	 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
 | |
| 	 */
 | |
| 	DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
 | |
| 
 | |
| 	/* The edma_noevent bit for each channel is clear unless
 | |
| 	 * it doesn't trigger DMA events on this platform.  It uses a
 | |
| 	 * bit of SOC-specific initialization code.
 | |
| 	 */
 | |
| 	DECLARE_BITMAP(edma_noevent, EDMA_MAX_DMACH);
 | |
| 
 | |
| 	unsigned	irq_res_start;
 | |
| 	unsigned	irq_res_end;
 | |
| 
 | |
| 	struct dma_interrupt_data {
 | |
| 		void (*callback)(unsigned channel, unsigned short ch_status,
 | |
| 				void *data);
 | |
| 		void *data;
 | |
| 	} intr_data[EDMA_MAX_DMACH];
 | |
| };
 | |
| 
 | |
| static struct edma *edma_info[EDMA_MAX_CC];
 | |
| 
 | |
| /* dummy param set used to (re)initialize parameter RAM slots */
 | |
| static const struct edmacc_param dummy_paramset = {
 | |
| 	.link_bcntrld = 0xffff,
 | |
| 	.ccnt = 1,
 | |
| };
 | |
| 
 | |
| /*****************************************************************************/
 | |
| 
 | |
| static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
 | |
| 		enum dma_event_q queue_no)
 | |
| {
 | |
| 	int bit = (ch_no & 0x7) * 4;
 | |
| 
 | |
| 	/* default to low priority queue */
 | |
| 	if (queue_no == EVENTQ_DEFAULT)
 | |
| 		queue_no = edma_info[ctlr]->default_queue;
 | |
| 
 | |
| 	queue_no &= 7;
 | |
| 	edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
 | |
| 			~(0x7 << bit), queue_no << bit);
 | |
| }
 | |
| 
 | |
| static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
 | |
| {
 | |
| 	int bit = queue_no * 4;
 | |
| 	edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
 | |
| }
 | |
| 
 | |
| static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
 | |
| 		int priority)
 | |
| {
 | |
| 	int bit = queue_no * 4;
 | |
| 	edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
 | |
| 			((priority & 0x7) << bit));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * map_dmach_param - Maps channel number to param entry number
 | |
|  *
 | |
|  * This maps the dma channel number to param entry numberter. In
 | |
|  * other words using the DMA channel mapping registers a param entry
 | |
|  * can be mapped to any channel
 | |
|  *
 | |
|  * Callers are responsible for ensuring the channel mapping logic is
 | |
|  * included in that particular EDMA variant (Eg : dm646x)
 | |
|  *
 | |
|  */
 | |
| static void __init map_dmach_param(unsigned ctlr)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < EDMA_MAX_DMACH; i++)
 | |
| 		edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| setup_dma_interrupt(unsigned lch,
 | |
| 	void (*callback)(unsigned channel, u16 ch_status, void *data),
 | |
| 	void *data)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(lch);
 | |
| 	lch = EDMA_CHAN_SLOT(lch);
 | |
| 
 | |
| 	if (!callback) {
 | |
| 		edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
 | |
| 				(1 << (lch & 0x1f)));
 | |
| 	}
 | |
| 
 | |
| 	edma_info[ctlr]->intr_data[lch].callback = callback;
 | |
| 	edma_info[ctlr]->intr_data[lch].data = data;
 | |
| 
 | |
| 	if (callback) {
 | |
| 		edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
 | |
| 				(1 << (lch & 0x1f)));
 | |
| 		edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
 | |
| 				(1 << (lch & 0x1f)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int irq2ctlr(int irq)
 | |
| {
 | |
| 	if (irq >= edma_info[0]->irq_res_start &&
 | |
| 		irq <= edma_info[0]->irq_res_end)
 | |
| 		return 0;
 | |
| 	else if (irq >= edma_info[1]->irq_res_start &&
 | |
| 		irq <= edma_info[1]->irq_res_end)
 | |
| 		return 1;
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  * DMA interrupt handler
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| static irqreturn_t dma_irq_handler(int irq, void *data)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned ctlr;
 | |
| 	unsigned int cnt = 0;
 | |
| 
 | |
| 	ctlr = irq2ctlr(irq);
 | |
| 
 | |
| 	dev_dbg(data, "dma_irq_handler\n");
 | |
| 
 | |
| 	if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
 | |
| 	    && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	while (1) {
 | |
| 		int j;
 | |
| 		if (edma_shadow0_read_array(ctlr, SH_IPR, 0))
 | |
| 			j = 0;
 | |
| 		else if (edma_shadow0_read_array(ctlr, SH_IPR, 1))
 | |
| 			j = 1;
 | |
| 		else
 | |
| 			break;
 | |
| 		dev_dbg(data, "IPR%d %08x\n", j,
 | |
| 				edma_shadow0_read_array(ctlr, SH_IPR, j));
 | |
| 		for (i = 0; i < 32; i++) {
 | |
| 			int k = (j << 5) + i;
 | |
| 			if (edma_shadow0_read_array(ctlr, SH_IPR, j) &
 | |
| 							(1 << i)) {
 | |
| 				/* Clear the corresponding IPR bits */
 | |
| 				edma_shadow0_write_array(ctlr, SH_ICR, j,
 | |
| 							(1 << i));
 | |
| 				if (edma_info[ctlr]->intr_data[k].callback) {
 | |
| 					edma_info[ctlr]->intr_data[k].callback(
 | |
| 						k, DMA_COMPLETE,
 | |
| 						edma_info[ctlr]->intr_data[k].
 | |
| 						data);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		cnt++;
 | |
| 		if (cnt > 10)
 | |
| 			break;
 | |
| 	}
 | |
| 	edma_shadow0_write(ctlr, SH_IEVAL, 1);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  * DMA error interrupt handler
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| static irqreturn_t dma_ccerr_handler(int irq, void *data)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned ctlr;
 | |
| 	unsigned int cnt = 0;
 | |
| 
 | |
| 	ctlr = irq2ctlr(irq);
 | |
| 
 | |
| 	dev_dbg(data, "dma_ccerr_handler\n");
 | |
| 
 | |
| 	if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
 | |
| 	    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
 | |
| 	    (edma_read(ctlr, EDMA_QEMR) == 0) &&
 | |
| 	    (edma_read(ctlr, EDMA_CCERR) == 0))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	while (1) {
 | |
| 		int j = -1;
 | |
| 		if (edma_read_array(ctlr, EDMA_EMR, 0))
 | |
| 			j = 0;
 | |
| 		else if (edma_read_array(ctlr, EDMA_EMR, 1))
 | |
| 			j = 1;
 | |
| 		if (j >= 0) {
 | |
| 			dev_dbg(data, "EMR%d %08x\n", j,
 | |
| 					edma_read_array(ctlr, EDMA_EMR, j));
 | |
| 			for (i = 0; i < 32; i++) {
 | |
| 				int k = (j << 5) + i;
 | |
| 				if (edma_read_array(ctlr, EDMA_EMR, j) &
 | |
| 							(1 << i)) {
 | |
| 					/* Clear the corresponding EMR bits */
 | |
| 					edma_write_array(ctlr, EDMA_EMCR, j,
 | |
| 							1 << i);
 | |
| 					/* Clear any SER */
 | |
| 					edma_shadow0_write_array(ctlr, SH_SECR,
 | |
| 								j, (1 << i));
 | |
| 					if (edma_info[ctlr]->intr_data[k].
 | |
| 								callback) {
 | |
| 						edma_info[ctlr]->intr_data[k].
 | |
| 						callback(k,
 | |
| 						DMA_CC_ERROR,
 | |
| 						edma_info[ctlr]->intr_data
 | |
| 						[k].data);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (edma_read(ctlr, EDMA_QEMR)) {
 | |
| 			dev_dbg(data, "QEMR %02x\n",
 | |
| 				edma_read(ctlr, EDMA_QEMR));
 | |
| 			for (i = 0; i < 8; i++) {
 | |
| 				if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
 | |
| 					/* Clear the corresponding IPR bits */
 | |
| 					edma_write(ctlr, EDMA_QEMCR, 1 << i);
 | |
| 					edma_shadow0_write(ctlr, SH_QSECR,
 | |
| 								(1 << i));
 | |
| 
 | |
| 					/* NOTE:  not reported!! */
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (edma_read(ctlr, EDMA_CCERR)) {
 | |
| 			dev_dbg(data, "CCERR %08x\n",
 | |
| 				edma_read(ctlr, EDMA_CCERR));
 | |
| 			/* FIXME:  CCERR.BIT(16) ignored!  much better
 | |
| 			 * to just write CCERRCLR with CCERR value...
 | |
| 			 */
 | |
| 			for (i = 0; i < 8; i++) {
 | |
| 				if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
 | |
| 					/* Clear the corresponding IPR bits */
 | |
| 					edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
 | |
| 
 | |
| 					/* NOTE:  not reported!! */
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
 | |
| 		    && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
 | |
| 		    && (edma_read(ctlr, EDMA_QEMR) == 0)
 | |
| 		    && (edma_read(ctlr, EDMA_CCERR) == 0)) {
 | |
| 			break;
 | |
| 		}
 | |
| 		cnt++;
 | |
| 		if (cnt > 10)
 | |
| 			break;
 | |
| 	}
 | |
| 	edma_write(ctlr, EDMA_EEVAL, 1);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  * Transfer controller error interrupt handlers
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| 
 | |
| #define tc_errs_handled	false	/* disabled as long as they're NOPs */
 | |
| 
 | |
| static irqreturn_t dma_tc0err_handler(int irq, void *data)
 | |
| {
 | |
| 	dev_dbg(data, "dma_tc0err_handler\n");
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t dma_tc1err_handler(int irq, void *data)
 | |
| {
 | |
| 	dev_dbg(data, "dma_tc1err_handler\n");
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int reserve_contiguous_params(int ctlr, unsigned int id,
 | |
| 				     unsigned int num_params,
 | |
| 				     unsigned int start_param)
 | |
| {
 | |
| 	int i, j;
 | |
| 	unsigned int count = num_params;
 | |
| 
 | |
| 	for (i = start_param; i < edma_info[ctlr]->num_slots; ++i) {
 | |
| 		j = EDMA_CHAN_SLOT(i);
 | |
| 		if (!test_and_set_bit(j, edma_info[ctlr]->edma_inuse))
 | |
| 			count--;
 | |
| 			if (count == 0)
 | |
| 				break;
 | |
| 		else if (id == EDMA_CONT_PARAMS_FIXED_EXACT)
 | |
| 			break;
 | |
| 		else
 | |
| 			count = num_params;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to clear any bits that we set
 | |
| 	 * if we run out parameter RAMs, i.e we do find a set
 | |
| 	 * of contiguous parameter RAMs but do not find the exact number
 | |
| 	 * requested as we may reach the total number of parameter RAMs
 | |
| 	 */
 | |
| 	if (count) {
 | |
| 		for (j = i - num_params + count + 1; j <= i ; ++j)
 | |
| 			clear_bit(j, edma_info[ctlr]->edma_inuse);
 | |
| 
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	for (j = i - num_params + 1; j <= i; ++j)
 | |
| 		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
 | |
| 			&dummy_paramset, PARM_SIZE);
 | |
| 
 | |
| 	return EDMA_CTLR_CHAN(ctlr, i - num_params + 1);
 | |
| }
 | |
| 
 | |
| /*-----------------------------------------------------------------------*/
 | |
| 
 | |
| /* Resource alloc/free:  dma channels, parameter RAM slots */
 | |
| 
 | |
| /**
 | |
|  * edma_alloc_channel - allocate DMA channel and paired parameter RAM
 | |
|  * @channel: specific channel to allocate; negative for "any unmapped channel"
 | |
|  * @callback: optional; to be issued on DMA completion or errors
 | |
|  * @data: passed to callback
 | |
|  * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
 | |
|  *	Controller (TC) executes requests using this channel.  Use
 | |
|  *	EVENTQ_DEFAULT unless you really need a high priority queue.
 | |
|  *
 | |
|  * This allocates a DMA channel and its associated parameter RAM slot.
 | |
|  * The parameter RAM is initialized to hold a dummy transfer.
 | |
|  *
 | |
|  * Normal use is to pass a specific channel number as @channel, to make
 | |
|  * use of hardware events mapped to that channel.  When the channel will
 | |
|  * be used only for software triggering or event chaining, channels not
 | |
|  * mapped to hardware events (or mapped to unused events) are preferable.
 | |
|  *
 | |
|  * DMA transfers start from a channel using edma_start(), or by
 | |
|  * chaining.  When the transfer described in that channel's parameter RAM
 | |
|  * slot completes, that slot's data may be reloaded through a link.
 | |
|  *
 | |
|  * DMA errors are only reported to the @callback associated with the
 | |
|  * channel driving that transfer, but transfer completion callbacks can
 | |
|  * be sent to another channel under control of the TCC field in
 | |
|  * the option word of the transfer's parameter RAM set.  Drivers must not
 | |
|  * use DMA transfer completion callbacks for channels they did not allocate.
 | |
|  * (The same applies to TCC codes used in transfer chaining.)
 | |
|  *
 | |
|  * Returns the number of the channel, else negative errno.
 | |
|  */
 | |
| int edma_alloc_channel(int channel,
 | |
| 		void (*callback)(unsigned channel, u16 ch_status, void *data),
 | |
| 		void *data,
 | |
| 		enum dma_event_q eventq_no)
 | |
| {
 | |
| 	unsigned i, done, ctlr = 0;
 | |
| 
 | |
| 	if (channel >= 0) {
 | |
| 		ctlr = EDMA_CTLR(channel);
 | |
| 		channel = EDMA_CHAN_SLOT(channel);
 | |
| 	}
 | |
| 
 | |
| 	if (channel < 0) {
 | |
| 		for (i = 0; i < EDMA_MAX_CC; i++) {
 | |
| 			channel = 0;
 | |
| 			for (;;) {
 | |
| 				channel = find_next_bit(edma_info[i]->
 | |
| 						edma_noevent,
 | |
| 						edma_info[i]->num_channels,
 | |
| 						channel);
 | |
| 				if (channel == edma_info[i]->num_channels)
 | |
| 					return -ENOMEM;
 | |
| 				if (!test_and_set_bit(channel,
 | |
| 						edma_info[i]->edma_inuse)) {
 | |
| 					done = 1;
 | |
| 					ctlr = i;
 | |
| 					break;
 | |
| 				}
 | |
| 				channel++;
 | |
| 			}
 | |
| 			if (done)
 | |
| 				break;
 | |
| 		}
 | |
| 	} else if (channel >= edma_info[ctlr]->num_channels) {
 | |
| 		return -EINVAL;
 | |
| 	} else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* ensure access through shadow region 0 */
 | |
| 	edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
 | |
| 
 | |
| 	/* ensure no events are pending */
 | |
| 	edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
 | |
| 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
 | |
| 			&dummy_paramset, PARM_SIZE);
 | |
| 
 | |
| 	if (callback)
 | |
| 		setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
 | |
| 					callback, data);
 | |
| 
 | |
| 	map_dmach_queue(ctlr, channel, eventq_no);
 | |
| 
 | |
| 	return channel;
 | |
| }
 | |
| EXPORT_SYMBOL(edma_alloc_channel);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * edma_free_channel - deallocate DMA channel
 | |
|  * @channel: dma channel returned from edma_alloc_channel()
 | |
|  *
 | |
|  * This deallocates the DMA channel and associated parameter RAM slot
 | |
|  * allocated by edma_alloc_channel().
 | |
|  *
 | |
|  * Callers are responsible for ensuring the channel is inactive, and
 | |
|  * will not be reactivated by linking, chaining, or software calls to
 | |
|  * edma_start().
 | |
|  */
 | |
| void edma_free_channel(unsigned channel)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(channel);
 | |
| 	channel = EDMA_CHAN_SLOT(channel);
 | |
| 
 | |
| 	if (channel >= edma_info[ctlr]->num_channels)
 | |
| 		return;
 | |
| 
 | |
| 	setup_dma_interrupt(channel, NULL, NULL);
 | |
| 	/* REVISIT should probably take out of shadow region 0 */
 | |
| 
 | |
| 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
 | |
| 			&dummy_paramset, PARM_SIZE);
 | |
| 	clear_bit(channel, edma_info[ctlr]->edma_inuse);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_free_channel);
 | |
| 
 | |
| /**
 | |
|  * edma_alloc_slot - allocate DMA parameter RAM
 | |
|  * @slot: specific slot to allocate; negative for "any unused slot"
 | |
|  *
 | |
|  * This allocates a parameter RAM slot, initializing it to hold a
 | |
|  * dummy transfer.  Slots allocated using this routine have not been
 | |
|  * mapped to a hardware DMA channel, and will normally be used by
 | |
|  * linking to them from a slot associated with a DMA channel.
 | |
|  *
 | |
|  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 | |
|  * slots may be allocated on behalf of DSP firmware.
 | |
|  *
 | |
|  * Returns the number of the slot, else negative errno.
 | |
|  */
 | |
| int edma_alloc_slot(unsigned ctlr, int slot)
 | |
| {
 | |
| 	if (slot >= 0)
 | |
| 		slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	if (slot < 0) {
 | |
| 		slot = edma_info[ctlr]->num_channels;
 | |
| 		for (;;) {
 | |
| 			slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
 | |
| 					edma_info[ctlr]->num_slots, slot);
 | |
| 			if (slot == edma_info[ctlr]->num_slots)
 | |
| 				return -ENOMEM;
 | |
| 			if (!test_and_set_bit(slot,
 | |
| 						edma_info[ctlr]->edma_inuse))
 | |
| 				break;
 | |
| 		}
 | |
| 	} else if (slot < edma_info[ctlr]->num_channels ||
 | |
| 			slot >= edma_info[ctlr]->num_slots) {
 | |
| 		return -EINVAL;
 | |
| 	} else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 | |
| 			&dummy_paramset, PARM_SIZE);
 | |
| 
 | |
| 	return EDMA_CTLR_CHAN(ctlr, slot);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_alloc_slot);
 | |
| 
 | |
| /**
 | |
|  * edma_free_slot - deallocate DMA parameter RAM
 | |
|  * @slot: parameter RAM slot returned from edma_alloc_slot()
 | |
|  *
 | |
|  * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
 | |
|  * Callers are responsible for ensuring the slot is inactive, and will
 | |
|  * not be activated.
 | |
|  */
 | |
| void edma_free_slot(unsigned slot)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(slot);
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	if (slot < edma_info[ctlr]->num_channels ||
 | |
| 		slot >= edma_info[ctlr]->num_slots)
 | |
| 		return;
 | |
| 
 | |
| 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 | |
| 			&dummy_paramset, PARM_SIZE);
 | |
| 	clear_bit(slot, edma_info[ctlr]->edma_inuse);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_free_slot);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
 | |
|  * The API will return the starting point of a set of
 | |
|  * contiguous PARAM's that have been requested
 | |
|  *
 | |
|  * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
 | |
|  * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
 | |
|  * @count: number of contiguous Paramter RAM's
 | |
|  * @param  - the start value of Parameter RAM that should be passed if id
 | |
|  * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
 | |
|  *
 | |
|  * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
 | |
|  * contiguous Parameter RAMs from parameter RAM 64 in the case of DaVinci SOCs
 | |
|  * and 32 in the case of Primus
 | |
|  *
 | |
|  * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
 | |
|  * set of contiguous parameter RAMs from the "param" that is passed as an
 | |
|  * argument to the API.
 | |
|  *
 | |
|  * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
 | |
|  * starts looking for a set of contiguous parameter RAMs from the "param"
 | |
|  * that is passed as an argument to the API. On failure the API will try to
 | |
|  * find a set of contiguous Parameter RAMs in the remaining Parameter RAMs
 | |
|  */
 | |
| int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
 | |
| {
 | |
| 	/*
 | |
| 	 * The start slot requested should be greater than
 | |
| 	 * the number of channels and lesser than the total number
 | |
| 	 * of slots
 | |
| 	 */
 | |
| 	if (slot < edma_info[ctlr]->num_channels ||
 | |
| 		slot >= edma_info[ctlr]->num_slots)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The number of parameter RAMs requested cannot be less than 1
 | |
| 	 * and cannot be more than the number of slots minus the number of
 | |
| 	 * channels
 | |
| 	 */
 | |
| 	if (count < 1 || count >
 | |
| 		(edma_info[ctlr]->num_slots - edma_info[ctlr]->num_channels))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (id) {
 | |
| 	case EDMA_CONT_PARAMS_ANY:
 | |
| 		return reserve_contiguous_params(ctlr, id, count,
 | |
| 						 edma_info[ctlr]->num_channels);
 | |
| 	case EDMA_CONT_PARAMS_FIXED_EXACT:
 | |
| 	case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
 | |
| 		return reserve_contiguous_params(ctlr, id, count, slot);
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(edma_alloc_cont_slots);
 | |
| 
 | |
| /**
 | |
|  * edma_free_cont_slots - deallocate DMA parameter RAMs
 | |
|  * @slot: first parameter RAM of a set of parameter RAMs to be freed
 | |
|  * @count: the number of contiguous parameter RAMs to be freed
 | |
|  *
 | |
|  * This deallocates the parameter RAM slots allocated by
 | |
|  * edma_alloc_cont_slots.
 | |
|  * Callers/applications need to keep track of sets of contiguous
 | |
|  * parameter RAMs that have been allocated using the edma_alloc_cont_slots
 | |
|  * API.
 | |
|  * Callers are responsible for ensuring the slots are inactive, and will
 | |
|  * not be activated.
 | |
|  */
 | |
| int edma_free_cont_slots(unsigned slot, int count)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 	int i;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(slot);
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	if (slot < edma_info[ctlr]->num_channels ||
 | |
| 		slot >= edma_info[ctlr]->num_slots ||
 | |
| 		count < 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = slot; i < slot + count; ++i) {
 | |
| 		ctlr = EDMA_CTLR(i);
 | |
| 		slot = EDMA_CHAN_SLOT(i);
 | |
| 
 | |
| 		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 | |
| 			&dummy_paramset, PARM_SIZE);
 | |
| 		clear_bit(slot, edma_info[ctlr]->edma_inuse);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(edma_free_cont_slots);
 | |
| 
 | |
| /*-----------------------------------------------------------------------*/
 | |
| 
 | |
| /* Parameter RAM operations (i) -- read/write partial slots */
 | |
| 
 | |
| /**
 | |
|  * edma_set_src - set initial DMA source address in parameter RAM slot
 | |
|  * @slot: parameter RAM slot being configured
 | |
|  * @src_port: physical address of source (memory, controller FIFO, etc)
 | |
|  * @addressMode: INCR, except in very rare cases
 | |
|  * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 | |
|  *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 | |
|  *
 | |
|  * Note that the source address is modified during the DMA transfer
 | |
|  * according to edma_set_src_index().
 | |
|  */
 | |
| void edma_set_src(unsigned slot, dma_addr_t src_port,
 | |
| 				enum address_mode mode, enum fifo_width width)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(slot);
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	if (slot < edma_info[ctlr]->num_slots) {
 | |
| 		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
 | |
| 
 | |
| 		if (mode) {
 | |
| 			/* set SAM and program FWID */
 | |
| 			i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
 | |
| 		} else {
 | |
| 			/* clear SAM */
 | |
| 			i &= ~SAM;
 | |
| 		}
 | |
| 		edma_parm_write(ctlr, PARM_OPT, slot, i);
 | |
| 
 | |
| 		/* set the source port address
 | |
| 		   in source register of param structure */
 | |
| 		edma_parm_write(ctlr, PARM_SRC, slot, src_port);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_set_src);
 | |
| 
 | |
| /**
 | |
|  * edma_set_dest - set initial DMA destination address in parameter RAM slot
 | |
|  * @slot: parameter RAM slot being configured
 | |
|  * @dest_port: physical address of destination (memory, controller FIFO, etc)
 | |
|  * @addressMode: INCR, except in very rare cases
 | |
|  * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 | |
|  *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 | |
|  *
 | |
|  * Note that the destination address is modified during the DMA transfer
 | |
|  * according to edma_set_dest_index().
 | |
|  */
 | |
| void edma_set_dest(unsigned slot, dma_addr_t dest_port,
 | |
| 				 enum address_mode mode, enum fifo_width width)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(slot);
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	if (slot < edma_info[ctlr]->num_slots) {
 | |
| 		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
 | |
| 
 | |
| 		if (mode) {
 | |
| 			/* set DAM and program FWID */
 | |
| 			i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
 | |
| 		} else {
 | |
| 			/* clear DAM */
 | |
| 			i &= ~DAM;
 | |
| 		}
 | |
| 		edma_parm_write(ctlr, PARM_OPT, slot, i);
 | |
| 		/* set the destination port address
 | |
| 		   in dest register of param structure */
 | |
| 		edma_parm_write(ctlr, PARM_DST, slot, dest_port);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_set_dest);
 | |
| 
 | |
| /**
 | |
|  * edma_get_position - returns the current transfer points
 | |
|  * @slot: parameter RAM slot being examined
 | |
|  * @src: pointer to source port position
 | |
|  * @dst: pointer to destination port position
 | |
|  *
 | |
|  * Returns current source and destination addresses for a particular
 | |
|  * parameter RAM slot.  Its channel should not be active when this is called.
 | |
|  */
 | |
| void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
 | |
| {
 | |
| 	struct edmacc_param temp;
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(slot);
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
 | |
| 	if (src != NULL)
 | |
| 		*src = temp.src;
 | |
| 	if (dst != NULL)
 | |
| 		*dst = temp.dst;
 | |
| }
 | |
| EXPORT_SYMBOL(edma_get_position);
 | |
| 
 | |
| /**
 | |
|  * edma_set_src_index - configure DMA source address indexing
 | |
|  * @slot: parameter RAM slot being configured
 | |
|  * @src_bidx: byte offset between source arrays in a frame
 | |
|  * @src_cidx: byte offset between source frames in a block
 | |
|  *
 | |
|  * Offsets are specified to support either contiguous or discontiguous
 | |
|  * memory transfers, or repeated access to a hardware register, as needed.
 | |
|  * When accessing hardware registers, both offsets are normally zero.
 | |
|  */
 | |
| void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(slot);
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	if (slot < edma_info[ctlr]->num_slots) {
 | |
| 		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
 | |
| 				0xffff0000, src_bidx);
 | |
| 		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
 | |
| 				0xffff0000, src_cidx);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_set_src_index);
 | |
| 
 | |
| /**
 | |
|  * edma_set_dest_index - configure DMA destination address indexing
 | |
|  * @slot: parameter RAM slot being configured
 | |
|  * @dest_bidx: byte offset between destination arrays in a frame
 | |
|  * @dest_cidx: byte offset between destination frames in a block
 | |
|  *
 | |
|  * Offsets are specified to support either contiguous or discontiguous
 | |
|  * memory transfers, or repeated access to a hardware register, as needed.
 | |
|  * When accessing hardware registers, both offsets are normally zero.
 | |
|  */
 | |
| void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(slot);
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	if (slot < edma_info[ctlr]->num_slots) {
 | |
| 		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
 | |
| 				0x0000ffff, dest_bidx << 16);
 | |
| 		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
 | |
| 				0x0000ffff, dest_cidx << 16);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_set_dest_index);
 | |
| 
 | |
| /**
 | |
|  * edma_set_transfer_params - configure DMA transfer parameters
 | |
|  * @slot: parameter RAM slot being configured
 | |
|  * @acnt: how many bytes per array (at least one)
 | |
|  * @bcnt: how many arrays per frame (at least one)
 | |
|  * @ccnt: how many frames per block (at least one)
 | |
|  * @bcnt_rld: used only for A-Synchronized transfers; this specifies
 | |
|  *	the value to reload into bcnt when it decrements to zero
 | |
|  * @sync_mode: ASYNC or ABSYNC
 | |
|  *
 | |
|  * See the EDMA3 documentation to understand how to configure and link
 | |
|  * transfers using the fields in PaRAM slots.  If you are not doing it
 | |
|  * all at once with edma_write_slot(), you will use this routine
 | |
|  * plus two calls each for source and destination, setting the initial
 | |
|  * address and saying how to index that address.
 | |
|  *
 | |
|  * An example of an A-Synchronized transfer is a serial link using a
 | |
|  * single word shift register.  In that case, @acnt would be equal to
 | |
|  * that word size; the serial controller issues a DMA synchronization
 | |
|  * event to transfer each word, and memory access by the DMA transfer
 | |
|  * controller will be word-at-a-time.
 | |
|  *
 | |
|  * An example of an AB-Synchronized transfer is a device using a FIFO.
 | |
|  * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
 | |
|  * The controller with the FIFO issues DMA synchronization events when
 | |
|  * the FIFO threshold is reached, and the DMA transfer controller will
 | |
|  * transfer one frame to (or from) the FIFO.  It will probably use
 | |
|  * efficient burst modes to access memory.
 | |
|  */
 | |
| void edma_set_transfer_params(unsigned slot,
 | |
| 		u16 acnt, u16 bcnt, u16 ccnt,
 | |
| 		u16 bcnt_rld, enum sync_dimension sync_mode)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(slot);
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	if (slot < edma_info[ctlr]->num_slots) {
 | |
| 		edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
 | |
| 				0x0000ffff, bcnt_rld << 16);
 | |
| 		if (sync_mode == ASYNC)
 | |
| 			edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
 | |
| 		else
 | |
| 			edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
 | |
| 		/* Set the acount, bcount, ccount registers */
 | |
| 		edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
 | |
| 		edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_set_transfer_params);
 | |
| 
 | |
| /**
 | |
|  * edma_link - link one parameter RAM slot to another
 | |
|  * @from: parameter RAM slot originating the link
 | |
|  * @to: parameter RAM slot which is the link target
 | |
|  *
 | |
|  * The originating slot should not be part of any active DMA transfer.
 | |
|  */
 | |
| void edma_link(unsigned from, unsigned to)
 | |
| {
 | |
| 	unsigned ctlr_from, ctlr_to;
 | |
| 
 | |
| 	ctlr_from = EDMA_CTLR(from);
 | |
| 	from = EDMA_CHAN_SLOT(from);
 | |
| 	ctlr_to = EDMA_CTLR(to);
 | |
| 	to = EDMA_CHAN_SLOT(to);
 | |
| 
 | |
| 	if (from >= edma_info[ctlr_from]->num_slots)
 | |
| 		return;
 | |
| 	if (to >= edma_info[ctlr_to]->num_slots)
 | |
| 		return;
 | |
| 	edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
 | |
| 				PARM_OFFSET(to));
 | |
| }
 | |
| EXPORT_SYMBOL(edma_link);
 | |
| 
 | |
| /**
 | |
|  * edma_unlink - cut link from one parameter RAM slot
 | |
|  * @from: parameter RAM slot originating the link
 | |
|  *
 | |
|  * The originating slot should not be part of any active DMA transfer.
 | |
|  * Its link is set to 0xffff.
 | |
|  */
 | |
| void edma_unlink(unsigned from)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(from);
 | |
| 	from = EDMA_CHAN_SLOT(from);
 | |
| 
 | |
| 	if (from >= edma_info[ctlr]->num_slots)
 | |
| 		return;
 | |
| 	edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_unlink);
 | |
| 
 | |
| /*-----------------------------------------------------------------------*/
 | |
| 
 | |
| /* Parameter RAM operations (ii) -- read/write whole parameter sets */
 | |
| 
 | |
| /**
 | |
|  * edma_write_slot - write parameter RAM data for slot
 | |
|  * @slot: number of parameter RAM slot being modified
 | |
|  * @param: data to be written into parameter RAM slot
 | |
|  *
 | |
|  * Use this to assign all parameters of a transfer at once.  This
 | |
|  * allows more efficient setup of transfers than issuing multiple
 | |
|  * calls to set up those parameters in small pieces, and provides
 | |
|  * complete control over all transfer options.
 | |
|  */
 | |
| void edma_write_slot(unsigned slot, const struct edmacc_param *param)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(slot);
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	if (slot >= edma_info[ctlr]->num_slots)
 | |
| 		return;
 | |
| 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
 | |
| 			PARM_SIZE);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_write_slot);
 | |
| 
 | |
| /**
 | |
|  * edma_read_slot - read parameter RAM data from slot
 | |
|  * @slot: number of parameter RAM slot being copied
 | |
|  * @param: where to store copy of parameter RAM data
 | |
|  *
 | |
|  * Use this to read data from a parameter RAM slot, perhaps to
 | |
|  * save them as a template for later reuse.
 | |
|  */
 | |
| void edma_read_slot(unsigned slot, struct edmacc_param *param)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(slot);
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 
 | |
| 	if (slot >= edma_info[ctlr]->num_slots)
 | |
| 		return;
 | |
| 	memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 | |
| 			PARM_SIZE);
 | |
| }
 | |
| EXPORT_SYMBOL(edma_read_slot);
 | |
| 
 | |
| /*-----------------------------------------------------------------------*/
 | |
| 
 | |
| /* Various EDMA channel control operations */
 | |
| 
 | |
| /**
 | |
|  * edma_pause - pause dma on a channel
 | |
|  * @channel: on which edma_start() has been called
 | |
|  *
 | |
|  * This temporarily disables EDMA hardware events on the specified channel,
 | |
|  * preventing them from triggering new transfers on its behalf
 | |
|  */
 | |
| void edma_pause(unsigned channel)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(channel);
 | |
| 	channel = EDMA_CHAN_SLOT(channel);
 | |
| 
 | |
| 	if (channel < edma_info[ctlr]->num_channels) {
 | |
| 		unsigned int mask = (1 << (channel & 0x1f));
 | |
| 
 | |
| 		edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_pause);
 | |
| 
 | |
| /**
 | |
|  * edma_resume - resumes dma on a paused channel
 | |
|  * @channel: on which edma_pause() has been called
 | |
|  *
 | |
|  * This re-enables EDMA hardware events on the specified channel.
 | |
|  */
 | |
| void edma_resume(unsigned channel)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(channel);
 | |
| 	channel = EDMA_CHAN_SLOT(channel);
 | |
| 
 | |
| 	if (channel < edma_info[ctlr]->num_channels) {
 | |
| 		unsigned int mask = (1 << (channel & 0x1f));
 | |
| 
 | |
| 		edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_resume);
 | |
| 
 | |
| /**
 | |
|  * edma_start - start dma on a channel
 | |
|  * @channel: channel being activated
 | |
|  *
 | |
|  * Channels with event associations will be triggered by their hardware
 | |
|  * events, and channels without such associations will be triggered by
 | |
|  * software.  (At this writing there is no interface for using software
 | |
|  * triggers except with channels that don't support hardware triggers.)
 | |
|  *
 | |
|  * Returns zero on success, else negative errno.
 | |
|  */
 | |
| int edma_start(unsigned channel)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(channel);
 | |
| 	channel = EDMA_CHAN_SLOT(channel);
 | |
| 
 | |
| 	if (channel < edma_info[ctlr]->num_channels) {
 | |
| 		int j = channel >> 5;
 | |
| 		unsigned int mask = (1 << (channel & 0x1f));
 | |
| 
 | |
| 		/* EDMA channels without event association */
 | |
| 		if (test_bit(channel, edma_info[ctlr]->edma_noevent)) {
 | |
| 			pr_debug("EDMA: ESR%d %08x\n", j,
 | |
| 				edma_shadow0_read_array(ctlr, SH_ESR, j));
 | |
| 			edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* EDMA channel with event association */
 | |
| 		pr_debug("EDMA: ER%d %08x\n", j,
 | |
| 			edma_shadow0_read_array(ctlr, SH_ER, j));
 | |
| 		/* Clear any pending error */
 | |
| 		edma_write_array(ctlr, EDMA_EMCR, j, mask);
 | |
| 		/* Clear any SER */
 | |
| 		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
 | |
| 		edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
 | |
| 		pr_debug("EDMA: EER%d %08x\n", j,
 | |
| 			edma_shadow0_read_array(ctlr, SH_EER, j));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| EXPORT_SYMBOL(edma_start);
 | |
| 
 | |
| /**
 | |
|  * edma_stop - stops dma on the channel passed
 | |
|  * @channel: channel being deactivated
 | |
|  *
 | |
|  * When @lch is a channel, any active transfer is paused and
 | |
|  * all pending hardware events are cleared.  The current transfer
 | |
|  * may not be resumed, and the channel's Parameter RAM should be
 | |
|  * reinitialized before being reused.
 | |
|  */
 | |
| void edma_stop(unsigned channel)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(channel);
 | |
| 	channel = EDMA_CHAN_SLOT(channel);
 | |
| 
 | |
| 	if (channel < edma_info[ctlr]->num_channels) {
 | |
| 		int j = channel >> 5;
 | |
| 		unsigned int mask = (1 << (channel & 0x1f));
 | |
| 
 | |
| 		edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
 | |
| 		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
 | |
| 		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
 | |
| 		edma_write_array(ctlr, EDMA_EMCR, j, mask);
 | |
| 
 | |
| 		pr_debug("EDMA: EER%d %08x\n", j,
 | |
| 				edma_shadow0_read_array(ctlr, SH_EER, j));
 | |
| 
 | |
| 		/* REVISIT:  consider guarding against inappropriate event
 | |
| 		 * chaining by overwriting with dummy_paramset.
 | |
| 		 */
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_stop);
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  * It cleans ParamEntry qand bring back EDMA to initial state if media has
 | |
|  * been removed before EDMA has finished.It is usedful for removable media.
 | |
|  * Arguments:
 | |
|  *      ch_no     - channel no
 | |
|  *
 | |
|  * Return: zero on success, or corresponding error no on failure
 | |
|  *
 | |
|  * FIXME this should not be needed ... edma_stop() should suffice.
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| 
 | |
| void edma_clean_channel(unsigned channel)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(channel);
 | |
| 	channel = EDMA_CHAN_SLOT(channel);
 | |
| 
 | |
| 	if (channel < edma_info[ctlr]->num_channels) {
 | |
| 		int j = (channel >> 5);
 | |
| 		unsigned int mask = 1 << (channel & 0x1f);
 | |
| 
 | |
| 		pr_debug("EDMA: EMR%d %08x\n", j,
 | |
| 				edma_read_array(ctlr, EDMA_EMR, j));
 | |
| 		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
 | |
| 		/* Clear the corresponding EMR bits */
 | |
| 		edma_write_array(ctlr, EDMA_EMCR, j, mask);
 | |
| 		/* Clear any SER */
 | |
| 		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
 | |
| 		edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(edma_clean_channel);
 | |
| 
 | |
| /*
 | |
|  * edma_clear_event - clear an outstanding event on the DMA channel
 | |
|  * Arguments:
 | |
|  *	channel - channel number
 | |
|  */
 | |
| void edma_clear_event(unsigned channel)
 | |
| {
 | |
| 	unsigned ctlr;
 | |
| 
 | |
| 	ctlr = EDMA_CTLR(channel);
 | |
| 	channel = EDMA_CHAN_SLOT(channel);
 | |
| 
 | |
| 	if (channel >= edma_info[ctlr]->num_channels)
 | |
| 		return;
 | |
| 	if (channel < 32)
 | |
| 		edma_write(ctlr, EDMA_ECR, 1 << channel);
 | |
| 	else
 | |
| 		edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
 | |
| }
 | |
| EXPORT_SYMBOL(edma_clear_event);
 | |
| 
 | |
| /*-----------------------------------------------------------------------*/
 | |
| 
 | |
| static int __init edma_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct edma_soc_info	*info = pdev->dev.platform_data;
 | |
| 	const s8		(*queue_priority_mapping)[2];
 | |
| 	const s8		(*queue_tc_mapping)[2];
 | |
| 	int			i, j, found = 0;
 | |
| 	int			status = -1;
 | |
| 	const s8		*noevent;
 | |
| 	int			irq[EDMA_MAX_CC] = {0, 0};
 | |
| 	int			err_irq[EDMA_MAX_CC] = {0, 0};
 | |
| 	struct resource		*r[EDMA_MAX_CC] = {NULL};
 | |
| 	resource_size_t		len[EDMA_MAX_CC];
 | |
| 	char			res_name[10];
 | |
| 	char			irq_name[10];
 | |
| 
 | |
| 	if (!info)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	for (j = 0; j < EDMA_MAX_CC; j++) {
 | |
| 		sprintf(res_name, "edma_cc%d", j);
 | |
| 		r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
 | |
| 						res_name);
 | |
| 		if (!r[j]) {
 | |
| 			if (found)
 | |
| 				break;
 | |
| 			else
 | |
| 				return -ENODEV;
 | |
| 		} else
 | |
| 			found = 1;
 | |
| 
 | |
| 		len[j] = resource_size(r[j]);
 | |
| 
 | |
| 		r[j] = request_mem_region(r[j]->start, len[j],
 | |
| 			dev_name(&pdev->dev));
 | |
| 		if (!r[j]) {
 | |
| 			status = -EBUSY;
 | |
| 			goto fail1;
 | |
| 		}
 | |
| 
 | |
| 		edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
 | |
| 		if (!edmacc_regs_base[j]) {
 | |
| 			status = -EBUSY;
 | |
| 			goto fail1;
 | |
| 		}
 | |
| 
 | |
| 		edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
 | |
| 		if (!edma_info[j]) {
 | |
| 			status = -ENOMEM;
 | |
| 			goto fail1;
 | |
| 		}
 | |
| 		memset(edma_info[j], 0, sizeof(struct edma));
 | |
| 
 | |
| 		edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
 | |
| 							EDMA_MAX_DMACH);
 | |
| 		edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
 | |
| 							EDMA_MAX_PARAMENTRY);
 | |
| 		edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
 | |
| 							EDMA_MAX_CC);
 | |
| 
 | |
| 		edma_info[j]->default_queue = info[j].default_queue;
 | |
| 		if (!edma_info[j]->default_queue)
 | |
| 			edma_info[j]->default_queue = EVENTQ_1;
 | |
| 
 | |
| 		dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
 | |
| 			edmacc_regs_base[j]);
 | |
| 
 | |
| 		for (i = 0; i < edma_info[j]->num_slots; i++)
 | |
| 			memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
 | |
| 					&dummy_paramset, PARM_SIZE);
 | |
| 
 | |
| 		noevent = info[j].noevent;
 | |
| 		if (noevent) {
 | |
| 			while (*noevent != -1)
 | |
| 				set_bit(*noevent++, edma_info[j]->edma_noevent);
 | |
| 		}
 | |
| 
 | |
| 		sprintf(irq_name, "edma%d", j);
 | |
| 		irq[j] = platform_get_irq_byname(pdev, irq_name);
 | |
| 		edma_info[j]->irq_res_start = irq[j];
 | |
| 		status = request_irq(irq[j], dma_irq_handler, 0, "edma",
 | |
| 					&pdev->dev);
 | |
| 		if (status < 0) {
 | |
| 			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
 | |
| 				irq[j], status);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 
 | |
| 		sprintf(irq_name, "edma%d_err", j);
 | |
| 		err_irq[j] = platform_get_irq_byname(pdev, irq_name);
 | |
| 		edma_info[j]->irq_res_end = err_irq[j];
 | |
| 		status = request_irq(err_irq[j], dma_ccerr_handler, 0,
 | |
| 					"edma_error", &pdev->dev);
 | |
| 		if (status < 0) {
 | |
| 			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
 | |
| 				err_irq[j], status);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 
 | |
| 		/* Everything lives on transfer controller 1 until otherwise
 | |
| 		 * specified. This way, long transfers on the low priority queue
 | |
| 		 * started by the codec engine will not cause audio defects.
 | |
| 		 */
 | |
| 		for (i = 0; i < edma_info[j]->num_channels; i++)
 | |
| 			map_dmach_queue(j, i, EVENTQ_1);
 | |
| 
 | |
| 		queue_tc_mapping = info[j].queue_tc_mapping;
 | |
| 		queue_priority_mapping = info[j].queue_priority_mapping;
 | |
| 
 | |
| 		/* Event queue to TC mapping */
 | |
| 		for (i = 0; queue_tc_mapping[i][0] != -1; i++)
 | |
| 			map_queue_tc(j, queue_tc_mapping[i][0],
 | |
| 					queue_tc_mapping[i][1]);
 | |
| 
 | |
| 		/* Event queue priority mapping */
 | |
| 		for (i = 0; queue_priority_mapping[i][0] != -1; i++)
 | |
| 			assign_priority_to_queue(j,
 | |
| 						queue_priority_mapping[i][0],
 | |
| 						queue_priority_mapping[i][1]);
 | |
| 
 | |
| 		/* Map the channel to param entry if channel mapping logic
 | |
| 		 * exist
 | |
| 		 */
 | |
| 		if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
 | |
| 			map_dmach_param(j);
 | |
| 
 | |
| 		for (i = 0; i < info[j].n_region; i++) {
 | |
| 			edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
 | |
| 			edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
 | |
| 			edma_write_array(j, EDMA_QRAE, i, 0x0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tc_errs_handled) {
 | |
| 		status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
 | |
| 					"edma_tc0", &pdev->dev);
 | |
| 		if (status < 0) {
 | |
| 			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
 | |
| 				IRQ_TCERRINT0, status);
 | |
| 			return status;
 | |
| 		}
 | |
| 		status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
 | |
| 					"edma_tc1", &pdev->dev);
 | |
| 		if (status < 0) {
 | |
| 			dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
 | |
| 				IRQ_TCERRINT, status);
 | |
| 			return status;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	for (i = 0; i < EDMA_MAX_CC; i++) {
 | |
| 		if (err_irq[i])
 | |
| 			free_irq(err_irq[i], &pdev->dev);
 | |
| 		if (irq[i])
 | |
| 			free_irq(irq[i], &pdev->dev);
 | |
| 	}
 | |
| fail1:
 | |
| 	for (i = 0; i < EDMA_MAX_CC; i++) {
 | |
| 		if (r[i])
 | |
| 			release_mem_region(r[i]->start, len[i]);
 | |
| 		if (edmacc_regs_base[i])
 | |
| 			iounmap(edmacc_regs_base[i]);
 | |
| 		kfree(edma_info[i]);
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct platform_driver edma_driver = {
 | |
| 	.driver.name	= "edma",
 | |
| };
 | |
| 
 | |
| static int __init edma_init(void)
 | |
| {
 | |
| 	return platform_driver_probe(&edma_driver, edma_probe);
 | |
| }
 | |
| arch_initcall(edma_init);
 | |
| 
 |