mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 18:53:24 +00:00 
			
		
		
		
	 871039f02f
			
		
	
	
		871039f02f
		
	
	
	
	
		
			
			Conflicts: drivers/net/stmmac/stmmac_main.c drivers/net/wireless/wl12xx/wl1271_cmd.c drivers/net/wireless/wl12xx/wl1271_main.c drivers/net/wireless/wl12xx/wl1271_spi.c net/core/ethtool.c net/mac80211/scan.c
		
			
				
	
	
		
			704 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			704 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2007 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the
 | |
|  * OpenIB.org BSD license below:
 | |
|  *
 | |
|  *     Redistribution and use in source and binary forms, with or
 | |
|  *     without modification, are permitted provided that the following
 | |
|  *     conditions are met:
 | |
|  *
 | |
|  *      - Redistributions of source code must retain the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer.
 | |
|  *
 | |
|  *      - Redistributions in binary form must reproduce the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer in the documentation and/or other materials
 | |
|  *        provided with the distribution.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
 | |
| 
 | |
| #include "rdma.h"
 | |
| 
 | |
| /*
 | |
|  * XXX
 | |
|  *  - build with sparse
 | |
|  *  - should we limit the size of a mr region?  let transport return failure?
 | |
|  *  - should we detect duplicate keys on a socket?  hmm.
 | |
|  *  - an rdma is an mlock, apply rlimit?
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * get the number of pages by looking at the page indices that the start and
 | |
|  * end addresses fall in.
 | |
|  *
 | |
|  * Returns 0 if the vec is invalid.  It is invalid if the number of bytes
 | |
|  * causes the address to wrap or overflows an unsigned int.  This comes
 | |
|  * from being stored in the 'length' member of 'struct scatterlist'.
 | |
|  */
 | |
| static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
 | |
| {
 | |
| 	if ((vec->addr + vec->bytes <= vec->addr) ||
 | |
| 	    (vec->bytes > (u64)UINT_MAX))
 | |
| 		return 0;
 | |
| 
 | |
| 	return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
 | |
| 		(vec->addr >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
 | |
| 				       struct rds_mr *insert)
 | |
| {
 | |
| 	struct rb_node **p = &root->rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct rds_mr *mr;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		mr = rb_entry(parent, struct rds_mr, r_rb_node);
 | |
| 
 | |
| 		if (key < mr->r_key)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (key > mr->r_key)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			return mr;
 | |
| 	}
 | |
| 
 | |
| 	if (insert) {
 | |
| 		rb_link_node(&insert->r_rb_node, parent, p);
 | |
| 		rb_insert_color(&insert->r_rb_node, root);
 | |
| 		atomic_inc(&insert->r_refcount);
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Destroy the transport-specific part of a MR.
 | |
|  */
 | |
| static void rds_destroy_mr(struct rds_mr *mr)
 | |
| {
 | |
| 	struct rds_sock *rs = mr->r_sock;
 | |
| 	void *trans_private = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
 | |
| 			mr->r_key, atomic_read(&mr->r_refcount));
 | |
| 
 | |
| 	if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
 | |
| 	if (!RB_EMPTY_NODE(&mr->r_rb_node))
 | |
| 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
 | |
| 	trans_private = mr->r_trans_private;
 | |
| 	mr->r_trans_private = NULL;
 | |
| 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
 | |
| 
 | |
| 	if (trans_private)
 | |
| 		mr->r_trans->free_mr(trans_private, mr->r_invalidate);
 | |
| }
 | |
| 
 | |
| void __rds_put_mr_final(struct rds_mr *mr)
 | |
| {
 | |
| 	rds_destroy_mr(mr);
 | |
| 	kfree(mr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * By the time this is called we can't have any more ioctls called on
 | |
|  * the socket so we don't need to worry about racing with others.
 | |
|  */
 | |
| void rds_rdma_drop_keys(struct rds_sock *rs)
 | |
| {
 | |
| 	struct rds_mr *mr;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	/* Release any MRs associated with this socket */
 | |
| 	while ((node = rb_first(&rs->rs_rdma_keys))) {
 | |
| 		mr = container_of(node, struct rds_mr, r_rb_node);
 | |
| 		if (mr->r_trans == rs->rs_transport)
 | |
| 			mr->r_invalidate = 0;
 | |
| 		rds_mr_put(mr);
 | |
| 	}
 | |
| 
 | |
| 	if (rs->rs_transport && rs->rs_transport->flush_mrs)
 | |
| 		rs->rs_transport->flush_mrs();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function to pin user pages.
 | |
|  */
 | |
| static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
 | |
| 			struct page **pages, int write)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
 | |
| 
 | |
| 	if (ret >= 0 && ret < nr_pages) {
 | |
| 		while (ret--)
 | |
| 			put_page(pages[ret]);
 | |
| 		ret = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
 | |
| 				u64 *cookie_ret, struct rds_mr **mr_ret)
 | |
| {
 | |
| 	struct rds_mr *mr = NULL, *found;
 | |
| 	unsigned int nr_pages;
 | |
| 	struct page **pages = NULL;
 | |
| 	struct scatterlist *sg;
 | |
| 	void *trans_private;
 | |
| 	unsigned long flags;
 | |
| 	rds_rdma_cookie_t cookie;
 | |
| 	unsigned int nents;
 | |
| 	long i;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (rs->rs_bound_addr == 0) {
 | |
| 		ret = -ENOTCONN; /* XXX not a great errno */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (rs->rs_transport->get_mr == NULL) {
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	nr_pages = rds_pages_in_vec(&args->vec);
 | |
| 	if (nr_pages == 0) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
 | |
| 		args->vec.addr, args->vec.bytes, nr_pages);
 | |
| 
 | |
| 	/* XXX clamp nr_pages to limit the size of this alloc? */
 | |
| 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
 | |
| 	if (pages == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
 | |
| 	if (mr == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&mr->r_refcount, 1);
 | |
| 	RB_CLEAR_NODE(&mr->r_rb_node);
 | |
| 	mr->r_trans = rs->rs_transport;
 | |
| 	mr->r_sock = rs;
 | |
| 
 | |
| 	if (args->flags & RDS_RDMA_USE_ONCE)
 | |
| 		mr->r_use_once = 1;
 | |
| 	if (args->flags & RDS_RDMA_INVALIDATE)
 | |
| 		mr->r_invalidate = 1;
 | |
| 	if (args->flags & RDS_RDMA_READWRITE)
 | |
| 		mr->r_write = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pin the pages that make up the user buffer and transfer the page
 | |
| 	 * pointers to the mr's sg array.  We check to see if we've mapped
 | |
| 	 * the whole region after transferring the partial page references
 | |
| 	 * to the sg array so that we can have one page ref cleanup path.
 | |
| 	 *
 | |
| 	 * For now we have no flag that tells us whether the mapping is
 | |
| 	 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
 | |
| 	 * the zero page.
 | |
| 	 */
 | |
| 	ret = rds_pin_pages(args->vec.addr & PAGE_MASK, nr_pages, pages, 1);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	nents = ret;
 | |
| 	sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
 | |
| 	if (sg == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	WARN_ON(!nents);
 | |
| 	sg_init_table(sg, nents);
 | |
| 
 | |
| 	/* Stick all pages into the scatterlist */
 | |
| 	for (i = 0 ; i < nents; i++)
 | |
| 		sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
 | |
| 
 | |
| 	rdsdebug("RDS: trans_private nents is %u\n", nents);
 | |
| 
 | |
| 	/* Obtain a transport specific MR. If this succeeds, the
 | |
| 	 * s/g list is now owned by the MR.
 | |
| 	 * Note that dma_map() implies that pending writes are
 | |
| 	 * flushed to RAM, so no dma_sync is needed here. */
 | |
| 	trans_private = rs->rs_transport->get_mr(sg, nents, rs,
 | |
| 						 &mr->r_key);
 | |
| 
 | |
| 	if (IS_ERR(trans_private)) {
 | |
| 		for (i = 0 ; i < nents; i++)
 | |
| 			put_page(sg_page(&sg[i]));
 | |
| 		kfree(sg);
 | |
| 		ret = PTR_ERR(trans_private);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	mr->r_trans_private = trans_private;
 | |
| 
 | |
| 	rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
 | |
| 	       mr->r_key, (void *)(unsigned long) args->cookie_addr);
 | |
| 
 | |
| 	/* The user may pass us an unaligned address, but we can only
 | |
| 	 * map page aligned regions. So we keep the offset, and build
 | |
| 	 * a 64bit cookie containing <R_Key, offset> and pass that
 | |
| 	 * around. */
 | |
| 	cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
 | |
| 	if (cookie_ret)
 | |
| 		*cookie_ret = cookie;
 | |
| 
 | |
| 	if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Inserting the new MR into the rbtree bumps its
 | |
| 	 * reference count. */
 | |
| 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
 | |
| 	found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
 | |
| 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
 | |
| 
 | |
| 	BUG_ON(found && found != mr);
 | |
| 
 | |
| 	rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
 | |
| 	if (mr_ret) {
 | |
| 		atomic_inc(&mr->r_refcount);
 | |
| 		*mr_ret = mr;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	kfree(pages);
 | |
| 	if (mr)
 | |
| 		rds_mr_put(mr);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
 | |
| {
 | |
| 	struct rds_get_mr_args args;
 | |
| 
 | |
| 	if (optlen != sizeof(struct rds_get_mr_args))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
 | |
| 			   sizeof(struct rds_get_mr_args)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return __rds_rdma_map(rs, &args, NULL, NULL);
 | |
| }
 | |
| 
 | |
| int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
 | |
| {
 | |
| 	struct rds_get_mr_for_dest_args args;
 | |
| 	struct rds_get_mr_args new_args;
 | |
| 
 | |
| 	if (optlen != sizeof(struct rds_get_mr_for_dest_args))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
 | |
| 			   sizeof(struct rds_get_mr_for_dest_args)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initially, just behave like get_mr().
 | |
| 	 * TODO: Implement get_mr as wrapper around this
 | |
| 	 *	 and deprecate it.
 | |
| 	 */
 | |
| 	new_args.vec = args.vec;
 | |
| 	new_args.cookie_addr = args.cookie_addr;
 | |
| 	new_args.flags = args.flags;
 | |
| 
 | |
| 	return __rds_rdma_map(rs, &new_args, NULL, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the MR indicated by the given R_Key
 | |
|  */
 | |
| int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
 | |
| {
 | |
| 	struct rds_free_mr_args args;
 | |
| 	struct rds_mr *mr;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (optlen != sizeof(struct rds_free_mr_args))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
 | |
| 			   sizeof(struct rds_free_mr_args)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Special case - a null cookie means flush all unused MRs */
 | |
| 	if (args.cookie == 0) {
 | |
| 		if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
 | |
| 			return -EINVAL;
 | |
| 		rs->rs_transport->flush_mrs();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Look up the MR given its R_key and remove it from the rbtree
 | |
| 	 * so nobody else finds it.
 | |
| 	 * This should also prevent races with rds_rdma_unuse.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
 | |
| 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
 | |
| 	if (mr) {
 | |
| 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
 | |
| 		RB_CLEAR_NODE(&mr->r_rb_node);
 | |
| 		if (args.flags & RDS_RDMA_INVALIDATE)
 | |
| 			mr->r_invalidate = 1;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
 | |
| 
 | |
| 	if (!mr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
 | |
| 	 * we return.  If we let rds_mr_put() do it it might not happen until
 | |
| 	 * someone else drops their ref.
 | |
| 	 */
 | |
| 	rds_destroy_mr(mr);
 | |
| 	rds_mr_put(mr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when we receive an extension header that
 | |
|  * tells us this MR was used. It allows us to implement
 | |
|  * use_once semantics
 | |
|  */
 | |
| void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
 | |
| {
 | |
| 	struct rds_mr *mr;
 | |
| 	unsigned long flags;
 | |
| 	int zot_me = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
 | |
| 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
 | |
| 	if (mr && (mr->r_use_once || force)) {
 | |
| 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
 | |
| 		RB_CLEAR_NODE(&mr->r_rb_node);
 | |
| 		zot_me = 1;
 | |
| 	} else if (mr)
 | |
| 		atomic_inc(&mr->r_refcount);
 | |
| 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
 | |
| 
 | |
| 	/* May have to issue a dma_sync on this memory region.
 | |
| 	 * Note we could avoid this if the operation was a RDMA READ,
 | |
| 	 * but at this point we can't tell. */
 | |
| 	if (mr != NULL) {
 | |
| 		if (mr->r_trans->sync_mr)
 | |
| 			mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
 | |
| 
 | |
| 		/* If the MR was marked as invalidate, this will
 | |
| 		 * trigger an async flush. */
 | |
| 		if (zot_me)
 | |
| 			rds_destroy_mr(mr);
 | |
| 		rds_mr_put(mr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void rds_rdma_free_op(struct rds_rdma_op *ro)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < ro->r_nents; i++) {
 | |
| 		struct page *page = sg_page(&ro->r_sg[i]);
 | |
| 
 | |
| 		/* Mark page dirty if it was possibly modified, which
 | |
| 		 * is the case for a RDMA_READ which copies from remote
 | |
| 		 * to local memory */
 | |
| 		if (!ro->r_write) {
 | |
| 			BUG_ON(in_interrupt());
 | |
| 			set_page_dirty(page);
 | |
| 		}
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 
 | |
| 	kfree(ro->r_notifier);
 | |
| 	kfree(ro);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * args is a pointer to an in-kernel copy in the sendmsg cmsg.
 | |
|  */
 | |
| static struct rds_rdma_op *rds_rdma_prepare(struct rds_sock *rs,
 | |
| 					    struct rds_rdma_args *args)
 | |
| {
 | |
| 	struct rds_iovec vec;
 | |
| 	struct rds_rdma_op *op = NULL;
 | |
| 	unsigned int nr_pages;
 | |
| 	unsigned int max_pages;
 | |
| 	unsigned int nr_bytes;
 | |
| 	struct page **pages = NULL;
 | |
| 	struct rds_iovec __user *local_vec;
 | |
| 	struct scatterlist *sg;
 | |
| 	unsigned int nr;
 | |
| 	unsigned int i, j;
 | |
| 	int ret;
 | |
| 
 | |
| 
 | |
| 	if (rs->rs_bound_addr == 0) {
 | |
| 		ret = -ENOTCONN; /* XXX not a great errno */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (args->nr_local > (u64)UINT_MAX) {
 | |
| 		ret = -EMSGSIZE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	nr_pages = 0;
 | |
| 	max_pages = 0;
 | |
| 
 | |
| 	local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
 | |
| 
 | |
| 	/* figure out the number of pages in the vector */
 | |
| 	for (i = 0; i < args->nr_local; i++) {
 | |
| 		if (copy_from_user(&vec, &local_vec[i],
 | |
| 				   sizeof(struct rds_iovec))) {
 | |
| 			ret = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		nr = rds_pages_in_vec(&vec);
 | |
| 		if (nr == 0) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		max_pages = max(nr, max_pages);
 | |
| 		nr_pages += nr;
 | |
| 	}
 | |
| 
 | |
| 	pages = kcalloc(max_pages, sizeof(struct page *), GFP_KERNEL);
 | |
| 	if (pages == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	op = kzalloc(offsetof(struct rds_rdma_op, r_sg[nr_pages]), GFP_KERNEL);
 | |
| 	if (op == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	op->r_write = !!(args->flags & RDS_RDMA_READWRITE);
 | |
| 	op->r_fence = !!(args->flags & RDS_RDMA_FENCE);
 | |
| 	op->r_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
 | |
| 	op->r_recverr = rs->rs_recverr;
 | |
| 	WARN_ON(!nr_pages);
 | |
| 	sg_init_table(op->r_sg, nr_pages);
 | |
| 
 | |
| 	if (op->r_notify || op->r_recverr) {
 | |
| 		/* We allocate an uninitialized notifier here, because
 | |
| 		 * we don't want to do that in the completion handler. We
 | |
| 		 * would have to use GFP_ATOMIC there, and don't want to deal
 | |
| 		 * with failed allocations.
 | |
| 		 */
 | |
| 		op->r_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
 | |
| 		if (!op->r_notifier) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		op->r_notifier->n_user_token = args->user_token;
 | |
| 		op->r_notifier->n_status = RDS_RDMA_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	/* The cookie contains the R_Key of the remote memory region, and
 | |
| 	 * optionally an offset into it. This is how we implement RDMA into
 | |
| 	 * unaligned memory.
 | |
| 	 * When setting up the RDMA, we need to add that offset to the
 | |
| 	 * destination address (which is really an offset into the MR)
 | |
| 	 * FIXME: We may want to move this into ib_rdma.c
 | |
| 	 */
 | |
| 	op->r_key = rds_rdma_cookie_key(args->cookie);
 | |
| 	op->r_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
 | |
| 
 | |
| 	nr_bytes = 0;
 | |
| 
 | |
| 	rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
 | |
| 	       (unsigned long long)args->nr_local,
 | |
| 	       (unsigned long long)args->remote_vec.addr,
 | |
| 	       op->r_key);
 | |
| 
 | |
| 	for (i = 0; i < args->nr_local; i++) {
 | |
| 		if (copy_from_user(&vec, &local_vec[i],
 | |
| 				   sizeof(struct rds_iovec))) {
 | |
| 			ret = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		nr = rds_pages_in_vec(&vec);
 | |
| 		if (nr == 0) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		rs->rs_user_addr = vec.addr;
 | |
| 		rs->rs_user_bytes = vec.bytes;
 | |
| 
 | |
| 		/* did the user change the vec under us? */
 | |
| 		if (nr > max_pages || op->r_nents + nr > nr_pages) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/* If it's a WRITE operation, we want to pin the pages for reading.
 | |
| 		 * If it's a READ operation, we need to pin the pages for writing.
 | |
| 		 */
 | |
| 		ret = rds_pin_pages(vec.addr & PAGE_MASK, nr, pages, !op->r_write);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		rdsdebug("RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx\n",
 | |
| 		       nr_bytes, nr, vec.bytes, vec.addr);
 | |
| 
 | |
| 		nr_bytes += vec.bytes;
 | |
| 
 | |
| 		for (j = 0; j < nr; j++) {
 | |
| 			unsigned int offset = vec.addr & ~PAGE_MASK;
 | |
| 
 | |
| 			sg = &op->r_sg[op->r_nents + j];
 | |
| 			sg_set_page(sg, pages[j],
 | |
| 					min_t(unsigned int, vec.bytes, PAGE_SIZE - offset),
 | |
| 					offset);
 | |
| 
 | |
| 			rdsdebug("RDS: sg->offset %x sg->len %x vec.addr %llx vec.bytes %llu\n",
 | |
| 			       sg->offset, sg->length, vec.addr, vec.bytes);
 | |
| 
 | |
| 			vec.addr += sg->length;
 | |
| 			vec.bytes -= sg->length;
 | |
| 		}
 | |
| 
 | |
| 		op->r_nents += nr;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (nr_bytes > args->remote_vec.bytes) {
 | |
| 		rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
 | |
| 				nr_bytes,
 | |
| 				(unsigned int) args->remote_vec.bytes);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	op->r_bytes = nr_bytes;
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	kfree(pages);
 | |
| 	if (ret) {
 | |
| 		if (op)
 | |
| 			rds_rdma_free_op(op);
 | |
| 		op = ERR_PTR(ret);
 | |
| 	}
 | |
| 	return op;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The application asks for a RDMA transfer.
 | |
|  * Extract all arguments and set up the rdma_op
 | |
|  */
 | |
| int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
 | |
| 			  struct cmsghdr *cmsg)
 | |
| {
 | |
| 	struct rds_rdma_op *op;
 | |
| 
 | |
| 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) ||
 | |
| 	    rm->m_rdma_op != NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	op = rds_rdma_prepare(rs, CMSG_DATA(cmsg));
 | |
| 	if (IS_ERR(op))
 | |
| 		return PTR_ERR(op);
 | |
| 	rds_stats_inc(s_send_rdma);
 | |
| 	rm->m_rdma_op = op;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The application wants us to pass an RDMA destination (aka MR)
 | |
|  * to the remote
 | |
|  */
 | |
| int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
 | |
| 			  struct cmsghdr *cmsg)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rds_mr *mr;
 | |
| 	u32 r_key;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
 | |
| 	    rm->m_rdma_cookie != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
 | |
| 
 | |
| 	/* We are reusing a previously mapped MR here. Most likely, the
 | |
| 	 * application has written to the buffer, so we need to explicitly
 | |
| 	 * flush those writes to RAM. Otherwise the HCA may not see them
 | |
| 	 * when doing a DMA from that buffer.
 | |
| 	 */
 | |
| 	r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
 | |
| 
 | |
| 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
 | |
| 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
 | |
| 	if (mr == NULL)
 | |
| 		err = -EINVAL;	/* invalid r_key */
 | |
| 	else
 | |
| 		atomic_inc(&mr->r_refcount);
 | |
| 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
 | |
| 
 | |
| 	if (mr) {
 | |
| 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
 | |
| 		rm->m_rdma_mr = mr;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The application passes us an address range it wants to enable RDMA
 | |
|  * to/from. We map the area, and save the <R_Key,offset> pair
 | |
|  * in rm->m_rdma_cookie. This causes it to be sent along to the peer
 | |
|  * in an extension header.
 | |
|  */
 | |
| int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
 | |
| 			  struct cmsghdr *cmsg)
 | |
| {
 | |
| 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
 | |
| 	    rm->m_rdma_cookie != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->m_rdma_mr);
 | |
| }
 |