mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 00918b6ab8
			
		
	
	
		00918b6ab8
		
	
	
	
	
		
			
			mem_cgroup_soft_limit_reclaim() has zone, nid and zid argument. but nid and zid can be calculated from zone. So remove it. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Nishimura Daisuke <d-nishimura@mtf.biglobe.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			3010 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3010 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/vmscan.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *
 | |
|  *  Swap reorganised 29.12.95, Stephen Tweedie.
 | |
|  *  kswapd added: 7.1.96  sct
 | |
|  *  Removed kswapd_ctl limits, and swap out as many pages as needed
 | |
|  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 | |
|  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 | |
|  *  Multiqueue VM started 5.8.00, Rik van Riel.
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/vmstat.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/buffer_head.h>	/* for try_to_release_page(),
 | |
| 					buffer_heads_over_limit */
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/rwsem.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/sysctl.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/div64.h>
 | |
| 
 | |
| #include <linux/swapops.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/vmscan.h>
 | |
| 
 | |
| struct scan_control {
 | |
| 	/* Incremented by the number of inactive pages that were scanned */
 | |
| 	unsigned long nr_scanned;
 | |
| 
 | |
| 	/* Number of pages freed so far during a call to shrink_zones() */
 | |
| 	unsigned long nr_reclaimed;
 | |
| 
 | |
| 	/* How many pages shrink_list() should reclaim */
 | |
| 	unsigned long nr_to_reclaim;
 | |
| 
 | |
| 	unsigned long hibernation_mode;
 | |
| 
 | |
| 	/* This context's GFP mask */
 | |
| 	gfp_t gfp_mask;
 | |
| 
 | |
| 	int may_writepage;
 | |
| 
 | |
| 	/* Can mapped pages be reclaimed? */
 | |
| 	int may_unmap;
 | |
| 
 | |
| 	/* Can pages be swapped as part of reclaim? */
 | |
| 	int may_swap;
 | |
| 
 | |
| 	int swappiness;
 | |
| 
 | |
| 	int order;
 | |
| 
 | |
| 	/*
 | |
| 	 * Intend to reclaim enough contenious memory rather than to reclaim
 | |
| 	 * enough amount memory. I.e, it's the mode for high order allocation.
 | |
| 	 */
 | |
| 	bool lumpy_reclaim_mode;
 | |
| 
 | |
| 	/* Which cgroup do we reclaim from */
 | |
| 	struct mem_cgroup *mem_cgroup;
 | |
| 
 | |
| 	/*
 | |
| 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
 | |
| 	 * are scanned.
 | |
| 	 */
 | |
| 	nodemask_t	*nodemask;
 | |
| };
 | |
| 
 | |
| #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 | |
| 
 | |
| #ifdef ARCH_HAS_PREFETCH
 | |
| #define prefetch_prev_lru_page(_page, _base, _field)			\
 | |
| 	do {								\
 | |
| 		if ((_page)->lru.prev != _base) {			\
 | |
| 			struct page *prev;				\
 | |
| 									\
 | |
| 			prev = lru_to_page(&(_page->lru));		\
 | |
| 			prefetch(&prev->_field);			\
 | |
| 		}							\
 | |
| 	} while (0)
 | |
| #else
 | |
| #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef ARCH_HAS_PREFETCHW
 | |
| #define prefetchw_prev_lru_page(_page, _base, _field)			\
 | |
| 	do {								\
 | |
| 		if ((_page)->lru.prev != _base) {			\
 | |
| 			struct page *prev;				\
 | |
| 									\
 | |
| 			prev = lru_to_page(&(_page->lru));		\
 | |
| 			prefetchw(&prev->_field);			\
 | |
| 		}							\
 | |
| 	} while (0)
 | |
| #else
 | |
| #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * From 0 .. 100.  Higher means more swappy.
 | |
|  */
 | |
| int vm_swappiness = 60;
 | |
| long vm_total_pages;	/* The total number of pages which the VM controls */
 | |
| 
 | |
| static LIST_HEAD(shrinker_list);
 | |
| static DECLARE_RWSEM(shrinker_rwsem);
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR
 | |
| #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
 | |
| #else
 | |
| #define scanning_global_lru(sc)	(1)
 | |
| #endif
 | |
| 
 | |
| static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
 | |
| 						  struct scan_control *sc)
 | |
| {
 | |
| 	if (!scanning_global_lru(sc))
 | |
| 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
 | |
| 
 | |
| 	return &zone->reclaim_stat;
 | |
| }
 | |
| 
 | |
| static unsigned long zone_nr_lru_pages(struct zone *zone,
 | |
| 				struct scan_control *sc, enum lru_list lru)
 | |
| {
 | |
| 	if (!scanning_global_lru(sc))
 | |
| 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
 | |
| 
 | |
| 	return zone_page_state(zone, NR_LRU_BASE + lru);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Add a shrinker callback to be called from the vm
 | |
|  */
 | |
| void register_shrinker(struct shrinker *shrinker)
 | |
| {
 | |
| 	shrinker->nr = 0;
 | |
| 	down_write(&shrinker_rwsem);
 | |
| 	list_add_tail(&shrinker->list, &shrinker_list);
 | |
| 	up_write(&shrinker_rwsem);
 | |
| }
 | |
| EXPORT_SYMBOL(register_shrinker);
 | |
| 
 | |
| /*
 | |
|  * Remove one
 | |
|  */
 | |
| void unregister_shrinker(struct shrinker *shrinker)
 | |
| {
 | |
| 	down_write(&shrinker_rwsem);
 | |
| 	list_del(&shrinker->list);
 | |
| 	up_write(&shrinker_rwsem);
 | |
| }
 | |
| EXPORT_SYMBOL(unregister_shrinker);
 | |
| 
 | |
| #define SHRINK_BATCH 128
 | |
| /*
 | |
|  * Call the shrink functions to age shrinkable caches
 | |
|  *
 | |
|  * Here we assume it costs one seek to replace a lru page and that it also
 | |
|  * takes a seek to recreate a cache object.  With this in mind we age equal
 | |
|  * percentages of the lru and ageable caches.  This should balance the seeks
 | |
|  * generated by these structures.
 | |
|  *
 | |
|  * If the vm encountered mapped pages on the LRU it increase the pressure on
 | |
|  * slab to avoid swapping.
 | |
|  *
 | |
|  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 | |
|  *
 | |
|  * `lru_pages' represents the number of on-LRU pages in all the zones which
 | |
|  * are eligible for the caller's allocation attempt.  It is used for balancing
 | |
|  * slab reclaim versus page reclaim.
 | |
|  *
 | |
|  * Returns the number of slab objects which we shrunk.
 | |
|  */
 | |
| unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
 | |
| 			unsigned long lru_pages)
 | |
| {
 | |
| 	struct shrinker *shrinker;
 | |
| 	unsigned long ret = 0;
 | |
| 
 | |
| 	if (scanned == 0)
 | |
| 		scanned = SWAP_CLUSTER_MAX;
 | |
| 
 | |
| 	if (!down_read_trylock(&shrinker_rwsem))
 | |
| 		return 1;	/* Assume we'll be able to shrink next time */
 | |
| 
 | |
| 	list_for_each_entry(shrinker, &shrinker_list, list) {
 | |
| 		unsigned long long delta;
 | |
| 		unsigned long total_scan;
 | |
| 		unsigned long max_pass;
 | |
| 
 | |
| 		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
 | |
| 		delta = (4 * scanned) / shrinker->seeks;
 | |
| 		delta *= max_pass;
 | |
| 		do_div(delta, lru_pages + 1);
 | |
| 		shrinker->nr += delta;
 | |
| 		if (shrinker->nr < 0) {
 | |
| 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
 | |
| 			       "delete nr=%ld\n",
 | |
| 			       shrinker->shrink, shrinker->nr);
 | |
| 			shrinker->nr = max_pass;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Avoid risking looping forever due to too large nr value:
 | |
| 		 * never try to free more than twice the estimate number of
 | |
| 		 * freeable entries.
 | |
| 		 */
 | |
| 		if (shrinker->nr > max_pass * 2)
 | |
| 			shrinker->nr = max_pass * 2;
 | |
| 
 | |
| 		total_scan = shrinker->nr;
 | |
| 		shrinker->nr = 0;
 | |
| 
 | |
| 		while (total_scan >= SHRINK_BATCH) {
 | |
| 			long this_scan = SHRINK_BATCH;
 | |
| 			int shrink_ret;
 | |
| 			int nr_before;
 | |
| 
 | |
| 			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
 | |
| 			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
 | |
| 								gfp_mask);
 | |
| 			if (shrink_ret == -1)
 | |
| 				break;
 | |
| 			if (shrink_ret < nr_before)
 | |
| 				ret += nr_before - shrink_ret;
 | |
| 			count_vm_events(SLABS_SCANNED, this_scan);
 | |
| 			total_scan -= this_scan;
 | |
| 
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 
 | |
| 		shrinker->nr += total_scan;
 | |
| 	}
 | |
| 	up_read(&shrinker_rwsem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int is_page_cache_freeable(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * A freeable page cache page is referenced only by the caller
 | |
| 	 * that isolated the page, the page cache radix tree and
 | |
| 	 * optional buffer heads at page->private.
 | |
| 	 */
 | |
| 	return page_count(page) - page_has_private(page) == 2;
 | |
| }
 | |
| 
 | |
| static int may_write_to_queue(struct backing_dev_info *bdi)
 | |
| {
 | |
| 	if (current->flags & PF_SWAPWRITE)
 | |
| 		return 1;
 | |
| 	if (!bdi_write_congested(bdi))
 | |
| 		return 1;
 | |
| 	if (bdi == current->backing_dev_info)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We detected a synchronous write error writing a page out.  Probably
 | |
|  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 | |
|  * fsync(), msync() or close().
 | |
|  *
 | |
|  * The tricky part is that after writepage we cannot touch the mapping: nothing
 | |
|  * prevents it from being freed up.  But we have a ref on the page and once
 | |
|  * that page is locked, the mapping is pinned.
 | |
|  *
 | |
|  * We're allowed to run sleeping lock_page() here because we know the caller has
 | |
|  * __GFP_FS.
 | |
|  */
 | |
| static void handle_write_error(struct address_space *mapping,
 | |
| 				struct page *page, int error)
 | |
| {
 | |
| 	lock_page_nosync(page);
 | |
| 	if (page_mapping(page) == mapping)
 | |
| 		mapping_set_error(mapping, error);
 | |
| 	unlock_page(page);
 | |
| }
 | |
| 
 | |
| /* Request for sync pageout. */
 | |
| enum pageout_io {
 | |
| 	PAGEOUT_IO_ASYNC,
 | |
| 	PAGEOUT_IO_SYNC,
 | |
| };
 | |
| 
 | |
| /* possible outcome of pageout() */
 | |
| typedef enum {
 | |
| 	/* failed to write page out, page is locked */
 | |
| 	PAGE_KEEP,
 | |
| 	/* move page to the active list, page is locked */
 | |
| 	PAGE_ACTIVATE,
 | |
| 	/* page has been sent to the disk successfully, page is unlocked */
 | |
| 	PAGE_SUCCESS,
 | |
| 	/* page is clean and locked */
 | |
| 	PAGE_CLEAN,
 | |
| } pageout_t;
 | |
| 
 | |
| /*
 | |
|  * pageout is called by shrink_page_list() for each dirty page.
 | |
|  * Calls ->writepage().
 | |
|  */
 | |
| static pageout_t pageout(struct page *page, struct address_space *mapping,
 | |
| 						enum pageout_io sync_writeback)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the page is dirty, only perform writeback if that write
 | |
| 	 * will be non-blocking.  To prevent this allocation from being
 | |
| 	 * stalled by pagecache activity.  But note that there may be
 | |
| 	 * stalls if we need to run get_block().  We could test
 | |
| 	 * PagePrivate for that.
 | |
| 	 *
 | |
| 	 * If this process is currently in __generic_file_aio_write() against
 | |
| 	 * this page's queue, we can perform writeback even if that
 | |
| 	 * will block.
 | |
| 	 *
 | |
| 	 * If the page is swapcache, write it back even if that would
 | |
| 	 * block, for some throttling. This happens by accident, because
 | |
| 	 * swap_backing_dev_info is bust: it doesn't reflect the
 | |
| 	 * congestion state of the swapdevs.  Easy to fix, if needed.
 | |
| 	 */
 | |
| 	if (!is_page_cache_freeable(page))
 | |
| 		return PAGE_KEEP;
 | |
| 	if (!mapping) {
 | |
| 		/*
 | |
| 		 * Some data journaling orphaned pages can have
 | |
| 		 * page->mapping == NULL while being dirty with clean buffers.
 | |
| 		 */
 | |
| 		if (page_has_private(page)) {
 | |
| 			if (try_to_free_buffers(page)) {
 | |
| 				ClearPageDirty(page);
 | |
| 				printk("%s: orphaned page\n", __func__);
 | |
| 				return PAGE_CLEAN;
 | |
| 			}
 | |
| 		}
 | |
| 		return PAGE_KEEP;
 | |
| 	}
 | |
| 	if (mapping->a_ops->writepage == NULL)
 | |
| 		return PAGE_ACTIVATE;
 | |
| 	if (!may_write_to_queue(mapping->backing_dev_info))
 | |
| 		return PAGE_KEEP;
 | |
| 
 | |
| 	if (clear_page_dirty_for_io(page)) {
 | |
| 		int res;
 | |
| 		struct writeback_control wbc = {
 | |
| 			.sync_mode = WB_SYNC_NONE,
 | |
| 			.nr_to_write = SWAP_CLUSTER_MAX,
 | |
| 			.range_start = 0,
 | |
| 			.range_end = LLONG_MAX,
 | |
| 			.nonblocking = 1,
 | |
| 			.for_reclaim = 1,
 | |
| 		};
 | |
| 
 | |
| 		SetPageReclaim(page);
 | |
| 		res = mapping->a_ops->writepage(page, &wbc);
 | |
| 		if (res < 0)
 | |
| 			handle_write_error(mapping, page, res);
 | |
| 		if (res == AOP_WRITEPAGE_ACTIVATE) {
 | |
| 			ClearPageReclaim(page);
 | |
| 			return PAGE_ACTIVATE;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait on writeback if requested to. This happens when
 | |
| 		 * direct reclaiming a large contiguous area and the
 | |
| 		 * first attempt to free a range of pages fails.
 | |
| 		 */
 | |
| 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
 | |
| 			wait_on_page_writeback(page);
 | |
| 
 | |
| 		if (!PageWriteback(page)) {
 | |
| 			/* synchronous write or broken a_ops? */
 | |
| 			ClearPageReclaim(page);
 | |
| 		}
 | |
| 		trace_mm_vmscan_writepage(page,
 | |
| 			trace_reclaim_flags(page, sync_writeback));
 | |
| 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 | |
| 		return PAGE_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	return PAGE_CLEAN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same as remove_mapping, but if the page is removed from the mapping, it
 | |
|  * gets returned with a refcount of 0.
 | |
|  */
 | |
| static int __remove_mapping(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 	BUG_ON(mapping != page_mapping(page));
 | |
| 
 | |
| 	spin_lock_irq(&mapping->tree_lock);
 | |
| 	/*
 | |
| 	 * The non racy check for a busy page.
 | |
| 	 *
 | |
| 	 * Must be careful with the order of the tests. When someone has
 | |
| 	 * a ref to the page, it may be possible that they dirty it then
 | |
| 	 * drop the reference. So if PageDirty is tested before page_count
 | |
| 	 * here, then the following race may occur:
 | |
| 	 *
 | |
| 	 * get_user_pages(&page);
 | |
| 	 * [user mapping goes away]
 | |
| 	 * write_to(page);
 | |
| 	 *				!PageDirty(page)    [good]
 | |
| 	 * SetPageDirty(page);
 | |
| 	 * put_page(page);
 | |
| 	 *				!page_count(page)   [good, discard it]
 | |
| 	 *
 | |
| 	 * [oops, our write_to data is lost]
 | |
| 	 *
 | |
| 	 * Reversing the order of the tests ensures such a situation cannot
 | |
| 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 | |
| 	 * load is not satisfied before that of page->_count.
 | |
| 	 *
 | |
| 	 * Note that if SetPageDirty is always performed via set_page_dirty,
 | |
| 	 * and thus under tree_lock, then this ordering is not required.
 | |
| 	 */
 | |
| 	if (!page_freeze_refs(page, 2))
 | |
| 		goto cannot_free;
 | |
| 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 | |
| 	if (unlikely(PageDirty(page))) {
 | |
| 		page_unfreeze_refs(page, 2);
 | |
| 		goto cannot_free;
 | |
| 	}
 | |
| 
 | |
| 	if (PageSwapCache(page)) {
 | |
| 		swp_entry_t swap = { .val = page_private(page) };
 | |
| 		__delete_from_swap_cache(page);
 | |
| 		spin_unlock_irq(&mapping->tree_lock);
 | |
| 		swapcache_free(swap, page);
 | |
| 	} else {
 | |
| 		__remove_from_page_cache(page);
 | |
| 		spin_unlock_irq(&mapping->tree_lock);
 | |
| 		mem_cgroup_uncharge_cache_page(page);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| cannot_free:
 | |
| 	spin_unlock_irq(&mapping->tree_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 | |
|  * someone else has a ref on the page, abort and return 0.  If it was
 | |
|  * successfully detached, return 1.  Assumes the caller has a single ref on
 | |
|  * this page.
 | |
|  */
 | |
| int remove_mapping(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	if (__remove_mapping(mapping, page)) {
 | |
| 		/*
 | |
| 		 * Unfreezing the refcount with 1 rather than 2 effectively
 | |
| 		 * drops the pagecache ref for us without requiring another
 | |
| 		 * atomic operation.
 | |
| 		 */
 | |
| 		page_unfreeze_refs(page, 1);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * putback_lru_page - put previously isolated page onto appropriate LRU list
 | |
|  * @page: page to be put back to appropriate lru list
 | |
|  *
 | |
|  * Add previously isolated @page to appropriate LRU list.
 | |
|  * Page may still be unevictable for other reasons.
 | |
|  *
 | |
|  * lru_lock must not be held, interrupts must be enabled.
 | |
|  */
 | |
| void putback_lru_page(struct page *page)
 | |
| {
 | |
| 	int lru;
 | |
| 	int active = !!TestClearPageActive(page);
 | |
| 	int was_unevictable = PageUnevictable(page);
 | |
| 
 | |
| 	VM_BUG_ON(PageLRU(page));
 | |
| 
 | |
| redo:
 | |
| 	ClearPageUnevictable(page);
 | |
| 
 | |
| 	if (page_evictable(page, NULL)) {
 | |
| 		/*
 | |
| 		 * For evictable pages, we can use the cache.
 | |
| 		 * In event of a race, worst case is we end up with an
 | |
| 		 * unevictable page on [in]active list.
 | |
| 		 * We know how to handle that.
 | |
| 		 */
 | |
| 		lru = active + page_lru_base_type(page);
 | |
| 		lru_cache_add_lru(page, lru);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Put unevictable pages directly on zone's unevictable
 | |
| 		 * list.
 | |
| 		 */
 | |
| 		lru = LRU_UNEVICTABLE;
 | |
| 		add_page_to_unevictable_list(page);
 | |
| 		/*
 | |
| 		 * When racing with an mlock clearing (page is
 | |
| 		 * unlocked), make sure that if the other thread does
 | |
| 		 * not observe our setting of PG_lru and fails
 | |
| 		 * isolation, we see PG_mlocked cleared below and move
 | |
| 		 * the page back to the evictable list.
 | |
| 		 *
 | |
| 		 * The other side is TestClearPageMlocked().
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * page's status can change while we move it among lru. If an evictable
 | |
| 	 * page is on unevictable list, it never be freed. To avoid that,
 | |
| 	 * check after we added it to the list, again.
 | |
| 	 */
 | |
| 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 | |
| 		if (!isolate_lru_page(page)) {
 | |
| 			put_page(page);
 | |
| 			goto redo;
 | |
| 		}
 | |
| 		/* This means someone else dropped this page from LRU
 | |
| 		 * So, it will be freed or putback to LRU again. There is
 | |
| 		 * nothing to do here.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	if (was_unevictable && lru != LRU_UNEVICTABLE)
 | |
| 		count_vm_event(UNEVICTABLE_PGRESCUED);
 | |
| 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 | |
| 		count_vm_event(UNEVICTABLE_PGCULLED);
 | |
| 
 | |
| 	put_page(page);		/* drop ref from isolate */
 | |
| }
 | |
| 
 | |
| enum page_references {
 | |
| 	PAGEREF_RECLAIM,
 | |
| 	PAGEREF_RECLAIM_CLEAN,
 | |
| 	PAGEREF_KEEP,
 | |
| 	PAGEREF_ACTIVATE,
 | |
| };
 | |
| 
 | |
| static enum page_references page_check_references(struct page *page,
 | |
| 						  struct scan_control *sc)
 | |
| {
 | |
| 	int referenced_ptes, referenced_page;
 | |
| 	unsigned long vm_flags;
 | |
| 
 | |
| 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
 | |
| 	referenced_page = TestClearPageReferenced(page);
 | |
| 
 | |
| 	/* Lumpy reclaim - ignore references */
 | |
| 	if (sc->lumpy_reclaim_mode)
 | |
| 		return PAGEREF_RECLAIM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 | |
| 	 * move the page to the unevictable list.
 | |
| 	 */
 | |
| 	if (vm_flags & VM_LOCKED)
 | |
| 		return PAGEREF_RECLAIM;
 | |
| 
 | |
| 	if (referenced_ptes) {
 | |
| 		if (PageAnon(page))
 | |
| 			return PAGEREF_ACTIVATE;
 | |
| 		/*
 | |
| 		 * All mapped pages start out with page table
 | |
| 		 * references from the instantiating fault, so we need
 | |
| 		 * to look twice if a mapped file page is used more
 | |
| 		 * than once.
 | |
| 		 *
 | |
| 		 * Mark it and spare it for another trip around the
 | |
| 		 * inactive list.  Another page table reference will
 | |
| 		 * lead to its activation.
 | |
| 		 *
 | |
| 		 * Note: the mark is set for activated pages as well
 | |
| 		 * so that recently deactivated but used pages are
 | |
| 		 * quickly recovered.
 | |
| 		 */
 | |
| 		SetPageReferenced(page);
 | |
| 
 | |
| 		if (referenced_page)
 | |
| 			return PAGEREF_ACTIVATE;
 | |
| 
 | |
| 		return PAGEREF_KEEP;
 | |
| 	}
 | |
| 
 | |
| 	/* Reclaim if clean, defer dirty pages to writeback */
 | |
| 	if (referenced_page)
 | |
| 		return PAGEREF_RECLAIM_CLEAN;
 | |
| 
 | |
| 	return PAGEREF_RECLAIM;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack void free_page_list(struct list_head *free_pages)
 | |
| {
 | |
| 	struct pagevec freed_pvec;
 | |
| 	struct page *page, *tmp;
 | |
| 
 | |
| 	pagevec_init(&freed_pvec, 1);
 | |
| 
 | |
| 	list_for_each_entry_safe(page, tmp, free_pages, lru) {
 | |
| 		list_del(&page->lru);
 | |
| 		if (!pagevec_add(&freed_pvec, page)) {
 | |
| 			__pagevec_free(&freed_pvec);
 | |
| 			pagevec_reinit(&freed_pvec);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pagevec_free(&freed_pvec);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * shrink_page_list() returns the number of reclaimed pages
 | |
|  */
 | |
| static unsigned long shrink_page_list(struct list_head *page_list,
 | |
| 					struct scan_control *sc,
 | |
| 					enum pageout_io sync_writeback)
 | |
| {
 | |
| 	LIST_HEAD(ret_pages);
 | |
| 	LIST_HEAD(free_pages);
 | |
| 	int pgactivate = 0;
 | |
| 	unsigned long nr_reclaimed = 0;
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	while (!list_empty(page_list)) {
 | |
| 		enum page_references references;
 | |
| 		struct address_space *mapping;
 | |
| 		struct page *page;
 | |
| 		int may_enter_fs;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		page = lru_to_page(page_list);
 | |
| 		list_del(&page->lru);
 | |
| 
 | |
| 		if (!trylock_page(page))
 | |
| 			goto keep;
 | |
| 
 | |
| 		VM_BUG_ON(PageActive(page));
 | |
| 
 | |
| 		sc->nr_scanned++;
 | |
| 
 | |
| 		if (unlikely(!page_evictable(page, NULL)))
 | |
| 			goto cull_mlocked;
 | |
| 
 | |
| 		if (!sc->may_unmap && page_mapped(page))
 | |
| 			goto keep_locked;
 | |
| 
 | |
| 		/* Double the slab pressure for mapped and swapcache pages */
 | |
| 		if (page_mapped(page) || PageSwapCache(page))
 | |
| 			sc->nr_scanned++;
 | |
| 
 | |
| 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 | |
| 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 | |
| 
 | |
| 		if (PageWriteback(page)) {
 | |
| 			/*
 | |
| 			 * Synchronous reclaim is performed in two passes,
 | |
| 			 * first an asynchronous pass over the list to
 | |
| 			 * start parallel writeback, and a second synchronous
 | |
| 			 * pass to wait for the IO to complete.  Wait here
 | |
| 			 * for any page for which writeback has already
 | |
| 			 * started.
 | |
| 			 */
 | |
| 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
 | |
| 				wait_on_page_writeback(page);
 | |
| 			else
 | |
| 				goto keep_locked;
 | |
| 		}
 | |
| 
 | |
| 		references = page_check_references(page, sc);
 | |
| 		switch (references) {
 | |
| 		case PAGEREF_ACTIVATE:
 | |
| 			goto activate_locked;
 | |
| 		case PAGEREF_KEEP:
 | |
| 			goto keep_locked;
 | |
| 		case PAGEREF_RECLAIM:
 | |
| 		case PAGEREF_RECLAIM_CLEAN:
 | |
| 			; /* try to reclaim the page below */
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Anonymous process memory has backing store?
 | |
| 		 * Try to allocate it some swap space here.
 | |
| 		 */
 | |
| 		if (PageAnon(page) && !PageSwapCache(page)) {
 | |
| 			if (!(sc->gfp_mask & __GFP_IO))
 | |
| 				goto keep_locked;
 | |
| 			if (!add_to_swap(page))
 | |
| 				goto activate_locked;
 | |
| 			may_enter_fs = 1;
 | |
| 		}
 | |
| 
 | |
| 		mapping = page_mapping(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * The page is mapped into the page tables of one or more
 | |
| 		 * processes. Try to unmap it here.
 | |
| 		 */
 | |
| 		if (page_mapped(page) && mapping) {
 | |
| 			switch (try_to_unmap(page, TTU_UNMAP)) {
 | |
| 			case SWAP_FAIL:
 | |
| 				goto activate_locked;
 | |
| 			case SWAP_AGAIN:
 | |
| 				goto keep_locked;
 | |
| 			case SWAP_MLOCK:
 | |
| 				goto cull_mlocked;
 | |
| 			case SWAP_SUCCESS:
 | |
| 				; /* try to free the page below */
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (PageDirty(page)) {
 | |
| 			if (references == PAGEREF_RECLAIM_CLEAN)
 | |
| 				goto keep_locked;
 | |
| 			if (!may_enter_fs)
 | |
| 				goto keep_locked;
 | |
| 			if (!sc->may_writepage)
 | |
| 				goto keep_locked;
 | |
| 
 | |
| 			/* Page is dirty, try to write it out here */
 | |
| 			switch (pageout(page, mapping, sync_writeback)) {
 | |
| 			case PAGE_KEEP:
 | |
| 				goto keep_locked;
 | |
| 			case PAGE_ACTIVATE:
 | |
| 				goto activate_locked;
 | |
| 			case PAGE_SUCCESS:
 | |
| 				if (PageWriteback(page) || PageDirty(page))
 | |
| 					goto keep;
 | |
| 				/*
 | |
| 				 * A synchronous write - probably a ramdisk.  Go
 | |
| 				 * ahead and try to reclaim the page.
 | |
| 				 */
 | |
| 				if (!trylock_page(page))
 | |
| 					goto keep;
 | |
| 				if (PageDirty(page) || PageWriteback(page))
 | |
| 					goto keep_locked;
 | |
| 				mapping = page_mapping(page);
 | |
| 			case PAGE_CLEAN:
 | |
| 				; /* try to free the page below */
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the page has buffers, try to free the buffer mappings
 | |
| 		 * associated with this page. If we succeed we try to free
 | |
| 		 * the page as well.
 | |
| 		 *
 | |
| 		 * We do this even if the page is PageDirty().
 | |
| 		 * try_to_release_page() does not perform I/O, but it is
 | |
| 		 * possible for a page to have PageDirty set, but it is actually
 | |
| 		 * clean (all its buffers are clean).  This happens if the
 | |
| 		 * buffers were written out directly, with submit_bh(). ext3
 | |
| 		 * will do this, as well as the blockdev mapping.
 | |
| 		 * try_to_release_page() will discover that cleanness and will
 | |
| 		 * drop the buffers and mark the page clean - it can be freed.
 | |
| 		 *
 | |
| 		 * Rarely, pages can have buffers and no ->mapping.  These are
 | |
| 		 * the pages which were not successfully invalidated in
 | |
| 		 * truncate_complete_page().  We try to drop those buffers here
 | |
| 		 * and if that worked, and the page is no longer mapped into
 | |
| 		 * process address space (page_count == 1) it can be freed.
 | |
| 		 * Otherwise, leave the page on the LRU so it is swappable.
 | |
| 		 */
 | |
| 		if (page_has_private(page)) {
 | |
| 			if (!try_to_release_page(page, sc->gfp_mask))
 | |
| 				goto activate_locked;
 | |
| 			if (!mapping && page_count(page) == 1) {
 | |
| 				unlock_page(page);
 | |
| 				if (put_page_testzero(page))
 | |
| 					goto free_it;
 | |
| 				else {
 | |
| 					/*
 | |
| 					 * rare race with speculative reference.
 | |
| 					 * the speculative reference will free
 | |
| 					 * this page shortly, so we may
 | |
| 					 * increment nr_reclaimed here (and
 | |
| 					 * leave it off the LRU).
 | |
| 					 */
 | |
| 					nr_reclaimed++;
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!mapping || !__remove_mapping(mapping, page))
 | |
| 			goto keep_locked;
 | |
| 
 | |
| 		/*
 | |
| 		 * At this point, we have no other references and there is
 | |
| 		 * no way to pick any more up (removed from LRU, removed
 | |
| 		 * from pagecache). Can use non-atomic bitops now (and
 | |
| 		 * we obviously don't have to worry about waking up a process
 | |
| 		 * waiting on the page lock, because there are no references.
 | |
| 		 */
 | |
| 		__clear_page_locked(page);
 | |
| free_it:
 | |
| 		nr_reclaimed++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Is there need to periodically free_page_list? It would
 | |
| 		 * appear not as the counts should be low
 | |
| 		 */
 | |
| 		list_add(&page->lru, &free_pages);
 | |
| 		continue;
 | |
| 
 | |
| cull_mlocked:
 | |
| 		if (PageSwapCache(page))
 | |
| 			try_to_free_swap(page);
 | |
| 		unlock_page(page);
 | |
| 		putback_lru_page(page);
 | |
| 		continue;
 | |
| 
 | |
| activate_locked:
 | |
| 		/* Not a candidate for swapping, so reclaim swap space. */
 | |
| 		if (PageSwapCache(page) && vm_swap_full())
 | |
| 			try_to_free_swap(page);
 | |
| 		VM_BUG_ON(PageActive(page));
 | |
| 		SetPageActive(page);
 | |
| 		pgactivate++;
 | |
| keep_locked:
 | |
| 		unlock_page(page);
 | |
| keep:
 | |
| 		list_add(&page->lru, &ret_pages);
 | |
| 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 | |
| 	}
 | |
| 
 | |
| 	free_page_list(&free_pages);
 | |
| 
 | |
| 	list_splice(&ret_pages, page_list);
 | |
| 	count_vm_events(PGACTIVATE, pgactivate);
 | |
| 	return nr_reclaimed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to remove the specified page from its LRU.  Only take this page
 | |
|  * if it is of the appropriate PageActive status.  Pages which are being
 | |
|  * freed elsewhere are also ignored.
 | |
|  *
 | |
|  * page:	page to consider
 | |
|  * mode:	one of the LRU isolation modes defined above
 | |
|  *
 | |
|  * returns 0 on success, -ve errno on failure.
 | |
|  */
 | |
| int __isolate_lru_page(struct page *page, int mode, int file)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	/* Only take pages on the LRU. */
 | |
| 	if (!PageLRU(page))
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * When checking the active state, we need to be sure we are
 | |
| 	 * dealing with comparible boolean values.  Take the logical not
 | |
| 	 * of each.
 | |
| 	 */
 | |
| 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
 | |
| 		return ret;
 | |
| 
 | |
| 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * When this function is being called for lumpy reclaim, we
 | |
| 	 * initially look into all LRU pages, active, inactive and
 | |
| 	 * unevictable; only give shrink_page_list evictable pages.
 | |
| 	 */
 | |
| 	if (PageUnevictable(page))
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = -EBUSY;
 | |
| 
 | |
| 	if (likely(get_page_unless_zero(page))) {
 | |
| 		/*
 | |
| 		 * Be careful not to clear PageLRU until after we're
 | |
| 		 * sure the page is not being freed elsewhere -- the
 | |
| 		 * page release code relies on it.
 | |
| 		 */
 | |
| 		ClearPageLRU(page);
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * zone->lru_lock is heavily contended.  Some of the functions that
 | |
|  * shrink the lists perform better by taking out a batch of pages
 | |
|  * and working on them outside the LRU lock.
 | |
|  *
 | |
|  * For pagecache intensive workloads, this function is the hottest
 | |
|  * spot in the kernel (apart from copy_*_user functions).
 | |
|  *
 | |
|  * Appropriate locks must be held before calling this function.
 | |
|  *
 | |
|  * @nr_to_scan:	The number of pages to look through on the list.
 | |
|  * @src:	The LRU list to pull pages off.
 | |
|  * @dst:	The temp list to put pages on to.
 | |
|  * @scanned:	The number of pages that were scanned.
 | |
|  * @order:	The caller's attempted allocation order
 | |
|  * @mode:	One of the LRU isolation modes
 | |
|  * @file:	True [1] if isolating file [!anon] pages
 | |
|  *
 | |
|  * returns how many pages were moved onto *@dst.
 | |
|  */
 | |
| static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
 | |
| 		struct list_head *src, struct list_head *dst,
 | |
| 		unsigned long *scanned, int order, int mode, int file)
 | |
| {
 | |
| 	unsigned long nr_taken = 0;
 | |
| 	unsigned long nr_lumpy_taken = 0;
 | |
| 	unsigned long nr_lumpy_dirty = 0;
 | |
| 	unsigned long nr_lumpy_failed = 0;
 | |
| 	unsigned long scan;
 | |
| 
 | |
| 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 | |
| 		struct page *page;
 | |
| 		unsigned long pfn;
 | |
| 		unsigned long end_pfn;
 | |
| 		unsigned long page_pfn;
 | |
| 		int zone_id;
 | |
| 
 | |
| 		page = lru_to_page(src);
 | |
| 		prefetchw_prev_lru_page(page, src, flags);
 | |
| 
 | |
| 		VM_BUG_ON(!PageLRU(page));
 | |
| 
 | |
| 		switch (__isolate_lru_page(page, mode, file)) {
 | |
| 		case 0:
 | |
| 			list_move(&page->lru, dst);
 | |
| 			mem_cgroup_del_lru(page);
 | |
| 			nr_taken++;
 | |
| 			break;
 | |
| 
 | |
| 		case -EBUSY:
 | |
| 			/* else it is being freed elsewhere */
 | |
| 			list_move(&page->lru, src);
 | |
| 			mem_cgroup_rotate_lru_list(page, page_lru(page));
 | |
| 			continue;
 | |
| 
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 
 | |
| 		if (!order)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Attempt to take all pages in the order aligned region
 | |
| 		 * surrounding the tag page.  Only take those pages of
 | |
| 		 * the same active state as that tag page.  We may safely
 | |
| 		 * round the target page pfn down to the requested order
 | |
| 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
 | |
| 		 * where that page is in a different zone we will detect
 | |
| 		 * it from its zone id and abort this block scan.
 | |
| 		 */
 | |
| 		zone_id = page_zone_id(page);
 | |
| 		page_pfn = page_to_pfn(page);
 | |
| 		pfn = page_pfn & ~((1 << order) - 1);
 | |
| 		end_pfn = pfn + (1 << order);
 | |
| 		for (; pfn < end_pfn; pfn++) {
 | |
| 			struct page *cursor_page;
 | |
| 
 | |
| 			/* The target page is in the block, ignore it. */
 | |
| 			if (unlikely(pfn == page_pfn))
 | |
| 				continue;
 | |
| 
 | |
| 			/* Avoid holes within the zone. */
 | |
| 			if (unlikely(!pfn_valid_within(pfn)))
 | |
| 				break;
 | |
| 
 | |
| 			cursor_page = pfn_to_page(pfn);
 | |
| 
 | |
| 			/* Check that we have not crossed a zone boundary. */
 | |
| 			if (unlikely(page_zone_id(cursor_page) != zone_id))
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * If we don't have enough swap space, reclaiming of
 | |
| 			 * anon page which don't already have a swap slot is
 | |
| 			 * pointless.
 | |
| 			 */
 | |
| 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
 | |
| 					!PageSwapCache(cursor_page))
 | |
| 				continue;
 | |
| 
 | |
| 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
 | |
| 				list_move(&cursor_page->lru, dst);
 | |
| 				mem_cgroup_del_lru(cursor_page);
 | |
| 				nr_taken++;
 | |
| 				nr_lumpy_taken++;
 | |
| 				if (PageDirty(cursor_page))
 | |
| 					nr_lumpy_dirty++;
 | |
| 				scan++;
 | |
| 			} else {
 | |
| 				if (mode == ISOLATE_BOTH &&
 | |
| 						page_count(cursor_page))
 | |
| 					nr_lumpy_failed++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*scanned = scan;
 | |
| 
 | |
| 	trace_mm_vmscan_lru_isolate(order,
 | |
| 			nr_to_scan, scan,
 | |
| 			nr_taken,
 | |
| 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
 | |
| 			mode);
 | |
| 	return nr_taken;
 | |
| }
 | |
| 
 | |
| static unsigned long isolate_pages_global(unsigned long nr,
 | |
| 					struct list_head *dst,
 | |
| 					unsigned long *scanned, int order,
 | |
| 					int mode, struct zone *z,
 | |
| 					int active, int file)
 | |
| {
 | |
| 	int lru = LRU_BASE;
 | |
| 	if (active)
 | |
| 		lru += LRU_ACTIVE;
 | |
| 	if (file)
 | |
| 		lru += LRU_FILE;
 | |
| 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
 | |
| 								mode, file);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * clear_active_flags() is a helper for shrink_active_list(), clearing
 | |
|  * any active bits from the pages in the list.
 | |
|  */
 | |
| static unsigned long clear_active_flags(struct list_head *page_list,
 | |
| 					unsigned int *count)
 | |
| {
 | |
| 	int nr_active = 0;
 | |
| 	int lru;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	list_for_each_entry(page, page_list, lru) {
 | |
| 		lru = page_lru_base_type(page);
 | |
| 		if (PageActive(page)) {
 | |
| 			lru += LRU_ACTIVE;
 | |
| 			ClearPageActive(page);
 | |
| 			nr_active++;
 | |
| 		}
 | |
| 		if (count)
 | |
| 			count[lru]++;
 | |
| 	}
 | |
| 
 | |
| 	return nr_active;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * isolate_lru_page - tries to isolate a page from its LRU list
 | |
|  * @page: page to isolate from its LRU list
 | |
|  *
 | |
|  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 | |
|  * vmstat statistic corresponding to whatever LRU list the page was on.
 | |
|  *
 | |
|  * Returns 0 if the page was removed from an LRU list.
 | |
|  * Returns -EBUSY if the page was not on an LRU list.
 | |
|  *
 | |
|  * The returned page will have PageLRU() cleared.  If it was found on
 | |
|  * the active list, it will have PageActive set.  If it was found on
 | |
|  * the unevictable list, it will have the PageUnevictable bit set. That flag
 | |
|  * may need to be cleared by the caller before letting the page go.
 | |
|  *
 | |
|  * The vmstat statistic corresponding to the list on which the page was
 | |
|  * found will be decremented.
 | |
|  *
 | |
|  * Restrictions:
 | |
|  * (1) Must be called with an elevated refcount on the page. This is a
 | |
|  *     fundamentnal difference from isolate_lru_pages (which is called
 | |
|  *     without a stable reference).
 | |
|  * (2) the lru_lock must not be held.
 | |
|  * (3) interrupts must be enabled.
 | |
|  */
 | |
| int isolate_lru_page(struct page *page)
 | |
| {
 | |
| 	int ret = -EBUSY;
 | |
| 
 | |
| 	if (PageLRU(page)) {
 | |
| 		struct zone *zone = page_zone(page);
 | |
| 
 | |
| 		spin_lock_irq(&zone->lru_lock);
 | |
| 		if (PageLRU(page) && get_page_unless_zero(page)) {
 | |
| 			int lru = page_lru(page);
 | |
| 			ret = 0;
 | |
| 			ClearPageLRU(page);
 | |
| 
 | |
| 			del_page_from_lru_list(zone, page, lru);
 | |
| 		}
 | |
| 		spin_unlock_irq(&zone->lru_lock);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Are there way too many processes in the direct reclaim path already?
 | |
|  */
 | |
| static int too_many_isolated(struct zone *zone, int file,
 | |
| 		struct scan_control *sc)
 | |
| {
 | |
| 	unsigned long inactive, isolated;
 | |
| 
 | |
| 	if (current_is_kswapd())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!scanning_global_lru(sc))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (file) {
 | |
| 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
 | |
| 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
 | |
| 	} else {
 | |
| 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
 | |
| 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
 | |
| 	}
 | |
| 
 | |
| 	return isolated > inactive;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TODO: Try merging with migrations version of putback_lru_pages
 | |
|  */
 | |
| static noinline_for_stack void
 | |
| putback_lru_pages(struct zone *zone, struct scan_control *sc,
 | |
| 				unsigned long nr_anon, unsigned long nr_file,
 | |
| 				struct list_head *page_list)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct pagevec pvec;
 | |
| 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
 | |
| 
 | |
| 	pagevec_init(&pvec, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Put back any unfreeable pages.
 | |
| 	 */
 | |
| 	spin_lock(&zone->lru_lock);
 | |
| 	while (!list_empty(page_list)) {
 | |
| 		int lru;
 | |
| 		page = lru_to_page(page_list);
 | |
| 		VM_BUG_ON(PageLRU(page));
 | |
| 		list_del(&page->lru);
 | |
| 		if (unlikely(!page_evictable(page, NULL))) {
 | |
| 			spin_unlock_irq(&zone->lru_lock);
 | |
| 			putback_lru_page(page);
 | |
| 			spin_lock_irq(&zone->lru_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		SetPageLRU(page);
 | |
| 		lru = page_lru(page);
 | |
| 		add_page_to_lru_list(zone, page, lru);
 | |
| 		if (is_active_lru(lru)) {
 | |
| 			int file = is_file_lru(lru);
 | |
| 			reclaim_stat->recent_rotated[file]++;
 | |
| 		}
 | |
| 		if (!pagevec_add(&pvec, page)) {
 | |
| 			spin_unlock_irq(&zone->lru_lock);
 | |
| 			__pagevec_release(&pvec);
 | |
| 			spin_lock_irq(&zone->lru_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
 | |
| 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
 | |
| 
 | |
| 	spin_unlock_irq(&zone->lru_lock);
 | |
| 	pagevec_release(&pvec);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack void update_isolated_counts(struct zone *zone,
 | |
| 					struct scan_control *sc,
 | |
| 					unsigned long *nr_anon,
 | |
| 					unsigned long *nr_file,
 | |
| 					struct list_head *isolated_list)
 | |
| {
 | |
| 	unsigned long nr_active;
 | |
| 	unsigned int count[NR_LRU_LISTS] = { 0, };
 | |
| 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
 | |
| 
 | |
| 	nr_active = clear_active_flags(isolated_list, count);
 | |
| 	__count_vm_events(PGDEACTIVATE, nr_active);
 | |
| 
 | |
| 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
 | |
| 			      -count[LRU_ACTIVE_FILE]);
 | |
| 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
 | |
| 			      -count[LRU_INACTIVE_FILE]);
 | |
| 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
 | |
| 			      -count[LRU_ACTIVE_ANON]);
 | |
| 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
 | |
| 			      -count[LRU_INACTIVE_ANON]);
 | |
| 
 | |
| 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
 | |
| 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
 | |
| 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
 | |
| 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
 | |
| 
 | |
| 	reclaim_stat->recent_scanned[0] += *nr_anon;
 | |
| 	reclaim_stat->recent_scanned[1] += *nr_file;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the caller should wait to clean dirty/writeback pages.
 | |
|  *
 | |
|  * If we are direct reclaiming for contiguous pages and we do not reclaim
 | |
|  * everything in the list, try again and wait for writeback IO to complete.
 | |
|  * This will stall high-order allocations noticeably. Only do that when really
 | |
|  * need to free the pages under high memory pressure.
 | |
|  */
 | |
| static inline bool should_reclaim_stall(unsigned long nr_taken,
 | |
| 					unsigned long nr_freed,
 | |
| 					int priority,
 | |
| 					struct scan_control *sc)
 | |
| {
 | |
| 	int lumpy_stall_priority;
 | |
| 
 | |
| 	/* kswapd should not stall on sync IO */
 | |
| 	if (current_is_kswapd())
 | |
| 		return false;
 | |
| 
 | |
| 	/* Only stall on lumpy reclaim */
 | |
| 	if (!sc->lumpy_reclaim_mode)
 | |
| 		return false;
 | |
| 
 | |
| 	/* If we have relaimed everything on the isolated list, no stall */
 | |
| 	if (nr_freed == nr_taken)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * For high-order allocations, there are two stall thresholds.
 | |
| 	 * High-cost allocations stall immediately where as lower
 | |
| 	 * order allocations such as stacks require the scanning
 | |
| 	 * priority to be much higher before stalling.
 | |
| 	 */
 | |
| 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 | |
| 		lumpy_stall_priority = DEF_PRIORITY;
 | |
| 	else
 | |
| 		lumpy_stall_priority = DEF_PRIORITY / 3;
 | |
| 
 | |
| 	return priority <= lumpy_stall_priority;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 | |
|  * of reclaimed pages
 | |
|  */
 | |
| static noinline_for_stack unsigned long
 | |
| shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
 | |
| 			struct scan_control *sc, int priority, int file)
 | |
| {
 | |
| 	LIST_HEAD(page_list);
 | |
| 	unsigned long nr_scanned;
 | |
| 	unsigned long nr_reclaimed = 0;
 | |
| 	unsigned long nr_taken;
 | |
| 	unsigned long nr_active;
 | |
| 	unsigned long nr_anon;
 | |
| 	unsigned long nr_file;
 | |
| 
 | |
| 	while (unlikely(too_many_isolated(zone, file, sc))) {
 | |
| 		congestion_wait(BLK_RW_ASYNC, HZ/10);
 | |
| 
 | |
| 		/* We are about to die and free our memory. Return now. */
 | |
| 		if (fatal_signal_pending(current))
 | |
| 			return SWAP_CLUSTER_MAX;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	lru_add_drain();
 | |
| 	spin_lock_irq(&zone->lru_lock);
 | |
| 
 | |
| 	if (scanning_global_lru(sc)) {
 | |
| 		nr_taken = isolate_pages_global(nr_to_scan,
 | |
| 			&page_list, &nr_scanned, sc->order,
 | |
| 			sc->lumpy_reclaim_mode ?
 | |
| 				ISOLATE_BOTH : ISOLATE_INACTIVE,
 | |
| 			zone, 0, file);
 | |
| 		zone->pages_scanned += nr_scanned;
 | |
| 		if (current_is_kswapd())
 | |
| 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
 | |
| 					       nr_scanned);
 | |
| 		else
 | |
| 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
 | |
| 					       nr_scanned);
 | |
| 	} else {
 | |
| 		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
 | |
| 			&page_list, &nr_scanned, sc->order,
 | |
| 			sc->lumpy_reclaim_mode ?
 | |
| 				ISOLATE_BOTH : ISOLATE_INACTIVE,
 | |
| 			zone, sc->mem_cgroup,
 | |
| 			0, file);
 | |
| 		/*
 | |
| 		 * mem_cgroup_isolate_pages() keeps track of
 | |
| 		 * scanned pages on its own.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	if (nr_taken == 0) {
 | |
| 		spin_unlock_irq(&zone->lru_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
 | |
| 
 | |
| 	spin_unlock_irq(&zone->lru_lock);
 | |
| 
 | |
| 	nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
 | |
| 
 | |
| 	/* Check if we should syncronously wait for writeback */
 | |
| 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
 | |
| 		congestion_wait(BLK_RW_ASYNC, HZ/10);
 | |
| 
 | |
| 		/*
 | |
| 		 * The attempt at page out may have made some
 | |
| 		 * of the pages active, mark them inactive again.
 | |
| 		 */
 | |
| 		nr_active = clear_active_flags(&page_list, NULL);
 | |
| 		count_vm_events(PGDEACTIVATE, nr_active);
 | |
| 
 | |
| 		nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
 | |
| 	}
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	if (current_is_kswapd())
 | |
| 		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
 | |
| 	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
 | |
| 
 | |
| 	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
 | |
| 	return nr_reclaimed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This moves pages from the active list to the inactive list.
 | |
|  *
 | |
|  * We move them the other way if the page is referenced by one or more
 | |
|  * processes, from rmap.
 | |
|  *
 | |
|  * If the pages are mostly unmapped, the processing is fast and it is
 | |
|  * appropriate to hold zone->lru_lock across the whole operation.  But if
 | |
|  * the pages are mapped, the processing is slow (page_referenced()) so we
 | |
|  * should drop zone->lru_lock around each page.  It's impossible to balance
 | |
|  * this, so instead we remove the pages from the LRU while processing them.
 | |
|  * It is safe to rely on PG_active against the non-LRU pages in here because
 | |
|  * nobody will play with that bit on a non-LRU page.
 | |
|  *
 | |
|  * The downside is that we have to touch page->_count against each page.
 | |
|  * But we had to alter page->flags anyway.
 | |
|  */
 | |
| 
 | |
| static void move_active_pages_to_lru(struct zone *zone,
 | |
| 				     struct list_head *list,
 | |
| 				     enum lru_list lru)
 | |
| {
 | |
| 	unsigned long pgmoved = 0;
 | |
| 	struct pagevec pvec;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	pagevec_init(&pvec, 1);
 | |
| 
 | |
| 	while (!list_empty(list)) {
 | |
| 		page = lru_to_page(list);
 | |
| 
 | |
| 		VM_BUG_ON(PageLRU(page));
 | |
| 		SetPageLRU(page);
 | |
| 
 | |
| 		list_move(&page->lru, &zone->lru[lru].list);
 | |
| 		mem_cgroup_add_lru_list(page, lru);
 | |
| 		pgmoved++;
 | |
| 
 | |
| 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
 | |
| 			spin_unlock_irq(&zone->lru_lock);
 | |
| 			if (buffer_heads_over_limit)
 | |
| 				pagevec_strip(&pvec);
 | |
| 			__pagevec_release(&pvec);
 | |
| 			spin_lock_irq(&zone->lru_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
 | |
| 	if (!is_active_lru(lru))
 | |
| 		__count_vm_events(PGDEACTIVATE, pgmoved);
 | |
| }
 | |
| 
 | |
| static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
 | |
| 			struct scan_control *sc, int priority, int file)
 | |
| {
 | |
| 	unsigned long nr_taken;
 | |
| 	unsigned long pgscanned;
 | |
| 	unsigned long vm_flags;
 | |
| 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
 | |
| 	LIST_HEAD(l_active);
 | |
| 	LIST_HEAD(l_inactive);
 | |
| 	struct page *page;
 | |
| 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
 | |
| 	unsigned long nr_rotated = 0;
 | |
| 
 | |
| 	lru_add_drain();
 | |
| 	spin_lock_irq(&zone->lru_lock);
 | |
| 	if (scanning_global_lru(sc)) {
 | |
| 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
 | |
| 						&pgscanned, sc->order,
 | |
| 						ISOLATE_ACTIVE, zone,
 | |
| 						1, file);
 | |
| 		zone->pages_scanned += pgscanned;
 | |
| 	} else {
 | |
| 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
 | |
| 						&pgscanned, sc->order,
 | |
| 						ISOLATE_ACTIVE, zone,
 | |
| 						sc->mem_cgroup, 1, file);
 | |
| 		/*
 | |
| 		 * mem_cgroup_isolate_pages() keeps track of
 | |
| 		 * scanned pages on its own.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	reclaim_stat->recent_scanned[file] += nr_taken;
 | |
| 
 | |
| 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
 | |
| 	if (file)
 | |
| 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
 | |
| 	else
 | |
| 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
 | |
| 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
 | |
| 	spin_unlock_irq(&zone->lru_lock);
 | |
| 
 | |
| 	while (!list_empty(&l_hold)) {
 | |
| 		cond_resched();
 | |
| 		page = lru_to_page(&l_hold);
 | |
| 		list_del(&page->lru);
 | |
| 
 | |
| 		if (unlikely(!page_evictable(page, NULL))) {
 | |
| 			putback_lru_page(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
 | |
| 			nr_rotated++;
 | |
| 			/*
 | |
| 			 * Identify referenced, file-backed active pages and
 | |
| 			 * give them one more trip around the active list. So
 | |
| 			 * that executable code get better chances to stay in
 | |
| 			 * memory under moderate memory pressure.  Anon pages
 | |
| 			 * are not likely to be evicted by use-once streaming
 | |
| 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
 | |
| 			 * so we ignore them here.
 | |
| 			 */
 | |
| 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
 | |
| 				list_add(&page->lru, &l_active);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ClearPageActive(page);	/* we are de-activating */
 | |
| 		list_add(&page->lru, &l_inactive);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Move pages back to the lru list.
 | |
| 	 */
 | |
| 	spin_lock_irq(&zone->lru_lock);
 | |
| 	/*
 | |
| 	 * Count referenced pages from currently used mappings as rotated,
 | |
| 	 * even though only some of them are actually re-activated.  This
 | |
| 	 * helps balance scan pressure between file and anonymous pages in
 | |
| 	 * get_scan_ratio.
 | |
| 	 */
 | |
| 	reclaim_stat->recent_rotated[file] += nr_rotated;
 | |
| 
 | |
| 	move_active_pages_to_lru(zone, &l_active,
 | |
| 						LRU_ACTIVE + file * LRU_FILE);
 | |
| 	move_active_pages_to_lru(zone, &l_inactive,
 | |
| 						LRU_BASE   + file * LRU_FILE);
 | |
| 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
 | |
| 	spin_unlock_irq(&zone->lru_lock);
 | |
| }
 | |
| 
 | |
| static int inactive_anon_is_low_global(struct zone *zone)
 | |
| {
 | |
| 	unsigned long active, inactive;
 | |
| 
 | |
| 	active = zone_page_state(zone, NR_ACTIVE_ANON);
 | |
| 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
 | |
| 
 | |
| 	if (inactive * zone->inactive_ratio < active)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * inactive_anon_is_low - check if anonymous pages need to be deactivated
 | |
|  * @zone: zone to check
 | |
|  * @sc:   scan control of this context
 | |
|  *
 | |
|  * Returns true if the zone does not have enough inactive anon pages,
 | |
|  * meaning some active anon pages need to be deactivated.
 | |
|  */
 | |
| static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
 | |
| {
 | |
| 	int low;
 | |
| 
 | |
| 	if (scanning_global_lru(sc))
 | |
| 		low = inactive_anon_is_low_global(zone);
 | |
| 	else
 | |
| 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
 | |
| 	return low;
 | |
| }
 | |
| 
 | |
| static int inactive_file_is_low_global(struct zone *zone)
 | |
| {
 | |
| 	unsigned long active, inactive;
 | |
| 
 | |
| 	active = zone_page_state(zone, NR_ACTIVE_FILE);
 | |
| 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
 | |
| 
 | |
| 	return (active > inactive);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * inactive_file_is_low - check if file pages need to be deactivated
 | |
|  * @zone: zone to check
 | |
|  * @sc:   scan control of this context
 | |
|  *
 | |
|  * When the system is doing streaming IO, memory pressure here
 | |
|  * ensures that active file pages get deactivated, until more
 | |
|  * than half of the file pages are on the inactive list.
 | |
|  *
 | |
|  * Once we get to that situation, protect the system's working
 | |
|  * set from being evicted by disabling active file page aging.
 | |
|  *
 | |
|  * This uses a different ratio than the anonymous pages, because
 | |
|  * the page cache uses a use-once replacement algorithm.
 | |
|  */
 | |
| static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
 | |
| {
 | |
| 	int low;
 | |
| 
 | |
| 	if (scanning_global_lru(sc))
 | |
| 		low = inactive_file_is_low_global(zone);
 | |
| 	else
 | |
| 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
 | |
| 	return low;
 | |
| }
 | |
| 
 | |
| static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
 | |
| 				int file)
 | |
| {
 | |
| 	if (file)
 | |
| 		return inactive_file_is_low(zone, sc);
 | |
| 	else
 | |
| 		return inactive_anon_is_low(zone, sc);
 | |
| }
 | |
| 
 | |
| static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
 | |
| 	struct zone *zone, struct scan_control *sc, int priority)
 | |
| {
 | |
| 	int file = is_file_lru(lru);
 | |
| 
 | |
| 	if (is_active_lru(lru)) {
 | |
| 		if (inactive_list_is_low(zone, sc, file))
 | |
| 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 | |
|  * until we collected @swap_cluster_max pages to scan.
 | |
|  */
 | |
| static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
 | |
| 				       unsigned long *nr_saved_scan)
 | |
| {
 | |
| 	unsigned long nr;
 | |
| 
 | |
| 	*nr_saved_scan += nr_to_scan;
 | |
| 	nr = *nr_saved_scan;
 | |
| 
 | |
| 	if (nr >= SWAP_CLUSTER_MAX)
 | |
| 		*nr_saved_scan = 0;
 | |
| 	else
 | |
| 		nr = 0;
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine how aggressively the anon and file LRU lists should be
 | |
|  * scanned.  The relative value of each set of LRU lists is determined
 | |
|  * by looking at the fraction of the pages scanned we did rotate back
 | |
|  * onto the active list instead of evict.
 | |
|  *
 | |
|  * nr[0] = anon pages to scan; nr[1] = file pages to scan
 | |
|  */
 | |
| static void get_scan_count(struct zone *zone, struct scan_control *sc,
 | |
| 					unsigned long *nr, int priority)
 | |
| {
 | |
| 	unsigned long anon, file, free;
 | |
| 	unsigned long anon_prio, file_prio;
 | |
| 	unsigned long ap, fp;
 | |
| 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
 | |
| 	u64 fraction[2], denominator;
 | |
| 	enum lru_list l;
 | |
| 	int noswap = 0;
 | |
| 
 | |
| 	/* If we have no swap space, do not bother scanning anon pages. */
 | |
| 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
 | |
| 		noswap = 1;
 | |
| 		fraction[0] = 0;
 | |
| 		fraction[1] = 1;
 | |
| 		denominator = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
 | |
| 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
 | |
| 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
 | |
| 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
 | |
| 
 | |
| 	if (scanning_global_lru(sc)) {
 | |
| 		free  = zone_page_state(zone, NR_FREE_PAGES);
 | |
| 		/* If we have very few page cache pages,
 | |
| 		   force-scan anon pages. */
 | |
| 		if (unlikely(file + free <= high_wmark_pages(zone))) {
 | |
| 			fraction[0] = 1;
 | |
| 			fraction[1] = 0;
 | |
| 			denominator = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * With swappiness at 100, anonymous and file have the same priority.
 | |
| 	 * This scanning priority is essentially the inverse of IO cost.
 | |
| 	 */
 | |
| 	anon_prio = sc->swappiness;
 | |
| 	file_prio = 200 - sc->swappiness;
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, so we have swap space and a fair amount of page cache
 | |
| 	 * pages.  We use the recently rotated / recently scanned
 | |
| 	 * ratios to determine how valuable each cache is.
 | |
| 	 *
 | |
| 	 * Because workloads change over time (and to avoid overflow)
 | |
| 	 * we keep these statistics as a floating average, which ends
 | |
| 	 * up weighing recent references more than old ones.
 | |
| 	 *
 | |
| 	 * anon in [0], file in [1]
 | |
| 	 */
 | |
| 	spin_lock_irq(&zone->lru_lock);
 | |
| 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
 | |
| 		reclaim_stat->recent_scanned[0] /= 2;
 | |
| 		reclaim_stat->recent_rotated[0] /= 2;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
 | |
| 		reclaim_stat->recent_scanned[1] /= 2;
 | |
| 		reclaim_stat->recent_rotated[1] /= 2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The amount of pressure on anon vs file pages is inversely
 | |
| 	 * proportional to the fraction of recently scanned pages on
 | |
| 	 * each list that were recently referenced and in active use.
 | |
| 	 */
 | |
| 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
 | |
| 	ap /= reclaim_stat->recent_rotated[0] + 1;
 | |
| 
 | |
| 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
 | |
| 	fp /= reclaim_stat->recent_rotated[1] + 1;
 | |
| 	spin_unlock_irq(&zone->lru_lock);
 | |
| 
 | |
| 	fraction[0] = ap;
 | |
| 	fraction[1] = fp;
 | |
| 	denominator = ap + fp + 1;
 | |
| out:
 | |
| 	for_each_evictable_lru(l) {
 | |
| 		int file = is_file_lru(l);
 | |
| 		unsigned long scan;
 | |
| 
 | |
| 		scan = zone_nr_lru_pages(zone, sc, l);
 | |
| 		if (priority || noswap) {
 | |
| 			scan >>= priority;
 | |
| 			scan = div64_u64(scan * fraction[file], denominator);
 | |
| 		}
 | |
| 		nr[l] = nr_scan_try_batch(scan,
 | |
| 					  &reclaim_stat->nr_saved_scan[l]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we need a large contiguous chunk of memory, or have
 | |
| 	 * trouble getting a small set of contiguous pages, we
 | |
| 	 * will reclaim both active and inactive pages.
 | |
| 	 */
 | |
| 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 | |
| 		sc->lumpy_reclaim_mode = 1;
 | |
| 	else if (sc->order && priority < DEF_PRIORITY - 2)
 | |
| 		sc->lumpy_reclaim_mode = 1;
 | |
| 	else
 | |
| 		sc->lumpy_reclaim_mode = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 | |
|  */
 | |
| static void shrink_zone(int priority, struct zone *zone,
 | |
| 				struct scan_control *sc)
 | |
| {
 | |
| 	unsigned long nr[NR_LRU_LISTS];
 | |
| 	unsigned long nr_to_scan;
 | |
| 	enum lru_list l;
 | |
| 	unsigned long nr_reclaimed = sc->nr_reclaimed;
 | |
| 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
 | |
| 
 | |
| 	get_scan_count(zone, sc, nr, priority);
 | |
| 
 | |
| 	set_lumpy_reclaim_mode(priority, sc);
 | |
| 
 | |
| 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
 | |
| 					nr[LRU_INACTIVE_FILE]) {
 | |
| 		for_each_evictable_lru(l) {
 | |
| 			if (nr[l]) {
 | |
| 				nr_to_scan = min_t(unsigned long,
 | |
| 						   nr[l], SWAP_CLUSTER_MAX);
 | |
| 				nr[l] -= nr_to_scan;
 | |
| 
 | |
| 				nr_reclaimed += shrink_list(l, nr_to_scan,
 | |
| 							    zone, sc, priority);
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * On large memory systems, scan >> priority can become
 | |
| 		 * really large. This is fine for the starting priority;
 | |
| 		 * we want to put equal scanning pressure on each zone.
 | |
| 		 * However, if the VM has a harder time of freeing pages,
 | |
| 		 * with multiple processes reclaiming pages, the total
 | |
| 		 * freeing target can get unreasonably large.
 | |
| 		 */
 | |
| 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	sc->nr_reclaimed = nr_reclaimed;
 | |
| 
 | |
| 	/*
 | |
| 	 * Even if we did not try to evict anon pages at all, we want to
 | |
| 	 * rebalance the anon lru active/inactive ratio.
 | |
| 	 */
 | |
| 	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
 | |
| 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
 | |
| 
 | |
| 	throttle_vm_writeout(sc->gfp_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the direct reclaim path, for page-allocating processes.  We only
 | |
|  * try to reclaim pages from zones which will satisfy the caller's allocation
 | |
|  * request.
 | |
|  *
 | |
|  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 | |
|  * Because:
 | |
|  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 | |
|  *    allocation or
 | |
|  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 | |
|  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 | |
|  *    zone defense algorithm.
 | |
|  *
 | |
|  * If a zone is deemed to be full of pinned pages then just give it a light
 | |
|  * scan then give up on it.
 | |
|  */
 | |
| static bool shrink_zones(int priority, struct zonelist *zonelist,
 | |
| 					struct scan_control *sc)
 | |
| {
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 	bool all_unreclaimable = true;
 | |
| 
 | |
| 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 | |
| 					gfp_zone(sc->gfp_mask), sc->nodemask) {
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Take care memory controller reclaiming has small influence
 | |
| 		 * to global LRU.
 | |
| 		 */
 | |
| 		if (scanning_global_lru(sc)) {
 | |
| 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 | |
| 				continue;
 | |
| 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
 | |
| 				continue;	/* Let kswapd poll it */
 | |
| 		}
 | |
| 
 | |
| 		shrink_zone(priority, zone, sc);
 | |
| 		all_unreclaimable = false;
 | |
| 	}
 | |
| 	return all_unreclaimable;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the main entry point to direct page reclaim.
 | |
|  *
 | |
|  * If a full scan of the inactive list fails to free enough memory then we
 | |
|  * are "out of memory" and something needs to be killed.
 | |
|  *
 | |
|  * If the caller is !__GFP_FS then the probability of a failure is reasonably
 | |
|  * high - the zone may be full of dirty or under-writeback pages, which this
 | |
|  * caller can't do much about.  We kick the writeback threads and take explicit
 | |
|  * naps in the hope that some of these pages can be written.  But if the
 | |
|  * allocating task holds filesystem locks which prevent writeout this might not
 | |
|  * work, and the allocation attempt will fail.
 | |
|  *
 | |
|  * returns:	0, if no pages reclaimed
 | |
|  * 		else, the number of pages reclaimed
 | |
|  */
 | |
| static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
 | |
| 					struct scan_control *sc)
 | |
| {
 | |
| 	int priority;
 | |
| 	bool all_unreclaimable;
 | |
| 	unsigned long total_scanned = 0;
 | |
| 	struct reclaim_state *reclaim_state = current->reclaim_state;
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 	unsigned long writeback_threshold;
 | |
| 
 | |
| 	get_mems_allowed();
 | |
| 	delayacct_freepages_start();
 | |
| 
 | |
| 	if (scanning_global_lru(sc))
 | |
| 		count_vm_event(ALLOCSTALL);
 | |
| 
 | |
| 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
 | |
| 		sc->nr_scanned = 0;
 | |
| 		if (!priority)
 | |
| 			disable_swap_token();
 | |
| 		all_unreclaimable = shrink_zones(priority, zonelist, sc);
 | |
| 		/*
 | |
| 		 * Don't shrink slabs when reclaiming memory from
 | |
| 		 * over limit cgroups
 | |
| 		 */
 | |
| 		if (scanning_global_lru(sc)) {
 | |
| 			unsigned long lru_pages = 0;
 | |
| 			for_each_zone_zonelist(zone, z, zonelist,
 | |
| 					gfp_zone(sc->gfp_mask)) {
 | |
| 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 | |
| 					continue;
 | |
| 
 | |
| 				lru_pages += zone_reclaimable_pages(zone);
 | |
| 			}
 | |
| 
 | |
| 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
 | |
| 			if (reclaim_state) {
 | |
| 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
 | |
| 				reclaim_state->reclaimed_slab = 0;
 | |
| 			}
 | |
| 		}
 | |
| 		total_scanned += sc->nr_scanned;
 | |
| 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * Try to write back as many pages as we just scanned.  This
 | |
| 		 * tends to cause slow streaming writers to write data to the
 | |
| 		 * disk smoothly, at the dirtying rate, which is nice.   But
 | |
| 		 * that's undesirable in laptop mode, where we *want* lumpy
 | |
| 		 * writeout.  So in laptop mode, write out the whole world.
 | |
| 		 */
 | |
| 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
 | |
| 		if (total_scanned > writeback_threshold) {
 | |
| 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
 | |
| 			sc->may_writepage = 1;
 | |
| 		}
 | |
| 
 | |
| 		/* Take a nap, wait for some writeback to complete */
 | |
| 		if (!sc->hibernation_mode && sc->nr_scanned &&
 | |
| 		    priority < DEF_PRIORITY - 2)
 | |
| 			congestion_wait(BLK_RW_ASYNC, HZ/10);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * Now that we've scanned all the zones at this priority level, note
 | |
| 	 * that level within the zone so that the next thread which performs
 | |
| 	 * scanning of this zone will immediately start out at this priority
 | |
| 	 * level.  This affects only the decision whether or not to bring
 | |
| 	 * mapped pages onto the inactive list.
 | |
| 	 */
 | |
| 	if (priority < 0)
 | |
| 		priority = 0;
 | |
| 
 | |
| 	delayacct_freepages_end();
 | |
| 	put_mems_allowed();
 | |
| 
 | |
| 	if (sc->nr_reclaimed)
 | |
| 		return sc->nr_reclaimed;
 | |
| 
 | |
| 	/* top priority shrink_zones still had more to do? don't OOM, then */
 | |
| 	if (scanning_global_lru(sc) && !all_unreclaimable)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
 | |
| 				gfp_t gfp_mask, nodemask_t *nodemask)
 | |
| {
 | |
| 	unsigned long nr_reclaimed;
 | |
| 	struct scan_control sc = {
 | |
| 		.gfp_mask = gfp_mask,
 | |
| 		.may_writepage = !laptop_mode,
 | |
| 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 | |
| 		.may_unmap = 1,
 | |
| 		.may_swap = 1,
 | |
| 		.swappiness = vm_swappiness,
 | |
| 		.order = order,
 | |
| 		.mem_cgroup = NULL,
 | |
| 		.nodemask = nodemask,
 | |
| 	};
 | |
| 
 | |
| 	trace_mm_vmscan_direct_reclaim_begin(order,
 | |
| 				sc.may_writepage,
 | |
| 				gfp_mask);
 | |
| 
 | |
| 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
 | |
| 
 | |
| 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 | |
| 
 | |
| 	return nr_reclaimed;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_MEM_RES_CTLR
 | |
| 
 | |
| unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
 | |
| 						gfp_t gfp_mask, bool noswap,
 | |
| 						unsigned int swappiness,
 | |
| 						struct zone *zone)
 | |
| {
 | |
| 	struct scan_control sc = {
 | |
| 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 | |
| 		.may_writepage = !laptop_mode,
 | |
| 		.may_unmap = 1,
 | |
| 		.may_swap = !noswap,
 | |
| 		.swappiness = swappiness,
 | |
| 		.order = 0,
 | |
| 		.mem_cgroup = mem,
 | |
| 	};
 | |
| 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
 | |
| 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
 | |
| 
 | |
| 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
 | |
| 						      sc.may_writepage,
 | |
| 						      sc.gfp_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE: Although we can get the priority field, using it
 | |
| 	 * here is not a good idea, since it limits the pages we can scan.
 | |
| 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
 | |
| 	 * will pick up pages from other mem cgroup's as well. We hack
 | |
| 	 * the priority and make it zero.
 | |
| 	 */
 | |
| 	shrink_zone(0, zone, &sc);
 | |
| 
 | |
| 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
 | |
| 
 | |
| 	return sc.nr_reclaimed;
 | |
| }
 | |
| 
 | |
| unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
 | |
| 					   gfp_t gfp_mask,
 | |
| 					   bool noswap,
 | |
| 					   unsigned int swappiness)
 | |
| {
 | |
| 	struct zonelist *zonelist;
 | |
| 	unsigned long nr_reclaimed;
 | |
| 	struct scan_control sc = {
 | |
| 		.may_writepage = !laptop_mode,
 | |
| 		.may_unmap = 1,
 | |
| 		.may_swap = !noswap,
 | |
| 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 | |
| 		.swappiness = swappiness,
 | |
| 		.order = 0,
 | |
| 		.mem_cgroup = mem_cont,
 | |
| 		.nodemask = NULL, /* we don't care the placement */
 | |
| 	};
 | |
| 
 | |
| 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
 | |
| 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
 | |
| 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
 | |
| 
 | |
| 	trace_mm_vmscan_memcg_reclaim_begin(0,
 | |
| 					    sc.may_writepage,
 | |
| 					    sc.gfp_mask);
 | |
| 
 | |
| 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
 | |
| 
 | |
| 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 | |
| 
 | |
| 	return nr_reclaimed;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* is kswapd sleeping prematurely? */
 | |
| static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
 | |
| 	if (remaining)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* If after HZ/10, a zone is below the high mark, it's premature */
 | |
| 	for (i = 0; i < pgdat->nr_zones; i++) {
 | |
| 		struct zone *zone = pgdat->node_zones + i;
 | |
| 
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		if (zone->all_unreclaimable)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
 | |
| 								0, 0))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For kswapd, balance_pgdat() will work across all this node's zones until
 | |
|  * they are all at high_wmark_pages(zone).
 | |
|  *
 | |
|  * Returns the number of pages which were actually freed.
 | |
|  *
 | |
|  * There is special handling here for zones which are full of pinned pages.
 | |
|  * This can happen if the pages are all mlocked, or if they are all used by
 | |
|  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 | |
|  * What we do is to detect the case where all pages in the zone have been
 | |
|  * scanned twice and there has been zero successful reclaim.  Mark the zone as
 | |
|  * dead and from now on, only perform a short scan.  Basically we're polling
 | |
|  * the zone for when the problem goes away.
 | |
|  *
 | |
|  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 | |
|  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 | |
|  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 | |
|  * lower zones regardless of the number of free pages in the lower zones. This
 | |
|  * interoperates with the page allocator fallback scheme to ensure that aging
 | |
|  * of pages is balanced across the zones.
 | |
|  */
 | |
| static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
 | |
| {
 | |
| 	int all_zones_ok;
 | |
| 	int priority;
 | |
| 	int i;
 | |
| 	unsigned long total_scanned;
 | |
| 	struct reclaim_state *reclaim_state = current->reclaim_state;
 | |
| 	struct scan_control sc = {
 | |
| 		.gfp_mask = GFP_KERNEL,
 | |
| 		.may_unmap = 1,
 | |
| 		.may_swap = 1,
 | |
| 		/*
 | |
| 		 * kswapd doesn't want to be bailed out while reclaim. because
 | |
| 		 * we want to put equal scanning pressure on each zone.
 | |
| 		 */
 | |
| 		.nr_to_reclaim = ULONG_MAX,
 | |
| 		.swappiness = vm_swappiness,
 | |
| 		.order = order,
 | |
| 		.mem_cgroup = NULL,
 | |
| 	};
 | |
| loop_again:
 | |
| 	total_scanned = 0;
 | |
| 	sc.nr_reclaimed = 0;
 | |
| 	sc.may_writepage = !laptop_mode;
 | |
| 	count_vm_event(PAGEOUTRUN);
 | |
| 
 | |
| 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
 | |
| 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
 | |
| 		unsigned long lru_pages = 0;
 | |
| 		int has_under_min_watermark_zone = 0;
 | |
| 
 | |
| 		/* The swap token gets in the way of swapout... */
 | |
| 		if (!priority)
 | |
| 			disable_swap_token();
 | |
| 
 | |
| 		all_zones_ok = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Scan in the highmem->dma direction for the highest
 | |
| 		 * zone which needs scanning
 | |
| 		 */
 | |
| 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
 | |
| 			struct zone *zone = pgdat->node_zones + i;
 | |
| 
 | |
| 			if (!populated_zone(zone))
 | |
| 				continue;
 | |
| 
 | |
| 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * Do some background aging of the anon list, to give
 | |
| 			 * pages a chance to be referenced before reclaiming.
 | |
| 			 */
 | |
| 			if (inactive_anon_is_low(zone, &sc))
 | |
| 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
 | |
| 							&sc, priority, 0);
 | |
| 
 | |
| 			if (!zone_watermark_ok(zone, order,
 | |
| 					high_wmark_pages(zone), 0, 0)) {
 | |
| 				end_zone = i;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (i < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		for (i = 0; i <= end_zone; i++) {
 | |
| 			struct zone *zone = pgdat->node_zones + i;
 | |
| 
 | |
| 			lru_pages += zone_reclaimable_pages(zone);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now scan the zone in the dma->highmem direction, stopping
 | |
| 		 * at the last zone which needs scanning.
 | |
| 		 *
 | |
| 		 * We do this because the page allocator works in the opposite
 | |
| 		 * direction.  This prevents the page allocator from allocating
 | |
| 		 * pages behind kswapd's direction of progress, which would
 | |
| 		 * cause too much scanning of the lower zones.
 | |
| 		 */
 | |
| 		for (i = 0; i <= end_zone; i++) {
 | |
| 			struct zone *zone = pgdat->node_zones + i;
 | |
| 			int nr_slab;
 | |
| 
 | |
| 			if (!populated_zone(zone))
 | |
| 				continue;
 | |
| 
 | |
| 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
 | |
| 				continue;
 | |
| 
 | |
| 			sc.nr_scanned = 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * Call soft limit reclaim before calling shrink_zone.
 | |
| 			 * For now we ignore the return value
 | |
| 			 */
 | |
| 			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
 | |
| 
 | |
| 			/*
 | |
| 			 * We put equal pressure on every zone, unless one
 | |
| 			 * zone has way too many pages free already.
 | |
| 			 */
 | |
| 			if (!zone_watermark_ok(zone, order,
 | |
| 					8*high_wmark_pages(zone), end_zone, 0))
 | |
| 				shrink_zone(priority, zone, &sc);
 | |
| 			reclaim_state->reclaimed_slab = 0;
 | |
| 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
 | |
| 						lru_pages);
 | |
| 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
 | |
| 			total_scanned += sc.nr_scanned;
 | |
| 			if (zone->all_unreclaimable)
 | |
| 				continue;
 | |
| 			if (nr_slab == 0 &&
 | |
| 			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
 | |
| 				zone->all_unreclaimable = 1;
 | |
| 			/*
 | |
| 			 * If we've done a decent amount of scanning and
 | |
| 			 * the reclaim ratio is low, start doing writepage
 | |
| 			 * even in laptop mode
 | |
| 			 */
 | |
| 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
 | |
| 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
 | |
| 				sc.may_writepage = 1;
 | |
| 
 | |
| 			if (!zone_watermark_ok(zone, order,
 | |
| 					high_wmark_pages(zone), end_zone, 0)) {
 | |
| 				all_zones_ok = 0;
 | |
| 				/*
 | |
| 				 * We are still under min water mark.  This
 | |
| 				 * means that we have a GFP_ATOMIC allocation
 | |
| 				 * failure risk. Hurry up!
 | |
| 				 */
 | |
| 				if (!zone_watermark_ok(zone, order,
 | |
| 					    min_wmark_pages(zone), end_zone, 0))
 | |
| 					has_under_min_watermark_zone = 1;
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 		if (all_zones_ok)
 | |
| 			break;		/* kswapd: all done */
 | |
| 		/*
 | |
| 		 * OK, kswapd is getting into trouble.  Take a nap, then take
 | |
| 		 * another pass across the zones.
 | |
| 		 */
 | |
| 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
 | |
| 			if (has_under_min_watermark_zone)
 | |
| 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
 | |
| 			else
 | |
| 				congestion_wait(BLK_RW_ASYNC, HZ/10);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We do this so kswapd doesn't build up large priorities for
 | |
| 		 * example when it is freeing in parallel with allocators. It
 | |
| 		 * matches the direct reclaim path behaviour in terms of impact
 | |
| 		 * on zone->*_priority.
 | |
| 		 */
 | |
| 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	if (!all_zones_ok) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		try_to_freeze();
 | |
| 
 | |
| 		/*
 | |
| 		 * Fragmentation may mean that the system cannot be
 | |
| 		 * rebalanced for high-order allocations in all zones.
 | |
| 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
 | |
| 		 * it means the zones have been fully scanned and are still
 | |
| 		 * not balanced. For high-order allocations, there is
 | |
| 		 * little point trying all over again as kswapd may
 | |
| 		 * infinite loop.
 | |
| 		 *
 | |
| 		 * Instead, recheck all watermarks at order-0 as they
 | |
| 		 * are the most important. If watermarks are ok, kswapd will go
 | |
| 		 * back to sleep. High-order users can still perform direct
 | |
| 		 * reclaim if they wish.
 | |
| 		 */
 | |
| 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
 | |
| 			order = sc.order = 0;
 | |
| 
 | |
| 		goto loop_again;
 | |
| 	}
 | |
| 
 | |
| 	return sc.nr_reclaimed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The background pageout daemon, started as a kernel thread
 | |
|  * from the init process.
 | |
|  *
 | |
|  * This basically trickles out pages so that we have _some_
 | |
|  * free memory available even if there is no other activity
 | |
|  * that frees anything up. This is needed for things like routing
 | |
|  * etc, where we otherwise might have all activity going on in
 | |
|  * asynchronous contexts that cannot page things out.
 | |
|  *
 | |
|  * If there are applications that are active memory-allocators
 | |
|  * (most normal use), this basically shouldn't matter.
 | |
|  */
 | |
| static int kswapd(void *p)
 | |
| {
 | |
| 	unsigned long order;
 | |
| 	pg_data_t *pgdat = (pg_data_t*)p;
 | |
| 	struct task_struct *tsk = current;
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	struct reclaim_state reclaim_state = {
 | |
| 		.reclaimed_slab = 0,
 | |
| 	};
 | |
| 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
 | |
| 
 | |
| 	lockdep_set_current_reclaim_state(GFP_KERNEL);
 | |
| 
 | |
| 	if (!cpumask_empty(cpumask))
 | |
| 		set_cpus_allowed_ptr(tsk, cpumask);
 | |
| 	current->reclaim_state = &reclaim_state;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tell the memory management that we're a "memory allocator",
 | |
| 	 * and that if we need more memory we should get access to it
 | |
| 	 * regardless (see "__alloc_pages()"). "kswapd" should
 | |
| 	 * never get caught in the normal page freeing logic.
 | |
| 	 *
 | |
| 	 * (Kswapd normally doesn't need memory anyway, but sometimes
 | |
| 	 * you need a small amount of memory in order to be able to
 | |
| 	 * page out something else, and this flag essentially protects
 | |
| 	 * us from recursively trying to free more memory as we're
 | |
| 	 * trying to free the first piece of memory in the first place).
 | |
| 	 */
 | |
| 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
 | |
| 	set_freezable();
 | |
| 
 | |
| 	order = 0;
 | |
| 	for ( ; ; ) {
 | |
| 		unsigned long new_order;
 | |
| 		int ret;
 | |
| 
 | |
| 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
 | |
| 		new_order = pgdat->kswapd_max_order;
 | |
| 		pgdat->kswapd_max_order = 0;
 | |
| 		if (order < new_order) {
 | |
| 			/*
 | |
| 			 * Don't sleep if someone wants a larger 'order'
 | |
| 			 * allocation
 | |
| 			 */
 | |
| 			order = new_order;
 | |
| 		} else {
 | |
| 			if (!freezing(current) && !kthread_should_stop()) {
 | |
| 				long remaining = 0;
 | |
| 
 | |
| 				/* Try to sleep for a short interval */
 | |
| 				if (!sleeping_prematurely(pgdat, order, remaining)) {
 | |
| 					remaining = schedule_timeout(HZ/10);
 | |
| 					finish_wait(&pgdat->kswapd_wait, &wait);
 | |
| 					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * After a short sleep, check if it was a
 | |
| 				 * premature sleep. If not, then go fully
 | |
| 				 * to sleep until explicitly woken up
 | |
| 				 */
 | |
| 				if (!sleeping_prematurely(pgdat, order, remaining)) {
 | |
| 					trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
 | |
| 					schedule();
 | |
| 				} else {
 | |
| 					if (remaining)
 | |
| 						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
 | |
| 					else
 | |
| 						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			order = pgdat->kswapd_max_order;
 | |
| 		}
 | |
| 		finish_wait(&pgdat->kswapd_wait, &wait);
 | |
| 
 | |
| 		ret = try_to_freeze();
 | |
| 		if (kthread_should_stop())
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * We can speed up thawing tasks if we don't call balance_pgdat
 | |
| 		 * after returning from the refrigerator
 | |
| 		 */
 | |
| 		if (!ret) {
 | |
| 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
 | |
| 			balance_pgdat(pgdat, order);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A zone is low on free memory, so wake its kswapd task to service it.
 | |
|  */
 | |
| void wakeup_kswapd(struct zone *zone, int order)
 | |
| {
 | |
| 	pg_data_t *pgdat;
 | |
| 
 | |
| 	if (!populated_zone(zone))
 | |
| 		return;
 | |
| 
 | |
| 	pgdat = zone->zone_pgdat;
 | |
| 	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
 | |
| 		return;
 | |
| 	if (pgdat->kswapd_max_order < order)
 | |
| 		pgdat->kswapd_max_order = order;
 | |
| 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
 | |
| 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 | |
| 		return;
 | |
| 	if (!waitqueue_active(&pgdat->kswapd_wait))
 | |
| 		return;
 | |
| 	wake_up_interruptible(&pgdat->kswapd_wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The reclaimable count would be mostly accurate.
 | |
|  * The less reclaimable pages may be
 | |
|  * - mlocked pages, which will be moved to unevictable list when encountered
 | |
|  * - mapped pages, which may require several travels to be reclaimed
 | |
|  * - dirty pages, which is not "instantly" reclaimable
 | |
|  */
 | |
| unsigned long global_reclaimable_pages(void)
 | |
| {
 | |
| 	int nr;
 | |
| 
 | |
| 	nr = global_page_state(NR_ACTIVE_FILE) +
 | |
| 	     global_page_state(NR_INACTIVE_FILE);
 | |
| 
 | |
| 	if (nr_swap_pages > 0)
 | |
| 		nr += global_page_state(NR_ACTIVE_ANON) +
 | |
| 		      global_page_state(NR_INACTIVE_ANON);
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| unsigned long zone_reclaimable_pages(struct zone *zone)
 | |
| {
 | |
| 	int nr;
 | |
| 
 | |
| 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
 | |
| 	     zone_page_state(zone, NR_INACTIVE_FILE);
 | |
| 
 | |
| 	if (nr_swap_pages > 0)
 | |
| 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
 | |
| 		      zone_page_state(zone, NR_INACTIVE_ANON);
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| /*
 | |
|  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
 | |
|  * freed pages.
 | |
|  *
 | |
|  * Rather than trying to age LRUs the aim is to preserve the overall
 | |
|  * LRU order by reclaiming preferentially
 | |
|  * inactive > active > active referenced > active mapped
 | |
|  */
 | |
| unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
 | |
| {
 | |
| 	struct reclaim_state reclaim_state;
 | |
| 	struct scan_control sc = {
 | |
| 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
 | |
| 		.may_swap = 1,
 | |
| 		.may_unmap = 1,
 | |
| 		.may_writepage = 1,
 | |
| 		.nr_to_reclaim = nr_to_reclaim,
 | |
| 		.hibernation_mode = 1,
 | |
| 		.swappiness = vm_swappiness,
 | |
| 		.order = 0,
 | |
| 	};
 | |
| 	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 | |
| 	struct task_struct *p = current;
 | |
| 	unsigned long nr_reclaimed;
 | |
| 
 | |
| 	p->flags |= PF_MEMALLOC;
 | |
| 	lockdep_set_current_reclaim_state(sc.gfp_mask);
 | |
| 	reclaim_state.reclaimed_slab = 0;
 | |
| 	p->reclaim_state = &reclaim_state;
 | |
| 
 | |
| 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
 | |
| 
 | |
| 	p->reclaim_state = NULL;
 | |
| 	lockdep_clear_current_reclaim_state();
 | |
| 	p->flags &= ~PF_MEMALLOC;
 | |
| 
 | |
| 	return nr_reclaimed;
 | |
| }
 | |
| #endif /* CONFIG_HIBERNATION */
 | |
| 
 | |
| /* It's optimal to keep kswapds on the same CPUs as their memory, but
 | |
|    not required for correctness.  So if the last cpu in a node goes
 | |
|    away, we get changed to run anywhere: as the first one comes back,
 | |
|    restore their cpu bindings. */
 | |
| static int __devinit cpu_callback(struct notifier_block *nfb,
 | |
| 				  unsigned long action, void *hcpu)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
 | |
| 		for_each_node_state(nid, N_HIGH_MEMORY) {
 | |
| 			pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 			const struct cpumask *mask;
 | |
| 
 | |
| 			mask = cpumask_of_node(pgdat->node_id);
 | |
| 
 | |
| 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
 | |
| 				/* One of our CPUs online: restore mask */
 | |
| 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
 | |
| 		}
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This kswapd start function will be called by init and node-hot-add.
 | |
|  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 | |
|  */
 | |
| int kswapd_run(int nid)
 | |
| {
 | |
| 	pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (pgdat->kswapd)
 | |
| 		return 0;
 | |
| 
 | |
| 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
 | |
| 	if (IS_ERR(pgdat->kswapd)) {
 | |
| 		/* failure at boot is fatal */
 | |
| 		BUG_ON(system_state == SYSTEM_BOOTING);
 | |
| 		printk("Failed to start kswapd on node %d\n",nid);
 | |
| 		ret = -1;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called by memory hotplug when all memory in a node is offlined.
 | |
|  */
 | |
| void kswapd_stop(int nid)
 | |
| {
 | |
| 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
 | |
| 
 | |
| 	if (kswapd)
 | |
| 		kthread_stop(kswapd);
 | |
| }
 | |
| 
 | |
| static int __init kswapd_init(void)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	swap_setup();
 | |
| 	for_each_node_state(nid, N_HIGH_MEMORY)
 | |
|  		kswapd_run(nid);
 | |
| 	hotcpu_notifier(cpu_callback, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| module_init(kswapd_init)
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Zone reclaim mode
 | |
|  *
 | |
|  * If non-zero call zone_reclaim when the number of free pages falls below
 | |
|  * the watermarks.
 | |
|  */
 | |
| int zone_reclaim_mode __read_mostly;
 | |
| 
 | |
| #define RECLAIM_OFF 0
 | |
| #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
 | |
| #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
 | |
| #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
 | |
| 
 | |
| /*
 | |
|  * Priority for ZONE_RECLAIM. This determines the fraction of pages
 | |
|  * of a node considered for each zone_reclaim. 4 scans 1/16th of
 | |
|  * a zone.
 | |
|  */
 | |
| #define ZONE_RECLAIM_PRIORITY 4
 | |
| 
 | |
| /*
 | |
|  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 | |
|  * occur.
 | |
|  */
 | |
| int sysctl_min_unmapped_ratio = 1;
 | |
| 
 | |
| /*
 | |
|  * If the number of slab pages in a zone grows beyond this percentage then
 | |
|  * slab reclaim needs to occur.
 | |
|  */
 | |
| int sysctl_min_slab_ratio = 5;
 | |
| 
 | |
| static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
 | |
| {
 | |
| 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
 | |
| 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
 | |
| 		zone_page_state(zone, NR_ACTIVE_FILE);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's possible for there to be more file mapped pages than
 | |
| 	 * accounted for by the pages on the file LRU lists because
 | |
| 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
 | |
| 	 */
 | |
| 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
 | |
| }
 | |
| 
 | |
| /* Work out how many page cache pages we can reclaim in this reclaim_mode */
 | |
| static long zone_pagecache_reclaimable(struct zone *zone)
 | |
| {
 | |
| 	long nr_pagecache_reclaimable;
 | |
| 	long delta = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If RECLAIM_SWAP is set, then all file pages are considered
 | |
| 	 * potentially reclaimable. Otherwise, we have to worry about
 | |
| 	 * pages like swapcache and zone_unmapped_file_pages() provides
 | |
| 	 * a better estimate
 | |
| 	 */
 | |
| 	if (zone_reclaim_mode & RECLAIM_SWAP)
 | |
| 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
 | |
| 	else
 | |
| 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
 | |
| 
 | |
| 	/* If we can't clean pages, remove dirty pages from consideration */
 | |
| 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
 | |
| 		delta += zone_page_state(zone, NR_FILE_DIRTY);
 | |
| 
 | |
| 	/* Watch for any possible underflows due to delta */
 | |
| 	if (unlikely(delta > nr_pagecache_reclaimable))
 | |
| 		delta = nr_pagecache_reclaimable;
 | |
| 
 | |
| 	return nr_pagecache_reclaimable - delta;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to free up some pages from this zone through reclaim.
 | |
|  */
 | |
| static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	/* Minimum pages needed in order to stay on node */
 | |
| 	const unsigned long nr_pages = 1 << order;
 | |
| 	struct task_struct *p = current;
 | |
| 	struct reclaim_state reclaim_state;
 | |
| 	int priority;
 | |
| 	struct scan_control sc = {
 | |
| 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
 | |
| 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
 | |
| 		.may_swap = 1,
 | |
| 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
 | |
| 				       SWAP_CLUSTER_MAX),
 | |
| 		.gfp_mask = gfp_mask,
 | |
| 		.swappiness = vm_swappiness,
 | |
| 		.order = order,
 | |
| 	};
 | |
| 	unsigned long nr_slab_pages0, nr_slab_pages1;
 | |
| 
 | |
| 	cond_resched();
 | |
| 	/*
 | |
| 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
 | |
| 	 * and we also need to be able to write out pages for RECLAIM_WRITE
 | |
| 	 * and RECLAIM_SWAP.
 | |
| 	 */
 | |
| 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
 | |
| 	lockdep_set_current_reclaim_state(gfp_mask);
 | |
| 	reclaim_state.reclaimed_slab = 0;
 | |
| 	p->reclaim_state = &reclaim_state;
 | |
| 
 | |
| 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
 | |
| 		/*
 | |
| 		 * Free memory by calling shrink zone with increasing
 | |
| 		 * priorities until we have enough memory freed.
 | |
| 		 */
 | |
| 		priority = ZONE_RECLAIM_PRIORITY;
 | |
| 		do {
 | |
| 			shrink_zone(priority, zone, &sc);
 | |
| 			priority--;
 | |
| 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
 | |
| 	}
 | |
| 
 | |
| 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
 | |
| 	if (nr_slab_pages0 > zone->min_slab_pages) {
 | |
| 		/*
 | |
| 		 * shrink_slab() does not currently allow us to determine how
 | |
| 		 * many pages were freed in this zone. So we take the current
 | |
| 		 * number of slab pages and shake the slab until it is reduced
 | |
| 		 * by the same nr_pages that we used for reclaiming unmapped
 | |
| 		 * pages.
 | |
| 		 *
 | |
| 		 * Note that shrink_slab will free memory on all zones and may
 | |
| 		 * take a long time.
 | |
| 		 */
 | |
| 		for (;;) {
 | |
| 			unsigned long lru_pages = zone_reclaimable_pages(zone);
 | |
| 
 | |
| 			/* No reclaimable slab or very low memory pressure */
 | |
| 			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
 | |
| 				break;
 | |
| 
 | |
| 			/* Freed enough memory */
 | |
| 			nr_slab_pages1 = zone_page_state(zone,
 | |
| 							NR_SLAB_RECLAIMABLE);
 | |
| 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Update nr_reclaimed by the number of slab pages we
 | |
| 		 * reclaimed from this zone.
 | |
| 		 */
 | |
| 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
 | |
| 		if (nr_slab_pages1 < nr_slab_pages0)
 | |
| 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
 | |
| 	}
 | |
| 
 | |
| 	p->reclaim_state = NULL;
 | |
| 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
 | |
| 	lockdep_clear_current_reclaim_state();
 | |
| 	return sc.nr_reclaimed >= nr_pages;
 | |
| }
 | |
| 
 | |
| int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
 | |
| {
 | |
| 	int node_id;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Zone reclaim reclaims unmapped file backed pages and
 | |
| 	 * slab pages if we are over the defined limits.
 | |
| 	 *
 | |
| 	 * A small portion of unmapped file backed pages is needed for
 | |
| 	 * file I/O otherwise pages read by file I/O will be immediately
 | |
| 	 * thrown out if the zone is overallocated. So we do not reclaim
 | |
| 	 * if less than a specified percentage of the zone is used by
 | |
| 	 * unmapped file backed pages.
 | |
| 	 */
 | |
| 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
 | |
| 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
 | |
| 		return ZONE_RECLAIM_FULL;
 | |
| 
 | |
| 	if (zone->all_unreclaimable)
 | |
| 		return ZONE_RECLAIM_FULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not scan if the allocation should not be delayed.
 | |
| 	 */
 | |
| 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
 | |
| 		return ZONE_RECLAIM_NOSCAN;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only run zone reclaim on the local zone or on zones that do not
 | |
| 	 * have associated processors. This will favor the local processor
 | |
| 	 * over remote processors and spread off node memory allocations
 | |
| 	 * as wide as possible.
 | |
| 	 */
 | |
| 	node_id = zone_to_nid(zone);
 | |
| 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
 | |
| 		return ZONE_RECLAIM_NOSCAN;
 | |
| 
 | |
| 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
 | |
| 		return ZONE_RECLAIM_NOSCAN;
 | |
| 
 | |
| 	ret = __zone_reclaim(zone, gfp_mask, order);
 | |
| 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * page_evictable - test whether a page is evictable
 | |
|  * @page: the page to test
 | |
|  * @vma: the VMA in which the page is or will be mapped, may be NULL
 | |
|  *
 | |
|  * Test whether page is evictable--i.e., should be placed on active/inactive
 | |
|  * lists vs unevictable list.  The vma argument is !NULL when called from the
 | |
|  * fault path to determine how to instantate a new page.
 | |
|  *
 | |
|  * Reasons page might not be evictable:
 | |
|  * (1) page's mapping marked unevictable
 | |
|  * (2) page is part of an mlocked VMA
 | |
|  *
 | |
|  */
 | |
| int page_evictable(struct page *page, struct vm_area_struct *vma)
 | |
| {
 | |
| 
 | |
| 	if (mapping_unevictable(page_mapping(page)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 | |
|  * @page: page to check evictability and move to appropriate lru list
 | |
|  * @zone: zone page is in
 | |
|  *
 | |
|  * Checks a page for evictability and moves the page to the appropriate
 | |
|  * zone lru list.
 | |
|  *
 | |
|  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 | |
|  * have PageUnevictable set.
 | |
|  */
 | |
| static void check_move_unevictable_page(struct page *page, struct zone *zone)
 | |
| {
 | |
| 	VM_BUG_ON(PageActive(page));
 | |
| 
 | |
| retry:
 | |
| 	ClearPageUnevictable(page);
 | |
| 	if (page_evictable(page, NULL)) {
 | |
| 		enum lru_list l = page_lru_base_type(page);
 | |
| 
 | |
| 		__dec_zone_state(zone, NR_UNEVICTABLE);
 | |
| 		list_move(&page->lru, &zone->lru[l].list);
 | |
| 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
 | |
| 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
 | |
| 		__count_vm_event(UNEVICTABLE_PGRESCUED);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * rotate unevictable list
 | |
| 		 */
 | |
| 		SetPageUnevictable(page);
 | |
| 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
 | |
| 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
 | |
| 		if (page_evictable(page, NULL))
 | |
| 			goto retry;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scan_mapping_unevictable_pages - scan an address space for evictable pages
 | |
|  * @mapping: struct address_space to scan for evictable pages
 | |
|  *
 | |
|  * Scan all pages in mapping.  Check unevictable pages for
 | |
|  * evictability and move them to the appropriate zone lru list.
 | |
|  */
 | |
| void scan_mapping_unevictable_pages(struct address_space *mapping)
 | |
| {
 | |
| 	pgoff_t next = 0;
 | |
| 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
 | |
| 			 PAGE_CACHE_SHIFT;
 | |
| 	struct zone *zone;
 | |
| 	struct pagevec pvec;
 | |
| 
 | |
| 	if (mapping->nrpages == 0)
 | |
| 		return;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	while (next < end &&
 | |
| 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 | |
| 		int i;
 | |
| 		int pg_scanned = 0;
 | |
| 
 | |
| 		zone = NULL;
 | |
| 
 | |
| 		for (i = 0; i < pagevec_count(&pvec); i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 			pgoff_t page_index = page->index;
 | |
| 			struct zone *pagezone = page_zone(page);
 | |
| 
 | |
| 			pg_scanned++;
 | |
| 			if (page_index > next)
 | |
| 				next = page_index;
 | |
| 			next++;
 | |
| 
 | |
| 			if (pagezone != zone) {
 | |
| 				if (zone)
 | |
| 					spin_unlock_irq(&zone->lru_lock);
 | |
| 				zone = pagezone;
 | |
| 				spin_lock_irq(&zone->lru_lock);
 | |
| 			}
 | |
| 
 | |
| 			if (PageLRU(page) && PageUnevictable(page))
 | |
| 				check_move_unevictable_page(page, zone);
 | |
| 		}
 | |
| 		if (zone)
 | |
| 			spin_unlock_irq(&zone->lru_lock);
 | |
| 		pagevec_release(&pvec);
 | |
| 
 | |
| 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scan_zone_unevictable_pages - check unevictable list for evictable pages
 | |
|  * @zone - zone of which to scan the unevictable list
 | |
|  *
 | |
|  * Scan @zone's unevictable LRU lists to check for pages that have become
 | |
|  * evictable.  Move those that have to @zone's inactive list where they
 | |
|  * become candidates for reclaim, unless shrink_inactive_zone() decides
 | |
|  * to reactivate them.  Pages that are still unevictable are rotated
 | |
|  * back onto @zone's unevictable list.
 | |
|  */
 | |
| #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
 | |
| static void scan_zone_unevictable_pages(struct zone *zone)
 | |
| {
 | |
| 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
 | |
| 	unsigned long scan;
 | |
| 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
 | |
| 
 | |
| 	while (nr_to_scan > 0) {
 | |
| 		unsigned long batch_size = min(nr_to_scan,
 | |
| 						SCAN_UNEVICTABLE_BATCH_SIZE);
 | |
| 
 | |
| 		spin_lock_irq(&zone->lru_lock);
 | |
| 		for (scan = 0;  scan < batch_size; scan++) {
 | |
| 			struct page *page = lru_to_page(l_unevictable);
 | |
| 
 | |
| 			if (!trylock_page(page))
 | |
| 				continue;
 | |
| 
 | |
| 			prefetchw_prev_lru_page(page, l_unevictable, flags);
 | |
| 
 | |
| 			if (likely(PageLRU(page) && PageUnevictable(page)))
 | |
| 				check_move_unevictable_page(page, zone);
 | |
| 
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		spin_unlock_irq(&zone->lru_lock);
 | |
| 
 | |
| 		nr_to_scan -= batch_size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 | |
|  *
 | |
|  * A really big hammer:  scan all zones' unevictable LRU lists to check for
 | |
|  * pages that have become evictable.  Move those back to the zones'
 | |
|  * inactive list where they become candidates for reclaim.
 | |
|  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 | |
|  * and we add swap to the system.  As such, it runs in the context of a task
 | |
|  * that has possibly/probably made some previously unevictable pages
 | |
|  * evictable.
 | |
|  */
 | |
| static void scan_all_zones_unevictable_pages(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	for_each_zone(zone) {
 | |
| 		scan_zone_unevictable_pages(zone);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 | |
|  * all nodes' unevictable lists for evictable pages
 | |
|  */
 | |
| unsigned long scan_unevictable_pages;
 | |
| 
 | |
| int scan_unevictable_handler(struct ctl_table *table, int write,
 | |
| 			   void __user *buffer,
 | |
| 			   size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
 | |
| 
 | |
| 	if (write && *(unsigned long *)table->data)
 | |
| 		scan_all_zones_unevictable_pages();
 | |
| 
 | |
| 	scan_unevictable_pages = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 | |
|  * a specified node's per zone unevictable lists for evictable pages.
 | |
|  */
 | |
| 
 | |
| static ssize_t read_scan_unevictable_node(struct sys_device *dev,
 | |
| 					  struct sysdev_attribute *attr,
 | |
| 					  char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "0\n");	/* always zero; should fit... */
 | |
| }
 | |
| 
 | |
| static ssize_t write_scan_unevictable_node(struct sys_device *dev,
 | |
| 					   struct sysdev_attribute *attr,
 | |
| 					const char *buf, size_t count)
 | |
| {
 | |
| 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
 | |
| 	struct zone *zone;
 | |
| 	unsigned long res;
 | |
| 	unsigned long req = strict_strtoul(buf, 10, &res);
 | |
| 
 | |
| 	if (!req)
 | |
| 		return 1;	/* zero is no-op */
 | |
| 
 | |
| 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 		scan_zone_unevictable_pages(zone);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
 | |
| 			read_scan_unevictable_node,
 | |
| 			write_scan_unevictable_node);
 | |
| 
 | |
| int scan_unevictable_register_node(struct node *node)
 | |
| {
 | |
| 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
 | |
| }
 | |
| 
 | |
| void scan_unevictable_unregister_node(struct node *node)
 | |
| {
 | |
| 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
 | |
| }
 | |
| 
 |