mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 2c27c65ed0
			
		
	
	
		2c27c65ed0
		
	
	
	
	
		
			
			Make sure we check the truncate constraints early on in ->setattr by adding those checks to inode_change_ok. Also clean up and document inode_change_ok to make this obvious. As a fallout we don't have to call inode_newsize_ok from simple_setsize and simplify it down to a truncate_setsize which doesn't return an error. This simplifies a lot of setattr implementations and means we use truncate_setsize almost everywhere. Get rid of fat_setsize now that it's trivial and mark ext2_setsize static to make the calling convention obvious. Keep the inode_newsize_ok in vmtruncate for now as all callers need an audit for its removal anyway. Note: setattr code in ecryptfs doesn't call inode_change_ok at all and needs a deeper audit, but that is left for later. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
		
			
				
	
	
		
			589 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			589 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * mm/truncate.c - code for taking down pages from address_spaces
 | |
|  *
 | |
|  * Copyright (C) 2002, Linus Torvalds
 | |
|  *
 | |
|  * 10Sep2002	Andrew Morton
 | |
|  *		Initial version.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| #include <linux/buffer_head.h>	/* grr. try_to_release_page,
 | |
| 				   do_invalidatepage */
 | |
| #include "internal.h"
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * do_invalidatepage - invalidate part or all of a page
 | |
|  * @page: the page which is affected
 | |
|  * @offset: the index of the truncation point
 | |
|  *
 | |
|  * do_invalidatepage() is called when all or part of the page has become
 | |
|  * invalidated by a truncate operation.
 | |
|  *
 | |
|  * do_invalidatepage() does not have to release all buffers, but it must
 | |
|  * ensure that no dirty buffer is left outside @offset and that no I/O
 | |
|  * is underway against any of the blocks which are outside the truncation
 | |
|  * point.  Because the caller is about to free (and possibly reuse) those
 | |
|  * blocks on-disk.
 | |
|  */
 | |
| void do_invalidatepage(struct page *page, unsigned long offset)
 | |
| {
 | |
| 	void (*invalidatepage)(struct page *, unsigned long);
 | |
| 	invalidatepage = page->mapping->a_ops->invalidatepage;
 | |
| #ifdef CONFIG_BLOCK
 | |
| 	if (!invalidatepage)
 | |
| 		invalidatepage = block_invalidatepage;
 | |
| #endif
 | |
| 	if (invalidatepage)
 | |
| 		(*invalidatepage)(page, offset);
 | |
| }
 | |
| 
 | |
| static inline void truncate_partial_page(struct page *page, unsigned partial)
 | |
| {
 | |
| 	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
 | |
| 	if (page_has_private(page))
 | |
| 		do_invalidatepage(page, partial);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This cancels just the dirty bit on the kernel page itself, it
 | |
|  * does NOT actually remove dirty bits on any mmap's that may be
 | |
|  * around. It also leaves the page tagged dirty, so any sync
 | |
|  * activity will still find it on the dirty lists, and in particular,
 | |
|  * clear_page_dirty_for_io() will still look at the dirty bits in
 | |
|  * the VM.
 | |
|  *
 | |
|  * Doing this should *normally* only ever be done when a page
 | |
|  * is truncated, and is not actually mapped anywhere at all. However,
 | |
|  * fs/buffer.c does this when it notices that somebody has cleaned
 | |
|  * out all the buffers on a page without actually doing it through
 | |
|  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
 | |
|  */
 | |
| void cancel_dirty_page(struct page *page, unsigned int account_size)
 | |
| {
 | |
| 	if (TestClearPageDirty(page)) {
 | |
| 		struct address_space *mapping = page->mapping;
 | |
| 		if (mapping && mapping_cap_account_dirty(mapping)) {
 | |
| 			dec_zone_page_state(page, NR_FILE_DIRTY);
 | |
| 			dec_bdi_stat(mapping->backing_dev_info,
 | |
| 					BDI_RECLAIMABLE);
 | |
| 			if (account_size)
 | |
| 				task_io_account_cancelled_write(account_size);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(cancel_dirty_page);
 | |
| 
 | |
| /*
 | |
|  * If truncate cannot remove the fs-private metadata from the page, the page
 | |
|  * becomes orphaned.  It will be left on the LRU and may even be mapped into
 | |
|  * user pagetables if we're racing with filemap_fault().
 | |
|  *
 | |
|  * We need to bale out if page->mapping is no longer equal to the original
 | |
|  * mapping.  This happens a) when the VM reclaimed the page while we waited on
 | |
|  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 | |
|  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 | |
|  */
 | |
| static int
 | |
| truncate_complete_page(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	if (page->mapping != mapping)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (page_has_private(page))
 | |
| 		do_invalidatepage(page, 0);
 | |
| 
 | |
| 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
 | |
| 
 | |
| 	clear_page_mlock(page);
 | |
| 	remove_from_page_cache(page);
 | |
| 	ClearPageMappedToDisk(page);
 | |
| 	page_cache_release(page);	/* pagecache ref */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is for invalidate_mapping_pages().  That function can be called at
 | |
|  * any time, and is not supposed to throw away dirty pages.  But pages can
 | |
|  * be marked dirty at any time too, so use remove_mapping which safely
 | |
|  * discards clean, unused pages.
 | |
|  *
 | |
|  * Returns non-zero if the page was successfully invalidated.
 | |
|  */
 | |
| static int
 | |
| invalidate_complete_page(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (page->mapping != mapping)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (page_has_private(page) && !try_to_release_page(page, 0))
 | |
| 		return 0;
 | |
| 
 | |
| 	clear_page_mlock(page);
 | |
| 	ret = remove_mapping(mapping, page);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int truncate_inode_page(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	if (page_mapped(page)) {
 | |
| 		unmap_mapping_range(mapping,
 | |
| 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
 | |
| 				   PAGE_CACHE_SIZE, 0);
 | |
| 	}
 | |
| 	return truncate_complete_page(mapping, page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to get rid of pages on hardware memory corruption.
 | |
|  */
 | |
| int generic_error_remove_page(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	if (!mapping)
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * Only punch for normal data pages for now.
 | |
| 	 * Handling other types like directories would need more auditing.
 | |
| 	 */
 | |
| 	if (!S_ISREG(mapping->host->i_mode))
 | |
| 		return -EIO;
 | |
| 	return truncate_inode_page(mapping, page);
 | |
| }
 | |
| EXPORT_SYMBOL(generic_error_remove_page);
 | |
| 
 | |
| /*
 | |
|  * Safely invalidate one page from its pagecache mapping.
 | |
|  * It only drops clean, unused pages. The page must be locked.
 | |
|  *
 | |
|  * Returns 1 if the page is successfully invalidated, otherwise 0.
 | |
|  */
 | |
| int invalidate_inode_page(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 	if (!mapping)
 | |
| 		return 0;
 | |
| 	if (PageDirty(page) || PageWriteback(page))
 | |
| 		return 0;
 | |
| 	if (page_mapped(page))
 | |
| 		return 0;
 | |
| 	return invalidate_complete_page(mapping, page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
 | |
|  * @mapping: mapping to truncate
 | |
|  * @lstart: offset from which to truncate
 | |
|  * @lend: offset to which to truncate
 | |
|  *
 | |
|  * Truncate the page cache, removing the pages that are between
 | |
|  * specified offsets (and zeroing out partial page
 | |
|  * (if lstart is not page aligned)).
 | |
|  *
 | |
|  * Truncate takes two passes - the first pass is nonblocking.  It will not
 | |
|  * block on page locks and it will not block on writeback.  The second pass
 | |
|  * will wait.  This is to prevent as much IO as possible in the affected region.
 | |
|  * The first pass will remove most pages, so the search cost of the second pass
 | |
|  * is low.
 | |
|  *
 | |
|  * When looking at page->index outside the page lock we need to be careful to
 | |
|  * copy it into a local to avoid races (it could change at any time).
 | |
|  *
 | |
|  * We pass down the cache-hot hint to the page freeing code.  Even if the
 | |
|  * mapping is large, it is probably the case that the final pages are the most
 | |
|  * recently touched, and freeing happens in ascending file offset order.
 | |
|  */
 | |
| void truncate_inode_pages_range(struct address_space *mapping,
 | |
| 				loff_t lstart, loff_t lend)
 | |
| {
 | |
| 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
 | |
| 	pgoff_t end;
 | |
| 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
 | |
| 	struct pagevec pvec;
 | |
| 	pgoff_t next;
 | |
| 	int i;
 | |
| 
 | |
| 	if (mapping->nrpages == 0)
 | |
| 		return;
 | |
| 
 | |
| 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
 | |
| 	end = (lend >> PAGE_CACHE_SHIFT);
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	next = start;
 | |
| 	while (next <= end &&
 | |
| 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 | |
| 		for (i = 0; i < pagevec_count(&pvec); i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 			pgoff_t page_index = page->index;
 | |
| 
 | |
| 			if (page_index > end) {
 | |
| 				next = page_index;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (page_index > next)
 | |
| 				next = page_index;
 | |
| 			next++;
 | |
| 			if (!trylock_page(page))
 | |
| 				continue;
 | |
| 			if (PageWriteback(page)) {
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 			truncate_inode_page(mapping, page);
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	if (partial) {
 | |
| 		struct page *page = find_lock_page(mapping, start - 1);
 | |
| 		if (page) {
 | |
| 			wait_on_page_writeback(page);
 | |
| 			truncate_partial_page(page, partial);
 | |
| 			unlock_page(page);
 | |
| 			page_cache_release(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	next = start;
 | |
| 	for ( ; ; ) {
 | |
| 		cond_resched();
 | |
| 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 | |
| 			if (next == start)
 | |
| 				break;
 | |
| 			next = start;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pvec.pages[0]->index > end) {
 | |
| 			pagevec_release(&pvec);
 | |
| 			break;
 | |
| 		}
 | |
| 		mem_cgroup_uncharge_start();
 | |
| 		for (i = 0; i < pagevec_count(&pvec); i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			if (page->index > end)
 | |
| 				break;
 | |
| 			lock_page(page);
 | |
| 			wait_on_page_writeback(page);
 | |
| 			truncate_inode_page(mapping, page);
 | |
| 			if (page->index > next)
 | |
| 				next = page->index;
 | |
| 			next++;
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		mem_cgroup_uncharge_end();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(truncate_inode_pages_range);
 | |
| 
 | |
| /**
 | |
|  * truncate_inode_pages - truncate *all* the pages from an offset
 | |
|  * @mapping: mapping to truncate
 | |
|  * @lstart: offset from which to truncate
 | |
|  *
 | |
|  * Called under (and serialised by) inode->i_mutex.
 | |
|  */
 | |
| void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 | |
| {
 | |
| 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 | |
| }
 | |
| EXPORT_SYMBOL(truncate_inode_pages);
 | |
| 
 | |
| /**
 | |
|  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 | |
|  * @mapping: the address_space which holds the pages to invalidate
 | |
|  * @start: the offset 'from' which to invalidate
 | |
|  * @end: the offset 'to' which to invalidate (inclusive)
 | |
|  *
 | |
|  * This function only removes the unlocked pages, if you want to
 | |
|  * remove all the pages of one inode, you must call truncate_inode_pages.
 | |
|  *
 | |
|  * invalidate_mapping_pages() will not block on IO activity. It will not
 | |
|  * invalidate pages which are dirty, locked, under writeback or mapped into
 | |
|  * pagetables.
 | |
|  */
 | |
| unsigned long invalidate_mapping_pages(struct address_space *mapping,
 | |
| 				       pgoff_t start, pgoff_t end)
 | |
| {
 | |
| 	struct pagevec pvec;
 | |
| 	pgoff_t next = start;
 | |
| 	unsigned long ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	while (next <= end &&
 | |
| 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 | |
| 		mem_cgroup_uncharge_start();
 | |
| 		for (i = 0; i < pagevec_count(&pvec); i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 			pgoff_t index;
 | |
| 			int lock_failed;
 | |
| 
 | |
| 			lock_failed = !trylock_page(page);
 | |
| 
 | |
| 			/*
 | |
| 			 * We really shouldn't be looking at the ->index of an
 | |
| 			 * unlocked page.  But we're not allowed to lock these
 | |
| 			 * pages.  So we rely upon nobody altering the ->index
 | |
| 			 * of this (pinned-by-us) page.
 | |
| 			 */
 | |
| 			index = page->index;
 | |
| 			if (index > next)
 | |
| 				next = index;
 | |
| 			next++;
 | |
| 			if (lock_failed)
 | |
| 				continue;
 | |
| 
 | |
| 			ret += invalidate_inode_page(page);
 | |
| 
 | |
| 			unlock_page(page);
 | |
| 			if (next > end)
 | |
| 				break;
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		mem_cgroup_uncharge_end();
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(invalidate_mapping_pages);
 | |
| 
 | |
| /*
 | |
|  * This is like invalidate_complete_page(), except it ignores the page's
 | |
|  * refcount.  We do this because invalidate_inode_pages2() needs stronger
 | |
|  * invalidation guarantees, and cannot afford to leave pages behind because
 | |
|  * shrink_page_list() has a temp ref on them, or because they're transiently
 | |
|  * sitting in the lru_cache_add() pagevecs.
 | |
|  */
 | |
| static int
 | |
| invalidate_complete_page2(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	if (page->mapping != mapping)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock_irq(&mapping->tree_lock);
 | |
| 	if (PageDirty(page))
 | |
| 		goto failed;
 | |
| 
 | |
| 	clear_page_mlock(page);
 | |
| 	BUG_ON(page_has_private(page));
 | |
| 	__remove_from_page_cache(page);
 | |
| 	spin_unlock_irq(&mapping->tree_lock);
 | |
| 	mem_cgroup_uncharge_cache_page(page);
 | |
| 	page_cache_release(page);	/* pagecache ref */
 | |
| 	return 1;
 | |
| failed:
 | |
| 	spin_unlock_irq(&mapping->tree_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_launder_page(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	if (!PageDirty(page))
 | |
| 		return 0;
 | |
| 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 | |
| 		return 0;
 | |
| 	return mapping->a_ops->launder_page(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * invalidate_inode_pages2_range - remove range of pages from an address_space
 | |
|  * @mapping: the address_space
 | |
|  * @start: the page offset 'from' which to invalidate
 | |
|  * @end: the page offset 'to' which to invalidate (inclusive)
 | |
|  *
 | |
|  * Any pages which are found to be mapped into pagetables are unmapped prior to
 | |
|  * invalidation.
 | |
|  *
 | |
|  * Returns -EBUSY if any pages could not be invalidated.
 | |
|  */
 | |
| int invalidate_inode_pages2_range(struct address_space *mapping,
 | |
| 				  pgoff_t start, pgoff_t end)
 | |
| {
 | |
| 	struct pagevec pvec;
 | |
| 	pgoff_t next;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 	int ret2 = 0;
 | |
| 	int did_range_unmap = 0;
 | |
| 	int wrapped = 0;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	next = start;
 | |
| 	while (next <= end && !wrapped &&
 | |
| 		pagevec_lookup(&pvec, mapping, next,
 | |
| 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 | |
| 		mem_cgroup_uncharge_start();
 | |
| 		for (i = 0; i < pagevec_count(&pvec); i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 			pgoff_t page_index;
 | |
| 
 | |
| 			lock_page(page);
 | |
| 			if (page->mapping != mapping) {
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 			page_index = page->index;
 | |
| 			next = page_index + 1;
 | |
| 			if (next == 0)
 | |
| 				wrapped = 1;
 | |
| 			if (page_index > end) {
 | |
| 				unlock_page(page);
 | |
| 				break;
 | |
| 			}
 | |
| 			wait_on_page_writeback(page);
 | |
| 			if (page_mapped(page)) {
 | |
| 				if (!did_range_unmap) {
 | |
| 					/*
 | |
| 					 * Zap the rest of the file in one hit.
 | |
| 					 */
 | |
| 					unmap_mapping_range(mapping,
 | |
| 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
 | |
| 					   (loff_t)(end - page_index + 1)
 | |
| 							<< PAGE_CACHE_SHIFT,
 | |
| 					    0);
 | |
| 					did_range_unmap = 1;
 | |
| 				} else {
 | |
| 					/*
 | |
| 					 * Just zap this page
 | |
| 					 */
 | |
| 					unmap_mapping_range(mapping,
 | |
| 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
 | |
| 					  PAGE_CACHE_SIZE, 0);
 | |
| 				}
 | |
| 			}
 | |
| 			BUG_ON(page_mapped(page));
 | |
| 			ret2 = do_launder_page(mapping, page);
 | |
| 			if (ret2 == 0) {
 | |
| 				if (!invalidate_complete_page2(mapping, page))
 | |
| 					ret2 = -EBUSY;
 | |
| 			}
 | |
| 			if (ret2 < 0)
 | |
| 				ret = ret2;
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		mem_cgroup_uncharge_end();
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 | |
| 
 | |
| /**
 | |
|  * invalidate_inode_pages2 - remove all pages from an address_space
 | |
|  * @mapping: the address_space
 | |
|  *
 | |
|  * Any pages which are found to be mapped into pagetables are unmapped prior to
 | |
|  * invalidation.
 | |
|  *
 | |
|  * Returns -EBUSY if any pages could not be invalidated.
 | |
|  */
 | |
| int invalidate_inode_pages2(struct address_space *mapping)
 | |
| {
 | |
| 	return invalidate_inode_pages2_range(mapping, 0, -1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 | |
| 
 | |
| /**
 | |
|  * truncate_pagecache - unmap and remove pagecache that has been truncated
 | |
|  * @inode: inode
 | |
|  * @old: old file offset
 | |
|  * @new: new file offset
 | |
|  *
 | |
|  * inode's new i_size must already be written before truncate_pagecache
 | |
|  * is called.
 | |
|  *
 | |
|  * This function should typically be called before the filesystem
 | |
|  * releases resources associated with the freed range (eg. deallocates
 | |
|  * blocks). This way, pagecache will always stay logically coherent
 | |
|  * with on-disk format, and the filesystem would not have to deal with
 | |
|  * situations such as writepage being called for a page that has already
 | |
|  * had its underlying blocks deallocated.
 | |
|  */
 | |
| void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
 | |
| {
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 
 | |
| 	/*
 | |
| 	 * unmap_mapping_range is called twice, first simply for
 | |
| 	 * efficiency so that truncate_inode_pages does fewer
 | |
| 	 * single-page unmaps.  However after this first call, and
 | |
| 	 * before truncate_inode_pages finishes, it is possible for
 | |
| 	 * private pages to be COWed, which remain after
 | |
| 	 * truncate_inode_pages finishes, hence the second
 | |
| 	 * unmap_mapping_range call must be made for correctness.
 | |
| 	 */
 | |
| 	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
 | |
| 	truncate_inode_pages(mapping, new);
 | |
| 	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
 | |
| }
 | |
| EXPORT_SYMBOL(truncate_pagecache);
 | |
| 
 | |
| /**
 | |
|  * truncate_setsize - update inode and pagecache for a new file size
 | |
|  * @inode: inode
 | |
|  * @newsize: new file size
 | |
|  *
 | |
|  * truncate_setsize updastes i_size update and performs pagecache
 | |
|  * truncation (if necessary) for a file size updates. It will be
 | |
|  * typically be called from the filesystem's setattr function when
 | |
|  * ATTR_SIZE is passed in.
 | |
|  *
 | |
|  * Must be called with inode_mutex held and after all filesystem
 | |
|  * specific block truncation has been performed.
 | |
|  */
 | |
| void truncate_setsize(struct inode *inode, loff_t newsize)
 | |
| {
 | |
| 	loff_t oldsize;
 | |
| 
 | |
| 	oldsize = inode->i_size;
 | |
| 	i_size_write(inode, newsize);
 | |
| 
 | |
| 	truncate_pagecache(inode, oldsize, newsize);
 | |
| }
 | |
| EXPORT_SYMBOL(truncate_setsize);
 | |
| 
 | |
| /**
 | |
|  * vmtruncate - unmap mappings "freed" by truncate() syscall
 | |
|  * @inode: inode of the file used
 | |
|  * @offset: file offset to start truncating
 | |
|  *
 | |
|  * This function is deprecated and truncate_setsize or truncate_pagecache
 | |
|  * should be used instead, together with filesystem specific block truncation.
 | |
|  */
 | |
| int vmtruncate(struct inode *inode, loff_t offset)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	error = inode_newsize_ok(inode, offset);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	truncate_setsize(inode, offset);
 | |
| 	if (inode->i_op->truncate)
 | |
| 		inode->i_op->truncate(inode);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(vmtruncate);
 |