mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 18:53:24 +00:00 
			
		
		
		
	 e414314cce
			
		
	
	
		e414314cce
		
	
	
	
	
		
			
			The latencytop and sleep accounting code assumes that any scheduler entity represents a task, this is not so. Cc: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
			
				
	
	
		
			1843 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1843 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 | |
|  *
 | |
|  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 | |
|  *
 | |
|  *  Interactivity improvements by Mike Galbraith
 | |
|  *  (C) 2007 Mike Galbraith <efault@gmx.de>
 | |
|  *
 | |
|  *  Various enhancements by Dmitry Adamushko.
 | |
|  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 | |
|  *
 | |
|  *  Group scheduling enhancements by Srivatsa Vaddagiri
 | |
|  *  Copyright IBM Corporation, 2007
 | |
|  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 | |
|  *
 | |
|  *  Scaled math optimizations by Thomas Gleixner
 | |
|  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 | |
|  *
 | |
|  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 | |
|  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/latencytop.h>
 | |
| 
 | |
| /*
 | |
|  * Targeted preemption latency for CPU-bound tasks:
 | |
|  * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
 | |
|  *
 | |
|  * NOTE: this latency value is not the same as the concept of
 | |
|  * 'timeslice length' - timeslices in CFS are of variable length
 | |
|  * and have no persistent notion like in traditional, time-slice
 | |
|  * based scheduling concepts.
 | |
|  *
 | |
|  * (to see the precise effective timeslice length of your workload,
 | |
|  *  run vmstat and monitor the context-switches (cs) field)
 | |
|  */
 | |
| unsigned int sysctl_sched_latency = 20000000ULL;
 | |
| 
 | |
| /*
 | |
|  * Minimal preemption granularity for CPU-bound tasks:
 | |
|  * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
 | |
|  */
 | |
| unsigned int sysctl_sched_min_granularity = 4000000ULL;
 | |
| 
 | |
| /*
 | |
|  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 | |
|  */
 | |
| static unsigned int sched_nr_latency = 5;
 | |
| 
 | |
| /*
 | |
|  * After fork, child runs first. (default) If set to 0 then
 | |
|  * parent will (try to) run first.
 | |
|  */
 | |
| const_debug unsigned int sysctl_sched_child_runs_first = 1;
 | |
| 
 | |
| /*
 | |
|  * sys_sched_yield() compat mode
 | |
|  *
 | |
|  * This option switches the agressive yield implementation of the
 | |
|  * old scheduler back on.
 | |
|  */
 | |
| unsigned int __read_mostly sysctl_sched_compat_yield;
 | |
| 
 | |
| /*
 | |
|  * SCHED_OTHER wake-up granularity.
 | |
|  * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
 | |
|  *
 | |
|  * This option delays the preemption effects of decoupled workloads
 | |
|  * and reduces their over-scheduling. Synchronous workloads will still
 | |
|  * have immediate wakeup/sleep latencies.
 | |
|  */
 | |
| unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
 | |
| 
 | |
| const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
 | |
| 
 | |
| static const struct sched_class fair_sched_class;
 | |
| 
 | |
| /**************************************************************
 | |
|  * CFS operations on generic schedulable entities:
 | |
|  */
 | |
| 
 | |
| static inline struct task_struct *task_of(struct sched_entity *se)
 | |
| {
 | |
| 	return container_of(se, struct task_struct, se);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 
 | |
| /* cpu runqueue to which this cfs_rq is attached */
 | |
| static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_rq->rq;
 | |
| }
 | |
| 
 | |
| /* An entity is a task if it doesn't "own" a runqueue */
 | |
| #define entity_is_task(se)	(!se->my_q)
 | |
| 
 | |
| /* Walk up scheduling entities hierarchy */
 | |
| #define for_each_sched_entity(se) \
 | |
| 		for (; se; se = se->parent)
 | |
| 
 | |
| static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 | |
| {
 | |
| 	return p->se.cfs_rq;
 | |
| }
 | |
| 
 | |
| /* runqueue on which this entity is (to be) queued */
 | |
| static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 | |
| {
 | |
| 	return se->cfs_rq;
 | |
| }
 | |
| 
 | |
| /* runqueue "owned" by this group */
 | |
| static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 | |
| {
 | |
| 	return grp->my_q;
 | |
| }
 | |
| 
 | |
| /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 | |
|  * another cpu ('this_cpu')
 | |
|  */
 | |
| static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 | |
| {
 | |
| 	return cfs_rq->tg->cfs_rq[this_cpu];
 | |
| }
 | |
| 
 | |
| /* Iterate thr' all leaf cfs_rq's on a runqueue */
 | |
| #define for_each_leaf_cfs_rq(rq, cfs_rq) \
 | |
| 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 | |
| 
 | |
| /* Do the two (enqueued) entities belong to the same group ? */
 | |
| static inline int
 | |
| is_same_group(struct sched_entity *se, struct sched_entity *pse)
 | |
| {
 | |
| 	if (se->cfs_rq == pse->cfs_rq)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline struct sched_entity *parent_entity(struct sched_entity *se)
 | |
| {
 | |
| 	return se->parent;
 | |
| }
 | |
| 
 | |
| /* return depth at which a sched entity is present in the hierarchy */
 | |
| static inline int depth_se(struct sched_entity *se)
 | |
| {
 | |
| 	int depth = 0;
 | |
| 
 | |
| 	for_each_sched_entity(se)
 | |
| 		depth++;
 | |
| 
 | |
| 	return depth;
 | |
| }
 | |
| 
 | |
| static void
 | |
| find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 | |
| {
 | |
| 	int se_depth, pse_depth;
 | |
| 
 | |
| 	/*
 | |
| 	 * preemption test can be made between sibling entities who are in the
 | |
| 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 | |
| 	 * both tasks until we find their ancestors who are siblings of common
 | |
| 	 * parent.
 | |
| 	 */
 | |
| 
 | |
| 	/* First walk up until both entities are at same depth */
 | |
| 	se_depth = depth_se(*se);
 | |
| 	pse_depth = depth_se(*pse);
 | |
| 
 | |
| 	while (se_depth > pse_depth) {
 | |
| 		se_depth--;
 | |
| 		*se = parent_entity(*se);
 | |
| 	}
 | |
| 
 | |
| 	while (pse_depth > se_depth) {
 | |
| 		pse_depth--;
 | |
| 		*pse = parent_entity(*pse);
 | |
| 	}
 | |
| 
 | |
| 	while (!is_same_group(*se, *pse)) {
 | |
| 		*se = parent_entity(*se);
 | |
| 		*pse = parent_entity(*pse);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return container_of(cfs_rq, struct rq, cfs);
 | |
| }
 | |
| 
 | |
| #define entity_is_task(se)	1
 | |
| 
 | |
| #define for_each_sched_entity(se) \
 | |
| 		for (; se; se = NULL)
 | |
| 
 | |
| static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 | |
| {
 | |
| 	return &task_rq(p)->cfs;
 | |
| }
 | |
| 
 | |
| static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 | |
| {
 | |
| 	struct task_struct *p = task_of(se);
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 
 | |
| 	return &rq->cfs;
 | |
| }
 | |
| 
 | |
| /* runqueue "owned" by this group */
 | |
| static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 | |
| {
 | |
| 	return &cpu_rq(this_cpu)->cfs;
 | |
| }
 | |
| 
 | |
| #define for_each_leaf_cfs_rq(rq, cfs_rq) \
 | |
| 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 | |
| 
 | |
| static inline int
 | |
| is_same_group(struct sched_entity *se, struct sched_entity *pse)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline struct sched_entity *parent_entity(struct sched_entity *se)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| 
 | |
| /**************************************************************
 | |
|  * Scheduling class tree data structure manipulation methods:
 | |
|  */
 | |
| 
 | |
| static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
 | |
| {
 | |
| 	s64 delta = (s64)(vruntime - min_vruntime);
 | |
| 	if (delta > 0)
 | |
| 		min_vruntime = vruntime;
 | |
| 
 | |
| 	return min_vruntime;
 | |
| }
 | |
| 
 | |
| static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 | |
| {
 | |
| 	s64 delta = (s64)(vruntime - min_vruntime);
 | |
| 	if (delta < 0)
 | |
| 		min_vruntime = vruntime;
 | |
| 
 | |
| 	return min_vruntime;
 | |
| }
 | |
| 
 | |
| static inline int entity_before(struct sched_entity *a,
 | |
| 				struct sched_entity *b)
 | |
| {
 | |
| 	return (s64)(a->vruntime - b->vruntime) < 0;
 | |
| }
 | |
| 
 | |
| static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	return se->vruntime - cfs_rq->min_vruntime;
 | |
| }
 | |
| 
 | |
| static void update_min_vruntime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	u64 vruntime = cfs_rq->min_vruntime;
 | |
| 
 | |
| 	if (cfs_rq->curr)
 | |
| 		vruntime = cfs_rq->curr->vruntime;
 | |
| 
 | |
| 	if (cfs_rq->rb_leftmost) {
 | |
| 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 | |
| 						   struct sched_entity,
 | |
| 						   run_node);
 | |
| 
 | |
| 		if (!cfs_rq->curr)
 | |
| 			vruntime = se->vruntime;
 | |
| 		else
 | |
| 			vruntime = min_vruntime(vruntime, se->vruntime);
 | |
| 	}
 | |
| 
 | |
| 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enqueue an entity into the rb-tree:
 | |
|  */
 | |
| static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct sched_entity *entry;
 | |
| 	s64 key = entity_key(cfs_rq, se);
 | |
| 	int leftmost = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the right place in the rbtree:
 | |
| 	 */
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		entry = rb_entry(parent, struct sched_entity, run_node);
 | |
| 		/*
 | |
| 		 * We dont care about collisions. Nodes with
 | |
| 		 * the same key stay together.
 | |
| 		 */
 | |
| 		if (key < entity_key(cfs_rq, entry)) {
 | |
| 			link = &parent->rb_left;
 | |
| 		} else {
 | |
| 			link = &parent->rb_right;
 | |
| 			leftmost = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Maintain a cache of leftmost tree entries (it is frequently
 | |
| 	 * used):
 | |
| 	 */
 | |
| 	if (leftmost)
 | |
| 		cfs_rq->rb_leftmost = &se->run_node;
 | |
| 
 | |
| 	rb_link_node(&se->run_node, parent, link);
 | |
| 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 | |
| }
 | |
| 
 | |
| static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	if (cfs_rq->rb_leftmost == &se->run_node) {
 | |
| 		struct rb_node *next_node;
 | |
| 
 | |
| 		next_node = rb_next(&se->run_node);
 | |
| 		cfs_rq->rb_leftmost = next_node;
 | |
| 	}
 | |
| 
 | |
| 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 | |
| }
 | |
| 
 | |
| static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rb_node *left = cfs_rq->rb_leftmost;
 | |
| 
 | |
| 	if (!left)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rb_entry(left, struct sched_entity, run_node);
 | |
| }
 | |
| 
 | |
| static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 | |
| 
 | |
| 	if (!last)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rb_entry(last, struct sched_entity, run_node);
 | |
| }
 | |
| 
 | |
| /**************************************************************
 | |
|  * Scheduling class statistics methods:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| int sched_nr_latency_handler(struct ctl_table *table, int write,
 | |
| 		struct file *filp, void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
 | |
| 
 | |
| 	if (ret || !write)
 | |
| 		return ret;
 | |
| 
 | |
| 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 | |
| 					sysctl_sched_min_granularity);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * delta /= w
 | |
|  */
 | |
| static inline unsigned long
 | |
| calc_delta_fair(unsigned long delta, struct sched_entity *se)
 | |
| {
 | |
| 	if (unlikely(se->load.weight != NICE_0_LOAD))
 | |
| 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The idea is to set a period in which each task runs once.
 | |
|  *
 | |
|  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 | |
|  * this period because otherwise the slices get too small.
 | |
|  *
 | |
|  * p = (nr <= nl) ? l : l*nr/nl
 | |
|  */
 | |
| static u64 __sched_period(unsigned long nr_running)
 | |
| {
 | |
| 	u64 period = sysctl_sched_latency;
 | |
| 	unsigned long nr_latency = sched_nr_latency;
 | |
| 
 | |
| 	if (unlikely(nr_running > nr_latency)) {
 | |
| 		period = sysctl_sched_min_granularity;
 | |
| 		period *= nr_running;
 | |
| 	}
 | |
| 
 | |
| 	return period;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We calculate the wall-time slice from the period by taking a part
 | |
|  * proportional to the weight.
 | |
|  *
 | |
|  * s = p*P[w/rw]
 | |
|  */
 | |
| static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct load_weight *load;
 | |
| 		struct load_weight lw;
 | |
| 
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		load = &cfs_rq->load;
 | |
| 
 | |
| 		if (unlikely(!se->on_rq)) {
 | |
| 			lw = cfs_rq->load;
 | |
| 
 | |
| 			update_load_add(&lw, se->load.weight);
 | |
| 			load = &lw;
 | |
| 		}
 | |
| 		slice = calc_delta_mine(slice, se->load.weight, load);
 | |
| 	}
 | |
| 	return slice;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We calculate the vruntime slice of a to be inserted task
 | |
|  *
 | |
|  * vs = s/w
 | |
|  */
 | |
| static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the current task's runtime statistics. Skip current tasks that
 | |
|  * are not in our scheduling class.
 | |
|  */
 | |
| static inline void
 | |
| __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 | |
| 	      unsigned long delta_exec)
 | |
| {
 | |
| 	unsigned long delta_exec_weighted;
 | |
| 
 | |
| 	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
 | |
| 
 | |
| 	curr->sum_exec_runtime += delta_exec;
 | |
| 	schedstat_add(cfs_rq, exec_clock, delta_exec);
 | |
| 	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
 | |
| 	curr->vruntime += delta_exec_weighted;
 | |
| 	update_min_vruntime(cfs_rq);
 | |
| }
 | |
| 
 | |
| static void update_curr(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct sched_entity *curr = cfs_rq->curr;
 | |
| 	u64 now = rq_of(cfs_rq)->clock;
 | |
| 	unsigned long delta_exec;
 | |
| 
 | |
| 	if (unlikely(!curr))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the amount of time the current task was running
 | |
| 	 * since the last time we changed load (this cannot
 | |
| 	 * overflow on 32 bits):
 | |
| 	 */
 | |
| 	delta_exec = (unsigned long)(now - curr->exec_start);
 | |
| 	if (!delta_exec)
 | |
| 		return;
 | |
| 
 | |
| 	__update_curr(cfs_rq, curr, delta_exec);
 | |
| 	curr->exec_start = now;
 | |
| 
 | |
| 	if (entity_is_task(curr)) {
 | |
| 		struct task_struct *curtask = task_of(curr);
 | |
| 
 | |
| 		cpuacct_charge(curtask, delta_exec);
 | |
| 		account_group_exec_runtime(curtask, delta_exec);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Task is being enqueued - update stats:
 | |
|  */
 | |
| static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * Are we enqueueing a waiting task? (for current tasks
 | |
| 	 * a dequeue/enqueue event is a NOP)
 | |
| 	 */
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		update_stats_wait_start(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| static void
 | |
| update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	schedstat_set(se->wait_max, max(se->wait_max,
 | |
| 			rq_of(cfs_rq)->clock - se->wait_start));
 | |
| 	schedstat_set(se->wait_count, se->wait_count + 1);
 | |
| 	schedstat_set(se->wait_sum, se->wait_sum +
 | |
| 			rq_of(cfs_rq)->clock - se->wait_start);
 | |
| 	schedstat_set(se->wait_start, 0);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * Mark the end of the wait period if dequeueing a
 | |
| 	 * waiting task:
 | |
| 	 */
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		update_stats_wait_end(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are picking a new current task - update its stats:
 | |
|  */
 | |
| static inline void
 | |
| update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * We are starting a new run period:
 | |
| 	 */
 | |
| 	se->exec_start = rq_of(cfs_rq)->clock;
 | |
| }
 | |
| 
 | |
| /**************************************************
 | |
|  * Scheduling class queueing methods:
 | |
|  */
 | |
| 
 | |
| #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
 | |
| static void
 | |
| add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 | |
| {
 | |
| 	cfs_rq->task_weight += weight;
 | |
| }
 | |
| #else
 | |
| static inline void
 | |
| add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	update_load_add(&cfs_rq->load, se->load.weight);
 | |
| 	if (!parent_entity(se))
 | |
| 		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
 | |
| 	if (entity_is_task(se)) {
 | |
| 		add_cfs_task_weight(cfs_rq, se->load.weight);
 | |
| 		list_add(&se->group_node, &cfs_rq->tasks);
 | |
| 	}
 | |
| 	cfs_rq->nr_running++;
 | |
| 	se->on_rq = 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	update_load_sub(&cfs_rq->load, se->load.weight);
 | |
| 	if (!parent_entity(se))
 | |
| 		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
 | |
| 	if (entity_is_task(se)) {
 | |
| 		add_cfs_task_weight(cfs_rq, -se->load.weight);
 | |
| 		list_del_init(&se->group_node);
 | |
| 	}
 | |
| 	cfs_rq->nr_running--;
 | |
| 	se->on_rq = 0;
 | |
| }
 | |
| 
 | |
| static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	struct task_struct *tsk = NULL;
 | |
| 
 | |
| 	if (entity_is_task(se))
 | |
| 		tsk = task_of(se);
 | |
| 
 | |
| 	if (se->sleep_start) {
 | |
| 		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
 | |
| 
 | |
| 		if ((s64)delta < 0)
 | |
| 			delta = 0;
 | |
| 
 | |
| 		if (unlikely(delta > se->sleep_max))
 | |
| 			se->sleep_max = delta;
 | |
| 
 | |
| 		se->sleep_start = 0;
 | |
| 		se->sum_sleep_runtime += delta;
 | |
| 
 | |
| 		if (tsk)
 | |
| 			account_scheduler_latency(tsk, delta >> 10, 1);
 | |
| 	}
 | |
| 	if (se->block_start) {
 | |
| 		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
 | |
| 
 | |
| 		if ((s64)delta < 0)
 | |
| 			delta = 0;
 | |
| 
 | |
| 		if (unlikely(delta > se->block_max))
 | |
| 			se->block_max = delta;
 | |
| 
 | |
| 		se->block_start = 0;
 | |
| 		se->sum_sleep_runtime += delta;
 | |
| 
 | |
| 		if (tsk) {
 | |
| 			/*
 | |
| 			 * Blocking time is in units of nanosecs, so shift by
 | |
| 			 * 20 to get a milliseconds-range estimation of the
 | |
| 			 * amount of time that the task spent sleeping:
 | |
| 			 */
 | |
| 			if (unlikely(prof_on == SLEEP_PROFILING)) {
 | |
| 				profile_hits(SLEEP_PROFILING,
 | |
| 						(void *)get_wchan(tsk),
 | |
| 						delta >> 20);
 | |
| 			}
 | |
| 			account_scheduler_latency(tsk, delta >> 10, 0);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	s64 d = se->vruntime - cfs_rq->min_vruntime;
 | |
| 
 | |
| 	if (d < 0)
 | |
| 		d = -d;
 | |
| 
 | |
| 	if (d > 3*sysctl_sched_latency)
 | |
| 		schedstat_inc(cfs_rq, nr_spread_over);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 | |
| {
 | |
| 	u64 vruntime = cfs_rq->min_vruntime;
 | |
| 
 | |
| 	/*
 | |
| 	 * The 'current' period is already promised to the current tasks,
 | |
| 	 * however the extra weight of the new task will slow them down a
 | |
| 	 * little, place the new task so that it fits in the slot that
 | |
| 	 * stays open at the end.
 | |
| 	 */
 | |
| 	if (initial && sched_feat(START_DEBIT))
 | |
| 		vruntime += sched_vslice(cfs_rq, se);
 | |
| 
 | |
| 	if (!initial) {
 | |
| 		/* sleeps upto a single latency don't count. */
 | |
| 		if (sched_feat(NEW_FAIR_SLEEPERS)) {
 | |
| 			unsigned long thresh = sysctl_sched_latency;
 | |
| 
 | |
| 			/*
 | |
| 			 * Convert the sleeper threshold into virtual time.
 | |
| 			 * SCHED_IDLE is a special sub-class.  We care about
 | |
| 			 * fairness only relative to other SCHED_IDLE tasks,
 | |
| 			 * all of which have the same weight.
 | |
| 			 */
 | |
| 			if (sched_feat(NORMALIZED_SLEEPER) &&
 | |
| 					(!entity_is_task(se) ||
 | |
| 					 task_of(se)->policy != SCHED_IDLE))
 | |
| 				thresh = calc_delta_fair(thresh, se);
 | |
| 
 | |
| 			vruntime -= thresh;
 | |
| 		}
 | |
| 
 | |
| 		/* ensure we never gain time by being placed backwards. */
 | |
| 		vruntime = max_vruntime(se->vruntime, vruntime);
 | |
| 	}
 | |
| 
 | |
| 	se->vruntime = vruntime;
 | |
| }
 | |
| 
 | |
| static void
 | |
| enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 	account_entity_enqueue(cfs_rq, se);
 | |
| 
 | |
| 	if (wakeup) {
 | |
| 		place_entity(cfs_rq, se, 0);
 | |
| 		enqueue_sleeper(cfs_rq, se);
 | |
| 	}
 | |
| 
 | |
| 	update_stats_enqueue(cfs_rq, se);
 | |
| 	check_spread(cfs_rq, se);
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		__enqueue_entity(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	if (cfs_rq->last == se)
 | |
| 		cfs_rq->last = NULL;
 | |
| 
 | |
| 	if (cfs_rq->next == se)
 | |
| 		cfs_rq->next = NULL;
 | |
| }
 | |
| 
 | |
| static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	for_each_sched_entity(se)
 | |
| 		__clear_buddies(cfs_rq_of(se), se);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 
 | |
| 	update_stats_dequeue(cfs_rq, se);
 | |
| 	if (sleep) {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 		if (entity_is_task(se)) {
 | |
| 			struct task_struct *tsk = task_of(se);
 | |
| 
 | |
| 			if (tsk->state & TASK_INTERRUPTIBLE)
 | |
| 				se->sleep_start = rq_of(cfs_rq)->clock;
 | |
| 			if (tsk->state & TASK_UNINTERRUPTIBLE)
 | |
| 				se->block_start = rq_of(cfs_rq)->clock;
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		__dequeue_entity(cfs_rq, se);
 | |
| 	account_entity_dequeue(cfs_rq, se);
 | |
| 	update_min_vruntime(cfs_rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preempt the current task with a newly woken task if needed:
 | |
|  */
 | |
| static void
 | |
| check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 | |
| {
 | |
| 	unsigned long ideal_runtime, delta_exec;
 | |
| 
 | |
| 	ideal_runtime = sched_slice(cfs_rq, curr);
 | |
| 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
 | |
| 	if (delta_exec > ideal_runtime) {
 | |
| 		resched_task(rq_of(cfs_rq)->curr);
 | |
| 		/*
 | |
| 		 * The current task ran long enough, ensure it doesn't get
 | |
| 		 * re-elected due to buddy favours.
 | |
| 		 */
 | |
| 		clear_buddies(cfs_rq, curr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/* 'current' is not kept within the tree. */
 | |
| 	if (se->on_rq) {
 | |
| 		/*
 | |
| 		 * Any task has to be enqueued before it get to execute on
 | |
| 		 * a CPU. So account for the time it spent waiting on the
 | |
| 		 * runqueue.
 | |
| 		 */
 | |
| 		update_stats_wait_end(cfs_rq, se);
 | |
| 		__dequeue_entity(cfs_rq, se);
 | |
| 	}
 | |
| 
 | |
| 	update_stats_curr_start(cfs_rq, se);
 | |
| 	cfs_rq->curr = se;
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	/*
 | |
| 	 * Track our maximum slice length, if the CPU's load is at
 | |
| 	 * least twice that of our own weight (i.e. dont track it
 | |
| 	 * when there are only lesser-weight tasks around):
 | |
| 	 */
 | |
| 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
 | |
| 		se->slice_max = max(se->slice_max,
 | |
| 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
 | |
| 	}
 | |
| #endif
 | |
| 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
 | |
| }
 | |
| 
 | |
| static int
 | |
| wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
 | |
| 
 | |
| static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct sched_entity *se = __pick_next_entity(cfs_rq);
 | |
| 
 | |
| 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
 | |
| 		return cfs_rq->next;
 | |
| 
 | |
| 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
 | |
| 		return cfs_rq->last;
 | |
| 
 | |
| 	return se;
 | |
| }
 | |
| 
 | |
| static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
 | |
| {
 | |
| 	/*
 | |
| 	 * If still on the runqueue then deactivate_task()
 | |
| 	 * was not called and update_curr() has to be done:
 | |
| 	 */
 | |
| 	if (prev->on_rq)
 | |
| 		update_curr(cfs_rq);
 | |
| 
 | |
| 	check_spread(cfs_rq, prev);
 | |
| 	if (prev->on_rq) {
 | |
| 		update_stats_wait_start(cfs_rq, prev);
 | |
| 		/* Put 'current' back into the tree. */
 | |
| 		__enqueue_entity(cfs_rq, prev);
 | |
| 	}
 | |
| 	cfs_rq->curr = NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| 	/*
 | |
| 	 * queued ticks are scheduled to match the slice, so don't bother
 | |
| 	 * validating it and just reschedule.
 | |
| 	 */
 | |
| 	if (queued) {
 | |
| 		resched_task(rq_of(cfs_rq)->curr);
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * don't let the period tick interfere with the hrtick preemption
 | |
| 	 */
 | |
| 	if (!sched_feat(DOUBLE_TICK) &&
 | |
| 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
 | |
| 		return;
 | |
| #endif
 | |
| 
 | |
| 	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
 | |
| 		check_preempt_tick(cfs_rq, curr);
 | |
| }
 | |
| 
 | |
| /**************************************************
 | |
|  * CFS operations on tasks:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 	WARN_ON(task_rq(p) != rq);
 | |
| 
 | |
| 	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
 | |
| 		u64 slice = sched_slice(cfs_rq, se);
 | |
| 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
 | |
| 		s64 delta = slice - ran;
 | |
| 
 | |
| 		if (delta < 0) {
 | |
| 			if (rq->curr == p)
 | |
| 				resched_task(p);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't schedule slices shorter than 10000ns, that just
 | |
| 		 * doesn't make sense. Rely on vruntime for fairness.
 | |
| 		 */
 | |
| 		if (rq->curr != p)
 | |
| 			delta = max_t(s64, 10000LL, delta);
 | |
| 
 | |
| 		hrtick_start(rq, delta);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called from enqueue/dequeue and updates the hrtick when the
 | |
|  * current task is from our class and nr_running is low enough
 | |
|  * to matter.
 | |
|  */
 | |
| static void hrtick_update(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 
 | |
| 	if (curr->sched_class != &fair_sched_class)
 | |
| 		return;
 | |
| 
 | |
| 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
 | |
| 		hrtick_start_fair(rq, curr);
 | |
| }
 | |
| #else /* !CONFIG_SCHED_HRTICK */
 | |
| static inline void
 | |
| hrtick_start_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void hrtick_update(struct rq *rq)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The enqueue_task method is called before nr_running is
 | |
|  * increased. Here we update the fair scheduling stats and
 | |
|  * then put the task into the rbtree:
 | |
|  */
 | |
| static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		if (se->on_rq)
 | |
| 			break;
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		enqueue_entity(cfs_rq, se, wakeup);
 | |
| 		wakeup = 1;
 | |
| 	}
 | |
| 
 | |
| 	hrtick_update(rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The dequeue_task method is called before nr_running is
 | |
|  * decreased. We remove the task from the rbtree and
 | |
|  * update the fair scheduling stats:
 | |
|  */
 | |
| static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		dequeue_entity(cfs_rq, se, sleep);
 | |
| 		/* Don't dequeue parent if it has other entities besides us */
 | |
| 		if (cfs_rq->load.weight)
 | |
| 			break;
 | |
| 		sleep = 1;
 | |
| 	}
 | |
| 
 | |
| 	hrtick_update(rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_yield() support is very simple - we dequeue and enqueue.
 | |
|  *
 | |
|  * If compat_yield is turned on then we requeue to the end of the tree.
 | |
|  */
 | |
| static void yield_task_fair(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 | |
| 	struct sched_entity *rightmost, *se = &curr->se;
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we the only task in the tree?
 | |
| 	 */
 | |
| 	if (unlikely(cfs_rq->nr_running == 1))
 | |
| 		return;
 | |
| 
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
 | |
| 		update_rq_clock(rq);
 | |
| 		/*
 | |
| 		 * Update run-time statistics of the 'current'.
 | |
| 		 */
 | |
| 		update_curr(cfs_rq);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Find the rightmost entry in the rbtree:
 | |
| 	 */
 | |
| 	rightmost = __pick_last_entity(cfs_rq);
 | |
| 	/*
 | |
| 	 * Already in the rightmost position?
 | |
| 	 */
 | |
| 	if (unlikely(!rightmost || entity_before(rightmost, se)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Minimally necessary key value to be last in the tree:
 | |
| 	 * Upon rescheduling, sched_class::put_prev_task() will place
 | |
| 	 * 'current' within the tree based on its new key value.
 | |
| 	 */
 | |
| 	se->vruntime = rightmost->vruntime + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wake_idle() will wake a task on an idle cpu if task->cpu is
 | |
|  * not idle and an idle cpu is available.  The span of cpus to
 | |
|  * search starts with cpus closest then further out as needed,
 | |
|  * so we always favor a closer, idle cpu.
 | |
|  * Domains may include CPUs that are not usable for migration,
 | |
|  * hence we need to mask them out (cpu_active_mask)
 | |
|  *
 | |
|  * Returns the CPU we should wake onto.
 | |
|  */
 | |
| #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
 | |
| static int wake_idle(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	int i;
 | |
| 	unsigned int chosen_wakeup_cpu;
 | |
| 	int this_cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
 | |
| 	 * are idle and this is not a kernel thread and this task's affinity
 | |
| 	 * allows it to be moved to preferred cpu, then just move!
 | |
| 	 */
 | |
| 
 | |
| 	this_cpu = smp_processor_id();
 | |
| 	chosen_wakeup_cpu =
 | |
| 		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
 | |
| 
 | |
| 	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
 | |
| 		idle_cpu(cpu) && idle_cpu(this_cpu) &&
 | |
| 		p->mm && !(p->flags & PF_KTHREAD) &&
 | |
| 		cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
 | |
| 		return chosen_wakeup_cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it is idle, then it is the best cpu to run this task.
 | |
| 	 *
 | |
| 	 * This cpu is also the best, if it has more than one task already.
 | |
| 	 * Siblings must be also busy(in most cases) as they didn't already
 | |
| 	 * pickup the extra load from this cpu and hence we need not check
 | |
| 	 * sibling runqueue info. This will avoid the checks and cache miss
 | |
| 	 * penalities associated with that.
 | |
| 	 */
 | |
| 	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
 | |
| 		return cpu;
 | |
| 
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if ((sd->flags & SD_WAKE_IDLE)
 | |
| 		    || ((sd->flags & SD_WAKE_IDLE_FAR)
 | |
| 			&& !task_hot(p, task_rq(p)->clock, sd))) {
 | |
| 			for_each_cpu_and(i, sched_domain_span(sd),
 | |
| 					 &p->cpus_allowed) {
 | |
| 				if (cpu_active(i) && idle_cpu(i)) {
 | |
| 					if (i != task_cpu(p)) {
 | |
| 						schedstat_inc(p,
 | |
| 						       se.nr_wakeups_idle);
 | |
| 					}
 | |
| 					return i;
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return cpu;
 | |
| }
 | |
| #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
 | |
| static inline int wake_idle(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	return cpu;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| /*
 | |
|  * effective_load() calculates the load change as seen from the root_task_group
 | |
|  *
 | |
|  * Adding load to a group doesn't make a group heavier, but can cause movement
 | |
|  * of group shares between cpus. Assuming the shares were perfectly aligned one
 | |
|  * can calculate the shift in shares.
 | |
|  *
 | |
|  * The problem is that perfectly aligning the shares is rather expensive, hence
 | |
|  * we try to avoid doing that too often - see update_shares(), which ratelimits
 | |
|  * this change.
 | |
|  *
 | |
|  * We compensate this by not only taking the current delta into account, but
 | |
|  * also considering the delta between when the shares were last adjusted and
 | |
|  * now.
 | |
|  *
 | |
|  * We still saw a performance dip, some tracing learned us that between
 | |
|  * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 | |
|  * significantly. Therefore try to bias the error in direction of failing
 | |
|  * the affine wakeup.
 | |
|  *
 | |
|  */
 | |
| static long effective_load(struct task_group *tg, int cpu,
 | |
| 		long wl, long wg)
 | |
| {
 | |
| 	struct sched_entity *se = tg->se[cpu];
 | |
| 
 | |
| 	if (!tg->parent)
 | |
| 		return wl;
 | |
| 
 | |
| 	/*
 | |
| 	 * By not taking the decrease of shares on the other cpu into
 | |
| 	 * account our error leans towards reducing the affine wakeups.
 | |
| 	 */
 | |
| 	if (!wl && sched_feat(ASYM_EFF_LOAD))
 | |
| 		return wl;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		long S, rw, s, a, b;
 | |
| 		long more_w;
 | |
| 
 | |
| 		/*
 | |
| 		 * Instead of using this increment, also add the difference
 | |
| 		 * between when the shares were last updated and now.
 | |
| 		 */
 | |
| 		more_w = se->my_q->load.weight - se->my_q->rq_weight;
 | |
| 		wl += more_w;
 | |
| 		wg += more_w;
 | |
| 
 | |
| 		S = se->my_q->tg->shares;
 | |
| 		s = se->my_q->shares;
 | |
| 		rw = se->my_q->rq_weight;
 | |
| 
 | |
| 		a = S*(rw + wl);
 | |
| 		b = S*rw + s*wg;
 | |
| 
 | |
| 		wl = s*(a-b);
 | |
| 
 | |
| 		if (likely(b))
 | |
| 			wl /= b;
 | |
| 
 | |
| 		/*
 | |
| 		 * Assume the group is already running and will
 | |
| 		 * thus already be accounted for in the weight.
 | |
| 		 *
 | |
| 		 * That is, moving shares between CPUs, does not
 | |
| 		 * alter the group weight.
 | |
| 		 */
 | |
| 		wg = 0;
 | |
| 	}
 | |
| 
 | |
| 	return wl;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline unsigned long effective_load(struct task_group *tg, int cpu,
 | |
| 		unsigned long wl, unsigned long wg)
 | |
| {
 | |
| 	return wl;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
 | |
| 	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
 | |
| 	    int idx, unsigned long load, unsigned long this_load,
 | |
| 	    unsigned int imbalance)
 | |
| {
 | |
| 	struct task_struct *curr = this_rq->curr;
 | |
| 	struct task_group *tg;
 | |
| 	unsigned long tl = this_load;
 | |
| 	unsigned long tl_per_task;
 | |
| 	unsigned long weight;
 | |
| 	int balanced;
 | |
| 
 | |
| 	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
 | |
| 			p->se.avg_overlap > sysctl_sched_migration_cost))
 | |
| 		sync = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If sync wakeup then subtract the (maximum possible)
 | |
| 	 * effect of the currently running task from the load
 | |
| 	 * of the current CPU:
 | |
| 	 */
 | |
| 	if (sync) {
 | |
| 		tg = task_group(current);
 | |
| 		weight = current->se.load.weight;
 | |
| 
 | |
| 		tl += effective_load(tg, this_cpu, -weight, -weight);
 | |
| 		load += effective_load(tg, prev_cpu, 0, -weight);
 | |
| 	}
 | |
| 
 | |
| 	tg = task_group(p);
 | |
| 	weight = p->se.load.weight;
 | |
| 
 | |
| 	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
 | |
| 		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the currently running task will sleep within
 | |
| 	 * a reasonable amount of time then attract this newly
 | |
| 	 * woken task:
 | |
| 	 */
 | |
| 	if (sync && balanced)
 | |
| 		return 1;
 | |
| 
 | |
| 	schedstat_inc(p, se.nr_wakeups_affine_attempts);
 | |
| 	tl_per_task = cpu_avg_load_per_task(this_cpu);
 | |
| 
 | |
| 	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
 | |
| 			tl_per_task)) {
 | |
| 		/*
 | |
| 		 * This domain has SD_WAKE_AFFINE and
 | |
| 		 * p is cache cold in this domain, and
 | |
| 		 * there is no bad imbalance.
 | |
| 		 */
 | |
| 		schedstat_inc(this_sd, ttwu_move_affine);
 | |
| 		schedstat_inc(p, se.nr_wakeups_affine);
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int select_task_rq_fair(struct task_struct *p, int sync)
 | |
| {
 | |
| 	struct sched_domain *sd, *this_sd = NULL;
 | |
| 	int prev_cpu, this_cpu, new_cpu;
 | |
| 	unsigned long load, this_load;
 | |
| 	struct rq *this_rq;
 | |
| 	unsigned int imbalance;
 | |
| 	int idx;
 | |
| 
 | |
| 	prev_cpu	= task_cpu(p);
 | |
| 	this_cpu	= smp_processor_id();
 | |
| 	this_rq		= cpu_rq(this_cpu);
 | |
| 	new_cpu		= prev_cpu;
 | |
| 
 | |
| 	if (prev_cpu == this_cpu)
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * 'this_sd' is the first domain that both
 | |
| 	 * this_cpu and prev_cpu are present in:
 | |
| 	 */
 | |
| 	for_each_domain(this_cpu, sd) {
 | |
| 		if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
 | |
| 			this_sd = sd;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for affine wakeup and passive balancing possibilities.
 | |
| 	 */
 | |
| 	if (!this_sd)
 | |
| 		goto out;
 | |
| 
 | |
| 	idx = this_sd->wake_idx;
 | |
| 
 | |
| 	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
 | |
| 
 | |
| 	load = source_load(prev_cpu, idx);
 | |
| 	this_load = target_load(this_cpu, idx);
 | |
| 
 | |
| 	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
 | |
| 				     load, this_load, imbalance))
 | |
| 		return this_cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start passive balancing when half the imbalance_pct
 | |
| 	 * limit is reached.
 | |
| 	 */
 | |
| 	if (this_sd->flags & SD_WAKE_BALANCE) {
 | |
| 		if (imbalance*this_load <= 100*load) {
 | |
| 			schedstat_inc(this_sd, ttwu_move_balance);
 | |
| 			schedstat_inc(p, se.nr_wakeups_passive);
 | |
| 			return this_cpu;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return wake_idle(new_cpu, p);
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * Adaptive granularity
 | |
|  *
 | |
|  * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 | |
|  * with the limit of wakeup_gran -- when it never does a wakeup.
 | |
|  *
 | |
|  * So the smaller avg_wakeup is the faster we want this task to preempt,
 | |
|  * but we don't want to treat the preemptee unfairly and therefore allow it
 | |
|  * to run for at least the amount of time we'd like to run.
 | |
|  *
 | |
|  * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 | |
|  *
 | |
|  * NOTE: we use *nr_running to scale with load, this nicely matches the
 | |
|  *       degrading latency on load.
 | |
|  */
 | |
| static unsigned long
 | |
| adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
 | |
| {
 | |
| 	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
 | |
| 	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
 | |
| 	u64 gran = 0;
 | |
| 
 | |
| 	if (this_run < expected_wakeup)
 | |
| 		gran = expected_wakeup - this_run;
 | |
| 
 | |
| 	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
 | |
| {
 | |
| 	unsigned long gran = sysctl_sched_wakeup_granularity;
 | |
| 
 | |
| 	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
 | |
| 		gran = adaptive_gran(curr, se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since its curr running now, convert the gran from real-time
 | |
| 	 * to virtual-time in his units.
 | |
| 	 */
 | |
| 	if (sched_feat(ASYM_GRAN)) {
 | |
| 		/*
 | |
| 		 * By using 'se' instead of 'curr' we penalize light tasks, so
 | |
| 		 * they get preempted easier. That is, if 'se' < 'curr' then
 | |
| 		 * the resulting gran will be larger, therefore penalizing the
 | |
| 		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
 | |
| 		 * be smaller, again penalizing the lighter task.
 | |
| 		 *
 | |
| 		 * This is especially important for buddies when the leftmost
 | |
| 		 * task is higher priority than the buddy.
 | |
| 		 */
 | |
| 		if (unlikely(se->load.weight != NICE_0_LOAD))
 | |
| 			gran = calc_delta_fair(gran, se);
 | |
| 	} else {
 | |
| 		if (unlikely(curr->load.weight != NICE_0_LOAD))
 | |
| 			gran = calc_delta_fair(gran, curr);
 | |
| 	}
 | |
| 
 | |
| 	return gran;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should 'se' preempt 'curr'.
 | |
|  *
 | |
|  *             |s1
 | |
|  *        |s2
 | |
|  *   |s3
 | |
|  *         g
 | |
|  *      |<--->|c
 | |
|  *
 | |
|  *  w(c, s1) = -1
 | |
|  *  w(c, s2) =  0
 | |
|  *  w(c, s3) =  1
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
 | |
| {
 | |
| 	s64 gran, vdiff = curr->vruntime - se->vruntime;
 | |
| 
 | |
| 	if (vdiff <= 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	gran = wakeup_gran(curr, se);
 | |
| 	if (vdiff > gran)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void set_last_buddy(struct sched_entity *se)
 | |
| {
 | |
| 	if (likely(task_of(se)->policy != SCHED_IDLE)) {
 | |
| 		for_each_sched_entity(se)
 | |
| 			cfs_rq_of(se)->last = se;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_next_buddy(struct sched_entity *se)
 | |
| {
 | |
| 	if (likely(task_of(se)->policy != SCHED_IDLE)) {
 | |
| 		for_each_sched_entity(se)
 | |
| 			cfs_rq_of(se)->next = se;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preempt the current task with a newly woken task if needed:
 | |
|  */
 | |
| static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	struct sched_entity *se = &curr->se, *pse = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 | |
| 
 | |
| 	update_curr(cfs_rq);
 | |
| 
 | |
| 	if (unlikely(rt_prio(p->prio))) {
 | |
| 		resched_task(curr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(p->sched_class != &fair_sched_class))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(se == pse))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only set the backward buddy when the current task is still on the
 | |
| 	 * rq. This can happen when a wakeup gets interleaved with schedule on
 | |
| 	 * the ->pre_schedule() or idle_balance() point, either of which can
 | |
| 	 * drop the rq lock.
 | |
| 	 *
 | |
| 	 * Also, during early boot the idle thread is in the fair class, for
 | |
| 	 * obvious reasons its a bad idea to schedule back to the idle thread.
 | |
| 	 */
 | |
| 	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
 | |
| 		set_last_buddy(se);
 | |
| 	set_next_buddy(pse);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can come here with TIF_NEED_RESCHED already set from new task
 | |
| 	 * wake up path.
 | |
| 	 */
 | |
| 	if (test_tsk_need_resched(curr))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Batch and idle tasks do not preempt (their preemption is driven by
 | |
| 	 * the tick):
 | |
| 	 */
 | |
| 	if (unlikely(p->policy != SCHED_NORMAL))
 | |
| 		return;
 | |
| 
 | |
| 	/* Idle tasks are by definition preempted by everybody. */
 | |
| 	if (unlikely(curr->policy == SCHED_IDLE)) {
 | |
| 		resched_task(curr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!sched_feat(WAKEUP_PREEMPT))
 | |
| 		return;
 | |
| 
 | |
| 	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
 | |
| 			(se->avg_overlap < sysctl_sched_migration_cost &&
 | |
| 			 pse->avg_overlap < sysctl_sched_migration_cost))) {
 | |
| 		resched_task(curr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	find_matching_se(&se, &pse);
 | |
| 
 | |
| 	BUG_ON(!pse);
 | |
| 
 | |
| 	if (wakeup_preempt_entity(se, pse) == 1)
 | |
| 		resched_task(curr);
 | |
| }
 | |
| 
 | |
| static struct task_struct *pick_next_task_fair(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	struct cfs_rq *cfs_rq = &rq->cfs;
 | |
| 	struct sched_entity *se;
 | |
| 
 | |
| 	if (unlikely(!cfs_rq->nr_running))
 | |
| 		return NULL;
 | |
| 
 | |
| 	do {
 | |
| 		se = pick_next_entity(cfs_rq);
 | |
| 		/*
 | |
| 		 * If se was a buddy, clear it so that it will have to earn
 | |
| 		 * the favour again.
 | |
| 		 */
 | |
| 		__clear_buddies(cfs_rq, se);
 | |
| 		set_next_entity(cfs_rq, se);
 | |
| 		cfs_rq = group_cfs_rq(se);
 | |
| 	} while (cfs_rq);
 | |
| 
 | |
| 	p = task_of(se);
 | |
| 	hrtick_start_fair(rq, p);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for a descheduled task:
 | |
|  */
 | |
| static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	struct sched_entity *se = &prev->se;
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		put_prev_entity(cfs_rq, se);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /**************************************************
 | |
|  * Fair scheduling class load-balancing methods:
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Load-balancing iterator. Note: while the runqueue stays locked
 | |
|  * during the whole iteration, the current task might be
 | |
|  * dequeued so the iterator has to be dequeue-safe. Here we
 | |
|  * achieve that by always pre-iterating before returning
 | |
|  * the current task:
 | |
|  */
 | |
| static struct task_struct *
 | |
| __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
 | |
| {
 | |
| 	struct task_struct *p = NULL;
 | |
| 	struct sched_entity *se;
 | |
| 
 | |
| 	if (next == &cfs_rq->tasks)
 | |
| 		return NULL;
 | |
| 
 | |
| 	se = list_entry(next, struct sched_entity, group_node);
 | |
| 	p = task_of(se);
 | |
| 	cfs_rq->balance_iterator = next->next;
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static struct task_struct *load_balance_start_fair(void *arg)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = arg;
 | |
| 
 | |
| 	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
 | |
| }
 | |
| 
 | |
| static struct task_struct *load_balance_next_fair(void *arg)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = arg;
 | |
| 
 | |
| 	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | |
| 		unsigned long max_load_move, struct sched_domain *sd,
 | |
| 		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
 | |
| 		struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rq_iterator cfs_rq_iterator;
 | |
| 
 | |
| 	cfs_rq_iterator.start = load_balance_start_fair;
 | |
| 	cfs_rq_iterator.next = load_balance_next_fair;
 | |
| 	cfs_rq_iterator.arg = cfs_rq;
 | |
| 
 | |
| 	return balance_tasks(this_rq, this_cpu, busiest,
 | |
| 			max_load_move, sd, idle, all_pinned,
 | |
| 			this_best_prio, &cfs_rq_iterator);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static unsigned long
 | |
| load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | |
| 		  unsigned long max_load_move,
 | |
| 		  struct sched_domain *sd, enum cpu_idle_type idle,
 | |
| 		  int *all_pinned, int *this_best_prio)
 | |
| {
 | |
| 	long rem_load_move = max_load_move;
 | |
| 	int busiest_cpu = cpu_of(busiest);
 | |
| 	struct task_group *tg;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	update_h_load(busiest_cpu);
 | |
| 
 | |
| 	list_for_each_entry_rcu(tg, &task_groups, list) {
 | |
| 		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
 | |
| 		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
 | |
| 		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
 | |
| 		u64 rem_load, moved_load;
 | |
| 
 | |
| 		/*
 | |
| 		 * empty group
 | |
| 		 */
 | |
| 		if (!busiest_cfs_rq->task_weight)
 | |
| 			continue;
 | |
| 
 | |
| 		rem_load = (u64)rem_load_move * busiest_weight;
 | |
| 		rem_load = div_u64(rem_load, busiest_h_load + 1);
 | |
| 
 | |
| 		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
 | |
| 				rem_load, sd, idle, all_pinned, this_best_prio,
 | |
| 				tg->cfs_rq[busiest_cpu]);
 | |
| 
 | |
| 		if (!moved_load)
 | |
| 			continue;
 | |
| 
 | |
| 		moved_load *= busiest_h_load;
 | |
| 		moved_load = div_u64(moved_load, busiest_weight + 1);
 | |
| 
 | |
| 		rem_load_move -= moved_load;
 | |
| 		if (rem_load_move < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return max_load_move - rem_load_move;
 | |
| }
 | |
| #else
 | |
| static unsigned long
 | |
| load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | |
| 		  unsigned long max_load_move,
 | |
| 		  struct sched_domain *sd, enum cpu_idle_type idle,
 | |
| 		  int *all_pinned, int *this_best_prio)
 | |
| {
 | |
| 	return __load_balance_fair(this_rq, this_cpu, busiest,
 | |
| 			max_load_move, sd, idle, all_pinned,
 | |
| 			this_best_prio, &busiest->cfs);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | |
| 		   struct sched_domain *sd, enum cpu_idle_type idle)
 | |
| {
 | |
| 	struct cfs_rq *busy_cfs_rq;
 | |
| 	struct rq_iterator cfs_rq_iterator;
 | |
| 
 | |
| 	cfs_rq_iterator.start = load_balance_start_fair;
 | |
| 	cfs_rq_iterator.next = load_balance_next_fair;
 | |
| 
 | |
| 	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
 | |
| 		/*
 | |
| 		 * pass busy_cfs_rq argument into
 | |
| 		 * load_balance_[start|next]_fair iterators
 | |
| 		 */
 | |
| 		cfs_rq_iterator.arg = busy_cfs_rq;
 | |
| 		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
 | |
| 				       &cfs_rq_iterator))
 | |
| 		    return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * scheduler tick hitting a task of our scheduling class:
 | |
|  */
 | |
| static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &curr->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		entity_tick(cfs_rq, se, queued);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Share the fairness runtime between parent and child, thus the
 | |
|  * total amount of pressure for CPU stays equal - new tasks
 | |
|  * get a chance to run but frequent forkers are not allowed to
 | |
|  * monopolize the CPU. Note: the parent runqueue is locked,
 | |
|  * the child is not running yet.
 | |
|  */
 | |
| static void task_new_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
 | |
| 	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 
 | |
| 	sched_info_queued(p);
 | |
| 
 | |
| 	update_curr(cfs_rq);
 | |
| 	place_entity(cfs_rq, se, 1);
 | |
| 
 | |
| 	/* 'curr' will be NULL if the child belongs to a different group */
 | |
| 	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
 | |
| 			curr && entity_before(curr, se)) {
 | |
| 		/*
 | |
| 		 * Upon rescheduling, sched_class::put_prev_task() will place
 | |
| 		 * 'current' within the tree based on its new key value.
 | |
| 		 */
 | |
| 		swap(curr->vruntime, se->vruntime);
 | |
| 		resched_task(rq->curr);
 | |
| 	}
 | |
| 
 | |
| 	enqueue_task_fair(rq, p, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Priority of the task has changed. Check to see if we preempt
 | |
|  * the current task.
 | |
|  */
 | |
| static void prio_changed_fair(struct rq *rq, struct task_struct *p,
 | |
| 			      int oldprio, int running)
 | |
| {
 | |
| 	/*
 | |
| 	 * Reschedule if we are currently running on this runqueue and
 | |
| 	 * our priority decreased, or if we are not currently running on
 | |
| 	 * this runqueue and our priority is higher than the current's
 | |
| 	 */
 | |
| 	if (running) {
 | |
| 		if (p->prio > oldprio)
 | |
| 			resched_task(rq->curr);
 | |
| 	} else
 | |
| 		check_preempt_curr(rq, p, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We switched to the sched_fair class.
 | |
|  */
 | |
| static void switched_to_fair(struct rq *rq, struct task_struct *p,
 | |
| 			     int running)
 | |
| {
 | |
| 	/*
 | |
| 	 * We were most likely switched from sched_rt, so
 | |
| 	 * kick off the schedule if running, otherwise just see
 | |
| 	 * if we can still preempt the current task.
 | |
| 	 */
 | |
| 	if (running)
 | |
| 		resched_task(rq->curr);
 | |
| 	else
 | |
| 		check_preempt_curr(rq, p, 0);
 | |
| }
 | |
| 
 | |
| /* Account for a task changing its policy or group.
 | |
|  *
 | |
|  * This routine is mostly called to set cfs_rq->curr field when a task
 | |
|  * migrates between groups/classes.
 | |
|  */
 | |
| static void set_curr_task_fair(struct rq *rq)
 | |
| {
 | |
| 	struct sched_entity *se = &rq->curr->se;
 | |
| 
 | |
| 	for_each_sched_entity(se)
 | |
| 		set_next_entity(cfs_rq_of(se), se);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static void moved_group_fair(struct task_struct *p)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
 | |
| 
 | |
| 	update_curr(cfs_rq);
 | |
| 	place_entity(cfs_rq, &p->se, 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * All the scheduling class methods:
 | |
|  */
 | |
| static const struct sched_class fair_sched_class = {
 | |
| 	.next			= &idle_sched_class,
 | |
| 	.enqueue_task		= enqueue_task_fair,
 | |
| 	.dequeue_task		= dequeue_task_fair,
 | |
| 	.yield_task		= yield_task_fair,
 | |
| 
 | |
| 	.check_preempt_curr	= check_preempt_wakeup,
 | |
| 
 | |
| 	.pick_next_task		= pick_next_task_fair,
 | |
| 	.put_prev_task		= put_prev_task_fair,
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	.select_task_rq		= select_task_rq_fair,
 | |
| 
 | |
| 	.load_balance		= load_balance_fair,
 | |
| 	.move_one_task		= move_one_task_fair,
 | |
| #endif
 | |
| 
 | |
| 	.set_curr_task          = set_curr_task_fair,
 | |
| 	.task_tick		= task_tick_fair,
 | |
| 	.task_new		= task_new_fair,
 | |
| 
 | |
| 	.prio_changed		= prio_changed_fair,
 | |
| 	.switched_to		= switched_to_fair,
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	.moved_group		= moved_group_fair,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| static void print_cfs_stats(struct seq_file *m, int cpu)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
 | |
| 		print_cfs_rq(m, cpu, cfs_rq);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| #endif
 |