mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 12:09:34 +00:00 
			
		
		
		
	 87b29b208c
			
		
	
	
		87b29b208c
		
	
	
	
	
		
			
			btrfs_insert_empty_items takes the space needed by the btrfs_item structure into account when calculating the required free space. So the tree balancing code shouldn't add sizeof(struct btrfs_item) to the size when checking the free space. This patch removes these superfluous additions. Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
		
			
				
	
	
		
			2994 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2994 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2008 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include "ctree.h"
 | |
| #include "transaction.h"
 | |
| #include "disk-io.h"
 | |
| #include "locking.h"
 | |
| #include "print-tree.h"
 | |
| #include "compat.h"
 | |
| #include "tree-log.h"
 | |
| 
 | |
| /* magic values for the inode_only field in btrfs_log_inode:
 | |
|  *
 | |
|  * LOG_INODE_ALL means to log everything
 | |
|  * LOG_INODE_EXISTS means to log just enough to recreate the inode
 | |
|  * during log replay
 | |
|  */
 | |
| #define LOG_INODE_ALL 0
 | |
| #define LOG_INODE_EXISTS 1
 | |
| 
 | |
| /*
 | |
|  * stages for the tree walking.  The first
 | |
|  * stage (0) is to only pin down the blocks we find
 | |
|  * the second stage (1) is to make sure that all the inodes
 | |
|  * we find in the log are created in the subvolume.
 | |
|  *
 | |
|  * The last stage is to deal with directories and links and extents
 | |
|  * and all the other fun semantics
 | |
|  */
 | |
| #define LOG_WALK_PIN_ONLY 0
 | |
| #define LOG_WALK_REPLAY_INODES 1
 | |
| #define LOG_WALK_REPLAY_ALL 2
 | |
| 
 | |
| static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root, struct inode *inode,
 | |
| 			     int inode_only);
 | |
| 
 | |
| /*
 | |
|  * tree logging is a special write ahead log used to make sure that
 | |
|  * fsyncs and O_SYNCs can happen without doing full tree commits.
 | |
|  *
 | |
|  * Full tree commits are expensive because they require commonly
 | |
|  * modified blocks to be recowed, creating many dirty pages in the
 | |
|  * extent tree an 4x-6x higher write load than ext3.
 | |
|  *
 | |
|  * Instead of doing a tree commit on every fsync, we use the
 | |
|  * key ranges and transaction ids to find items for a given file or directory
 | |
|  * that have changed in this transaction.  Those items are copied into
 | |
|  * a special tree (one per subvolume root), that tree is written to disk
 | |
|  * and then the fsync is considered complete.
 | |
|  *
 | |
|  * After a crash, items are copied out of the log-tree back into the
 | |
|  * subvolume tree.  Any file data extents found are recorded in the extent
 | |
|  * allocation tree, and the log-tree freed.
 | |
|  *
 | |
|  * The log tree is read three times, once to pin down all the extents it is
 | |
|  * using in ram and once, once to create all the inodes logged in the tree
 | |
|  * and once to do all the other items.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * btrfs_add_log_tree adds a new per-subvolume log tree into the
 | |
|  * tree of log tree roots.  This must be called with a tree log transaction
 | |
|  * running (see start_log_trans).
 | |
|  */
 | |
| static int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
 | |
| 		      struct btrfs_root *root)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_root_item root_item;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_root *new_root = root;
 | |
| 	int ret;
 | |
| 	u64 objectid = root->root_key.objectid;
 | |
| 
 | |
| 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
 | |
| 				      BTRFS_TREE_LOG_OBJECTID,
 | |
| 				      trans->transid, 0, 0, 0);
 | |
| 	if (IS_ERR(leaf)) {
 | |
| 		ret = PTR_ERR(leaf);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_header_nritems(leaf, 0);
 | |
| 	btrfs_set_header_level(leaf, 0);
 | |
| 	btrfs_set_header_bytenr(leaf, leaf->start);
 | |
| 	btrfs_set_header_generation(leaf, trans->transid);
 | |
| 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
 | |
| 
 | |
| 	write_extent_buffer(leaf, root->fs_info->fsid,
 | |
| 			    (unsigned long)btrfs_header_fsid(leaf),
 | |
| 			    BTRFS_FSID_SIZE);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 
 | |
| 	inode_item = &root_item.inode;
 | |
| 	memset(inode_item, 0, sizeof(*inode_item));
 | |
| 	inode_item->generation = cpu_to_le64(1);
 | |
| 	inode_item->size = cpu_to_le64(3);
 | |
| 	inode_item->nlink = cpu_to_le32(1);
 | |
| 	inode_item->nbytes = cpu_to_le64(root->leafsize);
 | |
| 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
 | |
| 
 | |
| 	btrfs_set_root_bytenr(&root_item, leaf->start);
 | |
| 	btrfs_set_root_generation(&root_item, trans->transid);
 | |
| 	btrfs_set_root_level(&root_item, 0);
 | |
| 	btrfs_set_root_refs(&root_item, 0);
 | |
| 	btrfs_set_root_used(&root_item, 0);
 | |
| 
 | |
| 	memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
 | |
| 	root_item.drop_level = 0;
 | |
| 
 | |
| 	btrfs_tree_unlock(leaf);
 | |
| 	free_extent_buffer(leaf);
 | |
| 	leaf = NULL;
 | |
| 
 | |
| 	btrfs_set_root_dirid(&root_item, 0);
 | |
| 
 | |
| 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
 | |
| 	key.offset = objectid;
 | |
| 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 | |
| 	ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
 | |
| 				&root_item);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
 | |
| 					       &key);
 | |
| 	BUG_ON(!new_root);
 | |
| 
 | |
| 	WARN_ON(root->log_root);
 | |
| 	root->log_root = new_root;
 | |
| 
 | |
| 	/*
 | |
| 	 * log trees do not get reference counted because they go away
 | |
| 	 * before a real commit is actually done.  They do store pointers
 | |
| 	 * to file data extents, and those reference counts still get
 | |
| 	 * updated (along with back refs to the log tree).
 | |
| 	 */
 | |
| 	new_root->ref_cows = 0;
 | |
| 	new_root->last_trans = trans->transid;
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * start a sub transaction and setup the log tree
 | |
|  * this increments the log tree writer count to make the people
 | |
|  * syncing the tree wait for us to finish
 | |
|  */
 | |
| static int start_log_trans(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root)
 | |
| {
 | |
| 	int ret;
 | |
| 	mutex_lock(&root->fs_info->tree_log_mutex);
 | |
| 	if (!root->fs_info->log_root_tree) {
 | |
| 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	if (!root->log_root) {
 | |
| 		ret = btrfs_add_log_tree(trans, root);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	atomic_inc(&root->fs_info->tree_log_writers);
 | |
| 	root->fs_info->tree_log_batch++;
 | |
| 	mutex_unlock(&root->fs_info->tree_log_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns 0 if there was a log transaction running and we were able
 | |
|  * to join, or returns -ENOENT if there were not transactions
 | |
|  * in progress
 | |
|  */
 | |
| static int join_running_log_trans(struct btrfs_root *root)
 | |
| {
 | |
| 	int ret = -ENOENT;
 | |
| 
 | |
| 	smp_mb();
 | |
| 	if (!root->log_root)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	mutex_lock(&root->fs_info->tree_log_mutex);
 | |
| 	if (root->log_root) {
 | |
| 		ret = 0;
 | |
| 		atomic_inc(&root->fs_info->tree_log_writers);
 | |
| 		root->fs_info->tree_log_batch++;
 | |
| 	}
 | |
| 	mutex_unlock(&root->fs_info->tree_log_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * indicate we're done making changes to the log tree
 | |
|  * and wake up anyone waiting to do a sync
 | |
|  */
 | |
| static int end_log_trans(struct btrfs_root *root)
 | |
| {
 | |
| 	atomic_dec(&root->fs_info->tree_log_writers);
 | |
| 	smp_mb();
 | |
| 	if (waitqueue_active(&root->fs_info->tree_log_wait))
 | |
| 		wake_up(&root->fs_info->tree_log_wait);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * the walk control struct is used to pass state down the chain when
 | |
|  * processing the log tree.  The stage field tells us which part
 | |
|  * of the log tree processing we are currently doing.  The others
 | |
|  * are state fields used for that specific part
 | |
|  */
 | |
| struct walk_control {
 | |
| 	/* should we free the extent on disk when done?  This is used
 | |
| 	 * at transaction commit time while freeing a log tree
 | |
| 	 */
 | |
| 	int free;
 | |
| 
 | |
| 	/* should we write out the extent buffer?  This is used
 | |
| 	 * while flushing the log tree to disk during a sync
 | |
| 	 */
 | |
| 	int write;
 | |
| 
 | |
| 	/* should we wait for the extent buffer io to finish?  Also used
 | |
| 	 * while flushing the log tree to disk for a sync
 | |
| 	 */
 | |
| 	int wait;
 | |
| 
 | |
| 	/* pin only walk, we record which extents on disk belong to the
 | |
| 	 * log trees
 | |
| 	 */
 | |
| 	int pin;
 | |
| 
 | |
| 	/* what stage of the replay code we're currently in */
 | |
| 	int stage;
 | |
| 
 | |
| 	/* the root we are currently replaying */
 | |
| 	struct btrfs_root *replay_dest;
 | |
| 
 | |
| 	/* the trans handle for the current replay */
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 	/* the function that gets used to process blocks we find in the
 | |
| 	 * tree.  Note the extent_buffer might not be up to date when it is
 | |
| 	 * passed in, and it must be checked or read if you need the data
 | |
| 	 * inside it
 | |
| 	 */
 | |
| 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 | |
| 			    struct walk_control *wc, u64 gen);
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * process_func used to pin down extents, write them or wait on them
 | |
|  */
 | |
| static int process_one_buffer(struct btrfs_root *log,
 | |
| 			      struct extent_buffer *eb,
 | |
| 			      struct walk_control *wc, u64 gen)
 | |
| {
 | |
| 	if (wc->pin) {
 | |
| 		mutex_lock(&log->fs_info->pinned_mutex);
 | |
| 		btrfs_update_pinned_extents(log->fs_info->extent_root,
 | |
| 					    eb->start, eb->len, 1);
 | |
| 		mutex_unlock(&log->fs_info->pinned_mutex);
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_buffer_uptodate(eb, gen)) {
 | |
| 		if (wc->write)
 | |
| 			btrfs_write_tree_block(eb);
 | |
| 		if (wc->wait)
 | |
| 			btrfs_wait_tree_block_writeback(eb);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 | |
|  * to the src data we are copying out.
 | |
|  *
 | |
|  * root is the tree we are copying into, and path is a scratch
 | |
|  * path for use in this function (it should be released on entry and
 | |
|  * will be released on exit).
 | |
|  *
 | |
|  * If the key is already in the destination tree the existing item is
 | |
|  * overwritten.  If the existing item isn't big enough, it is extended.
 | |
|  * If it is too large, it is truncated.
 | |
|  *
 | |
|  * If the key isn't in the destination yet, a new item is inserted.
 | |
|  */
 | |
| static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   struct extent_buffer *eb, int slot,
 | |
| 				   struct btrfs_key *key)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 item_size;
 | |
| 	u64 saved_i_size = 0;
 | |
| 	int save_old_i_size = 0;
 | |
| 	unsigned long src_ptr;
 | |
| 	unsigned long dst_ptr;
 | |
| 	int overwrite_root = 0;
 | |
| 
 | |
| 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 | |
| 		overwrite_root = 1;
 | |
| 
 | |
| 	item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	src_ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 
 | |
| 	/* look for the key in the destination tree */
 | |
| 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 | |
| 	if (ret == 0) {
 | |
| 		char *src_copy;
 | |
| 		char *dst_copy;
 | |
| 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 | |
| 						  path->slots[0]);
 | |
| 		if (dst_size != item_size)
 | |
| 			goto insert;
 | |
| 
 | |
| 		if (item_size == 0) {
 | |
| 			btrfs_release_path(root, path);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		dst_copy = kmalloc(item_size, GFP_NOFS);
 | |
| 		src_copy = kmalloc(item_size, GFP_NOFS);
 | |
| 
 | |
| 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 | |
| 
 | |
| 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | |
| 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 | |
| 				   item_size);
 | |
| 		ret = memcmp(dst_copy, src_copy, item_size);
 | |
| 
 | |
| 		kfree(dst_copy);
 | |
| 		kfree(src_copy);
 | |
| 		/*
 | |
| 		 * they have the same contents, just return, this saves
 | |
| 		 * us from cowing blocks in the destination tree and doing
 | |
| 		 * extra writes that may not have been done by a previous
 | |
| 		 * sync
 | |
| 		 */
 | |
| 		if (ret == 0) {
 | |
| 			btrfs_release_path(root, path);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| insert:
 | |
| 	btrfs_release_path(root, path);
 | |
| 	/* try to insert the key into the destination tree */
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path,
 | |
| 				      key, item_size);
 | |
| 
 | |
| 	/* make sure any existing item is the correct size */
 | |
| 	if (ret == -EEXIST) {
 | |
| 		u32 found_size;
 | |
| 		found_size = btrfs_item_size_nr(path->nodes[0],
 | |
| 						path->slots[0]);
 | |
| 		if (found_size > item_size) {
 | |
| 			btrfs_truncate_item(trans, root, path, item_size, 1);
 | |
| 		} else if (found_size < item_size) {
 | |
| 			ret = btrfs_extend_item(trans, root, path,
 | |
| 						item_size - found_size);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 	} else if (ret) {
 | |
| 		BUG();
 | |
| 	}
 | |
| 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 | |
| 					path->slots[0]);
 | |
| 
 | |
| 	/* don't overwrite an existing inode if the generation number
 | |
| 	 * was logged as zero.  This is done when the tree logging code
 | |
| 	 * is just logging an inode to make sure it exists after recovery.
 | |
| 	 *
 | |
| 	 * Also, don't overwrite i_size on directories during replay.
 | |
| 	 * log replay inserts and removes directory items based on the
 | |
| 	 * state of the tree found in the subvolume, and i_size is modified
 | |
| 	 * as it goes
 | |
| 	 */
 | |
| 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 | |
| 		struct btrfs_inode_item *src_item;
 | |
| 		struct btrfs_inode_item *dst_item;
 | |
| 
 | |
| 		src_item = (struct btrfs_inode_item *)src_ptr;
 | |
| 		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | |
| 
 | |
| 		if (btrfs_inode_generation(eb, src_item) == 0)
 | |
| 			goto no_copy;
 | |
| 
 | |
| 		if (overwrite_root &&
 | |
| 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 | |
| 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 | |
| 			save_old_i_size = 1;
 | |
| 			saved_i_size = btrfs_inode_size(path->nodes[0],
 | |
| 							dst_item);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 | |
| 			   src_ptr, item_size);
 | |
| 
 | |
| 	if (save_old_i_size) {
 | |
| 		struct btrfs_inode_item *dst_item;
 | |
| 		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | |
| 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 | |
| 	}
 | |
| 
 | |
| 	/* make sure the generation is filled in */
 | |
| 	if (key->type == BTRFS_INODE_ITEM_KEY) {
 | |
| 		struct btrfs_inode_item *dst_item;
 | |
| 		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | |
| 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 | |
| 			btrfs_set_inode_generation(path->nodes[0], dst_item,
 | |
| 						   trans->transid);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (overwrite_root &&
 | |
| 	    key->type == BTRFS_EXTENT_DATA_KEY) {
 | |
| 		int extent_type;
 | |
| 		struct btrfs_file_extent_item *fi;
 | |
| 
 | |
| 		fi = (struct btrfs_file_extent_item *)dst_ptr;
 | |
| 		extent_type = btrfs_file_extent_type(path->nodes[0], fi);
 | |
| 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 			struct btrfs_key ins;
 | |
| 			ins.objectid = btrfs_file_extent_disk_bytenr(
 | |
| 							path->nodes[0], fi);
 | |
| 			ins.offset = btrfs_file_extent_disk_num_bytes(
 | |
| 							path->nodes[0], fi);
 | |
| 			ins.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 
 | |
| 			/*
 | |
| 			 * is this extent already allocated in the extent
 | |
| 			 * allocation tree?  If so, just add a reference
 | |
| 			 */
 | |
| 			ret = btrfs_lookup_extent(root, ins.objectid,
 | |
| 						  ins.offset);
 | |
| 			if (ret == 0) {
 | |
| 				ret = btrfs_inc_extent_ref(trans, root,
 | |
| 						ins.objectid, ins.offset,
 | |
| 						path->nodes[0]->start,
 | |
| 						root->root_key.objectid,
 | |
| 						trans->transid, key->objectid);
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * insert the extent pointer in the extent
 | |
| 				 * allocation tree
 | |
| 				 */
 | |
| 				ret = btrfs_alloc_logged_extent(trans, root,
 | |
| 						path->nodes[0]->start,
 | |
| 						root->root_key.objectid,
 | |
| 						trans->transid, key->objectid,
 | |
| 						&ins);
 | |
| 				BUG_ON(ret);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| no_copy:
 | |
| 	btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 	btrfs_release_path(root, path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * simple helper to read an inode off the disk from a given root
 | |
|  * This can only be called for subvolume roots and not for the log
 | |
|  */
 | |
| static noinline struct inode *read_one_inode(struct btrfs_root *root,
 | |
| 					     u64 objectid)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
 | |
| 	if (inode->i_state & I_NEW) {
 | |
| 		BTRFS_I(inode)->root = root;
 | |
| 		BTRFS_I(inode)->location.objectid = objectid;
 | |
| 		BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
 | |
| 		BTRFS_I(inode)->location.offset = 0;
 | |
| 		btrfs_read_locked_inode(inode);
 | |
| 		unlock_new_inode(inode);
 | |
| 
 | |
| 	}
 | |
| 	if (is_bad_inode(inode)) {
 | |
| 		iput(inode);
 | |
| 		inode = NULL;
 | |
| 	}
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| /* replays a single extent in 'eb' at 'slot' with 'key' into the
 | |
|  * subvolume 'root'.  path is released on entry and should be released
 | |
|  * on exit.
 | |
|  *
 | |
|  * extents in the log tree have not been allocated out of the extent
 | |
|  * tree yet.  So, this completes the allocation, taking a reference
 | |
|  * as required if the extent already exists or creating a new extent
 | |
|  * if it isn't in the extent allocation tree yet.
 | |
|  *
 | |
|  * The extent is inserted into the file, dropping any existing extents
 | |
|  * from the file that overlap the new one.
 | |
|  */
 | |
| static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      struct extent_buffer *eb, int slot,
 | |
| 				      struct btrfs_key *key)
 | |
| {
 | |
| 	int found_type;
 | |
| 	u64 mask = root->sectorsize - 1;
 | |
| 	u64 extent_end;
 | |
| 	u64 alloc_hint;
 | |
| 	u64 start = key->offset;
 | |
| 	struct btrfs_file_extent_item *item;
 | |
| 	struct inode *inode = NULL;
 | |
| 	unsigned long size;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 | |
| 	found_type = btrfs_file_extent_type(eb, item);
 | |
| 
 | |
| 	if (found_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
 | |
| 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
 | |
| 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 		size = btrfs_file_extent_inline_len(eb, item);
 | |
| 		extent_end = (start + size + mask) & ~mask;
 | |
| 	} else {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	inode = read_one_inode(root, key->objectid);
 | |
| 	if (!inode) {
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * first check to see if we already have this extent in the
 | |
| 	 * file.  This must be done before the btrfs_drop_extents run
 | |
| 	 * so we don't try to drop this extent.
 | |
| 	 */
 | |
| 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
 | |
| 				       start, 0);
 | |
| 
 | |
| 	if (ret == 0 &&
 | |
| 	    (found_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 | |
| 		struct btrfs_file_extent_item cmp1;
 | |
| 		struct btrfs_file_extent_item cmp2;
 | |
| 		struct btrfs_file_extent_item *existing;
 | |
| 		struct extent_buffer *leaf;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		existing = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					  struct btrfs_file_extent_item);
 | |
| 
 | |
| 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 | |
| 				   sizeof(cmp1));
 | |
| 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 | |
| 				   sizeof(cmp2));
 | |
| 
 | |
| 		/*
 | |
| 		 * we already have a pointer to this exact extent,
 | |
| 		 * we don't have to do anything
 | |
| 		 */
 | |
| 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 | |
| 			btrfs_release_path(root, path);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(root, path);
 | |
| 
 | |
| 	/* drop any overlapping extents */
 | |
| 	ret = btrfs_drop_extents(trans, root, inode,
 | |
| 			 start, extent_end, start, &alloc_hint);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	/* insert the extent */
 | |
| 	ret = overwrite_item(trans, root, path, eb, slot, key);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	/* btrfs_drop_extents changes i_bytes & i_blocks, update it here */
 | |
| 	inode_add_bytes(inode, extent_end - start);
 | |
| 	btrfs_update_inode(trans, root, inode);
 | |
| out:
 | |
| 	if (inode)
 | |
| 		iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when cleaning up conflicts between the directory names in the
 | |
|  * subvolume, directory names in the log and directory names in the
 | |
|  * inode back references, we may have to unlink inodes from directories.
 | |
|  *
 | |
|  * This is a helper function to do the unlink of a specific directory
 | |
|  * item
 | |
|  */
 | |
| static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      struct inode *dir,
 | |
| 				      struct btrfs_dir_item *di)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	char *name;
 | |
| 	int name_len;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key location;
 | |
| 	int ret;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 
 | |
| 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 | |
| 	name_len = btrfs_dir_name_len(leaf, di);
 | |
| 	name = kmalloc(name_len, GFP_NOFS);
 | |
| 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 | |
| 	btrfs_release_path(root, path);
 | |
| 
 | |
| 	inode = read_one_inode(root, location.objectid);
 | |
| 	BUG_ON(!inode);
 | |
| 
 | |
| 	btrfs_inc_nlink(inode);
 | |
| 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 | |
| 	kfree(name);
 | |
| 
 | |
| 	iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to see if a given name and sequence number found
 | |
|  * in an inode back reference are already in a directory and correctly
 | |
|  * point to this inode
 | |
|  */
 | |
| static noinline int inode_in_dir(struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 u64 dirid, u64 objectid, u64 index,
 | |
| 				 const char *name, int name_len)
 | |
| {
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct btrfs_key location;
 | |
| 	int match = 0;
 | |
| 
 | |
| 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 | |
| 					 index, name, name_len, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 | |
| 		if (location.objectid != objectid)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		goto out;
 | |
| 	btrfs_release_path(root, path);
 | |
| 
 | |
| 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 | |
| 		if (location.objectid != objectid)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		goto out;
 | |
| 	match = 1;
 | |
| out:
 | |
| 	btrfs_release_path(root, path);
 | |
| 	return match;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to check a log tree for a named back reference in
 | |
|  * an inode.  This is used to decide if a back reference that is
 | |
|  * found in the subvolume conflicts with what we find in the log.
 | |
|  *
 | |
|  * inode backreferences may have multiple refs in a single item,
 | |
|  * during replay we process one reference at a time, and we don't
 | |
|  * want to delete valid links to a file from the subvolume if that
 | |
|  * link is also in the log.
 | |
|  */
 | |
| static noinline int backref_in_log(struct btrfs_root *log,
 | |
| 				   struct btrfs_key *key,
 | |
| 				   char *name, int namelen)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_inode_ref *ref;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 	unsigned long name_ptr;
 | |
| 	int found_name_len;
 | |
| 	int item_size;
 | |
| 	int ret;
 | |
| 	int match = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 | |
| 	if (ret != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 | |
| 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | |
| 	ptr_end = ptr + item_size;
 | |
| 	while (ptr < ptr_end) {
 | |
| 		ref = (struct btrfs_inode_ref *)ptr;
 | |
| 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 | |
| 		if (found_name_len == namelen) {
 | |
| 			name_ptr = (unsigned long)(ref + 1);
 | |
| 			ret = memcmp_extent_buffer(path->nodes[0], name,
 | |
| 						   name_ptr, namelen);
 | |
| 			if (ret == 0) {
 | |
| 				match = 1;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		ptr = (unsigned long)(ref + 1) + found_name_len;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return match;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * replay one inode back reference item found in the log tree.
 | |
|  * eb, slot and key refer to the buffer and key found in the log tree.
 | |
|  * root is the destination we are replaying into, and path is for temp
 | |
|  * use by this function.  (it should be released on return).
 | |
|  */
 | |
| static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *root,
 | |
| 				  struct btrfs_root *log,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  struct extent_buffer *eb, int slot,
 | |
| 				  struct btrfs_key *key)
 | |
| {
 | |
| 	struct inode *dir;
 | |
| 	int ret;
 | |
| 	struct btrfs_key location;
 | |
| 	struct btrfs_inode_ref *ref;
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct inode *inode;
 | |
| 	char *name;
 | |
| 	int namelen;
 | |
| 	unsigned long ref_ptr;
 | |
| 	unsigned long ref_end;
 | |
| 
 | |
| 	location.objectid = key->objectid;
 | |
| 	location.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	location.offset = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * it is possible that we didn't log all the parent directories
 | |
| 	 * for a given inode.  If we don't find the dir, just don't
 | |
| 	 * copy the back ref in.  The link count fixup code will take
 | |
| 	 * care of the rest
 | |
| 	 */
 | |
| 	dir = read_one_inode(root, key->offset);
 | |
| 	if (!dir)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	inode = read_one_inode(root, key->objectid);
 | |
| 	BUG_ON(!dir);
 | |
| 
 | |
| 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 | |
| 
 | |
| again:
 | |
| 	ref = (struct btrfs_inode_ref *)ref_ptr;
 | |
| 
 | |
| 	namelen = btrfs_inode_ref_name_len(eb, ref);
 | |
| 	name = kmalloc(namelen, GFP_NOFS);
 | |
| 	BUG_ON(!name);
 | |
| 
 | |
| 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
 | |
| 
 | |
| 	/* if we already have a perfect match, we're done */
 | |
| 	if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
 | |
| 			 btrfs_inode_ref_index(eb, ref),
 | |
| 			 name, namelen)) {
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * look for a conflicting back reference in the metadata.
 | |
| 	 * if we find one we have to unlink that name of the file
 | |
| 	 * before we add our new link.  Later on, we overwrite any
 | |
| 	 * existing back reference, and we don't want to create
 | |
| 	 * dangling pointers in the directory.
 | |
| 	 */
 | |
| conflict_again:
 | |
| 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 | |
| 	if (ret == 0) {
 | |
| 		char *victim_name;
 | |
| 		int victim_name_len;
 | |
| 		struct btrfs_inode_ref *victim_ref;
 | |
| 		unsigned long ptr;
 | |
| 		unsigned long ptr_end;
 | |
| 		struct extent_buffer *leaf = path->nodes[0];
 | |
| 
 | |
| 		/* are we trying to overwrite a back ref for the root directory
 | |
| 		 * if so, just jump out, we're done
 | |
| 		 */
 | |
| 		if (key->objectid == key->offset)
 | |
| 			goto out_nowrite;
 | |
| 
 | |
| 		/* check all the names in this back reference to see
 | |
| 		 * if they are in the log.  if so, we allow them to stay
 | |
| 		 * otherwise they must be unlinked as a conflict
 | |
| 		 */
 | |
| 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | |
| 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 		while(ptr < ptr_end) {
 | |
| 			victim_ref = (struct btrfs_inode_ref *)ptr;
 | |
| 			victim_name_len = btrfs_inode_ref_name_len(leaf,
 | |
| 								   victim_ref);
 | |
| 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 | |
| 			BUG_ON(!victim_name);
 | |
| 
 | |
| 			read_extent_buffer(leaf, victim_name,
 | |
| 					   (unsigned long)(victim_ref + 1),
 | |
| 					   victim_name_len);
 | |
| 
 | |
| 			if (!backref_in_log(log, key, victim_name,
 | |
| 					    victim_name_len)) {
 | |
| 				btrfs_inc_nlink(inode);
 | |
| 				btrfs_release_path(root, path);
 | |
| 				ret = btrfs_unlink_inode(trans, root, dir,
 | |
| 							 inode, victim_name,
 | |
| 							 victim_name_len);
 | |
| 				kfree(victim_name);
 | |
| 				btrfs_release_path(root, path);
 | |
| 				goto conflict_again;
 | |
| 			}
 | |
| 			kfree(victim_name);
 | |
| 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 | |
| 		}
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	btrfs_release_path(root, path);
 | |
| 
 | |
| 	/* look for a conflicting sequence number */
 | |
| 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
 | |
| 					 btrfs_inode_ref_index(eb, ref),
 | |
| 					 name, namelen, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		ret = drop_one_dir_item(trans, root, path, dir, di);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	btrfs_release_path(root, path);
 | |
| 
 | |
| 
 | |
| 	/* look for a conflicting name */
 | |
| 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
 | |
| 				   name, namelen, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		ret = drop_one_dir_item(trans, root, path, dir, di);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	btrfs_release_path(root, path);
 | |
| 
 | |
| 	/* insert our name */
 | |
| 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
 | |
| 			     btrfs_inode_ref_index(eb, ref));
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	btrfs_update_inode(trans, root, inode);
 | |
| 
 | |
| out:
 | |
| 	ref_ptr = (unsigned long)(ref + 1) + namelen;
 | |
| 	kfree(name);
 | |
| 	if (ref_ptr < ref_end)
 | |
| 		goto again;
 | |
| 
 | |
| 	/* finally write the back reference in the inode */
 | |
| 	ret = overwrite_item(trans, root, path, eb, slot, key);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| out_nowrite:
 | |
| 	btrfs_release_path(root, path);
 | |
| 	iput(dir);
 | |
| 	iput(inode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * replay one csum item from the log tree into the subvolume 'root'
 | |
|  * eb, slot and key all refer to the log tree
 | |
|  * path is for temp use by this function and should be released on return
 | |
|  *
 | |
|  * This copies the checksums out of the log tree and inserts them into
 | |
|  * the subvolume.  Any existing checksums for this range in the file
 | |
|  * are overwritten, and new items are added where required.
 | |
|  *
 | |
|  * We keep this simple by reusing the btrfs_ordered_sum code from
 | |
|  * the data=ordered mode.  This basically means making a copy
 | |
|  * of all the checksums in ram, which we have to do anyway for kmap
 | |
|  * rules.
 | |
|  *
 | |
|  * The copy is then sent down to btrfs_csum_file_blocks, which
 | |
|  * does all the hard work of finding existing items in the file
 | |
|  * or adding new ones.
 | |
|  */
 | |
| static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      struct extent_buffer *eb, int slot,
 | |
| 				      struct btrfs_key *key)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	u64 cur_offset;
 | |
| 	u16 csum_size =
 | |
| 		btrfs_super_csum_size(&root->fs_info->super_copy);
 | |
| 	unsigned long file_bytes;
 | |
| 	struct btrfs_ordered_sum *sums;
 | |
| 	struct btrfs_sector_sum *sector_sum;
 | |
| 	unsigned long ptr;
 | |
| 
 | |
| 	file_bytes = (item_size / csum_size) * root->sectorsize;
 | |
| 	sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
 | |
| 	if (!sums) {
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&sums->list);
 | |
| 	sums->len = file_bytes;
 | |
| 	sums->bytenr = key->offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * copy all the sums into the ordered sum struct
 | |
| 	 */
 | |
| 	sector_sum = sums->sums;
 | |
| 	cur_offset = key->offset;
 | |
| 	ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 	while(item_size > 0) {
 | |
| 		sector_sum->bytenr = cur_offset;
 | |
| 		read_extent_buffer(eb, §or_sum->sum, ptr, csum_size);
 | |
| 		sector_sum++;
 | |
| 		item_size -= csum_size;
 | |
| 		ptr += csum_size;
 | |
| 		cur_offset += root->sectorsize;
 | |
| 	}
 | |
| 
 | |
| 	/* let btrfs_csum_file_blocks add them into the file */
 | |
| 	ret = btrfs_csum_file_blocks(trans, root->fs_info->csum_root, sums);
 | |
| 	BUG_ON(ret);
 | |
| 	kfree(sums);
 | |
| 	return 0;
 | |
| }
 | |
| /*
 | |
|  * There are a few corners where the link count of the file can't
 | |
|  * be properly maintained during replay.  So, instead of adding
 | |
|  * lots of complexity to the log code, we just scan the backrefs
 | |
|  * for any file that has been through replay.
 | |
|  *
 | |
|  * The scan will update the link count on the inode to reflect the
 | |
|  * number of back refs found.  If it goes down to zero, the iput
 | |
|  * will free the inode.
 | |
|  */
 | |
| static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 | |
| 					   struct btrfs_root *root,
 | |
| 					   struct inode *inode)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 nlink = 0;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 	int name_len;
 | |
| 
 | |
| 	key.objectid = inode->i_ino;
 | |
| 	key.type = BTRFS_INODE_REF_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 
 | |
| 	while(1) {
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret > 0) {
 | |
| 			if (path->slots[0] == 0)
 | |
| 				break;
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 				      path->slots[0]);
 | |
| 		if (key.objectid != inode->i_ino ||
 | |
| 		    key.type != BTRFS_INODE_REF_KEY)
 | |
| 			break;
 | |
| 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | |
| 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
 | |
| 						   path->slots[0]);
 | |
| 		while(ptr < ptr_end) {
 | |
| 			struct btrfs_inode_ref *ref;
 | |
| 
 | |
| 			ref = (struct btrfs_inode_ref *)ptr;
 | |
| 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
 | |
| 							    ref);
 | |
| 			ptr = (unsigned long)(ref + 1) + name_len;
 | |
| 			nlink++;
 | |
| 		}
 | |
| 
 | |
| 		if (key.offset == 0)
 | |
| 			break;
 | |
| 		key.offset--;
 | |
| 		btrfs_release_path(root, path);
 | |
| 	}
 | |
| 	btrfs_free_path(path);
 | |
| 	if (nlink != inode->i_nlink) {
 | |
| 		inode->i_nlink = nlink;
 | |
| 		btrfs_update_inode(trans, root, inode);
 | |
| 	}
 | |
| 	BTRFS_I(inode)->index_cnt = (u64)-1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
 | |
| 					    struct btrfs_root *root,
 | |
| 					    struct btrfs_path *path)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
 | |
| 	key.type = BTRFS_ORPHAN_ITEM_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 	while(1) {
 | |
| 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (ret == 1) {
 | |
| 			if (path->slots[0] == 0)
 | |
| 				break;
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
 | |
| 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		ret = btrfs_del_item(trans, root, path);
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		btrfs_release_path(root, path);
 | |
| 		inode = read_one_inode(root, key.offset);
 | |
| 		BUG_ON(!inode);
 | |
| 
 | |
| 		ret = fixup_inode_link_count(trans, root, inode);
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		iput(inode);
 | |
| 
 | |
| 		if (key.offset == 0)
 | |
| 			break;
 | |
| 		key.offset--;
 | |
| 	}
 | |
| 	btrfs_release_path(root, path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * record a given inode in the fixup dir so we can check its link
 | |
|  * count when replay is done.  The link count is incremented here
 | |
|  * so the inode won't go away until we check it
 | |
|  */
 | |
| static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      u64 objectid)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	int ret = 0;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	inode = read_one_inode(root, objectid);
 | |
| 	BUG_ON(!inode);
 | |
| 
 | |
| 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
 | |
| 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
 | |
| 	key.offset = objectid;
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 | |
| 
 | |
| 	btrfs_release_path(root, path);
 | |
| 	if (ret == 0) {
 | |
| 		btrfs_inc_nlink(inode);
 | |
| 		btrfs_update_inode(trans, root, inode);
 | |
| 	} else if (ret == -EEXIST) {
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 	iput(inode);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when replaying the log for a directory, we only insert names
 | |
|  * for inodes that actually exist.  This means an fsync on a directory
 | |
|  * does not implicitly fsync all the new files in it
 | |
|  */
 | |
| static noinline int insert_one_name(struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_root *root,
 | |
| 				    struct btrfs_path *path,
 | |
| 				    u64 dirid, u64 index,
 | |
| 				    char *name, int name_len, u8 type,
 | |
| 				    struct btrfs_key *location)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct inode *dir;
 | |
| 	int ret;
 | |
| 
 | |
| 	inode = read_one_inode(root, location->objectid);
 | |
| 	if (!inode)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	dir = read_one_inode(root, dirid);
 | |
| 	if (!dir) {
 | |
| 		iput(inode);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
 | |
| 
 | |
| 	/* FIXME, put inode into FIXUP list */
 | |
| 
 | |
| 	iput(inode);
 | |
| 	iput(dir);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * take a single entry in a log directory item and replay it into
 | |
|  * the subvolume.
 | |
|  *
 | |
|  * if a conflicting item exists in the subdirectory already,
 | |
|  * the inode it points to is unlinked and put into the link count
 | |
|  * fix up tree.
 | |
|  *
 | |
|  * If a name from the log points to a file or directory that does
 | |
|  * not exist in the FS, it is skipped.  fsyncs on directories
 | |
|  * do not force down inodes inside that directory, just changes to the
 | |
|  * names or unlinks in a directory.
 | |
|  */
 | |
| static noinline int replay_one_name(struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_root *root,
 | |
| 				    struct btrfs_path *path,
 | |
| 				    struct extent_buffer *eb,
 | |
| 				    struct btrfs_dir_item *di,
 | |
| 				    struct btrfs_key *key)
 | |
| {
 | |
| 	char *name;
 | |
| 	int name_len;
 | |
| 	struct btrfs_dir_item *dst_di;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_key log_key;
 | |
| 	struct inode *dir;
 | |
| 	u8 log_type;
 | |
| 	int exists;
 | |
| 	int ret;
 | |
| 
 | |
| 	dir = read_one_inode(root, key->objectid);
 | |
| 	BUG_ON(!dir);
 | |
| 
 | |
| 	name_len = btrfs_dir_name_len(eb, di);
 | |
| 	name = kmalloc(name_len, GFP_NOFS);
 | |
| 	log_type = btrfs_dir_type(eb, di);
 | |
| 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
 | |
| 		   name_len);
 | |
| 
 | |
| 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
 | |
| 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
 | |
| 	if (exists == 0)
 | |
| 		exists = 1;
 | |
| 	else
 | |
| 		exists = 0;
 | |
| 	btrfs_release_path(root, path);
 | |
| 
 | |
| 	if (key->type == BTRFS_DIR_ITEM_KEY) {
 | |
| 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
 | |
| 				       name, name_len, 1);
 | |
| 	}
 | |
| 	else if (key->type == BTRFS_DIR_INDEX_KEY) {
 | |
| 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
 | |
| 						     key->objectid,
 | |
| 						     key->offset, name,
 | |
| 						     name_len, 1);
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 	if (!dst_di || IS_ERR(dst_di)) {
 | |
| 		/* we need a sequence number to insert, so we only
 | |
| 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
 | |
| 		 */
 | |
| 		if (key->type != BTRFS_DIR_INDEX_KEY)
 | |
| 			goto out;
 | |
| 		goto insert;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
 | |
| 	/* the existing item matches the logged item */
 | |
| 	if (found_key.objectid == log_key.objectid &&
 | |
| 	    found_key.type == log_key.type &&
 | |
| 	    found_key.offset == log_key.offset &&
 | |
| 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * don't drop the conflicting directory entry if the inode
 | |
| 	 * for the new entry doesn't exist
 | |
| 	 */
 | |
| 	if (!exists)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	if (key->type == BTRFS_DIR_INDEX_KEY)
 | |
| 		goto insert;
 | |
| out:
 | |
| 	btrfs_release_path(root, path);
 | |
| 	kfree(name);
 | |
| 	iput(dir);
 | |
| 	return 0;
 | |
| 
 | |
| insert:
 | |
| 	btrfs_release_path(root, path);
 | |
| 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
 | |
| 			      name, name_len, log_type, &log_key);
 | |
| 
 | |
| 	if (ret && ret != -ENOENT)
 | |
| 		BUG();
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find all the names in a directory item and reconcile them into
 | |
|  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
 | |
|  * one name in a directory item, but the same code gets used for
 | |
|  * both directory index types
 | |
|  */
 | |
| static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
 | |
| 					struct btrfs_root *root,
 | |
| 					struct btrfs_path *path,
 | |
| 					struct extent_buffer *eb, int slot,
 | |
| 					struct btrfs_key *key)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	int name_len;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 
 | |
| 	ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 	ptr_end = ptr + item_size;
 | |
| 	while(ptr < ptr_end) {
 | |
| 		di = (struct btrfs_dir_item *)ptr;
 | |
| 		name_len = btrfs_dir_name_len(eb, di);
 | |
| 		ret = replay_one_name(trans, root, path, eb, di, key);
 | |
| 		BUG_ON(ret);
 | |
| 		ptr = (unsigned long)(di + 1);
 | |
| 		ptr += name_len;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * directory replay has two parts.  There are the standard directory
 | |
|  * items in the log copied from the subvolume, and range items
 | |
|  * created in the log while the subvolume was logged.
 | |
|  *
 | |
|  * The range items tell us which parts of the key space the log
 | |
|  * is authoritative for.  During replay, if a key in the subvolume
 | |
|  * directory is in a logged range item, but not actually in the log
 | |
|  * that means it was deleted from the directory before the fsync
 | |
|  * and should be removed.
 | |
|  */
 | |
| static noinline int find_dir_range(struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   u64 dirid, int key_type,
 | |
| 				   u64 *start_ret, u64 *end_ret)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	u64 found_end;
 | |
| 	struct btrfs_dir_log_item *item;
 | |
| 	int ret;
 | |
| 	int nritems;
 | |
| 
 | |
| 	if (*start_ret == (u64)-1)
 | |
| 		return 1;
 | |
| 
 | |
| 	key.objectid = dirid;
 | |
| 	key.type = key_type;
 | |
| 	key.offset = *start_ret;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0) {
 | |
| 		if (path->slots[0] == 0)
 | |
| 			goto out;
 | |
| 		path->slots[0]--;
 | |
| 	}
 | |
| 	if (ret != 0)
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.type != key_type || key.objectid != dirid) {
 | |
| 		ret = 1;
 | |
| 		goto next;
 | |
| 	}
 | |
| 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 			      struct btrfs_dir_log_item);
 | |
| 	found_end = btrfs_dir_log_end(path->nodes[0], item);
 | |
| 
 | |
| 	if (*start_ret >= key.offset && *start_ret <= found_end) {
 | |
| 		ret = 0;
 | |
| 		*start_ret = key.offset;
 | |
| 		*end_ret = found_end;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = 1;
 | |
| next:
 | |
| 	/* check the next slot in the tree to see if it is a valid item */
 | |
| 	nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 	if (path->slots[0] >= nritems) {
 | |
| 		ret = btrfs_next_leaf(root, path);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.type != key_type || key.objectid != dirid) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 			      struct btrfs_dir_log_item);
 | |
| 	found_end = btrfs_dir_log_end(path->nodes[0], item);
 | |
| 	*start_ret = key.offset;
 | |
| 	*end_ret = found_end;
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_release_path(root, path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this looks for a given directory item in the log.  If the directory
 | |
|  * item is not in the log, the item is removed and the inode it points
 | |
|  * to is unlinked
 | |
|  */
 | |
| static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_root *log,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      struct btrfs_path *log_path,
 | |
| 				      struct inode *dir,
 | |
| 				      struct btrfs_key *dir_key)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int slot;
 | |
| 	u32 item_size;
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct btrfs_dir_item *log_di;
 | |
| 	int name_len;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 	char *name;
 | |
| 	struct inode *inode;
 | |
| 	struct btrfs_key location;
 | |
| 
 | |
| again:
 | |
| 	eb = path->nodes[0];
 | |
| 	slot = path->slots[0];
 | |
| 	item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 	ptr_end = ptr + item_size;
 | |
| 	while(ptr < ptr_end) {
 | |
| 		di = (struct btrfs_dir_item *)ptr;
 | |
| 		name_len = btrfs_dir_name_len(eb, di);
 | |
| 		name = kmalloc(name_len, GFP_NOFS);
 | |
| 		if (!name) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
 | |
| 				  name_len);
 | |
| 		log_di = NULL;
 | |
| 		if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
 | |
| 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
 | |
| 						       dir_key->objectid,
 | |
| 						       name, name_len, 0);
 | |
| 		} else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
 | |
| 			log_di = btrfs_lookup_dir_index_item(trans, log,
 | |
| 						     log_path,
 | |
| 						     dir_key->objectid,
 | |
| 						     dir_key->offset,
 | |
| 						     name, name_len, 0);
 | |
| 		}
 | |
| 		if (!log_di || IS_ERR(log_di)) {
 | |
| 			btrfs_dir_item_key_to_cpu(eb, di, &location);
 | |
| 			btrfs_release_path(root, path);
 | |
| 			btrfs_release_path(log, log_path);
 | |
| 			inode = read_one_inode(root, location.objectid);
 | |
| 			BUG_ON(!inode);
 | |
| 
 | |
| 			ret = link_to_fixup_dir(trans, root,
 | |
| 						path, location.objectid);
 | |
| 			BUG_ON(ret);
 | |
| 			btrfs_inc_nlink(inode);
 | |
| 			ret = btrfs_unlink_inode(trans, root, dir, inode,
 | |
| 						 name, name_len);
 | |
| 			BUG_ON(ret);
 | |
| 			kfree(name);
 | |
| 			iput(inode);
 | |
| 
 | |
| 			/* there might still be more names under this key
 | |
| 			 * check and repeat if required
 | |
| 			 */
 | |
| 			ret = btrfs_search_slot(NULL, root, dir_key, path,
 | |
| 						0, 0);
 | |
| 			if (ret == 0)
 | |
| 				goto again;
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		btrfs_release_path(log, log_path);
 | |
| 		kfree(name);
 | |
| 
 | |
| 		ptr = (unsigned long)(di + 1);
 | |
| 		ptr += name_len;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_release_path(root, path);
 | |
| 	btrfs_release_path(log, log_path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * deletion replay happens before we copy any new directory items
 | |
|  * out of the log or out of backreferences from inodes.  It
 | |
|  * scans the log to find ranges of keys that log is authoritative for,
 | |
|  * and then scans the directory to find items in those ranges that are
 | |
|  * not present in the log.
 | |
|  *
 | |
|  * Anything we don't find in the log is unlinked and removed from the
 | |
|  * directory.
 | |
|  */
 | |
| static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *root,
 | |
| 				       struct btrfs_root *log,
 | |
| 				       struct btrfs_path *path,
 | |
| 				       u64 dirid)
 | |
| {
 | |
| 	u64 range_start;
 | |
| 	u64 range_end;
 | |
| 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_key dir_key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_path *log_path;
 | |
| 	struct inode *dir;
 | |
| 
 | |
| 	dir_key.objectid = dirid;
 | |
| 	dir_key.type = BTRFS_DIR_ITEM_KEY;
 | |
| 	log_path = btrfs_alloc_path();
 | |
| 	if (!log_path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dir = read_one_inode(root, dirid);
 | |
| 	/* it isn't an error if the inode isn't there, that can happen
 | |
| 	 * because we replay the deletes before we copy in the inode item
 | |
| 	 * from the log
 | |
| 	 */
 | |
| 	if (!dir) {
 | |
| 		btrfs_free_path(log_path);
 | |
| 		return 0;
 | |
| 	}
 | |
| again:
 | |
| 	range_start = 0;
 | |
| 	range_end = 0;
 | |
| 	while(1) {
 | |
| 		ret = find_dir_range(log, path, dirid, key_type,
 | |
| 				     &range_start, &range_end);
 | |
| 		if (ret != 0)
 | |
| 			break;
 | |
| 
 | |
| 		dir_key.offset = range_start;
 | |
| 		while(1) {
 | |
| 			int nritems;
 | |
| 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
 | |
| 						0, 0);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 			if (path->slots[0] >= nritems) {
 | |
| 				ret = btrfs_next_leaf(root, path);
 | |
| 				if (ret)
 | |
| 					break;
 | |
| 			}
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 					      path->slots[0]);
 | |
| 			if (found_key.objectid != dirid ||
 | |
| 			    found_key.type != dir_key.type)
 | |
| 				goto next_type;
 | |
| 
 | |
| 			if (found_key.offset > range_end)
 | |
| 				break;
 | |
| 
 | |
| 			ret = check_item_in_log(trans, root, log, path,
 | |
| 						log_path, dir, &found_key);
 | |
| 			BUG_ON(ret);
 | |
| 			if (found_key.offset == (u64)-1)
 | |
| 				break;
 | |
| 			dir_key.offset = found_key.offset + 1;
 | |
| 		}
 | |
| 		btrfs_release_path(root, path);
 | |
| 		if (range_end == (u64)-1)
 | |
| 			break;
 | |
| 		range_start = range_end + 1;
 | |
| 	}
 | |
| 
 | |
| next_type:
 | |
| 	ret = 0;
 | |
| 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
 | |
| 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
 | |
| 		dir_key.type = BTRFS_DIR_INDEX_KEY;
 | |
| 		btrfs_release_path(root, path);
 | |
| 		goto again;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_release_path(root, path);
 | |
| 	btrfs_free_path(log_path);
 | |
| 	iput(dir);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the process_func used to replay items from the log tree.  This
 | |
|  * gets called in two different stages.  The first stage just looks
 | |
|  * for inodes and makes sure they are all copied into the subvolume.
 | |
|  *
 | |
|  * The second stage copies all the other item types from the log into
 | |
|  * the subvolume.  The two stage approach is slower, but gets rid of
 | |
|  * lots of complexity around inodes referencing other inodes that exist
 | |
|  * only in the log (references come from either directory items or inode
 | |
|  * back refs).
 | |
|  */
 | |
| static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
 | |
| 			     struct walk_control *wc, u64 gen)
 | |
| {
 | |
| 	int nritems;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *root = wc->replay_dest;
 | |
| 	struct btrfs_key key;
 | |
| 	u32 item_size;
 | |
| 	int level;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	btrfs_read_buffer(eb, gen);
 | |
| 
 | |
| 	level = btrfs_header_level(eb);
 | |
| 
 | |
| 	if (level != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	BUG_ON(!path);
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(eb);
 | |
| 	for (i = 0; i < nritems; i++) {
 | |
| 		btrfs_item_key_to_cpu(eb, &key, i);
 | |
| 		item_size = btrfs_item_size_nr(eb, i);
 | |
| 
 | |
| 		/* inode keys are done during the first stage */
 | |
| 		if (key.type == BTRFS_INODE_ITEM_KEY &&
 | |
| 		    wc->stage == LOG_WALK_REPLAY_INODES) {
 | |
| 			struct inode *inode;
 | |
| 			struct btrfs_inode_item *inode_item;
 | |
| 			u32 mode;
 | |
| 
 | |
| 			inode_item = btrfs_item_ptr(eb, i,
 | |
| 					    struct btrfs_inode_item);
 | |
| 			mode = btrfs_inode_mode(eb, inode_item);
 | |
| 			if (S_ISDIR(mode)) {
 | |
| 				ret = replay_dir_deletes(wc->trans,
 | |
| 					 root, log, path, key.objectid);
 | |
| 				BUG_ON(ret);
 | |
| 			}
 | |
| 			ret = overwrite_item(wc->trans, root, path,
 | |
| 					     eb, i, &key);
 | |
| 			BUG_ON(ret);
 | |
| 
 | |
| 			/* for regular files, truncate away
 | |
| 			 * extents past the new EOF
 | |
| 			 */
 | |
| 			if (S_ISREG(mode)) {
 | |
| 				inode = read_one_inode(root,
 | |
| 						       key.objectid);
 | |
| 				BUG_ON(!inode);
 | |
| 
 | |
| 				ret = btrfs_truncate_inode_items(wc->trans,
 | |
| 					root, inode, inode->i_size,
 | |
| 					BTRFS_EXTENT_DATA_KEY);
 | |
| 				BUG_ON(ret);
 | |
| 				iput(inode);
 | |
| 			}
 | |
| 			ret = link_to_fixup_dir(wc->trans, root,
 | |
| 						path, key.objectid);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 		if (wc->stage < LOG_WALK_REPLAY_ALL)
 | |
| 			continue;
 | |
| 
 | |
| 		/* these keys are simply copied */
 | |
| 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
 | |
| 			ret = overwrite_item(wc->trans, root, path,
 | |
| 					     eb, i, &key);
 | |
| 			BUG_ON(ret);
 | |
| 		} else if (key.type == BTRFS_INODE_REF_KEY) {
 | |
| 			ret = add_inode_ref(wc->trans, root, log, path,
 | |
| 					    eb, i, &key);
 | |
| 			BUG_ON(ret && ret != -ENOENT);
 | |
| 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
 | |
| 			ret = replay_one_extent(wc->trans, root, path,
 | |
| 						eb, i, &key);
 | |
| 			BUG_ON(ret);
 | |
| 		} else if (key.type == BTRFS_EXTENT_CSUM_KEY) {
 | |
| 			ret = replay_one_csum(wc->trans, root, path,
 | |
| 					      eb, i, &key);
 | |
| 			BUG_ON(ret);
 | |
| 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
 | |
| 			   key.type == BTRFS_DIR_INDEX_KEY) {
 | |
| 			ret = replay_one_dir_item(wc->trans, root, path,
 | |
| 						  eb, i, &key);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_free_path(path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path, int *level,
 | |
| 				   struct walk_control *wc)
 | |
| {
 | |
| 	u64 root_owner;
 | |
| 	u64 root_gen;
 | |
| 	u64 bytenr;
 | |
| 	u64 ptr_gen;
 | |
| 	struct extent_buffer *next;
 | |
| 	struct extent_buffer *cur;
 | |
| 	struct extent_buffer *parent;
 | |
| 	u32 blocksize;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	WARN_ON(*level < 0);
 | |
| 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | |
| 
 | |
| 	while(*level > 0) {
 | |
| 		WARN_ON(*level < 0);
 | |
| 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | |
| 		cur = path->nodes[*level];
 | |
| 
 | |
| 		if (btrfs_header_level(cur) != *level)
 | |
| 			WARN_ON(1);
 | |
| 
 | |
| 		if (path->slots[*level] >=
 | |
| 		    btrfs_header_nritems(cur))
 | |
| 			break;
 | |
| 
 | |
| 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
 | |
| 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
 | |
| 		blocksize = btrfs_level_size(root, *level - 1);
 | |
| 
 | |
| 		parent = path->nodes[*level];
 | |
| 		root_owner = btrfs_header_owner(parent);
 | |
| 		root_gen = btrfs_header_generation(parent);
 | |
| 
 | |
| 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
 | |
| 
 | |
| 		wc->process_func(root, next, wc, ptr_gen);
 | |
| 
 | |
| 		if (*level == 1) {
 | |
| 			path->slots[*level]++;
 | |
| 			if (wc->free) {
 | |
| 				btrfs_read_buffer(next, ptr_gen);
 | |
| 
 | |
| 				btrfs_tree_lock(next);
 | |
| 				clean_tree_block(trans, root, next);
 | |
| 				btrfs_wait_tree_block_writeback(next);
 | |
| 				btrfs_tree_unlock(next);
 | |
| 
 | |
| 				ret = btrfs_drop_leaf_ref(trans, root, next);
 | |
| 				BUG_ON(ret);
 | |
| 
 | |
| 				WARN_ON(root_owner !=
 | |
| 					BTRFS_TREE_LOG_OBJECTID);
 | |
| 				ret = btrfs_free_reserved_extent(root,
 | |
| 							 bytenr, blocksize);
 | |
| 				BUG_ON(ret);
 | |
| 			}
 | |
| 			free_extent_buffer(next);
 | |
| 			continue;
 | |
| 		}
 | |
| 		btrfs_read_buffer(next, ptr_gen);
 | |
| 
 | |
| 		WARN_ON(*level <= 0);
 | |
| 		if (path->nodes[*level-1])
 | |
| 			free_extent_buffer(path->nodes[*level-1]);
 | |
| 		path->nodes[*level-1] = next;
 | |
| 		*level = btrfs_header_level(next);
 | |
| 		path->slots[*level] = 0;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	WARN_ON(*level < 0);
 | |
| 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | |
| 
 | |
| 	if (path->nodes[*level] == root->node) {
 | |
| 		parent = path->nodes[*level];
 | |
| 	} else {
 | |
| 		parent = path->nodes[*level + 1];
 | |
| 	}
 | |
| 	bytenr = path->nodes[*level]->start;
 | |
| 
 | |
| 	blocksize = btrfs_level_size(root, *level);
 | |
| 	root_owner = btrfs_header_owner(parent);
 | |
| 	root_gen = btrfs_header_generation(parent);
 | |
| 
 | |
| 	wc->process_func(root, path->nodes[*level], wc,
 | |
| 			 btrfs_header_generation(path->nodes[*level]));
 | |
| 
 | |
| 	if (wc->free) {
 | |
| 		next = path->nodes[*level];
 | |
| 		btrfs_tree_lock(next);
 | |
| 		clean_tree_block(trans, root, next);
 | |
| 		btrfs_wait_tree_block_writeback(next);
 | |
| 		btrfs_tree_unlock(next);
 | |
| 
 | |
| 		if (*level == 0) {
 | |
| 			ret = btrfs_drop_leaf_ref(trans, root, next);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 		WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
 | |
| 		ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	free_extent_buffer(path->nodes[*level]);
 | |
| 	path->nodes[*level] = NULL;
 | |
| 	*level += 1;
 | |
| 
 | |
| 	cond_resched();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path, int *level,
 | |
| 				 struct walk_control *wc)
 | |
| {
 | |
| 	u64 root_owner;
 | |
| 	u64 root_gen;
 | |
| 	int i;
 | |
| 	int slot;
 | |
| 	int ret;
 | |
| 
 | |
| 	for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
 | |
| 		slot = path->slots[i];
 | |
| 		if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
 | |
| 			struct extent_buffer *node;
 | |
| 			node = path->nodes[i];
 | |
| 			path->slots[i]++;
 | |
| 			*level = i;
 | |
| 			WARN_ON(*level == 0);
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			struct extent_buffer *parent;
 | |
| 			if (path->nodes[*level] == root->node)
 | |
| 				parent = path->nodes[*level];
 | |
| 			else
 | |
| 				parent = path->nodes[*level + 1];
 | |
| 
 | |
| 			root_owner = btrfs_header_owner(parent);
 | |
| 			root_gen = btrfs_header_generation(parent);
 | |
| 			wc->process_func(root, path->nodes[*level], wc,
 | |
| 				 btrfs_header_generation(path->nodes[*level]));
 | |
| 			if (wc->free) {
 | |
| 				struct extent_buffer *next;
 | |
| 
 | |
| 				next = path->nodes[*level];
 | |
| 
 | |
| 				btrfs_tree_lock(next);
 | |
| 				clean_tree_block(trans, root, next);
 | |
| 				btrfs_wait_tree_block_writeback(next);
 | |
| 				btrfs_tree_unlock(next);
 | |
| 
 | |
| 				if (*level == 0) {
 | |
| 					ret = btrfs_drop_leaf_ref(trans, root,
 | |
| 								  next);
 | |
| 					BUG_ON(ret);
 | |
| 				}
 | |
| 
 | |
| 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
 | |
| 				ret = btrfs_free_reserved_extent(root,
 | |
| 						path->nodes[*level]->start,
 | |
| 						path->nodes[*level]->len);
 | |
| 				BUG_ON(ret);
 | |
| 			}
 | |
| 			free_extent_buffer(path->nodes[*level]);
 | |
| 			path->nodes[*level] = NULL;
 | |
| 			*level = i + 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * drop the reference count on the tree rooted at 'snap'.  This traverses
 | |
|  * the tree freeing any blocks that have a ref count of zero after being
 | |
|  * decremented.
 | |
|  */
 | |
| static int walk_log_tree(struct btrfs_trans_handle *trans,
 | |
| 			 struct btrfs_root *log, struct walk_control *wc)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int wret;
 | |
| 	int level;
 | |
| 	struct btrfs_path *path;
 | |
| 	int i;
 | |
| 	int orig_level;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	BUG_ON(!path);
 | |
| 
 | |
| 	level = btrfs_header_level(log->node);
 | |
| 	orig_level = level;
 | |
| 	path->nodes[level] = log->node;
 | |
| 	extent_buffer_get(log->node);
 | |
| 	path->slots[level] = 0;
 | |
| 
 | |
| 	while(1) {
 | |
| 		wret = walk_down_log_tree(trans, log, path, &level, wc);
 | |
| 		if (wret > 0)
 | |
| 			break;
 | |
| 		if (wret < 0)
 | |
| 			ret = wret;
 | |
| 
 | |
| 		wret = walk_up_log_tree(trans, log, path, &level, wc);
 | |
| 		if (wret > 0)
 | |
| 			break;
 | |
| 		if (wret < 0)
 | |
| 			ret = wret;
 | |
| 	}
 | |
| 
 | |
| 	/* was the root node processed? if not, catch it here */
 | |
| 	if (path->nodes[orig_level]) {
 | |
| 		wc->process_func(log, path->nodes[orig_level], wc,
 | |
| 			 btrfs_header_generation(path->nodes[orig_level]));
 | |
| 		if (wc->free) {
 | |
| 			struct extent_buffer *next;
 | |
| 
 | |
| 			next = path->nodes[orig_level];
 | |
| 
 | |
| 			btrfs_tree_lock(next);
 | |
| 			clean_tree_block(trans, log, next);
 | |
| 			btrfs_wait_tree_block_writeback(next);
 | |
| 			btrfs_tree_unlock(next);
 | |
| 
 | |
| 			if (orig_level == 0) {
 | |
| 				ret = btrfs_drop_leaf_ref(trans, log,
 | |
| 							  next);
 | |
| 				BUG_ON(ret);
 | |
| 			}
 | |
| 			WARN_ON(log->root_key.objectid !=
 | |
| 				BTRFS_TREE_LOG_OBJECTID);
 | |
| 			ret = btrfs_free_reserved_extent(log, next->start,
 | |
| 							 next->len);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i <= orig_level; i++) {
 | |
| 		if (path->nodes[i]) {
 | |
| 			free_extent_buffer(path->nodes[i]);
 | |
| 			path->nodes[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_free_path(path);
 | |
| 	if (wc->free)
 | |
| 		free_extent_buffer(log->node);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int wait_log_commit(struct btrfs_root *log)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	u64 transid = log->fs_info->tree_log_transid;
 | |
| 
 | |
| 	do {
 | |
| 		prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
 | |
| 				TASK_UNINTERRUPTIBLE);
 | |
| 		mutex_unlock(&log->fs_info->tree_log_mutex);
 | |
| 		if (atomic_read(&log->fs_info->tree_log_commit))
 | |
| 			schedule();
 | |
| 		finish_wait(&log->fs_info->tree_log_wait, &wait);
 | |
| 		mutex_lock(&log->fs_info->tree_log_mutex);
 | |
| 	} while(transid == log->fs_info->tree_log_transid &&
 | |
| 		atomic_read(&log->fs_info->tree_log_commit));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_sync_log does sends a given tree log down to the disk and
 | |
|  * updates the super blocks to record it.  When this call is done,
 | |
|  * you know that any inodes previously logged are safely on disk
 | |
|  */
 | |
| int btrfs_sync_log(struct btrfs_trans_handle *trans,
 | |
| 		   struct btrfs_root *root)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long batch;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 
 | |
| 	mutex_lock(&log->fs_info->tree_log_mutex);
 | |
| 	if (atomic_read(&log->fs_info->tree_log_commit)) {
 | |
| 		wait_log_commit(log);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	atomic_set(&log->fs_info->tree_log_commit, 1);
 | |
| 
 | |
| 	while(1) {
 | |
| 		batch = log->fs_info->tree_log_batch;
 | |
| 		mutex_unlock(&log->fs_info->tree_log_mutex);
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 		mutex_lock(&log->fs_info->tree_log_mutex);
 | |
| 
 | |
| 		while(atomic_read(&log->fs_info->tree_log_writers)) {
 | |
| 			DEFINE_WAIT(wait);
 | |
| 			prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
 | |
| 					TASK_UNINTERRUPTIBLE);
 | |
| 			mutex_unlock(&log->fs_info->tree_log_mutex);
 | |
| 			if (atomic_read(&log->fs_info->tree_log_writers))
 | |
| 				schedule();
 | |
| 			mutex_lock(&log->fs_info->tree_log_mutex);
 | |
| 			finish_wait(&log->fs_info->tree_log_wait, &wait);
 | |
| 		}
 | |
| 		if (batch == log->fs_info->tree_log_batch)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
 | |
| 	BUG_ON(ret);
 | |
| 	ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree,
 | |
| 			       &root->fs_info->log_root_tree->dirty_log_pages);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
 | |
| 				 log->fs_info->log_root_tree->node->start);
 | |
| 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
 | |
| 		       btrfs_header_level(log->fs_info->log_root_tree->node));
 | |
| 
 | |
| 	write_ctree_super(trans, log->fs_info->tree_root, 2);
 | |
| 	log->fs_info->tree_log_transid++;
 | |
| 	log->fs_info->tree_log_batch = 0;
 | |
| 	atomic_set(&log->fs_info->tree_log_commit, 0);
 | |
| 	smp_mb();
 | |
| 	if (waitqueue_active(&log->fs_info->tree_log_wait))
 | |
| 		wake_up(&log->fs_info->tree_log_wait);
 | |
| out:
 | |
| 	mutex_unlock(&log->fs_info->tree_log_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* * free all the extents used by the tree log.  This should be called
 | |
|  * at commit time of the full transaction
 | |
|  */
 | |
| int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_root *log;
 | |
| 	struct key;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	struct walk_control wc = {
 | |
| 		.free = 1,
 | |
| 		.process_func = process_one_buffer
 | |
| 	};
 | |
| 
 | |
| 	if (!root->log_root)
 | |
| 		return 0;
 | |
| 
 | |
| 	log = root->log_root;
 | |
| 	ret = walk_log_tree(trans, log, &wc);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	while(1) {
 | |
| 		ret = find_first_extent_bit(&log->dirty_log_pages,
 | |
| 				    0, &start, &end, EXTENT_DIRTY);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		clear_extent_dirty(&log->dirty_log_pages,
 | |
| 				   start, end, GFP_NOFS);
 | |
| 	}
 | |
| 
 | |
| 	log = root->log_root;
 | |
| 	ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
 | |
| 			     &log->root_key);
 | |
| 	BUG_ON(ret);
 | |
| 	root->log_root = NULL;
 | |
| 	kfree(root->log_root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to update the item for a given subvolumes log root
 | |
|  * in the tree of log roots
 | |
|  */
 | |
| static int update_log_root(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *log)
 | |
| {
 | |
| 	u64 bytenr = btrfs_root_bytenr(&log->root_item);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (log->node->start == bytenr)
 | |
| 		return 0;
 | |
| 
 | |
| 	btrfs_set_root_bytenr(&log->root_item, log->node->start);
 | |
| 	btrfs_set_root_generation(&log->root_item, trans->transid);
 | |
| 	btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
 | |
| 	ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
 | |
| 				&log->root_key, &log->root_item);
 | |
| 	BUG_ON(ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If both a file and directory are logged, and unlinks or renames are
 | |
|  * mixed in, we have a few interesting corners:
 | |
|  *
 | |
|  * create file X in dir Y
 | |
|  * link file X to X.link in dir Y
 | |
|  * fsync file X
 | |
|  * unlink file X but leave X.link
 | |
|  * fsync dir Y
 | |
|  *
 | |
|  * After a crash we would expect only X.link to exist.  But file X
 | |
|  * didn't get fsync'd again so the log has back refs for X and X.link.
 | |
|  *
 | |
|  * We solve this by removing directory entries and inode backrefs from the
 | |
|  * log when a file that was logged in the current transaction is
 | |
|  * unlinked.  Any later fsync will include the updated log entries, and
 | |
|  * we'll be able to reconstruct the proper directory items from backrefs.
 | |
|  *
 | |
|  * This optimizations allows us to avoid relogging the entire inode
 | |
|  * or the entire directory.
 | |
|  */
 | |
| int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 const char *name, int name_len,
 | |
| 				 struct inode *dir, u64 index)
 | |
| {
 | |
| 	struct btrfs_root *log;
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 	int bytes_del = 0;
 | |
| 
 | |
| 	if (BTRFS_I(dir)->logged_trans < trans->transid)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = join_running_log_trans(root);
 | |
| 	if (ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&BTRFS_I(dir)->log_mutex);
 | |
| 
 | |
| 	log = root->log_root;
 | |
| 	path = btrfs_alloc_path();
 | |
| 	di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
 | |
| 				   name, name_len, -1);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
 | |
| 		bytes_del += name_len;
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	btrfs_release_path(log, path);
 | |
| 	di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
 | |
| 					 index, name, name_len, -1);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
 | |
| 		bytes_del += name_len;
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	/* update the directory size in the log to reflect the names
 | |
| 	 * we have removed
 | |
| 	 */
 | |
| 	if (bytes_del) {
 | |
| 		struct btrfs_key key;
 | |
| 
 | |
| 		key.objectid = dir->i_ino;
 | |
| 		key.offset = 0;
 | |
| 		key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 		btrfs_release_path(log, path);
 | |
| 
 | |
| 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
 | |
| 		if (ret == 0) {
 | |
| 			struct btrfs_inode_item *item;
 | |
| 			u64 i_size;
 | |
| 
 | |
| 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 					      struct btrfs_inode_item);
 | |
| 			i_size = btrfs_inode_size(path->nodes[0], item);
 | |
| 			if (i_size > bytes_del)
 | |
| 				i_size -= bytes_del;
 | |
| 			else
 | |
| 				i_size = 0;
 | |
| 			btrfs_set_inode_size(path->nodes[0], item, i_size);
 | |
| 			btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 		} else
 | |
| 			ret = 0;
 | |
| 		btrfs_release_path(log, path);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
 | |
| 	end_log_trans(root);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* see comments for btrfs_del_dir_entries_in_log */
 | |
| int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root,
 | |
| 			       const char *name, int name_len,
 | |
| 			       struct inode *inode, u64 dirid)
 | |
| {
 | |
| 	struct btrfs_root *log;
 | |
| 	u64 index;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (BTRFS_I(inode)->logged_trans < trans->transid)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = join_running_log_trans(root);
 | |
| 	if (ret)
 | |
| 		return 0;
 | |
| 	log = root->log_root;
 | |
| 	mutex_lock(&BTRFS_I(inode)->log_mutex);
 | |
| 
 | |
| 	ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
 | |
| 				  dirid, &index);
 | |
| 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
 | |
| 	end_log_trans(root);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * creates a range item in the log for 'dirid'.  first_offset and
 | |
|  * last_offset tell us which parts of the key space the log should
 | |
|  * be considered authoritative for.
 | |
|  */
 | |
| static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *log,
 | |
| 				       struct btrfs_path *path,
 | |
| 				       int key_type, u64 dirid,
 | |
| 				       u64 first_offset, u64 last_offset)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_dir_log_item *item;
 | |
| 
 | |
| 	key.objectid = dirid;
 | |
| 	key.offset = first_offset;
 | |
| 	if (key_type == BTRFS_DIR_ITEM_KEY)
 | |
| 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
 | |
| 	else
 | |
| 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
 | |
| 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 			      struct btrfs_dir_log_item);
 | |
| 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
 | |
| 	btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 	btrfs_release_path(log, path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * log all the items included in the current transaction for a given
 | |
|  * directory.  This also creates the range items in the log tree required
 | |
|  * to replay anything deleted before the fsync
 | |
|  */
 | |
| static noinline int log_dir_items(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root, struct inode *inode,
 | |
| 			  struct btrfs_path *path,
 | |
| 			  struct btrfs_path *dst_path, int key_type,
 | |
| 			  u64 min_offset, u64 *last_offset_ret)
 | |
| {
 | |
| 	struct btrfs_key min_key;
 | |
| 	struct btrfs_key max_key;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	struct extent_buffer *src;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	int nritems;
 | |
| 	u64 first_offset = min_offset;
 | |
| 	u64 last_offset = (u64)-1;
 | |
| 
 | |
| 	log = root->log_root;
 | |
| 	max_key.objectid = inode->i_ino;
 | |
| 	max_key.offset = (u64)-1;
 | |
| 	max_key.type = key_type;
 | |
| 
 | |
| 	min_key.objectid = inode->i_ino;
 | |
| 	min_key.type = key_type;
 | |
| 	min_key.offset = min_offset;
 | |
| 
 | |
| 	path->keep_locks = 1;
 | |
| 
 | |
| 	ret = btrfs_search_forward(root, &min_key, &max_key,
 | |
| 				   path, 0, trans->transid);
 | |
| 
 | |
| 	/*
 | |
| 	 * we didn't find anything from this transaction, see if there
 | |
| 	 * is anything at all
 | |
| 	 */
 | |
| 	if (ret != 0 || min_key.objectid != inode->i_ino ||
 | |
| 	    min_key.type != key_type) {
 | |
| 		min_key.objectid = inode->i_ino;
 | |
| 		min_key.type = key_type;
 | |
| 		min_key.offset = (u64)-1;
 | |
| 		btrfs_release_path(root, path);
 | |
| 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_release_path(root, path);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
 | |
| 
 | |
| 		/* if ret == 0 there are items for this type,
 | |
| 		 * create a range to tell us the last key of this type.
 | |
| 		 * otherwise, there are no items in this directory after
 | |
| 		 * *min_offset, and we create a range to indicate that.
 | |
| 		 */
 | |
| 		if (ret == 0) {
 | |
| 			struct btrfs_key tmp;
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
 | |
| 					      path->slots[0]);
 | |
| 			if (key_type == tmp.type) {
 | |
| 				first_offset = max(min_offset, tmp.offset) + 1;
 | |
| 			}
 | |
| 		}
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* go backward to find any previous key */
 | |
| 	ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
 | |
| 	if (ret == 0) {
 | |
| 		struct btrfs_key tmp;
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
 | |
| 		if (key_type == tmp.type) {
 | |
| 			first_offset = tmp.offset;
 | |
| 			ret = overwrite_item(trans, log, dst_path,
 | |
| 					     path->nodes[0], path->slots[0],
 | |
| 					     &tmp);
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(root, path);
 | |
| 
 | |
| 	/* find the first key from this transaction again */
 | |
| 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
 | |
| 	if (ret != 0) {
 | |
| 		WARN_ON(1);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we have a block from this transaction, log every item in it
 | |
| 	 * from our directory
 | |
| 	 */
 | |
| 	while(1) {
 | |
| 		struct btrfs_key tmp;
 | |
| 		src = path->nodes[0];
 | |
| 		nritems = btrfs_header_nritems(src);
 | |
| 		for (i = path->slots[0]; i < nritems; i++) {
 | |
| 			btrfs_item_key_to_cpu(src, &min_key, i);
 | |
| 
 | |
| 			if (min_key.objectid != inode->i_ino ||
 | |
| 			    min_key.type != key_type)
 | |
| 				goto done;
 | |
| 			ret = overwrite_item(trans, log, dst_path, src, i,
 | |
| 					     &min_key);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 		path->slots[0] = nritems;
 | |
| 
 | |
| 		/*
 | |
| 		 * look ahead to the next item and see if it is also
 | |
| 		 * from this directory and from this transaction
 | |
| 		 */
 | |
| 		ret = btrfs_next_leaf(root, path);
 | |
| 		if (ret == 1) {
 | |
| 			last_offset = (u64)-1;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
 | |
| 		if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
 | |
| 			last_offset = (u64)-1;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
 | |
| 			ret = overwrite_item(trans, log, dst_path,
 | |
| 					     path->nodes[0], path->slots[0],
 | |
| 					     &tmp);
 | |
| 
 | |
| 			BUG_ON(ret);
 | |
| 			last_offset = tmp.offset;
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| done:
 | |
| 	*last_offset_ret = last_offset;
 | |
| 	btrfs_release_path(root, path);
 | |
| 	btrfs_release_path(log, dst_path);
 | |
| 
 | |
| 	/* insert the log range keys to indicate where the log is valid */
 | |
| 	ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
 | |
| 				 first_offset, last_offset);
 | |
| 	BUG_ON(ret);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * logging directories is very similar to logging inodes, We find all the items
 | |
|  * from the current transaction and write them to the log.
 | |
|  *
 | |
|  * The recovery code scans the directory in the subvolume, and if it finds a
 | |
|  * key in the range logged that is not present in the log tree, then it means
 | |
|  * that dir entry was unlinked during the transaction.
 | |
|  *
 | |
|  * In order for that scan to work, we must include one key smaller than
 | |
|  * the smallest logged by this transaction and one key larger than the largest
 | |
|  * key logged by this transaction.
 | |
|  */
 | |
| static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root, struct inode *inode,
 | |
| 			  struct btrfs_path *path,
 | |
| 			  struct btrfs_path *dst_path)
 | |
| {
 | |
| 	u64 min_key;
 | |
| 	u64 max_key;
 | |
| 	int ret;
 | |
| 	int key_type = BTRFS_DIR_ITEM_KEY;
 | |
| 
 | |
| again:
 | |
| 	min_key = 0;
 | |
| 	max_key = 0;
 | |
| 	while(1) {
 | |
| 		ret = log_dir_items(trans, root, inode, path,
 | |
| 				    dst_path, key_type, min_key,
 | |
| 				    &max_key);
 | |
| 		BUG_ON(ret);
 | |
| 		if (max_key == (u64)-1)
 | |
| 			break;
 | |
| 		min_key = max_key + 1;
 | |
| 	}
 | |
| 
 | |
| 	if (key_type == BTRFS_DIR_ITEM_KEY) {
 | |
| 		key_type = BTRFS_DIR_INDEX_KEY;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a helper function to drop items from the log before we relog an
 | |
|  * inode.  max_key_type indicates the highest item type to remove.
 | |
|  * This cannot be run for file data extents because it does not
 | |
|  * free the extents they point to.
 | |
|  */
 | |
| static int drop_objectid_items(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *log,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  u64 objectid, int max_key_type)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.type = max_key_type;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	while(1) {
 | |
| 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
 | |
| 
 | |
| 		if (ret != 1)
 | |
| 			break;
 | |
| 
 | |
| 		if (path->slots[0] == 0)
 | |
| 			break;
 | |
| 
 | |
| 		path->slots[0]--;
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 				      path->slots[0]);
 | |
| 
 | |
| 		if (found_key.objectid != objectid)
 | |
| 			break;
 | |
| 
 | |
| 		ret = btrfs_del_item(trans, log, path);
 | |
| 		BUG_ON(ret);
 | |
| 		btrfs_release_path(log, path);
 | |
| 	}
 | |
| 	btrfs_release_path(log, path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int copy_extent_csums(struct btrfs_trans_handle *trans,
 | |
| 				      struct list_head *list,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      u64 disk_bytenr, u64 len)
 | |
| {
 | |
| 	struct btrfs_ordered_sum *sums;
 | |
| 	struct btrfs_sector_sum *sector_sum;
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_csum_item *item = NULL;
 | |
| 	u64 end = disk_bytenr + len;
 | |
| 	u64 item_start_offset = 0;
 | |
| 	u64 item_last_offset = 0;
 | |
| 	u32 diff;
 | |
| 	u32 sum;
 | |
| 	u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
 | |
| 
 | |
| 	sums = kzalloc(btrfs_ordered_sum_size(root, len), GFP_NOFS);
 | |
| 
 | |
| 	sector_sum = sums->sums;
 | |
| 	sums->bytenr = disk_bytenr;
 | |
| 	sums->len = len;
 | |
| 	list_add_tail(&sums->list, list);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	while(disk_bytenr < end) {
 | |
| 		if (!item || disk_bytenr < item_start_offset ||
 | |
| 		    disk_bytenr >= item_last_offset) {
 | |
| 			struct btrfs_key found_key;
 | |
| 			u32 item_size;
 | |
| 
 | |
| 			if (item)
 | |
| 				btrfs_release_path(root, path);
 | |
| 			item = btrfs_lookup_csum(NULL, root, path,
 | |
| 						 disk_bytenr, 0);
 | |
| 			if (IS_ERR(item)) {
 | |
| 				ret = PTR_ERR(item);
 | |
| 				if (ret == -ENOENT || ret == -EFBIG)
 | |
| 					ret = 0;
 | |
| 				sum = 0;
 | |
| 				printk("log no csum found for byte %llu\n",
 | |
| 				       (unsigned long long)disk_bytenr);
 | |
| 				item = NULL;
 | |
| 				btrfs_release_path(root, path);
 | |
| 				goto found;
 | |
| 			}
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 					      path->slots[0]);
 | |
| 
 | |
| 			item_start_offset = found_key.offset;
 | |
| 			item_size = btrfs_item_size_nr(path->nodes[0],
 | |
| 						       path->slots[0]);
 | |
| 			item_last_offset = item_start_offset +
 | |
| 				(item_size / csum_size) *
 | |
| 				root->sectorsize;
 | |
| 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 					      struct btrfs_csum_item);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * this byte range must be able to fit inside
 | |
| 		 * a single leaf so it will also fit inside a u32
 | |
| 		 */
 | |
| 		diff = disk_bytenr - item_start_offset;
 | |
| 		diff = diff / root->sectorsize;
 | |
| 		diff = diff * csum_size;
 | |
| 
 | |
| 		read_extent_buffer(path->nodes[0], &sum,
 | |
| 				   ((unsigned long)item) + diff,
 | |
| 				   csum_size);
 | |
| found:
 | |
| 		sector_sum->bytenr = disk_bytenr;
 | |
| 		sector_sum->sum = sum;
 | |
| 		disk_bytenr += root->sectorsize;
 | |
| 		sector_sum++;
 | |
| 	}
 | |
| 	btrfs_free_path(path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int copy_items(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *log,
 | |
| 			       struct btrfs_path *dst_path,
 | |
| 			       struct extent_buffer *src,
 | |
| 			       int start_slot, int nr, int inode_only)
 | |
| {
 | |
| 	unsigned long src_offset;
 | |
| 	unsigned long dst_offset;
 | |
| 	struct btrfs_file_extent_item *extent;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	int ret;
 | |
| 	struct btrfs_key *ins_keys;
 | |
| 	u32 *ins_sizes;
 | |
| 	char *ins_data;
 | |
| 	int i;
 | |
| 	struct list_head ordered_sums;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ordered_sums);
 | |
| 
 | |
| 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
 | |
| 			   nr * sizeof(u32), GFP_NOFS);
 | |
| 	ins_sizes = (u32 *)ins_data;
 | |
| 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
 | |
| 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
 | |
| 	}
 | |
| 	ret = btrfs_insert_empty_items(trans, log, dst_path,
 | |
| 				       ins_keys, ins_sizes, nr);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
 | |
| 						   dst_path->slots[0]);
 | |
| 
 | |
| 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
 | |
| 
 | |
| 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
 | |
| 				   src_offset, ins_sizes[i]);
 | |
| 
 | |
| 		if (inode_only == LOG_INODE_EXISTS &&
 | |
| 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
 | |
| 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
 | |
| 						    dst_path->slots[0],
 | |
| 						    struct btrfs_inode_item);
 | |
| 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
 | |
| 
 | |
| 			/* set the generation to zero so the recover code
 | |
| 			 * can tell the difference between an logging
 | |
| 			 * just to say 'this inode exists' and a logging
 | |
| 			 * to say 'update this inode with these values'
 | |
| 			 */
 | |
| 			btrfs_set_inode_generation(dst_path->nodes[0],
 | |
| 						   inode_item, 0);
 | |
| 		}
 | |
| 		/* take a reference on file data extents so that truncates
 | |
| 		 * or deletes of this inode don't have to relog the inode
 | |
| 		 * again
 | |
| 		 */
 | |
| 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
 | |
| 			int found_type;
 | |
| 			extent = btrfs_item_ptr(src, start_slot + i,
 | |
| 						struct btrfs_file_extent_item);
 | |
| 
 | |
| 			found_type = btrfs_file_extent_type(src, extent);
 | |
| 			if (found_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 				u64 ds = btrfs_file_extent_disk_bytenr(src,
 | |
| 								   extent);
 | |
| 				u64 dl = btrfs_file_extent_disk_num_bytes(src,
 | |
| 								      extent);
 | |
| 				u64 cs = btrfs_file_extent_offset(src, extent);
 | |
| 				u64 cl = btrfs_file_extent_num_bytes(src,
 | |
| 								     extent);;
 | |
| 				if (btrfs_file_extent_compression(src,
 | |
| 								  extent)) {
 | |
| 					cs = 0;
 | |
| 					cl = dl;
 | |
| 				}
 | |
| 				/* ds == 0 is a hole */
 | |
| 				if (ds != 0) {
 | |
| 					ret = btrfs_inc_extent_ref(trans, log,
 | |
| 						   ds, dl,
 | |
| 						   dst_path->nodes[0]->start,
 | |
| 						   BTRFS_TREE_LOG_OBJECTID,
 | |
| 						   trans->transid,
 | |
| 						   ins_keys[i].objectid);
 | |
| 					BUG_ON(ret);
 | |
| 					ret = copy_extent_csums(trans,
 | |
| 						&ordered_sums,
 | |
| 						log->fs_info->csum_root,
 | |
| 						ds + cs, cl);
 | |
| 					BUG_ON(ret);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		dst_path->slots[0]++;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
 | |
| 	btrfs_release_path(log, dst_path);
 | |
| 	kfree(ins_data);
 | |
| 
 | |
| 	/*
 | |
| 	 * we have to do this after the loop above to avoid changing the
 | |
| 	 * log tree while trying to change the log tree.
 | |
| 	 */
 | |
| 	while(!list_empty(&ordered_sums)) {
 | |
| 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
 | |
| 						   struct btrfs_ordered_sum,
 | |
| 						   list);
 | |
| 		ret = btrfs_csum_file_blocks(trans, log, sums);
 | |
| 		BUG_ON(ret);
 | |
| 		list_del(&sums->list);
 | |
| 		kfree(sums);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* log a single inode in the tree log.
 | |
|  * At least one parent directory for this inode must exist in the tree
 | |
|  * or be logged already.
 | |
|  *
 | |
|  * Any items from this inode changed by the current transaction are copied
 | |
|  * to the log tree.  An extra reference is taken on any extents in this
 | |
|  * file, allowing us to avoid a whole pile of corner cases around logging
 | |
|  * blocks that have been removed from the tree.
 | |
|  *
 | |
|  * See LOG_INODE_ALL and related defines for a description of what inode_only
 | |
|  * does.
 | |
|  *
 | |
|  * This handles both files and directories.
 | |
|  */
 | |
| static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root, struct inode *inode,
 | |
| 			     int inode_only)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_path *dst_path;
 | |
| 	struct btrfs_key min_key;
 | |
| 	struct btrfs_key max_key;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	struct extent_buffer *src = NULL;
 | |
| 	u32 size;
 | |
| 	int ret;
 | |
| 	int nritems;
 | |
| 	int ins_start_slot = 0;
 | |
| 	int ins_nr;
 | |
| 
 | |
| 	log = root->log_root;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	dst_path = btrfs_alloc_path();
 | |
| 
 | |
| 	min_key.objectid = inode->i_ino;
 | |
| 	min_key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	min_key.offset = 0;
 | |
| 
 | |
| 	max_key.objectid = inode->i_ino;
 | |
| 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
 | |
| 		max_key.type = BTRFS_XATTR_ITEM_KEY;
 | |
| 	else
 | |
| 		max_key.type = (u8)-1;
 | |
| 	max_key.offset = (u64)-1;
 | |
| 
 | |
| 	/*
 | |
| 	 * if this inode has already been logged and we're in inode_only
 | |
| 	 * mode, we don't want to delete the things that have already
 | |
| 	 * been written to the log.
 | |
| 	 *
 | |
| 	 * But, if the inode has been through an inode_only log,
 | |
| 	 * the logged_trans field is not set.  This allows us to catch
 | |
| 	 * any new names for this inode in the backrefs by logging it
 | |
| 	 * again
 | |
| 	 */
 | |
| 	if (inode_only == LOG_INODE_EXISTS &&
 | |
| 	    BTRFS_I(inode)->logged_trans == trans->transid) {
 | |
| 		btrfs_free_path(path);
 | |
| 		btrfs_free_path(dst_path);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	mutex_lock(&BTRFS_I(inode)->log_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * a brute force approach to making sure we get the most uptodate
 | |
| 	 * copies of everything.
 | |
| 	 */
 | |
| 	if (S_ISDIR(inode->i_mode)) {
 | |
| 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
 | |
| 
 | |
| 		if (inode_only == LOG_INODE_EXISTS)
 | |
| 			max_key_type = BTRFS_XATTR_ITEM_KEY;
 | |
| 		ret = drop_objectid_items(trans, log, path,
 | |
| 					  inode->i_ino, max_key_type);
 | |
| 	} else {
 | |
| 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
 | |
| 	}
 | |
| 	BUG_ON(ret);
 | |
| 	path->keep_locks = 1;
 | |
| 
 | |
| 	while(1) {
 | |
| 		ins_nr = 0;
 | |
| 		ret = btrfs_search_forward(root, &min_key, &max_key,
 | |
| 					   path, 0, trans->transid);
 | |
| 		if (ret != 0)
 | |
| 			break;
 | |
| again:
 | |
| 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
 | |
| 		if (min_key.objectid != inode->i_ino)
 | |
| 			break;
 | |
| 		if (min_key.type > max_key.type)
 | |
| 			break;
 | |
| 
 | |
| 		src = path->nodes[0];
 | |
| 		size = btrfs_item_size_nr(src, path->slots[0]);
 | |
| 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
 | |
| 			ins_nr++;
 | |
| 			goto next_slot;
 | |
| 		} else if (!ins_nr) {
 | |
| 			ins_start_slot = path->slots[0];
 | |
| 			ins_nr = 1;
 | |
| 			goto next_slot;
 | |
| 		}
 | |
| 
 | |
| 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
 | |
| 				 ins_nr, inode_only);
 | |
| 		BUG_ON(ret);
 | |
| 		ins_nr = 1;
 | |
| 		ins_start_slot = path->slots[0];
 | |
| next_slot:
 | |
| 
 | |
| 		nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 		path->slots[0]++;
 | |
| 		if (path->slots[0] < nritems) {
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
 | |
| 					      path->slots[0]);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		if (ins_nr) {
 | |
| 			ret = copy_items(trans, log, dst_path, src,
 | |
| 					 ins_start_slot,
 | |
| 					 ins_nr, inode_only);
 | |
| 			BUG_ON(ret);
 | |
| 			ins_nr = 0;
 | |
| 		}
 | |
| 		btrfs_release_path(root, path);
 | |
| 
 | |
| 		if (min_key.offset < (u64)-1)
 | |
| 			min_key.offset++;
 | |
| 		else if (min_key.type < (u8)-1)
 | |
| 			min_key.type++;
 | |
| 		else if (min_key.objectid < (u64)-1)
 | |
| 			min_key.objectid++;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	if (ins_nr) {
 | |
| 		ret = copy_items(trans, log, dst_path, src,
 | |
| 				 ins_start_slot,
 | |
| 				 ins_nr, inode_only);
 | |
| 		BUG_ON(ret);
 | |
| 		ins_nr = 0;
 | |
| 	}
 | |
| 	WARN_ON(ins_nr);
 | |
| 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
 | |
| 		btrfs_release_path(root, path);
 | |
| 		btrfs_release_path(log, dst_path);
 | |
| 		BTRFS_I(inode)->log_dirty_trans = 0;
 | |
| 		ret = log_directory_changes(trans, root, inode, path, dst_path);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	BTRFS_I(inode)->logged_trans = trans->transid;
 | |
| 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 	btrfs_free_path(dst_path);
 | |
| 
 | |
| 	mutex_lock(&root->fs_info->tree_log_mutex);
 | |
| 	ret = update_log_root(trans, log);
 | |
| 	BUG_ON(ret);
 | |
| 	mutex_unlock(&root->fs_info->tree_log_mutex);
 | |
| out:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_log_inode(struct btrfs_trans_handle *trans,
 | |
| 		    struct btrfs_root *root, struct inode *inode,
 | |
| 		    int inode_only)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	start_log_trans(trans, root);
 | |
| 	ret = __btrfs_log_inode(trans, root, inode, inode_only);
 | |
| 	end_log_trans(root);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function around btrfs_log_inode to make sure newly created
 | |
|  * parent directories also end up in the log.  A minimal inode and backref
 | |
|  * only logging is done of any parent directories that are older than
 | |
|  * the last committed transaction
 | |
|  */
 | |
| int btrfs_log_dentry(struct btrfs_trans_handle *trans,
 | |
| 		    struct btrfs_root *root, struct dentry *dentry)
 | |
| {
 | |
| 	int inode_only = LOG_INODE_ALL;
 | |
| 	struct super_block *sb;
 | |
| 	int ret;
 | |
| 
 | |
| 	start_log_trans(trans, root);
 | |
| 	sb = dentry->d_inode->i_sb;
 | |
| 	while(1) {
 | |
| 		ret = __btrfs_log_inode(trans, root, dentry->d_inode,
 | |
| 					inode_only);
 | |
| 		BUG_ON(ret);
 | |
| 		inode_only = LOG_INODE_EXISTS;
 | |
| 
 | |
| 		dentry = dentry->d_parent;
 | |
| 		if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
 | |
| 			break;
 | |
| 
 | |
| 		if (BTRFS_I(dentry->d_inode)->generation <=
 | |
| 		    root->fs_info->last_trans_committed)
 | |
| 			break;
 | |
| 	}
 | |
| 	end_log_trans(root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * it is not safe to log dentry if the chunk root has added new
 | |
|  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
 | |
|  * If this returns 1, you must commit the transaction to safely get your
 | |
|  * data on disk.
 | |
|  */
 | |
| int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root, struct dentry *dentry)
 | |
| {
 | |
| 	u64 gen;
 | |
| 	gen = root->fs_info->last_trans_new_blockgroup;
 | |
| 	if (gen > root->fs_info->last_trans_committed)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return btrfs_log_dentry(trans, root, dentry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * should be called during mount to recover any replay any log trees
 | |
|  * from the FS
 | |
|  */
 | |
| int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_key tmp_key;
 | |
| 	struct btrfs_root *log;
 | |
| 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
 | |
| 	u64 highest_inode;
 | |
| 	struct walk_control wc = {
 | |
| 		.process_func = process_one_buffer,
 | |
| 		.stage = 0,
 | |
| 	};
 | |
| 
 | |
| 	fs_info->log_root_recovering = 1;
 | |
| 	path = btrfs_alloc_path();
 | |
| 	BUG_ON(!path);
 | |
| 
 | |
| 	trans = btrfs_start_transaction(fs_info->tree_root, 1);
 | |
| 
 | |
| 	wc.trans = trans;
 | |
| 	wc.pin = 1;
 | |
| 
 | |
| 	walk_log_tree(trans, log_root_tree, &wc);
 | |
| 
 | |
| again:
 | |
| 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
 | |
| 	key.offset = (u64)-1;
 | |
| 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 | |
| 
 | |
| 	while(1) {
 | |
| 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret > 0) {
 | |
| 			if (path->slots[0] == 0)
 | |
| 				break;
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 				      path->slots[0]);
 | |
| 		btrfs_release_path(log_root_tree, path);
 | |
| 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 | |
| 			break;
 | |
| 
 | |
| 		log = btrfs_read_fs_root_no_radix(log_root_tree,
 | |
| 						  &found_key);
 | |
| 		BUG_ON(!log);
 | |
| 
 | |
| 
 | |
| 		tmp_key.objectid = found_key.offset;
 | |
| 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 		tmp_key.offset = (u64)-1;
 | |
| 
 | |
| 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
 | |
| 
 | |
| 		BUG_ON(!wc.replay_dest);
 | |
| 
 | |
| 		btrfs_record_root_in_trans(wc.replay_dest);
 | |
| 		ret = walk_log_tree(trans, log, &wc);
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
 | |
| 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
 | |
| 						      path);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 		ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
 | |
| 		if (ret == 0) {
 | |
| 			wc.replay_dest->highest_inode = highest_inode;
 | |
| 			wc.replay_dest->last_inode_alloc = highest_inode;
 | |
| 		}
 | |
| 
 | |
| 		key.offset = found_key.offset - 1;
 | |
| 		free_extent_buffer(log->node);
 | |
| 		kfree(log);
 | |
| 
 | |
| 		if (found_key.offset == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	btrfs_release_path(log_root_tree, path);
 | |
| 
 | |
| 	/* step one is to pin it all, step two is to replay just inodes */
 | |
| 	if (wc.pin) {
 | |
| 		wc.pin = 0;
 | |
| 		wc.process_func = replay_one_buffer;
 | |
| 		wc.stage = LOG_WALK_REPLAY_INODES;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	/* step three is to replay everything */
 | |
| 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
 | |
| 		wc.stage++;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	free_extent_buffer(log_root_tree->node);
 | |
| 	log_root_tree->log_root = NULL;
 | |
| 	fs_info->log_root_recovering = 0;
 | |
| 
 | |
| 	/* step 4: commit the transaction, which also unpins the blocks */
 | |
| 	btrfs_commit_transaction(trans, fs_info->tree_root);
 | |
| 
 | |
| 	kfree(log_root_tree);
 | |
| 	return 0;
 | |
| }
 |