mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 05:14:38 +00:00 
			
		
		
		
	 1e7933defd
			
		
	
	
		1e7933defd
		
	
	
	
	
		
			
			Semaphore to mutex conversion. The conversion was generated via scripts, and the result was validated automatically via a script as well. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			954 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			954 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * balloc.c
 | |
|  *
 | |
|  * PURPOSE
 | |
|  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
 | |
|  *
 | |
|  * COPYRIGHT
 | |
|  *	This file is distributed under the terms of the GNU General Public
 | |
|  *	License (GPL). Copies of the GPL can be obtained from:
 | |
|  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 | |
|  *	Each contributing author retains all rights to their own work.
 | |
|  *
 | |
|  *  (C) 1999-2001 Ben Fennema
 | |
|  *  (C) 1999 Stelias Computing Inc
 | |
|  *
 | |
|  * HISTORY
 | |
|  *
 | |
|  *  02/24/99 blf  Created.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "udfdecl.h"
 | |
| 
 | |
| #include <linux/quotaops.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/bitops.h>
 | |
| 
 | |
| #include "udf_i.h"
 | |
| #include "udf_sb.h"
 | |
| 
 | |
| #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
 | |
| #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
 | |
| #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
 | |
| #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
 | |
| #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
 | |
| 
 | |
| #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
 | |
| #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
 | |
| #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
 | |
| #define uintBPL_t uint(BITS_PER_LONG)
 | |
| #define uint(x) xuint(x)
 | |
| #define xuint(x) __le ## x
 | |
| 
 | |
| static inline int find_next_one_bit (void * addr, int size, int offset)
 | |
| {
 | |
| 	uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
 | |
| 	int result = offset & ~(BITS_PER_LONG-1);
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	if (offset >= size)
 | |
| 		return size;
 | |
| 	size -= result;
 | |
| 	offset &= (BITS_PER_LONG-1);
 | |
| 	if (offset)
 | |
| 	{
 | |
| 		tmp = leBPL_to_cpup(p++);
 | |
| 		tmp &= ~0UL << offset;
 | |
| 		if (size < BITS_PER_LONG)
 | |
| 			goto found_first;
 | |
| 		if (tmp)
 | |
| 			goto found_middle;
 | |
| 		size -= BITS_PER_LONG;
 | |
| 		result += BITS_PER_LONG;
 | |
| 	}
 | |
| 	while (size & ~(BITS_PER_LONG-1))
 | |
| 	{
 | |
| 		if ((tmp = leBPL_to_cpup(p++)))
 | |
| 			goto found_middle;
 | |
| 		result += BITS_PER_LONG;
 | |
| 		size -= BITS_PER_LONG;
 | |
| 	}
 | |
| 	if (!size)
 | |
| 		return result;
 | |
| 	tmp = leBPL_to_cpup(p);
 | |
| found_first:
 | |
| 	tmp &= ~0UL >> (BITS_PER_LONG-size);
 | |
| found_middle:
 | |
| 	return result + ffz(~tmp);
 | |
| }
 | |
| 
 | |
| #define find_first_one_bit(addr, size)\
 | |
| 	find_next_one_bit((addr), (size), 0)
 | |
| 
 | |
| static int read_block_bitmap(struct super_block * sb,
 | |
| 	struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr)
 | |
| {
 | |
| 	struct buffer_head *bh = NULL;
 | |
| 	int retval = 0;
 | |
| 	kernel_lb_addr loc;
 | |
| 
 | |
| 	loc.logicalBlockNum = bitmap->s_extPosition;
 | |
| 	loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
 | |
| 
 | |
| 	bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
 | |
| 	if (!bh)
 | |
| 	{
 | |
| 		retval = -EIO;
 | |
| 	}
 | |
| 	bitmap->s_block_bitmap[bitmap_nr] = bh;
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int __load_block_bitmap(struct super_block * sb,
 | |
| 	struct udf_bitmap *bitmap, unsigned int block_group)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 	int nr_groups = bitmap->s_nr_groups;
 | |
| 
 | |
| 	if (block_group >= nr_groups)
 | |
| 	{
 | |
| 		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups);
 | |
| 	}
 | |
| 
 | |
| 	if (bitmap->s_block_bitmap[block_group])
 | |
| 		return block_group;
 | |
| 	else
 | |
| 	{
 | |
| 		retval = read_block_bitmap(sb, bitmap, block_group, block_group);
 | |
| 		if (retval < 0)
 | |
| 			return retval;
 | |
| 		return block_group;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int load_block_bitmap(struct super_block * sb,
 | |
| 	struct udf_bitmap *bitmap, unsigned int block_group)
 | |
| {
 | |
| 	int slot;
 | |
| 
 | |
| 	slot = __load_block_bitmap(sb, bitmap, block_group);
 | |
| 
 | |
| 	if (slot < 0)
 | |
| 		return slot;
 | |
| 
 | |
| 	if (!bitmap->s_block_bitmap[slot])
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return slot;
 | |
| }
 | |
| 
 | |
| static void udf_bitmap_free_blocks(struct super_block * sb,
 | |
| 	struct inode * inode,
 | |
| 	struct udf_bitmap *bitmap,
 | |
| 	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
 | |
| {
 | |
| 	struct udf_sb_info *sbi = UDF_SB(sb);
 | |
| 	struct buffer_head * bh = NULL;
 | |
| 	unsigned long block;
 | |
| 	unsigned long block_group;
 | |
| 	unsigned long bit;
 | |
| 	unsigned long i;
 | |
| 	int bitmap_nr;
 | |
| 	unsigned long overflow;
 | |
| 
 | |
| 	mutex_lock(&sbi->s_alloc_mutex);
 | |
| 	if (bloc.logicalBlockNum < 0 ||
 | |
| 		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
 | |
| 	{
 | |
| 		udf_debug("%d < %d || %d + %d > %d\n",
 | |
| 			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
 | |
| 			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
 | |
| 
 | |
| do_more:
 | |
| 	overflow = 0;
 | |
| 	block_group = block >> (sb->s_blocksize_bits + 3);
 | |
| 	bit = block % (sb->s_blocksize << 3);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if we are freeing blocks across a group boundary.
 | |
| 	 */
 | |
| 	if (bit + count > (sb->s_blocksize << 3))
 | |
| 	{
 | |
| 		overflow = bit + count - (sb->s_blocksize << 3);
 | |
| 		count -= overflow;
 | |
| 	}
 | |
| 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
 | |
| 	if (bitmap_nr < 0)
 | |
| 		goto error_return;
 | |
| 
 | |
| 	bh = bitmap->s_block_bitmap[bitmap_nr];
 | |
| 	for (i=0; i < count; i++)
 | |
| 	{
 | |
| 		if (udf_set_bit(bit + i, bh->b_data))
 | |
| 		{
 | |
| 			udf_debug("bit %ld already set\n", bit + i);
 | |
| 			udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			if (inode)
 | |
| 				DQUOT_FREE_BLOCK(inode, 1);
 | |
| 			if (UDF_SB_LVIDBH(sb))
 | |
| 			{
 | |
| 				UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
 | |
| 					cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	mark_buffer_dirty(bh);
 | |
| 	if (overflow)
 | |
| 	{
 | |
| 		block += count;
 | |
| 		count = overflow;
 | |
| 		goto do_more;
 | |
| 	}
 | |
| error_return:
 | |
| 	sb->s_dirt = 1;
 | |
| 	if (UDF_SB_LVIDBH(sb))
 | |
| 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
 | |
| 	mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int udf_bitmap_prealloc_blocks(struct super_block * sb,
 | |
| 	struct inode * inode,
 | |
| 	struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block,
 | |
| 	uint32_t block_count)
 | |
| {
 | |
| 	struct udf_sb_info *sbi = UDF_SB(sb);
 | |
| 	int alloc_count = 0;
 | |
| 	int bit, block, block_group, group_start;
 | |
| 	int nr_groups, bitmap_nr;
 | |
| 	struct buffer_head *bh;
 | |
| 
 | |
| 	mutex_lock(&sbi->s_alloc_mutex);
 | |
| 	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
 | |
| 		block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
 | |
| 
 | |
| repeat:
 | |
| 	nr_groups = (UDF_SB_PARTLEN(sb, partition) +
 | |
| 		(sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
 | |
| 	block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
 | |
| 	block_group = block >> (sb->s_blocksize_bits + 3);
 | |
| 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
 | |
| 
 | |
| 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
 | |
| 	if (bitmap_nr < 0)
 | |
| 		goto out;
 | |
| 	bh = bitmap->s_block_bitmap[bitmap_nr];
 | |
| 
 | |
| 	bit = block % (sb->s_blocksize << 3);
 | |
| 
 | |
| 	while (bit < (sb->s_blocksize << 3) && block_count > 0)
 | |
| 	{
 | |
| 		if (!udf_test_bit(bit, bh->b_data))
 | |
| 			goto out;
 | |
| 		else if (DQUOT_PREALLOC_BLOCK(inode, 1))
 | |
| 			goto out;
 | |
| 		else if (!udf_clear_bit(bit, bh->b_data))
 | |
| 		{
 | |
| 			udf_debug("bit already cleared for block %d\n", bit);
 | |
| 			DQUOT_FREE_BLOCK(inode, 1);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		block_count --;
 | |
| 		alloc_count ++;
 | |
| 		bit ++;
 | |
| 		block ++;
 | |
| 	}
 | |
| 	mark_buffer_dirty(bh);
 | |
| 	if (block_count > 0)
 | |
| 		goto repeat;
 | |
| out:
 | |
| 	if (UDF_SB_LVIDBH(sb))
 | |
| 	{
 | |
| 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
 | |
| 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
 | |
| 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
 | |
| 	}
 | |
| 	sb->s_dirt = 1;
 | |
| 	mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 	return alloc_count;
 | |
| }
 | |
| 
 | |
| static int udf_bitmap_new_block(struct super_block * sb,
 | |
| 	struct inode * inode,
 | |
| 	struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err)
 | |
| {
 | |
| 	struct udf_sb_info *sbi = UDF_SB(sb);
 | |
| 	int newbit, bit=0, block, block_group, group_start;
 | |
| 	int end_goal, nr_groups, bitmap_nr, i;
 | |
| 	struct buffer_head *bh = NULL;
 | |
| 	char *ptr;
 | |
| 	int newblock = 0;
 | |
| 
 | |
| 	*err = -ENOSPC;
 | |
| 	mutex_lock(&sbi->s_alloc_mutex);
 | |
| 
 | |
| repeat:
 | |
| 	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
 | |
| 		goal = 0;
 | |
| 
 | |
| 	nr_groups = bitmap->s_nr_groups;
 | |
| 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
 | |
| 	block_group = block >> (sb->s_blocksize_bits + 3);
 | |
| 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
 | |
| 
 | |
| 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
 | |
| 	if (bitmap_nr < 0)
 | |
| 		goto error_return;
 | |
| 	bh = bitmap->s_block_bitmap[bitmap_nr];
 | |
| 	ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
 | |
| 
 | |
| 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
 | |
| 	{
 | |
| 		bit = block % (sb->s_blocksize << 3);
 | |
| 
 | |
| 		if (udf_test_bit(bit, bh->b_data))
 | |
| 		{
 | |
| 			goto got_block;
 | |
| 		}
 | |
| 		end_goal = (bit + 63) & ~63;
 | |
| 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
 | |
| 		if (bit < end_goal)
 | |
| 			goto got_block;
 | |
| 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
 | |
| 		newbit = (ptr - ((char *)bh->b_data)) << 3;
 | |
| 		if (newbit < sb->s_blocksize << 3)
 | |
| 		{
 | |
| 			bit = newbit;
 | |
| 			goto search_back;
 | |
| 		}
 | |
| 		newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
 | |
| 		if (newbit < sb->s_blocksize << 3)
 | |
| 		{
 | |
| 			bit = newbit;
 | |
| 			goto got_block;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i=0; i<(nr_groups*2); i++)
 | |
| 	{
 | |
| 		block_group ++;
 | |
| 		if (block_group >= nr_groups)
 | |
| 			block_group = 0;
 | |
| 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
 | |
| 
 | |
| 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
 | |
| 		if (bitmap_nr < 0)
 | |
| 			goto error_return;
 | |
| 		bh = bitmap->s_block_bitmap[bitmap_nr];
 | |
| 		if (i < nr_groups)
 | |
| 		{
 | |
| 			ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
 | |
| 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
 | |
| 			{
 | |
| 				bit = (ptr - ((char *)bh->b_data)) << 3;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3);
 | |
| 			if (bit < sb->s_blocksize << 3)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (i >= (nr_groups*2))
 | |
| 	{
 | |
| 		mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 		return newblock;
 | |
| 	}
 | |
| 	if (bit < sb->s_blocksize << 3)
 | |
| 		goto search_back;
 | |
| 	else
 | |
| 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
 | |
| 	if (bit >= sb->s_blocksize << 3)
 | |
| 	{
 | |
| 		mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| search_back:
 | |
| 	for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--);
 | |
| 
 | |
| got_block:
 | |
| 
 | |
| 	/*
 | |
| 	 * Check quota for allocation of this block.
 | |
| 	 */
 | |
| 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
 | |
| 	{
 | |
| 		mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 		*err = -EDQUOT;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
 | |
| 		(sizeof(struct spaceBitmapDesc) << 3);
 | |
| 
 | |
| 	if (!udf_clear_bit(bit, bh->b_data))
 | |
| 	{
 | |
| 		udf_debug("bit already cleared for block %d\n", bit);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	mark_buffer_dirty(bh);
 | |
| 
 | |
| 	if (UDF_SB_LVIDBH(sb))
 | |
| 	{
 | |
| 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
 | |
| 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
 | |
| 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
 | |
| 	}
 | |
| 	sb->s_dirt = 1;
 | |
| 	mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 	*err = 0;
 | |
| 	return newblock;
 | |
| 
 | |
| error_return:
 | |
| 	*err = -EIO;
 | |
| 	mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void udf_table_free_blocks(struct super_block * sb,
 | |
| 	struct inode * inode,
 | |
| 	struct inode * table,
 | |
| 	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
 | |
| {
 | |
| 	struct udf_sb_info *sbi = UDF_SB(sb);
 | |
| 	uint32_t start, end;
 | |
| 	uint32_t nextoffset, oextoffset, elen;
 | |
| 	kernel_lb_addr nbloc, obloc, eloc;
 | |
| 	struct buffer_head *obh, *nbh;
 | |
| 	int8_t etype;
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_lock(&sbi->s_alloc_mutex);
 | |
| 	if (bloc.logicalBlockNum < 0 ||
 | |
| 		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
 | |
| 	{
 | |
| 		udf_debug("%d < %d || %d + %d > %d\n",
 | |
| 			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
 | |
| 			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	/* We do this up front - There are some error conditions that could occure,
 | |
| 	   but.. oh well */
 | |
| 	if (inode)
 | |
| 		DQUOT_FREE_BLOCK(inode, count);
 | |
| 	if (UDF_SB_LVIDBH(sb))
 | |
| 	{
 | |
| 		UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
 | |
| 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count);
 | |
| 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
 | |
| 	}
 | |
| 
 | |
| 	start = bloc.logicalBlockNum + offset;
 | |
| 	end = bloc.logicalBlockNum + offset + count - 1;
 | |
| 
 | |
| 	oextoffset = nextoffset = sizeof(struct unallocSpaceEntry);
 | |
| 	elen = 0;
 | |
| 	obloc = nbloc = UDF_I_LOCATION(table);
 | |
| 
 | |
| 	obh = nbh = NULL;
 | |
| 
 | |
| 	while (count && (etype =
 | |
| 		udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1)
 | |
| 	{
 | |
| 		if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) ==
 | |
| 			start))
 | |
| 		{
 | |
| 			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
 | |
| 			{
 | |
| 				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
 | |
| 				start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
 | |
| 				elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				elen = (etype << 30) |
 | |
| 					(elen + (count << sb->s_blocksize_bits));
 | |
| 				start += count;
 | |
| 				count = 0;
 | |
| 			}
 | |
| 			udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
 | |
| 		}
 | |
| 		else if (eloc.logicalBlockNum == (end + 1))
 | |
| 		{
 | |
| 			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
 | |
| 			{
 | |
| 				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
 | |
| 				end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
 | |
| 				eloc.logicalBlockNum -=
 | |
| 					((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
 | |
| 				elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				eloc.logicalBlockNum = start;
 | |
| 				elen = (etype << 30) |
 | |
| 					(elen + (count << sb->s_blocksize_bits));
 | |
| 				end -= count;
 | |
| 				count = 0;
 | |
| 			}
 | |
| 			udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
 | |
| 		}
 | |
| 
 | |
| 		if (nbh != obh)
 | |
| 		{
 | |
| 			i = -1;
 | |
| 			obloc = nbloc;
 | |
| 			udf_release_data(obh);
 | |
| 			atomic_inc(&nbh->b_count);
 | |
| 			obh = nbh;
 | |
| 			oextoffset = 0;
 | |
| 		}
 | |
| 		else
 | |
| 			oextoffset = nextoffset;
 | |
| 	}
 | |
| 
 | |
| 	if (count)
 | |
| 	{
 | |
| 		/* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
 | |
| 				 a new block, and since we hold the super block lock already
 | |
| 				 very bad things would happen :)
 | |
| 
 | |
| 				 We copy the behavior of udf_add_aext, but instead of
 | |
| 				 trying to allocate a new block close to the existing one,
 | |
| 				 we just steal a block from the extent we are trying to add.
 | |
| 
 | |
| 				 It would be nice if the blocks were close together, but it
 | |
| 				 isn't required.
 | |
| 		*/
 | |
| 
 | |
| 		int adsize;
 | |
| 		short_ad *sad = NULL;
 | |
| 		long_ad *lad = NULL;
 | |
| 		struct allocExtDesc *aed;
 | |
| 
 | |
| 		eloc.logicalBlockNum = start;
 | |
| 		elen = EXT_RECORDED_ALLOCATED |
 | |
| 			(count << sb->s_blocksize_bits);
 | |
| 
 | |
| 		if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
 | |
| 			adsize = sizeof(short_ad);
 | |
| 		else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
 | |
| 			adsize = sizeof(long_ad);
 | |
| 		else
 | |
| 		{
 | |
| 			udf_release_data(obh);
 | |
| 			udf_release_data(nbh);
 | |
| 			goto error_return;
 | |
| 		}
 | |
| 
 | |
| 		if (nextoffset + (2 * adsize) > sb->s_blocksize)
 | |
| 		{
 | |
| 			char *sptr, *dptr;
 | |
| 			int loffset;
 | |
| 	
 | |
| 			udf_release_data(obh);
 | |
| 			obh = nbh;
 | |
| 			obloc = nbloc;
 | |
| 			oextoffset = nextoffset;
 | |
| 
 | |
| 			/* Steal a block from the extent being free'd */
 | |
| 			nbloc.logicalBlockNum = eloc.logicalBlockNum;
 | |
| 			eloc.logicalBlockNum ++;
 | |
| 			elen -= sb->s_blocksize;
 | |
| 
 | |
| 			if (!(nbh = udf_tread(sb,
 | |
| 				udf_get_lb_pblock(sb, nbloc, 0))))
 | |
| 			{
 | |
| 				udf_release_data(obh);
 | |
| 				goto error_return;
 | |
| 			}
 | |
| 			aed = (struct allocExtDesc *)(nbh->b_data);
 | |
| 			aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
 | |
| 			if (nextoffset + adsize > sb->s_blocksize)
 | |
| 			{
 | |
| 				loffset = nextoffset;
 | |
| 				aed->lengthAllocDescs = cpu_to_le32(adsize);
 | |
| 				sptr = UDF_I_DATA(inode) + nextoffset -
 | |
| 					udf_file_entry_alloc_offset(inode) +
 | |
| 					UDF_I_LENEATTR(inode) - adsize;
 | |
| 				dptr = nbh->b_data + sizeof(struct allocExtDesc);
 | |
| 				memcpy(dptr, sptr, adsize);
 | |
| 				nextoffset = sizeof(struct allocExtDesc) + adsize;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				loffset = nextoffset + adsize;
 | |
| 				aed->lengthAllocDescs = cpu_to_le32(0);
 | |
| 				sptr = (obh)->b_data + nextoffset;
 | |
| 				nextoffset = sizeof(struct allocExtDesc);
 | |
| 
 | |
| 				if (obh)
 | |
| 				{
 | |
| 					aed = (struct allocExtDesc *)(obh)->b_data;
 | |
| 					aed->lengthAllocDescs =
 | |
| 						cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					UDF_I_LENALLOC(table) += adsize;
 | |
| 					mark_inode_dirty(table);
 | |
| 				}
 | |
| 			}
 | |
| 			if (UDF_SB_UDFREV(sb) >= 0x0200)
 | |
| 				udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
 | |
| 					nbloc.logicalBlockNum, sizeof(tag));
 | |
| 			else
 | |
| 				udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
 | |
| 					nbloc.logicalBlockNum, sizeof(tag));
 | |
| 			switch (UDF_I_ALLOCTYPE(table))
 | |
| 			{
 | |
| 				case ICBTAG_FLAG_AD_SHORT:
 | |
| 				{
 | |
| 					sad = (short_ad *)sptr;
 | |
| 					sad->extLength = cpu_to_le32(
 | |
| 						EXT_NEXT_EXTENT_ALLOCDECS |
 | |
| 						sb->s_blocksize);
 | |
| 					sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum);
 | |
| 					break;
 | |
| 				}
 | |
| 				case ICBTAG_FLAG_AD_LONG:
 | |
| 				{
 | |
| 					lad = (long_ad *)sptr;
 | |
| 					lad->extLength = cpu_to_le32(
 | |
| 						EXT_NEXT_EXTENT_ALLOCDECS |
 | |
| 						sb->s_blocksize);
 | |
| 					lad->extLocation = cpu_to_lelb(nbloc);
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (obh)
 | |
| 			{
 | |
| 				udf_update_tag(obh->b_data, loffset);
 | |
| 				mark_buffer_dirty(obh);
 | |
| 			}
 | |
| 			else
 | |
| 				mark_inode_dirty(table);
 | |
| 		}
 | |
| 
 | |
| 		if (elen) /* It's possible that stealing the block emptied the extent */
 | |
| 		{
 | |
| 			udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1);
 | |
| 
 | |
| 			if (!nbh)
 | |
| 			{
 | |
| 				UDF_I_LENALLOC(table) += adsize;
 | |
| 				mark_inode_dirty(table);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				aed = (struct allocExtDesc *)nbh->b_data;
 | |
| 				aed->lengthAllocDescs =
 | |
| 					cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
 | |
| 				udf_update_tag(nbh->b_data, nextoffset);
 | |
| 				mark_buffer_dirty(nbh);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	udf_release_data(nbh);
 | |
| 	udf_release_data(obh);
 | |
| 
 | |
| error_return:
 | |
| 	sb->s_dirt = 1;
 | |
| 	mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int udf_table_prealloc_blocks(struct super_block * sb,
 | |
| 	struct inode * inode,
 | |
| 	struct inode *table, uint16_t partition, uint32_t first_block,
 | |
| 	uint32_t block_count)
 | |
| {
 | |
| 	struct udf_sb_info *sbi = UDF_SB(sb);
 | |
| 	int alloc_count = 0;
 | |
| 	uint32_t extoffset, elen, adsize;
 | |
| 	kernel_lb_addr bloc, eloc;
 | |
| 	struct buffer_head *bh;
 | |
| 	int8_t etype = -1;
 | |
| 
 | |
| 	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
 | |
| 		adsize = sizeof(short_ad);
 | |
| 	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
 | |
| 		adsize = sizeof(long_ad);
 | |
| 	else
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&sbi->s_alloc_mutex);
 | |
| 	extoffset = sizeof(struct unallocSpaceEntry);
 | |
| 	bloc = UDF_I_LOCATION(table);
 | |
| 
 | |
| 	bh = NULL;
 | |
| 	eloc.logicalBlockNum = 0xFFFFFFFF;
 | |
| 
 | |
| 	while (first_block != eloc.logicalBlockNum && (etype =
 | |
| 		udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
 | |
| 	{
 | |
| 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
 | |
| 			eloc.logicalBlockNum, elen, first_block);
 | |
| 		; /* empty loop body */
 | |
| 	}
 | |
| 
 | |
| 	if (first_block == eloc.logicalBlockNum)
 | |
| 	{
 | |
| 		extoffset -= adsize;
 | |
| 
 | |
| 		alloc_count = (elen >> sb->s_blocksize_bits);
 | |
| 		if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count))
 | |
| 			alloc_count = 0;
 | |
| 		else if (alloc_count > block_count)
 | |
| 		{
 | |
| 			alloc_count = block_count;
 | |
| 			eloc.logicalBlockNum += alloc_count;
 | |
| 			elen -= (alloc_count << sb->s_blocksize_bits);
 | |
| 			udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1);
 | |
| 		}
 | |
| 		else
 | |
| 			udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh);
 | |
| 	}
 | |
| 	else
 | |
| 		alloc_count = 0;
 | |
| 
 | |
| 	udf_release_data(bh);
 | |
| 
 | |
| 	if (alloc_count && UDF_SB_LVIDBH(sb))
 | |
| 	{
 | |
| 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
 | |
| 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
 | |
| 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
 | |
| 		sb->s_dirt = 1;
 | |
| 	}
 | |
| 	mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 	return alloc_count;
 | |
| }
 | |
| 
 | |
| static int udf_table_new_block(struct super_block * sb,
 | |
| 	struct inode * inode,
 | |
| 	struct inode *table, uint16_t partition, uint32_t goal, int *err)
 | |
| {
 | |
| 	struct udf_sb_info *sbi = UDF_SB(sb);
 | |
| 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
 | |
| 	uint32_t newblock = 0, adsize;
 | |
| 	uint32_t extoffset, goal_extoffset, elen, goal_elen = 0;
 | |
| 	kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc;
 | |
| 	struct buffer_head *bh, *goal_bh;
 | |
| 	int8_t etype;
 | |
| 
 | |
| 	*err = -ENOSPC;
 | |
| 
 | |
| 	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
 | |
| 		adsize = sizeof(short_ad);
 | |
| 	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
 | |
| 		adsize = sizeof(long_ad);
 | |
| 	else
 | |
| 		return newblock;
 | |
| 
 | |
| 	mutex_lock(&sbi->s_alloc_mutex);
 | |
| 	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
 | |
| 		goal = 0;
 | |
| 
 | |
| 	/* We search for the closest matching block to goal. If we find a exact hit,
 | |
| 	   we stop. Otherwise we keep going till we run out of extents.
 | |
| 	   We store the buffer_head, bloc, and extoffset of the current closest
 | |
| 	   match and use that when we are done.
 | |
| 	*/
 | |
| 
 | |
| 	extoffset = sizeof(struct unallocSpaceEntry);
 | |
| 	bloc = UDF_I_LOCATION(table);
 | |
| 
 | |
| 	goal_bh = bh = NULL;
 | |
| 
 | |
| 	while (spread && (etype =
 | |
| 		udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
 | |
| 	{
 | |
| 		if (goal >= eloc.logicalBlockNum)
 | |
| 		{
 | |
| 			if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
 | |
| 				nspread = 0;
 | |
| 			else
 | |
| 				nspread = goal - eloc.logicalBlockNum -
 | |
| 					(elen >> sb->s_blocksize_bits);
 | |
| 		}
 | |
| 		else
 | |
| 			nspread = eloc.logicalBlockNum - goal;
 | |
| 
 | |
| 		if (nspread < spread)
 | |
| 		{
 | |
| 			spread = nspread;
 | |
| 			if (goal_bh != bh)
 | |
| 			{
 | |
| 				udf_release_data(goal_bh);
 | |
| 				goal_bh = bh;
 | |
| 				atomic_inc(&goal_bh->b_count);
 | |
| 			}
 | |
| 			goal_bloc = bloc;
 | |
| 			goal_extoffset = extoffset - adsize;
 | |
| 			goal_eloc = eloc;
 | |
| 			goal_elen = (etype << 30) | elen;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	udf_release_data(bh);
 | |
| 
 | |
| 	if (spread == 0xFFFFFFFF)
 | |
| 	{
 | |
| 		udf_release_data(goal_bh);
 | |
| 		mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Only allocate blocks from the beginning of the extent.
 | |
| 	   That way, we only delete (empty) extents, never have to insert an
 | |
| 	   extent because of splitting */
 | |
| 	/* This works, but very poorly.... */
 | |
| 
 | |
| 	newblock = goal_eloc.logicalBlockNum;
 | |
| 	goal_eloc.logicalBlockNum ++;
 | |
| 	goal_elen -= sb->s_blocksize;
 | |
| 
 | |
| 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
 | |
| 	{
 | |
| 		udf_release_data(goal_bh);
 | |
| 		mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 		*err = -EDQUOT;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (goal_elen)
 | |
| 		udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1);
 | |
| 	else
 | |
| 		udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh);
 | |
| 	udf_release_data(goal_bh);
 | |
| 
 | |
| 	if (UDF_SB_LVIDBH(sb))
 | |
| 	{
 | |
| 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
 | |
| 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
 | |
| 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
 | |
| 	}
 | |
| 
 | |
| 	sb->s_dirt = 1;
 | |
| 	mutex_unlock(&sbi->s_alloc_mutex);
 | |
| 	*err = 0;
 | |
| 	return newblock;
 | |
| }
 | |
| 
 | |
| inline void udf_free_blocks(struct super_block * sb,
 | |
| 	struct inode * inode,
 | |
| 	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
 | |
| {
 | |
| 	uint16_t partition = bloc.partitionReferenceNum;
 | |
| 
 | |
| 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
 | |
| 	{
 | |
| 		return udf_bitmap_free_blocks(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
 | |
| 			bloc, offset, count);
 | |
| 	}
 | |
| 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
 | |
| 	{
 | |
| 		return udf_table_free_blocks(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
 | |
| 			bloc, offset, count);
 | |
| 	}
 | |
| 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
 | |
| 	{
 | |
| 		return udf_bitmap_free_blocks(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
 | |
| 			bloc, offset, count);
 | |
| 	}
 | |
| 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
 | |
| 	{
 | |
| 		return udf_table_free_blocks(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
 | |
| 			bloc, offset, count);
 | |
| 	}
 | |
| 	else
 | |
| 		return;
 | |
| }
 | |
| 
 | |
| inline int udf_prealloc_blocks(struct super_block * sb,
 | |
| 	struct inode * inode,
 | |
| 	uint16_t partition, uint32_t first_block, uint32_t block_count)
 | |
| {
 | |
| 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
 | |
| 	{
 | |
| 		return udf_bitmap_prealloc_blocks(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
 | |
| 			partition, first_block, block_count);
 | |
| 	}
 | |
| 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
 | |
| 	{
 | |
| 		return udf_table_prealloc_blocks(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
 | |
| 			partition, first_block, block_count);
 | |
| 	}
 | |
| 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
 | |
| 	{
 | |
| 		return udf_bitmap_prealloc_blocks(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
 | |
| 			partition, first_block, block_count);
 | |
| 	}
 | |
| 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
 | |
| 	{
 | |
| 		return udf_table_prealloc_blocks(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
 | |
| 			partition, first_block, block_count);
 | |
| 	}
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| inline int udf_new_block(struct super_block * sb,
 | |
| 	struct inode * inode,
 | |
| 	uint16_t partition, uint32_t goal, int *err)
 | |
| {
 | |
| 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
 | |
| 	{
 | |
| 		return udf_bitmap_new_block(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
 | |
| 			partition, goal, err);
 | |
| 	}
 | |
| 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
 | |
| 	{
 | |
| 		return udf_table_new_block(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
 | |
| 			partition, goal, err);
 | |
| 	}
 | |
| 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
 | |
| 	{
 | |
| 		return udf_bitmap_new_block(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
 | |
| 			partition, goal, err);
 | |
| 	}
 | |
| 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
 | |
| 	{
 | |
| 		return udf_table_new_block(sb, inode,
 | |
| 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
 | |
| 			partition, goal, err);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		*err = -EIO;
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 |