mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 08:26:29 +00:00 
			
		
		
		
	 c376222960
			
		
	
	
		c376222960
		
	
	
	
	
		
			
			Replace appropriate pairs of "kmem_cache_alloc()" + "memset(0)" with the corresponding "kmem_cache_zalloc()" call. Signed-off-by: Robert P. J. Day <rpjday@mindspring.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@muc.de> Cc: Roland McGrath <roland@redhat.com> Cc: James Bottomley <James.Bottomley@steeleye.com> Cc: Greg KH <greg@kroah.com> Acked-by: Joel Becker <Joel.Becker@oracle.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Jan Kara <jack@ucw.cz> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1673 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1673 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * eCryptfs: Linux filesystem encryption layer
 | |
|  *
 | |
|  * Copyright (C) 1997-2004 Erez Zadok
 | |
|  * Copyright (C) 2001-2004 Stony Brook University
 | |
|  * Copyright (C) 2004-2006 International Business Machines Corp.
 | |
|  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 | |
|  *   		Michael C. Thompson <mcthomps@us.ibm.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation; either version 2 of the
 | |
|  * License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 | |
|  * 02111-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/key.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include "ecryptfs_kernel.h"
 | |
| 
 | |
| static int
 | |
| ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			     struct page *dst_page, int dst_offset,
 | |
| 			     struct page *src_page, int src_offset, int size,
 | |
| 			     unsigned char *iv);
 | |
| static int
 | |
| ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			     struct page *dst_page, int dst_offset,
 | |
| 			     struct page *src_page, int src_offset, int size,
 | |
| 			     unsigned char *iv);
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_to_hex
 | |
|  * @dst: Buffer to take hex character representation of contents of
 | |
|  *       src; must be at least of size (src_size * 2)
 | |
|  * @src: Buffer to be converted to a hex string respresentation
 | |
|  * @src_size: number of bytes to convert
 | |
|  */
 | |
| void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
 | |
| {
 | |
| 	int x;
 | |
| 
 | |
| 	for (x = 0; x < src_size; x++)
 | |
| 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_from_hex
 | |
|  * @dst: Buffer to take the bytes from src hex; must be at least of
 | |
|  *       size (src_size / 2)
 | |
|  * @src: Buffer to be converted from a hex string respresentation to raw value
 | |
|  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 | |
|  */
 | |
| void ecryptfs_from_hex(char *dst, char *src, int dst_size)
 | |
| {
 | |
| 	int x;
 | |
| 	char tmp[3] = { 0, };
 | |
| 
 | |
| 	for (x = 0; x < dst_size; x++) {
 | |
| 		tmp[0] = src[x * 2];
 | |
| 		tmp[1] = src[x * 2 + 1];
 | |
| 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_calculate_md5 - calculates the md5 of @src
 | |
|  * @dst: Pointer to 16 bytes of allocated memory
 | |
|  * @crypt_stat: Pointer to crypt_stat struct for the current inode
 | |
|  * @src: Data to be md5'd
 | |
|  * @len: Length of @src
 | |
|  *
 | |
|  * Uses the allocated crypto context that crypt_stat references to
 | |
|  * generate the MD5 sum of the contents of src.
 | |
|  */
 | |
| static int ecryptfs_calculate_md5(char *dst,
 | |
| 				  struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				  char *src, int len)
 | |
| {
 | |
| 	struct scatterlist sg;
 | |
| 	struct hash_desc desc = {
 | |
| 		.tfm = crypt_stat->hash_tfm,
 | |
| 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 | |
| 	};
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
 | |
| 	sg_init_one(&sg, (u8 *)src, len);
 | |
| 	if (!desc.tfm) {
 | |
| 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
 | |
| 					     CRYPTO_ALG_ASYNC);
 | |
| 		if (IS_ERR(desc.tfm)) {
 | |
| 			rc = PTR_ERR(desc.tfm);
 | |
| 			ecryptfs_printk(KERN_ERR, "Error attempting to "
 | |
| 					"allocate crypto context; rc = [%d]\n",
 | |
| 					rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		crypt_stat->hash_tfm = desc.tfm;
 | |
| 	}
 | |
| 	crypto_hash_init(&desc);
 | |
| 	crypto_hash_update(&desc, &sg, len);
 | |
| 	crypto_hash_final(&desc, dst);
 | |
| 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
 | |
| 					   char *cipher_name,
 | |
| 					   char *chaining_modifier)
 | |
| {
 | |
| 	int cipher_name_len = strlen(cipher_name);
 | |
| 	int chaining_modifier_len = strlen(chaining_modifier);
 | |
| 	int algified_name_len;
 | |
| 	int rc;
 | |
| 
 | |
| 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 | |
| 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 | |
| 	if (!(*algified_name)) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	snprintf((*algified_name), algified_name_len, "%s(%s)",
 | |
| 		 chaining_modifier, cipher_name);
 | |
| 	rc = 0;
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_derive_iv
 | |
|  * @iv: destination for the derived iv vale
 | |
|  * @crypt_stat: Pointer to crypt_stat struct for the current inode
 | |
|  * @offset: Offset of the page whose's iv we are to derive
 | |
|  *
 | |
|  * Generate the initialization vector from the given root IV and page
 | |
|  * offset.
 | |
|  *
 | |
|  * Returns zero on success; non-zero on error.
 | |
|  */
 | |
| static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			      pgoff_t offset)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	char dst[MD5_DIGEST_SIZE];
 | |
| 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
 | |
| 
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 | |
| 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 | |
| 	}
 | |
| 	/* TODO: It is probably secure to just cast the least
 | |
| 	 * significant bits of the root IV into an unsigned long and
 | |
| 	 * add the offset to that rather than go through all this
 | |
| 	 * hashing business. -Halcrow */
 | |
| 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 | |
| 	memset((src + crypt_stat->iv_bytes), 0, 16);
 | |
| 	snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "source:\n");
 | |
| 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 | |
| 	}
 | |
| 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 | |
| 				    (crypt_stat->iv_bytes + 16));
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 | |
| 				"MD5 while generating IV for a page\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	memcpy(iv, dst, crypt_stat->iv_bytes);
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 | |
| 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_init_crypt_stat
 | |
|  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 | |
|  *
 | |
|  * Initialize the crypt_stat structure.
 | |
|  */
 | |
| void
 | |
| ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 | |
| 	mutex_init(&crypt_stat->cs_mutex);
 | |
| 	mutex_init(&crypt_stat->cs_tfm_mutex);
 | |
| 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
 | |
| 	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_STRUCT_INITIALIZED);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_destruct_crypt_stat
 | |
|  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 | |
|  *
 | |
|  * Releases all memory associated with a crypt_stat struct.
 | |
|  */
 | |
| void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	if (crypt_stat->tfm)
 | |
| 		crypto_free_blkcipher(crypt_stat->tfm);
 | |
| 	if (crypt_stat->hash_tfm)
 | |
| 		crypto_free_hash(crypt_stat->hash_tfm);
 | |
| 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 | |
| }
 | |
| 
 | |
| void ecryptfs_destruct_mount_crypt_stat(
 | |
| 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | |
| {
 | |
| 	if (mount_crypt_stat->global_auth_tok_key)
 | |
| 		key_put(mount_crypt_stat->global_auth_tok_key);
 | |
| 	if (mount_crypt_stat->global_key_tfm)
 | |
| 		crypto_free_blkcipher(mount_crypt_stat->global_key_tfm);
 | |
| 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * virt_to_scatterlist
 | |
|  * @addr: Virtual address
 | |
|  * @size: Size of data; should be an even multiple of the block size
 | |
|  * @sg: Pointer to scatterlist array; set to NULL to obtain only
 | |
|  *      the number of scatterlist structs required in array
 | |
|  * @sg_size: Max array size
 | |
|  *
 | |
|  * Fills in a scatterlist array with page references for a passed
 | |
|  * virtual address.
 | |
|  *
 | |
|  * Returns the number of scatterlist structs in array used
 | |
|  */
 | |
| int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 | |
| 			int sg_size)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	struct page *pg;
 | |
| 	int offset;
 | |
| 	int remainder_of_page;
 | |
| 
 | |
| 	while (size > 0 && i < sg_size) {
 | |
| 		pg = virt_to_page(addr);
 | |
| 		offset = offset_in_page(addr);
 | |
| 		if (sg) {
 | |
| 			sg[i].page = pg;
 | |
| 			sg[i].offset = offset;
 | |
| 		}
 | |
| 		remainder_of_page = PAGE_CACHE_SIZE - offset;
 | |
| 		if (size >= remainder_of_page) {
 | |
| 			if (sg)
 | |
| 				sg[i].length = remainder_of_page;
 | |
| 			addr += remainder_of_page;
 | |
| 			size -= remainder_of_page;
 | |
| 		} else {
 | |
| 			if (sg)
 | |
| 				sg[i].length = size;
 | |
| 			addr += size;
 | |
| 			size = 0;
 | |
| 		}
 | |
| 		i++;
 | |
| 	}
 | |
| 	if (size > 0)
 | |
| 		return -ENOMEM;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * encrypt_scatterlist
 | |
|  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 | |
|  * @dest_sg: Destination of encrypted data
 | |
|  * @src_sg: Data to be encrypted
 | |
|  * @size: Length of data to be encrypted
 | |
|  * @iv: iv to use during encryption
 | |
|  *
 | |
|  * Returns the number of bytes encrypted; negative value on error
 | |
|  */
 | |
| static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			       struct scatterlist *dest_sg,
 | |
| 			       struct scatterlist *src_sg, int size,
 | |
| 			       unsigned char *iv)
 | |
| {
 | |
| 	struct blkcipher_desc desc = {
 | |
| 		.tfm = crypt_stat->tfm,
 | |
| 		.info = iv,
 | |
| 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 | |
| 	};
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	BUG_ON(!crypt_stat || !crypt_stat->tfm
 | |
| 	       || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
 | |
| 				       ECRYPTFS_STRUCT_INITIALIZED));
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
 | |
| 				crypt_stat->key_size);
 | |
| 		ecryptfs_dump_hex(crypt_stat->key,
 | |
| 				  crypt_stat->key_size);
 | |
| 	}
 | |
| 	/* Consider doing this once, when the file is opened */
 | |
| 	mutex_lock(&crypt_stat->cs_tfm_mutex);
 | |
| 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 | |
| 				     crypt_stat->key_size);
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
 | |
| 				rc);
 | |
| 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
 | |
| 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
 | |
| 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
 | |
| 					 int *byte_offset,
 | |
| 					 struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 					 unsigned long extent_num)
 | |
| {
 | |
| 	unsigned long lower_extent_num;
 | |
| 	int extents_occupied_by_headers_at_front;
 | |
| 	int bytes_occupied_by_headers_at_front;
 | |
| 	int extent_offset;
 | |
| 	int extents_per_page;
 | |
| 
 | |
| 	bytes_occupied_by_headers_at_front =
 | |
| 		( crypt_stat->header_extent_size
 | |
| 		  * crypt_stat->num_header_extents_at_front );
 | |
| 	extents_occupied_by_headers_at_front =
 | |
| 		( bytes_occupied_by_headers_at_front
 | |
| 		  / crypt_stat->extent_size );
 | |
| 	lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
 | |
| 	extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
 | |
| 	(*lower_page_idx) = lower_extent_num / extents_per_page;
 | |
| 	extent_offset = lower_extent_num % extents_per_page;
 | |
| 	(*byte_offset) = extent_offset * crypt_stat->extent_size;
 | |
| 	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
 | |
| 			"[%d]\n", crypt_stat->header_extent_size);
 | |
| 	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
 | |
| 			"num_header_extents_at_front = [%d]\n",
 | |
| 			crypt_stat->num_header_extents_at_front);
 | |
| 	ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
 | |
| 			"front = [%d]\n", extents_occupied_by_headers_at_front);
 | |
| 	ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
 | |
| 			lower_extent_num);
 | |
| 	ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
 | |
| 			extents_per_page);
 | |
| 	ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
 | |
| 			(*lower_page_idx));
 | |
| 	ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
 | |
| 			extent_offset);
 | |
| 	ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
 | |
| 			(*byte_offset));
 | |
| }
 | |
| 
 | |
| static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
 | |
| 				   struct page *lower_page,
 | |
| 				   struct inode *lower_inode,
 | |
| 				   int byte_offset_in_page, int bytes_to_write)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
 | |
| 		rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
 | |
| 						ctx->param.lower_file,
 | |
| 						byte_offset_in_page,
 | |
| 						bytes_to_write);
 | |
| 		if (rc) {
 | |
| 			ecryptfs_printk(KERN_ERR, "Error calling lower "
 | |
| 					"commit; rc = [%d]\n", rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		rc = ecryptfs_writepage_and_release_lower_page(lower_page,
 | |
| 							       lower_inode,
 | |
| 							       ctx->param.wbc);
 | |
| 		if (rc) {
 | |
| 			ecryptfs_printk(KERN_ERR, "Error calling lower "
 | |
| 					"writepage(); rc = [%d]\n", rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
 | |
| 				 struct page **lower_page,
 | |
| 				 struct inode *lower_inode,
 | |
| 				 unsigned long lower_page_idx,
 | |
| 				 int byte_offset_in_page)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
 | |
| 		/* TODO: Limit this to only the data extents that are
 | |
| 		 * needed */
 | |
| 		rc = ecryptfs_get_lower_page(lower_page, lower_inode,
 | |
| 					     ctx->param.lower_file,
 | |
| 					     lower_page_idx,
 | |
| 					     byte_offset_in_page,
 | |
| 					     (PAGE_CACHE_SIZE
 | |
| 					      - byte_offset_in_page));
 | |
| 		if (rc) {
 | |
| 			ecryptfs_printk(
 | |
| 				KERN_ERR, "Error attempting to grab, map, "
 | |
| 				"and prepare_write lower page with index "
 | |
| 				"[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL,
 | |
| 						      lower_inode,
 | |
| 						      lower_page_idx);
 | |
| 		if (rc) {
 | |
| 			ecryptfs_printk(
 | |
| 				KERN_ERR, "Error attempting to grab and map "
 | |
| 				"lower page with index [0x%.16x]; rc = [%d]\n",
 | |
| 				lower_page_idx, rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_encrypt_page
 | |
|  * @ctx: The context of the page
 | |
|  *
 | |
|  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 | |
|  * that eCryptfs pages may straddle the lower pages -- for instance,
 | |
|  * if the file was created on a machine with an 8K page size
 | |
|  * (resulting in an 8K header), and then the file is copied onto a
 | |
|  * host with a 32K page size, then when reading page 0 of the eCryptfs
 | |
|  * file, 24K of page 0 of the lower file will be read and decrypted,
 | |
|  * and then 8K of page 1 of the lower file will be read and decrypted.
 | |
|  *
 | |
|  * The actual operations performed on each page depends on the
 | |
|  * contents of the ecryptfs_page_crypt_context struct.
 | |
|  *
 | |
|  * Returns zero on success; negative on error
 | |
|  */
 | |
| int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
 | |
| {
 | |
| 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 | |
| 	unsigned long base_extent;
 | |
| 	unsigned long extent_offset = 0;
 | |
| 	unsigned long lower_page_idx = 0;
 | |
| 	unsigned long prior_lower_page_idx = 0;
 | |
| 	struct page *lower_page;
 | |
| 	struct inode *lower_inode;
 | |
| 	struct ecryptfs_inode_info *inode_info;
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat;
 | |
| 	int rc = 0;
 | |
| 	int lower_byte_offset = 0;
 | |
| 	int orig_byte_offset = 0;
 | |
| 	int num_extents_per_page;
 | |
| #define ECRYPTFS_PAGE_STATE_UNREAD    0
 | |
| #define ECRYPTFS_PAGE_STATE_READ      1
 | |
| #define ECRYPTFS_PAGE_STATE_MODIFIED  2
 | |
| #define ECRYPTFS_PAGE_STATE_WRITTEN   3
 | |
| 	int page_state;
 | |
| 
 | |
| 	lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
 | |
| 	inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
 | |
| 	crypt_stat = &inode_info->crypt_stat;
 | |
| 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
 | |
| 		rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
 | |
| 						 ctx->param.lower_file);
 | |
| 		if (rc)
 | |
| 			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
 | |
| 					"page at index [0x%.16x]\n",
 | |
| 					ctx->page->index);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
 | |
| 	base_extent = (ctx->page->index * num_extents_per_page);
 | |
| 	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
 | |
| 	while (extent_offset < num_extents_per_page) {
 | |
| 		ecryptfs_extent_to_lwr_pg_idx_and_offset(
 | |
| 			&lower_page_idx, &lower_byte_offset, crypt_stat,
 | |
| 			(base_extent + extent_offset));
 | |
| 		if (prior_lower_page_idx != lower_page_idx
 | |
| 		    && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
 | |
| 			rc = ecryptfs_write_out_page(ctx, lower_page,
 | |
| 						     lower_inode,
 | |
| 						     orig_byte_offset,
 | |
| 						     (PAGE_CACHE_SIZE
 | |
| 						      - orig_byte_offset));
 | |
| 			if (rc) {
 | |
| 				ecryptfs_printk(KERN_ERR, "Error attempting "
 | |
| 						"to write out page; rc = [%d]"
 | |
| 						"\n", rc);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
 | |
| 		}
 | |
| 		if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
 | |
| 		    || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
 | |
| 			rc = ecryptfs_read_in_page(ctx, &lower_page,
 | |
| 						   lower_inode, lower_page_idx,
 | |
| 						   lower_byte_offset);
 | |
| 			if (rc) {
 | |
| 				ecryptfs_printk(KERN_ERR, "Error attempting "
 | |
| 						"to read in lower page with "
 | |
| 						"index [0x%.16x]; rc = [%d]\n",
 | |
| 						lower_page_idx, rc);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			orig_byte_offset = lower_byte_offset;
 | |
| 			prior_lower_page_idx = lower_page_idx;
 | |
| 			page_state = ECRYPTFS_PAGE_STATE_READ;
 | |
| 		}
 | |
| 		BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
 | |
| 			 || page_state == ECRYPTFS_PAGE_STATE_READ));
 | |
| 		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 | |
| 					(base_extent + extent_offset));
 | |
| 		if (rc) {
 | |
| 			ecryptfs_printk(KERN_ERR, "Error attempting to "
 | |
| 					"derive IV for extent [0x%.16x]; "
 | |
| 					"rc = [%d]\n",
 | |
| 					(base_extent + extent_offset), rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 			ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
 | |
| 					"with iv:\n");
 | |
| 			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
 | |
| 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
 | |
| 					"encryption:\n");
 | |
| 			ecryptfs_dump_hex((char *)
 | |
| 					  (page_address(ctx->page)
 | |
| 					   + (extent_offset
 | |
| 					      * crypt_stat->extent_size)), 8);
 | |
| 		}
 | |
| 		rc = ecryptfs_encrypt_page_offset(
 | |
| 			crypt_stat, lower_page, lower_byte_offset, ctx->page,
 | |
| 			(extent_offset * crypt_stat->extent_size),
 | |
| 			crypt_stat->extent_size, extent_iv);
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
 | |
| 				"rc = [%d]\n",
 | |
| 				(base_extent + extent_offset), rc);
 | |
| 		if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
 | |
| 					"encryption:\n");
 | |
| 			ecryptfs_dump_hex((char *)(page_address(lower_page)
 | |
| 						   + lower_byte_offset), 8);
 | |
| 		}
 | |
| 		page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
 | |
| 		extent_offset++;
 | |
| 	}
 | |
| 	BUG_ON(orig_byte_offset != 0);
 | |
| 	rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
 | |
| 				     (lower_byte_offset
 | |
| 				      + crypt_stat->extent_size));
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Error attempting to write out "
 | |
| 				"page; rc = [%d]\n", rc);
 | |
| 				goto out;
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_decrypt_page
 | |
|  * @file: The ecryptfs file
 | |
|  * @page: The page in ecryptfs to decrypt
 | |
|  *
 | |
|  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 | |
|  * that eCryptfs pages may straddle the lower pages -- for instance,
 | |
|  * if the file was created on a machine with an 8K page size
 | |
|  * (resulting in an 8K header), and then the file is copied onto a
 | |
|  * host with a 32K page size, then when reading page 0 of the eCryptfs
 | |
|  * file, 24K of page 0 of the lower file will be read and decrypted,
 | |
|  * and then 8K of page 1 of the lower file will be read and decrypted.
 | |
|  *
 | |
|  * Returns zero on success; negative on error
 | |
|  */
 | |
| int ecryptfs_decrypt_page(struct file *file, struct page *page)
 | |
| {
 | |
| 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 | |
| 	unsigned long base_extent;
 | |
| 	unsigned long extent_offset = 0;
 | |
| 	unsigned long lower_page_idx = 0;
 | |
| 	unsigned long prior_lower_page_idx = 0;
 | |
| 	struct page *lower_page;
 | |
| 	char *lower_page_virt = NULL;
 | |
| 	struct inode *lower_inode;
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat;
 | |
| 	int rc = 0;
 | |
| 	int byte_offset;
 | |
| 	int num_extents_per_page;
 | |
| 	int page_state;
 | |
| 
 | |
| 	crypt_stat = &(ecryptfs_inode_to_private(
 | |
| 			       page->mapping->host)->crypt_stat);
 | |
| 	lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
 | |
| 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
 | |
| 		rc = ecryptfs_do_readpage(file, page, page->index);
 | |
| 		if (rc)
 | |
| 			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
 | |
| 					"page at index [0x%.16x]\n",
 | |
| 					page->index);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
 | |
| 	base_extent = (page->index * num_extents_per_page);
 | |
| 	lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
 | |
| 					   GFP_KERNEL);
 | |
| 	if (!lower_page_virt) {
 | |
| 		rc = -ENOMEM;
 | |
| 		ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
 | |
| 				"lower page(s)\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	lower_page = virt_to_page(lower_page_virt);
 | |
| 	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
 | |
| 	while (extent_offset < num_extents_per_page) {
 | |
| 		ecryptfs_extent_to_lwr_pg_idx_and_offset(
 | |
| 			&lower_page_idx, &byte_offset, crypt_stat,
 | |
| 			(base_extent + extent_offset));
 | |
| 		if (prior_lower_page_idx != lower_page_idx
 | |
| 		    || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
 | |
| 			rc = ecryptfs_do_readpage(file, lower_page,
 | |
| 						  lower_page_idx);
 | |
| 			if (rc) {
 | |
| 				ecryptfs_printk(KERN_ERR, "Error reading "
 | |
| 						"lower encrypted page; rc = "
 | |
| 						"[%d]\n", rc);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			prior_lower_page_idx = lower_page_idx;
 | |
| 			page_state = ECRYPTFS_PAGE_STATE_READ;
 | |
| 		}
 | |
| 		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 | |
| 					(base_extent + extent_offset));
 | |
| 		if (rc) {
 | |
| 			ecryptfs_printk(KERN_ERR, "Error attempting to "
 | |
| 					"derive IV for extent [0x%.16x]; rc = "
 | |
| 					"[%d]\n",
 | |
| 					(base_extent + extent_offset), rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 			ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
 | |
| 					"with iv:\n");
 | |
| 			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
 | |
| 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
 | |
| 					"decryption:\n");
 | |
| 			ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
 | |
| 		}
 | |
| 		rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
 | |
| 						  (extent_offset
 | |
| 						   * crypt_stat->extent_size),
 | |
| 						  lower_page, byte_offset,
 | |
| 						  crypt_stat->extent_size,
 | |
| 						  extent_iv);
 | |
| 		if (rc != crypt_stat->extent_size) {
 | |
| 			ecryptfs_printk(KERN_ERR, "Error attempting to "
 | |
| 					"decrypt extent [0x%.16x]\n",
 | |
| 					(base_extent + extent_offset));
 | |
| 			goto out;
 | |
| 		}
 | |
| 		rc = 0;
 | |
| 		if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
 | |
| 					"decryption:\n");
 | |
| 			ecryptfs_dump_hex((char *)(page_address(page)
 | |
| 						   + byte_offset), 8);
 | |
| 		}
 | |
| 		extent_offset++;
 | |
| 	}
 | |
| out:
 | |
| 	if (lower_page_virt)
 | |
| 		kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * decrypt_scatterlist
 | |
|  *
 | |
|  * Returns the number of bytes decrypted; negative value on error
 | |
|  */
 | |
| static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			       struct scatterlist *dest_sg,
 | |
| 			       struct scatterlist *src_sg, int size,
 | |
| 			       unsigned char *iv)
 | |
| {
 | |
| 	struct blkcipher_desc desc = {
 | |
| 		.tfm = crypt_stat->tfm,
 | |
| 		.info = iv,
 | |
| 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 | |
| 	};
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	/* Consider doing this once, when the file is opened */
 | |
| 	mutex_lock(&crypt_stat->cs_tfm_mutex);
 | |
| 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 | |
| 				     crypt_stat->key_size);
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
 | |
| 				rc);
 | |
| 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
 | |
| 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
 | |
| 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
 | |
| 				rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = size;
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_encrypt_page_offset
 | |
|  *
 | |
|  * Returns the number of bytes encrypted
 | |
|  */
 | |
| static int
 | |
| ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			     struct page *dst_page, int dst_offset,
 | |
| 			     struct page *src_page, int src_offset, int size,
 | |
| 			     unsigned char *iv)
 | |
| {
 | |
| 	struct scatterlist src_sg, dst_sg;
 | |
| 
 | |
| 	src_sg.page = src_page;
 | |
| 	src_sg.offset = src_offset;
 | |
| 	src_sg.length = size;
 | |
| 	dst_sg.page = dst_page;
 | |
| 	dst_sg.offset = dst_offset;
 | |
| 	dst_sg.length = size;
 | |
| 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_decrypt_page_offset
 | |
|  *
 | |
|  * Returns the number of bytes decrypted
 | |
|  */
 | |
| static int
 | |
| ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			     struct page *dst_page, int dst_offset,
 | |
| 			     struct page *src_page, int src_offset, int size,
 | |
| 			     unsigned char *iv)
 | |
| {
 | |
| 	struct scatterlist src_sg, dst_sg;
 | |
| 
 | |
| 	src_sg.page = src_page;
 | |
| 	src_sg.offset = src_offset;
 | |
| 	src_sg.length = size;
 | |
| 	dst_sg.page = dst_page;
 | |
| 	dst_sg.offset = dst_offset;
 | |
| 	dst_sg.length = size;
 | |
| 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
 | |
| }
 | |
| 
 | |
| #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_init_crypt_ctx
 | |
|  * @crypt_stat: Uninitilized crypt stats structure
 | |
|  *
 | |
|  * Initialize the crypto context.
 | |
|  *
 | |
|  * TODO: Performance: Keep a cache of initialized cipher contexts;
 | |
|  * only init if needed
 | |
|  */
 | |
| int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	char *full_alg_name;
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	if (!crypt_stat->cipher) {
 | |
| 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ecryptfs_printk(KERN_DEBUG,
 | |
| 			"Initializing cipher [%s]; strlen = [%d]; "
 | |
| 			"key_size_bits = [%d]\n",
 | |
| 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 | |
| 			crypt_stat->key_size << 3);
 | |
| 	if (crypt_stat->tfm) {
 | |
| 		rc = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	mutex_lock(&crypt_stat->cs_tfm_mutex);
 | |
| 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 | |
| 						    crypt_stat->cipher, "cbc");
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
 | |
| 						 CRYPTO_ALG_ASYNC);
 | |
| 	kfree(full_alg_name);
 | |
| 	if (IS_ERR(crypt_stat->tfm)) {
 | |
| 		rc = PTR_ERR(crypt_stat->tfm);
 | |
| 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 | |
| 				"Error initializing cipher [%s]\n",
 | |
| 				crypt_stat->cipher);
 | |
| 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 | |
| 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 | |
| 	rc = 0;
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	int extent_size_tmp;
 | |
| 
 | |
| 	crypt_stat->extent_mask = 0xFFFFFFFF;
 | |
| 	crypt_stat->extent_shift = 0;
 | |
| 	if (crypt_stat->extent_size == 0)
 | |
| 		return;
 | |
| 	extent_size_tmp = crypt_stat->extent_size;
 | |
| 	while ((extent_size_tmp & 0x01) == 0) {
 | |
| 		extent_size_tmp >>= 1;
 | |
| 		crypt_stat->extent_mask <<= 1;
 | |
| 		crypt_stat->extent_shift++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	/* Default values; may be overwritten as we are parsing the
 | |
| 	 * packets. */
 | |
| 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 | |
| 	set_extent_mask_and_shift(crypt_stat);
 | |
| 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 | |
| 	if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
 | |
| 		crypt_stat->header_extent_size =
 | |
| 			ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 | |
| 	} else
 | |
| 		crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
 | |
| 	crypt_stat->num_header_extents_at_front = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_compute_root_iv
 | |
|  * @crypt_stats
 | |
|  *
 | |
|  * On error, sets the root IV to all 0's.
 | |
|  */
 | |
| int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	char dst[MD5_DIGEST_SIZE];
 | |
| 
 | |
| 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 | |
| 	BUG_ON(crypt_stat->iv_bytes <= 0);
 | |
| 	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID)) {
 | |
| 		rc = -EINVAL;
 | |
| 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 | |
| 				"cannot generate root IV\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 | |
| 				    crypt_stat->key_size);
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 | |
| 				"MD5 while generating root IV\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 | |
| out:
 | |
| 	if (rc) {
 | |
| 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 | |
| 		ECRYPTFS_SET_FLAG(crypt_stat->flags,
 | |
| 				  ECRYPTFS_SECURITY_WARNING);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 | |
| 	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
 | |
| 	ecryptfs_compute_root_iv(crypt_stat);
 | |
| 	if (unlikely(ecryptfs_verbosity > 0)) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 | |
| 		ecryptfs_dump_hex(crypt_stat->key,
 | |
| 				  crypt_stat->key_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_set_default_crypt_stat_vals
 | |
|  * @crypt_stat
 | |
|  *
 | |
|  * Default values in the event that policy does not override them.
 | |
|  */
 | |
| static void ecryptfs_set_default_crypt_stat_vals(
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 | |
| {
 | |
| 	ecryptfs_set_default_sizes(crypt_stat);
 | |
| 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 | |
| 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 | |
| 	ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
 | |
| 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 | |
| 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_new_file_context
 | |
|  * @ecryptfs_dentry
 | |
|  *
 | |
|  * If the crypto context for the file has not yet been established,
 | |
|  * this is where we do that.  Establishing a new crypto context
 | |
|  * involves the following decisions:
 | |
|  *  - What cipher to use?
 | |
|  *  - What set of authentication tokens to use?
 | |
|  * Here we just worry about getting enough information into the
 | |
|  * authentication tokens so that we know that they are available.
 | |
|  * We associate the available authentication tokens with the new file
 | |
|  * via the set of signatures in the crypt_stat struct.  Later, when
 | |
|  * the headers are actually written out, we may again defer to
 | |
|  * userspace to perform the encryption of the session key; for the
 | |
|  * foreseeable future, this will be the case with public key packets.
 | |
|  *
 | |
|  * Returns zero on success; non-zero otherwise
 | |
|  */
 | |
| /* Associate an authentication token(s) with the file */
 | |
| int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat =
 | |
| 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
 | |
| 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 | |
| 	    &ecryptfs_superblock_to_private(
 | |
| 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
 | |
| 	int cipher_name_len;
 | |
| 
 | |
| 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 | |
| 	/* See if there are mount crypt options */
 | |
| 	if (mount_crypt_stat->global_auth_tok) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Initializing context for new "
 | |
| 				"file using mount_crypt_stat\n");
 | |
| 		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED);
 | |
| 		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
 | |
| 		memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++],
 | |
| 		       mount_crypt_stat->global_auth_tok_sig,
 | |
| 		       ECRYPTFS_SIG_SIZE_HEX);
 | |
| 		cipher_name_len =
 | |
| 		    strlen(mount_crypt_stat->global_default_cipher_name);
 | |
| 		memcpy(crypt_stat->cipher,
 | |
| 		       mount_crypt_stat->global_default_cipher_name,
 | |
| 		       cipher_name_len);
 | |
| 		crypt_stat->cipher[cipher_name_len] = '\0';
 | |
| 		crypt_stat->key_size =
 | |
| 			mount_crypt_stat->global_default_cipher_key_size;
 | |
| 		ecryptfs_generate_new_key(crypt_stat);
 | |
| 	} else
 | |
| 		/* We should not encounter this scenario since we
 | |
| 		 * should detect lack of global_auth_tok at mount time
 | |
| 		 * TODO: Applies to 0.1 release only; remove in future
 | |
| 		 * release */
 | |
| 		BUG();
 | |
| 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
 | |
| 	if (rc)
 | |
| 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 | |
| 				"context for cipher [%s]: rc = [%d]\n",
 | |
| 				crypt_stat->cipher, rc);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * contains_ecryptfs_marker - check for the ecryptfs marker
 | |
|  * @data: The data block in which to check
 | |
|  *
 | |
|  * Returns one if marker found; zero if not found
 | |
|  */
 | |
| int contains_ecryptfs_marker(char *data)
 | |
| {
 | |
| 	u32 m_1, m_2;
 | |
| 
 | |
| 	memcpy(&m_1, data, 4);
 | |
| 	m_1 = be32_to_cpu(m_1);
 | |
| 	memcpy(&m_2, (data + 4), 4);
 | |
| 	m_2 = be32_to_cpu(m_2);
 | |
| 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 | |
| 		return 1;
 | |
| 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 | |
| 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 | |
| 			MAGIC_ECRYPTFS_MARKER);
 | |
| 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 | |
| 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct ecryptfs_flag_map_elem {
 | |
| 	u32 file_flag;
 | |
| 	u32 local_flag;
 | |
| };
 | |
| 
 | |
| /* Add support for additional flags by adding elements here. */
 | |
| static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 | |
| 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
 | |
| 	{0x00000002, ECRYPTFS_ENCRYPTED}
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_process_flags
 | |
|  * @crypt_stat
 | |
|  * @page_virt: Source data to be parsed
 | |
|  * @bytes_read: Updated with the number of bytes read
 | |
|  *
 | |
|  * Returns zero on success; non-zero if the flag set is invalid
 | |
|  */
 | |
| static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				  char *page_virt, int *bytes_read)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	int i;
 | |
| 	u32 flags;
 | |
| 
 | |
| 	memcpy(&flags, page_virt, 4);
 | |
| 	flags = be32_to_cpu(flags);
 | |
| 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 | |
| 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
 | |
| 		if (flags & ecryptfs_flag_map[i].file_flag) {
 | |
| 			ECRYPTFS_SET_FLAG(crypt_stat->flags,
 | |
| 					  ecryptfs_flag_map[i].local_flag);
 | |
| 		} else
 | |
| 			ECRYPTFS_CLEAR_FLAG(crypt_stat->flags,
 | |
| 					    ecryptfs_flag_map[i].local_flag);
 | |
| 	/* Version is in top 8 bits of the 32-bit flag vector */
 | |
| 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
 | |
| 	(*bytes_read) = 4;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_ecryptfs_marker
 | |
|  * @page_virt: The pointer to in a page to begin writing the marker
 | |
|  * @written: Number of bytes written
 | |
|  *
 | |
|  * Marker = 0x3c81b7f5
 | |
|  */
 | |
| static void write_ecryptfs_marker(char *page_virt, size_t *written)
 | |
| {
 | |
| 	u32 m_1, m_2;
 | |
| 
 | |
| 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 | |
| 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 | |
| 	m_1 = cpu_to_be32(m_1);
 | |
| 	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 | |
| 	m_2 = cpu_to_be32(m_2);
 | |
| 	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
 | |
| 	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 | |
| 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 | |
| }
 | |
| 
 | |
| static void
 | |
| write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 		     size_t *written)
 | |
| {
 | |
| 	u32 flags = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 | |
| 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
 | |
| 		if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
 | |
| 					ecryptfs_flag_map[i].local_flag))
 | |
| 			flags |= ecryptfs_flag_map[i].file_flag;
 | |
| 	/* Version is in top 8 bits of the 32-bit flag vector */
 | |
| 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 | |
| 	flags = cpu_to_be32(flags);
 | |
| 	memcpy(page_virt, &flags, 4);
 | |
| 	(*written) = 4;
 | |
| }
 | |
| 
 | |
| struct ecryptfs_cipher_code_str_map_elem {
 | |
| 	char cipher_str[16];
 | |
| 	u16 cipher_code;
 | |
| };
 | |
| 
 | |
| /* Add support for additional ciphers by adding elements here. The
 | |
|  * cipher_code is whatever OpenPGP applicatoins use to identify the
 | |
|  * ciphers. List in order of probability. */
 | |
| static struct ecryptfs_cipher_code_str_map_elem
 | |
| ecryptfs_cipher_code_str_map[] = {
 | |
| 	{"aes",RFC2440_CIPHER_AES_128 },
 | |
| 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
 | |
| 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
 | |
| 	{"cast5", RFC2440_CIPHER_CAST_5},
 | |
| 	{"twofish", RFC2440_CIPHER_TWOFISH},
 | |
| 	{"cast6", RFC2440_CIPHER_CAST_6},
 | |
| 	{"aes", RFC2440_CIPHER_AES_192},
 | |
| 	{"aes", RFC2440_CIPHER_AES_256}
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_code_for_cipher_string
 | |
|  * @str: The string representing the cipher name
 | |
|  *
 | |
|  * Returns zero on no match, or the cipher code on match
 | |
|  */
 | |
| u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	int i;
 | |
| 	u16 code = 0;
 | |
| 	struct ecryptfs_cipher_code_str_map_elem *map =
 | |
| 		ecryptfs_cipher_code_str_map;
 | |
| 
 | |
| 	if (strcmp(crypt_stat->cipher, "aes") == 0) {
 | |
| 		switch (crypt_stat->key_size) {
 | |
| 		case 16:
 | |
| 			code = RFC2440_CIPHER_AES_128;
 | |
| 			break;
 | |
| 		case 24:
 | |
| 			code = RFC2440_CIPHER_AES_192;
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			code = RFC2440_CIPHER_AES_256;
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 | |
| 			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
 | |
| 				code = map[i].cipher_code;
 | |
| 				break;
 | |
| 			}
 | |
| 	}
 | |
| 	return code;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_cipher_code_to_string
 | |
|  * @str: Destination to write out the cipher name
 | |
|  * @cipher_code: The code to convert to cipher name string
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  */
 | |
| int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	str[0] = '\0';
 | |
| 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 | |
| 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
 | |
| 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
 | |
| 	if (str[0] == '\0') {
 | |
| 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
 | |
| 				"[%d]\n", cipher_code);
 | |
| 		rc = -EINVAL;
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_read_header_region
 | |
|  * @data
 | |
|  * @dentry
 | |
|  * @nd
 | |
|  *
 | |
|  * Returns zero on success; non-zero otherwise
 | |
|  */
 | |
| int ecryptfs_read_header_region(char *data, struct dentry *dentry,
 | |
| 				struct vfsmount *mnt)
 | |
| {
 | |
| 	struct file *lower_file;
 | |
| 	mm_segment_t oldfs;
 | |
| 	int rc;
 | |
| 
 | |
| 	if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt,
 | |
| 					   O_RDONLY))) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "Error opening lower_file to read header region\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	lower_file->f_pos = 0;
 | |
| 	oldfs = get_fs();
 | |
| 	set_fs(get_ds());
 | |
| 	/* For releases 0.1 and 0.2, all of the header information
 | |
| 	 * fits in the first data extent-sized region. */
 | |
| 	rc = lower_file->f_op->read(lower_file, (char __user *)data,
 | |
| 			      ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
 | |
| 	set_fs(oldfs);
 | |
| 	if ((rc = ecryptfs_close_lower_file(lower_file))) {
 | |
| 		printk(KERN_ERR "Error closing lower_file\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = 0;
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void
 | |
| write_header_metadata(char *virt, struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 		      size_t *written)
 | |
| {
 | |
| 	u32 header_extent_size;
 | |
| 	u16 num_header_extents_at_front;
 | |
| 
 | |
| 	header_extent_size = (u32)crypt_stat->header_extent_size;
 | |
| 	num_header_extents_at_front =
 | |
| 		(u16)crypt_stat->num_header_extents_at_front;
 | |
| 	header_extent_size = cpu_to_be32(header_extent_size);
 | |
| 	memcpy(virt, &header_extent_size, 4);
 | |
| 	virt += 4;
 | |
| 	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
 | |
| 	memcpy(virt, &num_header_extents_at_front, 2);
 | |
| 	(*written) = 6;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *ecryptfs_header_cache_0;
 | |
| struct kmem_cache *ecryptfs_header_cache_1;
 | |
| struct kmem_cache *ecryptfs_header_cache_2;
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_write_headers_virt
 | |
|  * @page_virt
 | |
|  * @crypt_stat
 | |
|  * @ecryptfs_dentry
 | |
|  *
 | |
|  * Format version: 1
 | |
|  *
 | |
|  *   Header Extent:
 | |
|  *     Octets 0-7:        Unencrypted file size (big-endian)
 | |
|  *     Octets 8-15:       eCryptfs special marker
 | |
|  *     Octets 16-19:      Flags
 | |
|  *      Octet 16:         File format version number (between 0 and 255)
 | |
|  *      Octets 17-18:     Reserved
 | |
|  *      Octet 19:         Bit 1 (lsb): Reserved
 | |
|  *                        Bit 2: Encrypted?
 | |
|  *                        Bits 3-8: Reserved
 | |
|  *     Octets 20-23:      Header extent size (big-endian)
 | |
|  *     Octets 24-25:      Number of header extents at front of file
 | |
|  *                        (big-endian)
 | |
|  *     Octet  26:         Begin RFC 2440 authentication token packet set
 | |
|  *   Data Extent 0:
 | |
|  *     Lower data (CBC encrypted)
 | |
|  *   Data Extent 1:
 | |
|  *     Lower data (CBC encrypted)
 | |
|  *   ...
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  */
 | |
| int ecryptfs_write_headers_virt(char *page_virt,
 | |
| 				struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				struct dentry *ecryptfs_dentry)
 | |
| {
 | |
| 	int rc;
 | |
| 	size_t written;
 | |
| 	size_t offset;
 | |
| 
 | |
| 	offset = ECRYPTFS_FILE_SIZE_BYTES;
 | |
| 	write_ecryptfs_marker((page_virt + offset), &written);
 | |
| 	offset += written;
 | |
| 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
 | |
| 	offset += written;
 | |
| 	write_header_metadata((page_virt + offset), crypt_stat, &written);
 | |
| 	offset += written;
 | |
| 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
 | |
| 					      ecryptfs_dentry, &written,
 | |
| 					      PAGE_CACHE_SIZE - offset);
 | |
| 	if (rc)
 | |
| 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
 | |
| 				"set; rc = [%d]\n", rc);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_write_headers
 | |
|  * @lower_file: The lower file struct, which was returned from dentry_open
 | |
|  *
 | |
|  * Write the file headers out.  This will likely involve a userspace
 | |
|  * callout, in which the session key is encrypted with one or more
 | |
|  * public keys and/or the passphrase necessary to do the encryption is
 | |
|  * retrieved via a prompt.  Exactly what happens at this point should
 | |
|  * be policy-dependent.
 | |
|  *
 | |
|  * Returns zero on success; non-zero on error
 | |
|  */
 | |
| int ecryptfs_write_headers(struct dentry *ecryptfs_dentry,
 | |
| 			   struct file *lower_file)
 | |
| {
 | |
| 	mm_segment_t oldfs;
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat;
 | |
| 	char *page_virt;
 | |
| 	int current_header_page;
 | |
| 	int header_pages;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	crypt_stat = &ecryptfs_inode_to_private(
 | |
| 		ecryptfs_dentry->d_inode)->crypt_stat;
 | |
| 	if (likely(ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
 | |
| 				       ECRYPTFS_ENCRYPTED))) {
 | |
| 		if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
 | |
| 					 ECRYPTFS_KEY_VALID)) {
 | |
| 			ecryptfs_printk(KERN_DEBUG, "Key is "
 | |
| 					"invalid; bailing out\n");
 | |
| 			rc = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		rc = -EINVAL;
 | |
| 		ecryptfs_printk(KERN_WARNING,
 | |
| 				"Called with crypt_stat->encrypted == 0\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* Released in this function */
 | |
| 	page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
 | |
| 	if (!page_virt) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Out of memory\n");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rc = ecryptfs_write_headers_virt(page_virt, crypt_stat,
 | |
| 					 ecryptfs_dentry);
 | |
| 	if (unlikely(rc)) {
 | |
| 		ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
 | |
| 		memset(page_virt, 0, PAGE_CACHE_SIZE);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	ecryptfs_printk(KERN_DEBUG,
 | |
| 			"Writing key packet set to underlying file\n");
 | |
| 	lower_file->f_pos = 0;
 | |
| 	oldfs = get_fs();
 | |
| 	set_fs(get_ds());
 | |
| 	ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
 | |
| 			"write() w/ header page; lower_file->f_pos = "
 | |
| 			"[0x%.16x]\n", lower_file->f_pos);
 | |
| 	lower_file->f_op->write(lower_file, (char __user *)page_virt,
 | |
| 				PAGE_CACHE_SIZE, &lower_file->f_pos);
 | |
| 	header_pages = ((crypt_stat->header_extent_size
 | |
| 			 * crypt_stat->num_header_extents_at_front)
 | |
| 			/ PAGE_CACHE_SIZE);
 | |
| 	memset(page_virt, 0, PAGE_CACHE_SIZE);
 | |
| 	current_header_page = 1;
 | |
| 	while (current_header_page < header_pages) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
 | |
| 				"write() w/ zero'd page; lower_file->f_pos = "
 | |
| 				"[0x%.16x]\n", lower_file->f_pos);
 | |
| 		lower_file->f_op->write(lower_file, (char __user *)page_virt,
 | |
| 					PAGE_CACHE_SIZE, &lower_file->f_pos);
 | |
| 		current_header_page++;
 | |
| 	}
 | |
| 	set_fs(oldfs);
 | |
| 	ecryptfs_printk(KERN_DEBUG,
 | |
| 			"Done writing key packet set to underlying file.\n");
 | |
| out_free:
 | |
| 	kmem_cache_free(ecryptfs_header_cache_0, page_virt);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				 char *virt, int *bytes_read)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	u32 header_extent_size;
 | |
| 	u16 num_header_extents_at_front;
 | |
| 
 | |
| 	memcpy(&header_extent_size, virt, 4);
 | |
| 	header_extent_size = be32_to_cpu(header_extent_size);
 | |
| 	virt += 4;
 | |
| 	memcpy(&num_header_extents_at_front, virt, 2);
 | |
| 	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
 | |
| 	crypt_stat->header_extent_size = (int)header_extent_size;
 | |
| 	crypt_stat->num_header_extents_at_front =
 | |
| 		(int)num_header_extents_at_front;
 | |
| 	(*bytes_read) = 6;
 | |
| 	if ((crypt_stat->header_extent_size
 | |
| 	     * crypt_stat->num_header_extents_at_front)
 | |
| 	    < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
 | |
| 		rc = -EINVAL;
 | |
| 		ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
 | |
| 				"[%d]\n", crypt_stat->header_extent_size);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_default_header_data
 | |
|  *
 | |
|  * For version 0 file format; this function is only for backwards
 | |
|  * compatibility for files created with the prior versions of
 | |
|  * eCryptfs.
 | |
|  */
 | |
| static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
 | |
| {
 | |
| 	crypt_stat->header_extent_size = 4096;
 | |
| 	crypt_stat->num_header_extents_at_front = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_read_headers_virt
 | |
|  *
 | |
|  * Read/parse the header data. The header format is detailed in the
 | |
|  * comment block for the ecryptfs_write_headers_virt() function.
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  */
 | |
| static int ecryptfs_read_headers_virt(char *page_virt,
 | |
| 				      struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 				      struct dentry *ecryptfs_dentry)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	int offset;
 | |
| 	int bytes_read;
 | |
| 
 | |
| 	ecryptfs_set_default_sizes(crypt_stat);
 | |
| 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
 | |
| 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
 | |
| 	offset = ECRYPTFS_FILE_SIZE_BYTES;
 | |
| 	rc = contains_ecryptfs_marker(page_virt + offset);
 | |
| 	if (rc == 0) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 | |
| 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
 | |
| 				    &bytes_read);
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
 | |
| 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
 | |
| 				"file version [%d] is supported by this "
 | |
| 				"version of eCryptfs\n",
 | |
| 				crypt_stat->file_version,
 | |
| 				ECRYPTFS_SUPPORTED_FILE_VERSION);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	offset += bytes_read;
 | |
| 	if (crypt_stat->file_version >= 1) {
 | |
| 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
 | |
| 					   &bytes_read);
 | |
| 		if (rc) {
 | |
| 			ecryptfs_printk(KERN_WARNING, "Error reading header "
 | |
| 					"metadata; rc = [%d]\n", rc);
 | |
| 		}
 | |
| 		offset += bytes_read;
 | |
| 	} else
 | |
| 		set_default_header_data(crypt_stat);
 | |
| 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
 | |
| 				       ecryptfs_dentry);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_read_headers
 | |
|  *
 | |
|  * Returns zero if valid headers found and parsed; non-zero otherwise
 | |
|  */
 | |
| int ecryptfs_read_headers(struct dentry *ecryptfs_dentry,
 | |
| 			  struct file *lower_file)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	char *page_virt = NULL;
 | |
| 	mm_segment_t oldfs;
 | |
| 	ssize_t bytes_read;
 | |
| 	struct ecryptfs_crypt_stat *crypt_stat =
 | |
| 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
 | |
| 
 | |
| 	/* Read the first page from the underlying file */
 | |
| 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
 | |
| 	if (!page_virt) {
 | |
| 		rc = -ENOMEM;
 | |
| 		ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	lower_file->f_pos = 0;
 | |
| 	oldfs = get_fs();
 | |
| 	set_fs(get_ds());
 | |
| 	bytes_read = lower_file->f_op->read(lower_file,
 | |
| 					    (char __user *)page_virt,
 | |
| 					    ECRYPTFS_DEFAULT_EXTENT_SIZE,
 | |
| 					    &lower_file->f_pos);
 | |
| 	set_fs(oldfs);
 | |
| 	if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
 | |
| 					ecryptfs_dentry);
 | |
| 	if (rc) {
 | |
| 		ecryptfs_printk(KERN_DEBUG, "Valid eCryptfs headers not "
 | |
| 				"found\n");
 | |
| 		rc = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	if (page_virt) {
 | |
| 		memset(page_virt, 0, PAGE_CACHE_SIZE);
 | |
| 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_encode_filename - converts a plaintext file name to cipher text
 | |
|  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 | |
|  * @name: The plaintext name
 | |
|  * @length: The length of the plaintext
 | |
|  * @encoded_name: The encypted name
 | |
|  *
 | |
|  * Encrypts and encodes a filename into something that constitutes a
 | |
|  * valid filename for a filesystem, with printable characters.
 | |
|  *
 | |
|  * We assume that we have a properly initialized crypto context,
 | |
|  * pointed to by crypt_stat->tfm.
 | |
|  *
 | |
|  * TODO: Implement filename decoding and decryption here, in place of
 | |
|  * memcpy. We are keeping the framework around for now to (1)
 | |
|  * facilitate testing of the components needed to implement filename
 | |
|  * encryption and (2) to provide a code base from which other
 | |
|  * developers in the community can easily implement this feature.
 | |
|  *
 | |
|  * Returns the length of encoded filename; negative if error
 | |
|  */
 | |
| int
 | |
| ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			 const char *name, int length, char **encoded_name)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
 | |
| 	if (!(*encoded_name)) {
 | |
| 		error = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* TODO: Filename encryption is a scheduled feature for a
 | |
| 	 * future version of eCryptfs. This function is here only for
 | |
| 	 * the purpose of providing a framework for other developers
 | |
| 	 * to easily implement filename encryption. Hint: Replace this
 | |
| 	 * memcpy() with a call to encrypt and encode the
 | |
| 	 * filename, the set the length accordingly. */
 | |
| 	memcpy((void *)(*encoded_name), (void *)name, length);
 | |
| 	(*encoded_name)[length] = '\0';
 | |
| 	error = length + 1;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_decode_filename - converts the cipher text name to plaintext
 | |
|  * @crypt_stat: The crypt_stat struct associated with the file
 | |
|  * @name: The filename in cipher text
 | |
|  * @length: The length of the cipher text name
 | |
|  * @decrypted_name: The plaintext name
 | |
|  *
 | |
|  * Decodes and decrypts the filename.
 | |
|  *
 | |
|  * We assume that we have a properly initialized crypto context,
 | |
|  * pointed to by crypt_stat->tfm.
 | |
|  *
 | |
|  * TODO: Implement filename decoding and decryption here, in place of
 | |
|  * memcpy. We are keeping the framework around for now to (1)
 | |
|  * facilitate testing of the components needed to implement filename
 | |
|  * encryption and (2) to provide a code base from which other
 | |
|  * developers in the community can easily implement this feature.
 | |
|  *
 | |
|  * Returns the length of decoded filename; negative if error
 | |
|  */
 | |
| int
 | |
| ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
 | |
| 			 const char *name, int length, char **decrypted_name)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
 | |
| 	if (!(*decrypted_name)) {
 | |
| 		error = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* TODO: Filename encryption is a scheduled feature for a
 | |
| 	 * future version of eCryptfs. This function is here only for
 | |
| 	 * the purpose of providing a framework for other developers
 | |
| 	 * to easily implement filename encryption. Hint: Replace this
 | |
| 	 * memcpy() with a call to decode and decrypt the
 | |
| 	 * filename, the set the length accordingly. */
 | |
| 	memcpy((void *)(*decrypted_name), (void *)name, length);
 | |
| 	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
 | |
| 						 * in printing out the
 | |
| 						 * string in debug
 | |
| 						 * messages */
 | |
| 	error = length;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ecryptfs_process_cipher - Perform cipher initialization.
 | |
|  * @key_tfm: Crypto context for key material, set by this function
 | |
|  * @cipher_name: Name of the cipher
 | |
|  * @key_size: Size of the key in bytes
 | |
|  *
 | |
|  * Returns zero on success. Any crypto_tfm structs allocated here
 | |
|  * should be released by other functions, such as on a superblock put
 | |
|  * event, regardless of whether this function succeeds for fails.
 | |
|  */
 | |
| int
 | |
| ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name,
 | |
| 			size_t *key_size)
 | |
| {
 | |
| 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
 | |
| 	char *full_alg_name;
 | |
| 	int rc;
 | |
| 
 | |
| 	*key_tfm = NULL;
 | |
| 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
 | |
| 		rc = -EINVAL;
 | |
| 		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
 | |
| 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
 | |
| 						    "ecb");
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
 | |
| 	kfree(full_alg_name);
 | |
| 	if (IS_ERR(*key_tfm)) {
 | |
| 		rc = PTR_ERR(*key_tfm);
 | |
| 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
 | |
| 		       "[%s]; rc = [%d]\n", cipher_name, rc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 | |
| 	if (*key_size == 0) {
 | |
| 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
 | |
| 
 | |
| 		*key_size = alg->max_keysize;
 | |
| 	}
 | |
| 	get_random_bytes(dummy_key, *key_size);
 | |
| 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
 | |
| 	if (rc) {
 | |
| 		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
 | |
| 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| out:
 | |
| 	return rc;
 | |
| }
 |