mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 16:38:31 +00:00 
			
		
		
		
	 c2b41276da
			
		
	
	
		c2b41276da
		
	
	
	
	
		
			
			* drm-ttm-pool: drm/ttm: using kmalloc/kfree requires including slab.h drm/ttm: include linux/seq_file.h for seq_printf drm/ttm: Add sysfs interface to control pool allocator. drm/ttm: Use set_pages_array_wc instead of set_memory_wc. arch/x86: Add array variants for setting memory to wc caching. drm/nouveau: Add ttm page pool debugfs file. drm/radeon/kms: Add ttm page pool debugfs file. drm/ttm: Add debugfs output entry to pool allocator. drm/ttm: add pool wc/uc page allocator V3
		
			
				
	
	
		
			1383 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1383 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2002 Andi Kleen, SuSE Labs.
 | |
|  * Thanks to Ben LaHaise for precious feedback.
 | |
|  */
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/gfp.h>
 | |
| 
 | |
| #include <asm/e820.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/pat.h>
 | |
| 
 | |
| /*
 | |
|  * The current flushing context - we pass it instead of 5 arguments:
 | |
|  */
 | |
| struct cpa_data {
 | |
| 	unsigned long	*vaddr;
 | |
| 	pgprot_t	mask_set;
 | |
| 	pgprot_t	mask_clr;
 | |
| 	int		numpages;
 | |
| 	int		flags;
 | |
| 	unsigned long	pfn;
 | |
| 	unsigned	force_split : 1;
 | |
| 	int		curpage;
 | |
| 	struct page	**pages;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
 | |
|  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
 | |
|  * entries change the page attribute in parallel to some other cpu
 | |
|  * splitting a large page entry along with changing the attribute.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(cpa_lock);
 | |
| 
 | |
| #define CPA_FLUSHTLB 1
 | |
| #define CPA_ARRAY 2
 | |
| #define CPA_PAGES_ARRAY 4
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static unsigned long direct_pages_count[PG_LEVEL_NUM];
 | |
| 
 | |
| void update_page_count(int level, unsigned long pages)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Protect against CPA */
 | |
| 	spin_lock_irqsave(&pgd_lock, flags);
 | |
| 	direct_pages_count[level] += pages;
 | |
| 	spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| }
 | |
| 
 | |
| static void split_page_count(int level)
 | |
| {
 | |
| 	direct_pages_count[level]--;
 | |
| 	direct_pages_count[level - 1] += PTRS_PER_PTE;
 | |
| }
 | |
| 
 | |
| void arch_report_meminfo(struct seq_file *m)
 | |
| {
 | |
| 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_4K] << 2);
 | |
| #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 | |
| 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_2M] << 11);
 | |
| #else
 | |
| 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_2M] << 12);
 | |
| #endif
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (direct_gbpages)
 | |
| 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_1G] << 20);
 | |
| #endif
 | |
| }
 | |
| #else
 | |
| static inline void split_page_count(int level) { }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| static inline unsigned long highmap_start_pfn(void)
 | |
| {
 | |
| 	return __pa(_text) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned long highmap_end_pfn(void)
 | |
| {
 | |
| 	return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| # define debug_pagealloc 1
 | |
| #else
 | |
| # define debug_pagealloc 0
 | |
| #endif
 | |
| 
 | |
| static inline int
 | |
| within(unsigned long addr, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return addr >= start && addr < end;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flushing functions
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * clflush_cache_range - flush a cache range with clflush
 | |
|  * @addr:	virtual start address
 | |
|  * @size:	number of bytes to flush
 | |
|  *
 | |
|  * clflush is an unordered instruction which needs fencing with mfence
 | |
|  * to avoid ordering issues.
 | |
|  */
 | |
| void clflush_cache_range(void *vaddr, unsigned int size)
 | |
| {
 | |
| 	void *vend = vaddr + size - 1;
 | |
| 
 | |
| 	mb();
 | |
| 
 | |
| 	for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
 | |
| 		clflush(vaddr);
 | |
| 	/*
 | |
| 	 * Flush any possible final partial cacheline:
 | |
| 	 */
 | |
| 	clflush(vend);
 | |
| 
 | |
| 	mb();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(clflush_cache_range);
 | |
| 
 | |
| static void __cpa_flush_all(void *arg)
 | |
| {
 | |
| 	unsigned long cache = (unsigned long)arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush all to work around Errata in early athlons regarding
 | |
| 	 * large page flushing.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	if (cache && boot_cpu_data.x86 >= 4)
 | |
| 		wbinvd();
 | |
| }
 | |
| 
 | |
| static void cpa_flush_all(unsigned long cache)
 | |
| {
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 
 | |
| 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 | |
| }
 | |
| 
 | |
| static void __cpa_flush_range(void *arg)
 | |
| {
 | |
| 	/*
 | |
| 	 * We could optimize that further and do individual per page
 | |
| 	 * tlb invalidates for a low number of pages. Caveat: we must
 | |
| 	 * flush the high aliases on 64bit as well.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| }
 | |
| 
 | |
| static void cpa_flush_range(unsigned long start, int numpages, int cache)
 | |
| {
 | |
| 	unsigned int i, level;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 	WARN_ON(PAGE_ALIGN(start) != start);
 | |
| 
 | |
| 	on_each_cpu(__cpa_flush_range, NULL, 1);
 | |
| 
 | |
| 	if (!cache)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only need to flush on one CPU,
 | |
| 	 * clflush is a MESI-coherent instruction that
 | |
| 	 * will cause all other CPUs to flush the same
 | |
| 	 * cachelines:
 | |
| 	 */
 | |
| 	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
 | |
| 		pte_t *pte = lookup_address(addr, &level);
 | |
| 
 | |
| 		/*
 | |
| 		 * Only flush present addresses:
 | |
| 		 */
 | |
| 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 | |
| 			clflush_cache_range((void *) addr, PAGE_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cpa_flush_array(unsigned long *start, int numpages, int cache,
 | |
| 			    int in_flags, struct page **pages)
 | |
| {
 | |
| 	unsigned int i, level;
 | |
| 	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
 | |
| 
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 
 | |
| 	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
 | |
| 
 | |
| 	if (!cache || do_wbinvd)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only need to flush on one CPU,
 | |
| 	 * clflush is a MESI-coherent instruction that
 | |
| 	 * will cause all other CPUs to flush the same
 | |
| 	 * cachelines:
 | |
| 	 */
 | |
| 	for (i = 0; i < numpages; i++) {
 | |
| 		unsigned long addr;
 | |
| 		pte_t *pte;
 | |
| 
 | |
| 		if (in_flags & CPA_PAGES_ARRAY)
 | |
| 			addr = (unsigned long)page_address(pages[i]);
 | |
| 		else
 | |
| 			addr = start[i];
 | |
| 
 | |
| 		pte = lookup_address(addr, &level);
 | |
| 
 | |
| 		/*
 | |
| 		 * Only flush present addresses:
 | |
| 		 */
 | |
| 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 | |
| 			clflush_cache_range((void *)addr, PAGE_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Certain areas of memory on x86 require very specific protection flags,
 | |
|  * for example the BIOS area or kernel text. Callers don't always get this
 | |
|  * right (again, ioremap() on BIOS memory is not uncommon) so this function
 | |
|  * checks and fixes these known static required protection bits.
 | |
|  */
 | |
| static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
 | |
| 				   unsigned long pfn)
 | |
| {
 | |
| 	pgprot_t forbidden = __pgprot(0);
 | |
| 
 | |
| 	/*
 | |
| 	 * The BIOS area between 640k and 1Mb needs to be executable for
 | |
| 	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
 | |
| 	 */
 | |
| 	if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
 | |
| 		pgprot_val(forbidden) |= _PAGE_NX;
 | |
| 
 | |
| 	/*
 | |
| 	 * The kernel text needs to be executable for obvious reasons
 | |
| 	 * Does not cover __inittext since that is gone later on. On
 | |
| 	 * 64bit we do not enforce !NX on the low mapping
 | |
| 	 */
 | |
| 	if (within(address, (unsigned long)_text, (unsigned long)_etext))
 | |
| 		pgprot_val(forbidden) |= _PAGE_NX;
 | |
| 
 | |
| 	/*
 | |
| 	 * The .rodata section needs to be read-only. Using the pfn
 | |
| 	 * catches all aliases.
 | |
| 	 */
 | |
| 	if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
 | |
| 		   __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
 | |
| 		pgprot_val(forbidden) |= _PAGE_RW;
 | |
| 
 | |
| #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
 | |
| 	/*
 | |
| 	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 | |
| 	 * kernel text mappings for the large page aligned text, rodata sections
 | |
| 	 * will be always read-only. For the kernel identity mappings covering
 | |
| 	 * the holes caused by this alignment can be anything that user asks.
 | |
| 	 *
 | |
| 	 * This will preserve the large page mappings for kernel text/data
 | |
| 	 * at no extra cost.
 | |
| 	 */
 | |
| 	if (kernel_set_to_readonly &&
 | |
| 	    within(address, (unsigned long)_text,
 | |
| 		   (unsigned long)__end_rodata_hpage_align)) {
 | |
| 		unsigned int level;
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't enforce the !RW mapping for the kernel text mapping,
 | |
| 		 * if the current mapping is already using small page mapping.
 | |
| 		 * No need to work hard to preserve large page mappings in this
 | |
| 		 * case.
 | |
| 		 *
 | |
| 		 * This also fixes the Linux Xen paravirt guest boot failure
 | |
| 		 * (because of unexpected read-only mappings for kernel identity
 | |
| 		 * mappings). In this paravirt guest case, the kernel text
 | |
| 		 * mapping and the kernel identity mapping share the same
 | |
| 		 * page-table pages. Thus we can't really use different
 | |
| 		 * protections for the kernel text and identity mappings. Also,
 | |
| 		 * these shared mappings are made of small page mappings.
 | |
| 		 * Thus this don't enforce !RW mapping for small page kernel
 | |
| 		 * text mapping logic will help Linux Xen parvirt guest boot
 | |
| 		 * aswell.
 | |
| 		 */
 | |
| 		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
 | |
| 			pgprot_val(forbidden) |= _PAGE_RW;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
 | |
| 
 | |
| 	return prot;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup the page table entry for a virtual address. Return a pointer
 | |
|  * to the entry and the level of the mapping.
 | |
|  *
 | |
|  * Note: We return pud and pmd either when the entry is marked large
 | |
|  * or when the present bit is not set. Otherwise we would return a
 | |
|  * pointer to a nonexisting mapping.
 | |
|  */
 | |
| pte_t *lookup_address(unsigned long address, unsigned int *level)
 | |
| {
 | |
| 	pgd_t *pgd = pgd_offset_k(address);
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	*level = PG_LEVEL_NONE;
 | |
| 
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	if (pud_none(*pud))
 | |
| 		return NULL;
 | |
| 
 | |
| 	*level = PG_LEVEL_1G;
 | |
| 	if (pud_large(*pud) || !pud_present(*pud))
 | |
| 		return (pte_t *)pud;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	*level = PG_LEVEL_2M;
 | |
| 	if (pmd_large(*pmd) || !pmd_present(*pmd))
 | |
| 		return (pte_t *)pmd;
 | |
| 
 | |
| 	*level = PG_LEVEL_4K;
 | |
| 
 | |
| 	return pte_offset_kernel(pmd, address);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lookup_address);
 | |
| 
 | |
| /*
 | |
|  * Set the new pmd in all the pgds we know about:
 | |
|  */
 | |
| static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 | |
| {
 | |
| 	/* change init_mm */
 | |
| 	set_pte_atomic(kpte, pte);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (!SHARED_KERNEL_PMD) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		list_for_each_entry(page, &pgd_list, lru) {
 | |
| 			pgd_t *pgd;
 | |
| 			pud_t *pud;
 | |
| 			pmd_t *pmd;
 | |
| 
 | |
| 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
 | |
| 			pud = pud_offset(pgd, address);
 | |
| 			pmd = pmd_offset(pud, address);
 | |
| 			set_pte_atomic((pte_t *)pmd, pte);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int
 | |
| try_preserve_large_page(pte_t *kpte, unsigned long address,
 | |
| 			struct cpa_data *cpa)
 | |
| {
 | |
| 	unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
 | |
| 	pte_t new_pte, old_pte, *tmp;
 | |
| 	pgprot_t old_prot, new_prot;
 | |
| 	int i, do_split = 1;
 | |
| 	unsigned int level;
 | |
| 
 | |
| 	if (cpa->force_split)
 | |
| 		return 1;
 | |
| 
 | |
| 	spin_lock_irqsave(&pgd_lock, flags);
 | |
| 	/*
 | |
| 	 * Check for races, another CPU might have split this page
 | |
| 	 * up already:
 | |
| 	 */
 | |
| 	tmp = lookup_address(address, &level);
 | |
| 	if (tmp != kpte)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case PG_LEVEL_2M:
 | |
| 		psize = PMD_PAGE_SIZE;
 | |
| 		pmask = PMD_PAGE_MASK;
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case PG_LEVEL_1G:
 | |
| 		psize = PUD_PAGE_SIZE;
 | |
| 		pmask = PUD_PAGE_MASK;
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		do_split = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the number of pages, which fit into this large
 | |
| 	 * page starting at address:
 | |
| 	 */
 | |
| 	nextpage_addr = (address + psize) & pmask;
 | |
| 	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
 | |
| 	if (numpages < cpa->numpages)
 | |
| 		cpa->numpages = numpages;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are safe now. Check whether the new pgprot is the same:
 | |
| 	 */
 | |
| 	old_pte = *kpte;
 | |
| 	old_prot = new_prot = pte_pgprot(old_pte);
 | |
| 
 | |
| 	pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 | |
| 	pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 | |
| 
 | |
| 	/*
 | |
| 	 * old_pte points to the large page base address. So we need
 | |
| 	 * to add the offset of the virtual address:
 | |
| 	 */
 | |
| 	pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
 | |
| 	cpa->pfn = pfn;
 | |
| 
 | |
| 	new_prot = static_protections(new_prot, address, pfn);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to check the full range, whether
 | |
| 	 * static_protection() requires a different pgprot for one of
 | |
| 	 * the pages in the range we try to preserve:
 | |
| 	 */
 | |
| 	addr = address + PAGE_SIZE;
 | |
| 	pfn++;
 | |
| 	for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
 | |
| 		pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
 | |
| 
 | |
| 		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are no changes, return. maxpages has been updated
 | |
| 	 * above:
 | |
| 	 */
 | |
| 	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
 | |
| 		do_split = 0;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to change the attributes. Check, whether we can
 | |
| 	 * change the large page in one go. We request a split, when
 | |
| 	 * the address is not aligned and the number of pages is
 | |
| 	 * smaller than the number of pages in the large page. Note
 | |
| 	 * that we limited the number of possible pages already to
 | |
| 	 * the number of pages in the large page.
 | |
| 	 */
 | |
| 	if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
 | |
| 		/*
 | |
| 		 * The address is aligned and the number of pages
 | |
| 		 * covers the full page.
 | |
| 		 */
 | |
| 		new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
 | |
| 		__set_pmd_pte(kpte, address, new_pte);
 | |
| 		cpa->flags |= CPA_FLUSHTLB;
 | |
| 		do_split = 0;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| 
 | |
| 	return do_split;
 | |
| }
 | |
| 
 | |
| static int split_large_page(pte_t *kpte, unsigned long address)
 | |
| {
 | |
| 	unsigned long flags, pfn, pfninc = 1;
 | |
| 	unsigned int i, level;
 | |
| 	pte_t *pbase, *tmp;
 | |
| 	pgprot_t ref_prot;
 | |
| 	struct page *base;
 | |
| 
 | |
| 	if (!debug_pagealloc)
 | |
| 		spin_unlock(&cpa_lock);
 | |
| 	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
 | |
| 	if (!debug_pagealloc)
 | |
| 		spin_lock(&cpa_lock);
 | |
| 	if (!base)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_irqsave(&pgd_lock, flags);
 | |
| 	/*
 | |
| 	 * Check for races, another CPU might have split this page
 | |
| 	 * up for us already:
 | |
| 	 */
 | |
| 	tmp = lookup_address(address, &level);
 | |
| 	if (tmp != kpte)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	pbase = (pte_t *)page_address(base);
 | |
| 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 | |
| 	ref_prot = pte_pgprot(pte_clrhuge(*kpte));
 | |
| 	/*
 | |
| 	 * If we ever want to utilize the PAT bit, we need to
 | |
| 	 * update this function to make sure it's converted from
 | |
| 	 * bit 12 to bit 7 when we cross from the 2MB level to
 | |
| 	 * the 4K level:
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (level == PG_LEVEL_1G) {
 | |
| 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 | |
| 		pgprot_val(ref_prot) |= _PAGE_PSE;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target pfn from the original entry:
 | |
| 	 */
 | |
| 	pfn = pte_pfn(*kpte);
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
 | |
| 		set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
 | |
| 
 | |
| 	if (address >= (unsigned long)__va(0) &&
 | |
| 		address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
 | |
| 		split_page_count(level);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (address >= (unsigned long)__va(1UL<<32) &&
 | |
| 		address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
 | |
| 		split_page_count(level);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the new, split up pagetable.
 | |
| 	 *
 | |
| 	 * We use the standard kernel pagetable protections for the new
 | |
| 	 * pagetable protections, the actual ptes set above control the
 | |
| 	 * primary protection behavior:
 | |
| 	 */
 | |
| 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
 | |
| 
 | |
| 	/*
 | |
| 	 * Intel Atom errata AAH41 workaround.
 | |
| 	 *
 | |
| 	 * The real fix should be in hw or in a microcode update, but
 | |
| 	 * we also probabilistically try to reduce the window of having
 | |
| 	 * a large TLB mixed with 4K TLBs while instruction fetches are
 | |
| 	 * going on.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	base = NULL;
 | |
| 
 | |
| out_unlock:
 | |
| 	/*
 | |
| 	 * If we dropped out via the lookup_address check under
 | |
| 	 * pgd_lock then stick the page back into the pool:
 | |
| 	 */
 | |
| 	if (base)
 | |
| 		__free_page(base);
 | |
| 	spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
 | |
| 			       int primary)
 | |
| {
 | |
| 	/*
 | |
| 	 * Ignore all non primary paths.
 | |
| 	 */
 | |
| 	if (!primary)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
 | |
| 	 * to have holes.
 | |
| 	 * Also set numpages to '1' indicating that we processed cpa req for
 | |
| 	 * one virtual address page and its pfn. TBD: numpages can be set based
 | |
| 	 * on the initial value and the level returned by lookup_address().
 | |
| 	 */
 | |
| 	if (within(vaddr, PAGE_OFFSET,
 | |
| 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
 | |
| 		cpa->numpages = 1;
 | |
| 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
 | |
| 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
 | |
| 			*cpa->vaddr);
 | |
| 
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __change_page_attr(struct cpa_data *cpa, int primary)
 | |
| {
 | |
| 	unsigned long address;
 | |
| 	int do_split, err;
 | |
| 	unsigned int level;
 | |
| 	pte_t *kpte, old_pte;
 | |
| 
 | |
| 	if (cpa->flags & CPA_PAGES_ARRAY) {
 | |
| 		struct page *page = cpa->pages[cpa->curpage];
 | |
| 		if (unlikely(PageHighMem(page)))
 | |
| 			return 0;
 | |
| 		address = (unsigned long)page_address(page);
 | |
| 	} else if (cpa->flags & CPA_ARRAY)
 | |
| 		address = cpa->vaddr[cpa->curpage];
 | |
| 	else
 | |
| 		address = *cpa->vaddr;
 | |
| repeat:
 | |
| 	kpte = lookup_address(address, &level);
 | |
| 	if (!kpte)
 | |
| 		return __cpa_process_fault(cpa, address, primary);
 | |
| 
 | |
| 	old_pte = *kpte;
 | |
| 	if (!pte_val(old_pte))
 | |
| 		return __cpa_process_fault(cpa, address, primary);
 | |
| 
 | |
| 	if (level == PG_LEVEL_4K) {
 | |
| 		pte_t new_pte;
 | |
| 		pgprot_t new_prot = pte_pgprot(old_pte);
 | |
| 		unsigned long pfn = pte_pfn(old_pte);
 | |
| 
 | |
| 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 | |
| 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 | |
| 
 | |
| 		new_prot = static_protections(new_prot, address, pfn);
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to keep the pfn from the existing PTE,
 | |
| 		 * after all we're only going to change it's attributes
 | |
| 		 * not the memory it points to
 | |
| 		 */
 | |
| 		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
 | |
| 		cpa->pfn = pfn;
 | |
| 		/*
 | |
| 		 * Do we really change anything ?
 | |
| 		 */
 | |
| 		if (pte_val(old_pte) != pte_val(new_pte)) {
 | |
| 			set_pte_atomic(kpte, new_pte);
 | |
| 			cpa->flags |= CPA_FLUSHTLB;
 | |
| 		}
 | |
| 		cpa->numpages = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check, whether we can keep the large page intact
 | |
| 	 * and just change the pte:
 | |
| 	 */
 | |
| 	do_split = try_preserve_large_page(kpte, address, cpa);
 | |
| 	/*
 | |
| 	 * When the range fits into the existing large page,
 | |
| 	 * return. cp->numpages and cpa->tlbflush have been updated in
 | |
| 	 * try_large_page:
 | |
| 	 */
 | |
| 	if (do_split <= 0)
 | |
| 		return do_split;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to split the large page:
 | |
| 	 */
 | |
| 	err = split_large_page(kpte, address);
 | |
| 	if (!err) {
 | |
| 		/*
 | |
| 	 	 * Do a global flush tlb after splitting the large page
 | |
| 	 	 * and before we do the actual change page attribute in the PTE.
 | |
| 	 	 *
 | |
| 	 	 * With out this, we violate the TLB application note, that says
 | |
| 	 	 * "The TLBs may contain both ordinary and large-page
 | |
| 		 *  translations for a 4-KByte range of linear addresses. This
 | |
| 		 *  may occur if software modifies the paging structures so that
 | |
| 		 *  the page size used for the address range changes. If the two
 | |
| 		 *  translations differ with respect to page frame or attributes
 | |
| 		 *  (e.g., permissions), processor behavior is undefined and may
 | |
| 		 *  be implementation-specific."
 | |
| 	 	 *
 | |
| 	 	 * We do this global tlb flush inside the cpa_lock, so that we
 | |
| 		 * don't allow any other cpu, with stale tlb entries change the
 | |
| 		 * page attribute in parallel, that also falls into the
 | |
| 		 * just split large page entry.
 | |
| 	 	 */
 | |
| 		flush_tlb_all();
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
 | |
| 
 | |
| static int cpa_process_alias(struct cpa_data *cpa)
 | |
| {
 | |
| 	struct cpa_data alias_cpa;
 | |
| 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
 | |
| 	unsigned long vaddr;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (cpa->pfn >= max_pfn_mapped)
 | |
| 		return 0;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
 | |
| 		return 0;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * No need to redo, when the primary call touched the direct
 | |
| 	 * mapping already:
 | |
| 	 */
 | |
| 	if (cpa->flags & CPA_PAGES_ARRAY) {
 | |
| 		struct page *page = cpa->pages[cpa->curpage];
 | |
| 		if (unlikely(PageHighMem(page)))
 | |
| 			return 0;
 | |
| 		vaddr = (unsigned long)page_address(page);
 | |
| 	} else if (cpa->flags & CPA_ARRAY)
 | |
| 		vaddr = cpa->vaddr[cpa->curpage];
 | |
| 	else
 | |
| 		vaddr = *cpa->vaddr;
 | |
| 
 | |
| 	if (!(within(vaddr, PAGE_OFFSET,
 | |
| 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
 | |
| 
 | |
| 		alias_cpa = *cpa;
 | |
| 		alias_cpa.vaddr = &laddr;
 | |
| 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
 | |
| 
 | |
| 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/*
 | |
| 	 * If the primary call didn't touch the high mapping already
 | |
| 	 * and the physical address is inside the kernel map, we need
 | |
| 	 * to touch the high mapped kernel as well:
 | |
| 	 */
 | |
| 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
 | |
| 	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
 | |
| 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
 | |
| 					       __START_KERNEL_map - phys_base;
 | |
| 		alias_cpa = *cpa;
 | |
| 		alias_cpa.vaddr = &temp_cpa_vaddr;
 | |
| 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
 | |
| 
 | |
| 		/*
 | |
| 		 * The high mapping range is imprecise, so ignore the
 | |
| 		 * return value.
 | |
| 		 */
 | |
| 		__change_page_attr_set_clr(&alias_cpa, 0);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 | |
| {
 | |
| 	int ret, numpages = cpa->numpages;
 | |
| 
 | |
| 	while (numpages) {
 | |
| 		/*
 | |
| 		 * Store the remaining nr of pages for the large page
 | |
| 		 * preservation check.
 | |
| 		 */
 | |
| 		cpa->numpages = numpages;
 | |
| 		/* for array changes, we can't use large page */
 | |
| 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
 | |
| 			cpa->numpages = 1;
 | |
| 
 | |
| 		if (!debug_pagealloc)
 | |
| 			spin_lock(&cpa_lock);
 | |
| 		ret = __change_page_attr(cpa, checkalias);
 | |
| 		if (!debug_pagealloc)
 | |
| 			spin_unlock(&cpa_lock);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (checkalias) {
 | |
| 			ret = cpa_process_alias(cpa);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust the number of pages with the result of the
 | |
| 		 * CPA operation. Either a large page has been
 | |
| 		 * preserved or a single page update happened.
 | |
| 		 */
 | |
| 		BUG_ON(cpa->numpages > numpages);
 | |
| 		numpages -= cpa->numpages;
 | |
| 		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
 | |
| 			cpa->curpage++;
 | |
| 		else
 | |
| 			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
 | |
| 
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int cache_attr(pgprot_t attr)
 | |
| {
 | |
| 	return pgprot_val(attr) &
 | |
| 		(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
 | |
| }
 | |
| 
 | |
| static int change_page_attr_set_clr(unsigned long *addr, int numpages,
 | |
| 				    pgprot_t mask_set, pgprot_t mask_clr,
 | |
| 				    int force_split, int in_flag,
 | |
| 				    struct page **pages)
 | |
| {
 | |
| 	struct cpa_data cpa;
 | |
| 	int ret, cache, checkalias;
 | |
| 	unsigned long baddr = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check, if we are requested to change a not supported
 | |
| 	 * feature:
 | |
| 	 */
 | |
| 	mask_set = canon_pgprot(mask_set);
 | |
| 	mask_clr = canon_pgprot(mask_clr);
 | |
| 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Ensure we are PAGE_SIZE aligned */
 | |
| 	if (in_flag & CPA_ARRAY) {
 | |
| 		int i;
 | |
| 		for (i = 0; i < numpages; i++) {
 | |
| 			if (addr[i] & ~PAGE_MASK) {
 | |
| 				addr[i] &= PAGE_MASK;
 | |
| 				WARN_ON_ONCE(1);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
 | |
| 		/*
 | |
| 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
 | |
| 		 * No need to cehck in that case
 | |
| 		 */
 | |
| 		if (*addr & ~PAGE_MASK) {
 | |
| 			*addr &= PAGE_MASK;
 | |
| 			/*
 | |
| 			 * People should not be passing in unaligned addresses:
 | |
| 			 */
 | |
| 			WARN_ON_ONCE(1);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Save address for cache flush. *addr is modified in the call
 | |
| 		 * to __change_page_attr_set_clr() below.
 | |
| 		 */
 | |
| 		baddr = *addr;
 | |
| 	}
 | |
| 
 | |
| 	/* Must avoid aliasing mappings in the highmem code */
 | |
| 	kmap_flush_unused();
 | |
| 
 | |
| 	vm_unmap_aliases();
 | |
| 
 | |
| 	cpa.vaddr = addr;
 | |
| 	cpa.pages = pages;
 | |
| 	cpa.numpages = numpages;
 | |
| 	cpa.mask_set = mask_set;
 | |
| 	cpa.mask_clr = mask_clr;
 | |
| 	cpa.flags = 0;
 | |
| 	cpa.curpage = 0;
 | |
| 	cpa.force_split = force_split;
 | |
| 
 | |
| 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
 | |
| 		cpa.flags |= in_flag;
 | |
| 
 | |
| 	/* No alias checking for _NX bit modifications */
 | |
| 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
 | |
| 
 | |
| 	ret = __change_page_attr_set_clr(&cpa, checkalias);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we really changed something:
 | |
| 	 */
 | |
| 	if (!(cpa.flags & CPA_FLUSHTLB))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to flush, when we did not set any of the caching
 | |
| 	 * attributes:
 | |
| 	 */
 | |
| 	cache = cache_attr(mask_set);
 | |
| 
 | |
| 	/*
 | |
| 	 * On success we use clflush, when the CPU supports it to
 | |
| 	 * avoid the wbindv. If the CPU does not support it and in the
 | |
| 	 * error case we fall back to cpa_flush_all (which uses
 | |
| 	 * wbindv):
 | |
| 	 */
 | |
| 	if (!ret && cpu_has_clflush) {
 | |
| 		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
 | |
| 			cpa_flush_array(addr, numpages, cache,
 | |
| 					cpa.flags, pages);
 | |
| 		} else
 | |
| 			cpa_flush_range(baddr, numpages, cache);
 | |
| 	} else
 | |
| 		cpa_flush_all(cache);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int change_page_attr_set(unsigned long *addr, int numpages,
 | |
| 				       pgprot_t mask, int array)
 | |
| {
 | |
| 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
 | |
| 		(array ? CPA_ARRAY : 0), NULL);
 | |
| }
 | |
| 
 | |
| static inline int change_page_attr_clear(unsigned long *addr, int numpages,
 | |
| 					 pgprot_t mask, int array)
 | |
| {
 | |
| 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
 | |
| 		(array ? CPA_ARRAY : 0), NULL);
 | |
| }
 | |
| 
 | |
| static inline int cpa_set_pages_array(struct page **pages, int numpages,
 | |
| 				       pgprot_t mask)
 | |
| {
 | |
| 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
 | |
| 		CPA_PAGES_ARRAY, pages);
 | |
| }
 | |
| 
 | |
| static inline int cpa_clear_pages_array(struct page **pages, int numpages,
 | |
| 					 pgprot_t mask)
 | |
| {
 | |
| 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
 | |
| 		CPA_PAGES_ARRAY, pages);
 | |
| }
 | |
| 
 | |
| int _set_memory_uc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	/*
 | |
| 	 * for now UC MINUS. see comments in ioremap_nocache()
 | |
| 	 */
 | |
| 	return change_page_attr_set(&addr, numpages,
 | |
| 				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_uc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * for now UC MINUS. see comments in ioremap_nocache()
 | |
| 	 */
 | |
| 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
 | |
| 			    _PAGE_CACHE_UC_MINUS, NULL);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	ret = _set_memory_uc(addr, numpages);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 | |
| out_err:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_uc);
 | |
| 
 | |
| int _set_memory_array(unsigned long *addr, int addrinarray,
 | |
| 		unsigned long new_type)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * for now UC MINUS. see comments in ioremap_nocache()
 | |
| 	 */
 | |
| 	for (i = 0; i < addrinarray; i++) {
 | |
| 		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
 | |
| 					new_type, NULL);
 | |
| 		if (ret)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	ret = change_page_attr_set(addr, addrinarray,
 | |
| 				    __pgprot(_PAGE_CACHE_UC_MINUS), 1);
 | |
| 
 | |
| 	if (!ret && new_type == _PAGE_CACHE_WC)
 | |
| 		ret = change_page_attr_set_clr(addr, addrinarray,
 | |
| 					       __pgprot(_PAGE_CACHE_WC),
 | |
| 					       __pgprot(_PAGE_CACHE_MASK),
 | |
| 					       0, CPA_ARRAY, NULL);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	for (j = 0; j < i; j++)
 | |
| 		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int set_memory_array_uc(unsigned long *addr, int addrinarray)
 | |
| {
 | |
| 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_array_uc);
 | |
| 
 | |
| int set_memory_array_wc(unsigned long *addr, int addrinarray)
 | |
| {
 | |
| 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_array_wc);
 | |
| 
 | |
| int _set_memory_wc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long addr_copy = addr;
 | |
| 
 | |
| 	ret = change_page_attr_set(&addr, numpages,
 | |
| 				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
 | |
| 	if (!ret) {
 | |
| 		ret = change_page_attr_set_clr(&addr_copy, numpages,
 | |
| 					       __pgprot(_PAGE_CACHE_WC),
 | |
| 					       __pgprot(_PAGE_CACHE_MASK),
 | |
| 					       0, 0, NULL);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int set_memory_wc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!pat_enabled)
 | |
| 		return set_memory_uc(addr, numpages);
 | |
| 
 | |
| 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
 | |
| 		_PAGE_CACHE_WC, NULL);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	ret = _set_memory_wc(addr, numpages);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 | |
| out_err:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_wc);
 | |
| 
 | |
| int _set_memory_wb(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(&addr, numpages,
 | |
| 				      __pgprot(_PAGE_CACHE_MASK), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_wb(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = _set_memory_wb(addr, numpages);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_wb);
 | |
| 
 | |
| int set_memory_array_wb(unsigned long *addr, int addrinarray)
 | |
| {
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = change_page_attr_clear(addr, addrinarray,
 | |
| 				      __pgprot(_PAGE_CACHE_MASK), 1);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; i < addrinarray; i++)
 | |
| 		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_array_wb);
 | |
| 
 | |
| int set_memory_x(unsigned long addr, int numpages)
 | |
| {
 | |
| 	if (!(__supported_pte_mask & _PAGE_NX))
 | |
| 		return 0;
 | |
| 
 | |
| 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_x);
 | |
| 
 | |
| int set_memory_nx(unsigned long addr, int numpages)
 | |
| {
 | |
| 	if (!(__supported_pte_mask & _PAGE_NX))
 | |
| 		return 0;
 | |
| 
 | |
| 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_nx);
 | |
| 
 | |
| int set_memory_ro(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(set_memory_ro);
 | |
| 
 | |
| int set_memory_rw(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(set_memory_rw);
 | |
| 
 | |
| int set_memory_np(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_4k(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
 | |
| 					__pgprot(0), 1, 0, NULL);
 | |
| }
 | |
| 
 | |
| int set_pages_uc(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_uc(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_uc);
 | |
| 
 | |
| static int _set_pages_array(struct page **pages, int addrinarray,
 | |
| 		unsigned long new_type)
 | |
| {
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	int i;
 | |
| 	int free_idx;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (i = 0; i < addrinarray; i++) {
 | |
| 		if (PageHighMem(pages[i]))
 | |
| 			continue;
 | |
| 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
 | |
| 		end = start + PAGE_SIZE;
 | |
| 		if (reserve_memtype(start, end, new_type, NULL))
 | |
| 			goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	ret = cpa_set_pages_array(pages, addrinarray,
 | |
| 			__pgprot(_PAGE_CACHE_UC_MINUS));
 | |
| 	if (!ret && new_type == _PAGE_CACHE_WC)
 | |
| 		ret = change_page_attr_set_clr(NULL, addrinarray,
 | |
| 					       __pgprot(_PAGE_CACHE_WC),
 | |
| 					       __pgprot(_PAGE_CACHE_MASK),
 | |
| 					       0, CPA_PAGES_ARRAY, pages);
 | |
| 	if (ret)
 | |
| 		goto err_out;
 | |
| 	return 0; /* Success */
 | |
| err_out:
 | |
| 	free_idx = i;
 | |
| 	for (i = 0; i < free_idx; i++) {
 | |
| 		if (PageHighMem(pages[i]))
 | |
| 			continue;
 | |
| 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
 | |
| 		end = start + PAGE_SIZE;
 | |
| 		free_memtype(start, end);
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| int set_pages_array_uc(struct page **pages, int addrinarray)
 | |
| {
 | |
| 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_array_uc);
 | |
| 
 | |
| int set_pages_array_wc(struct page **pages, int addrinarray)
 | |
| {
 | |
| 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_array_wc);
 | |
| 
 | |
| int set_pages_wb(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_wb(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_wb);
 | |
| 
 | |
| int set_pages_array_wb(struct page **pages, int addrinarray)
 | |
| {
 | |
| 	int retval;
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	int i;
 | |
| 
 | |
| 	retval = cpa_clear_pages_array(pages, addrinarray,
 | |
| 			__pgprot(_PAGE_CACHE_MASK));
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	for (i = 0; i < addrinarray; i++) {
 | |
| 		if (PageHighMem(pages[i]))
 | |
| 			continue;
 | |
| 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
 | |
| 		end = start + PAGE_SIZE;
 | |
| 		free_memtype(start, end);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_array_wb);
 | |
| 
 | |
| int set_pages_x(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_x(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_x);
 | |
| 
 | |
| int set_pages_nx(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_nx(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_nx);
 | |
| 
 | |
| int set_pages_ro(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_ro(addr, numpages);
 | |
| }
 | |
| 
 | |
| int set_pages_rw(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_rw(addr, numpages);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 
 | |
| static int __set_pages_p(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long tempaddr = (unsigned long) page_address(page);
 | |
| 	struct cpa_data cpa = { .vaddr = &tempaddr,
 | |
| 				.numpages = numpages,
 | |
| 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
 | |
| 				.mask_clr = __pgprot(0),
 | |
| 				.flags = 0};
 | |
| 
 | |
| 	/*
 | |
| 	 * No alias checking needed for setting present flag. otherwise,
 | |
| 	 * we may need to break large pages for 64-bit kernel text
 | |
| 	 * mappings (this adds to complexity if we want to do this from
 | |
| 	 * atomic context especially). Let's keep it simple!
 | |
| 	 */
 | |
| 	return __change_page_attr_set_clr(&cpa, 0);
 | |
| }
 | |
| 
 | |
| static int __set_pages_np(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long tempaddr = (unsigned long) page_address(page);
 | |
| 	struct cpa_data cpa = { .vaddr = &tempaddr,
 | |
| 				.numpages = numpages,
 | |
| 				.mask_set = __pgprot(0),
 | |
| 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
 | |
| 				.flags = 0};
 | |
| 
 | |
| 	/*
 | |
| 	 * No alias checking needed for setting not present flag. otherwise,
 | |
| 	 * we may need to break large pages for 64-bit kernel text
 | |
| 	 * mappings (this adds to complexity if we want to do this from
 | |
| 	 * atomic context especially). Let's keep it simple!
 | |
| 	 */
 | |
| 	return __change_page_attr_set_clr(&cpa, 0);
 | |
| }
 | |
| 
 | |
| void kernel_map_pages(struct page *page, int numpages, int enable)
 | |
| {
 | |
| 	if (PageHighMem(page))
 | |
| 		return;
 | |
| 	if (!enable) {
 | |
| 		debug_check_no_locks_freed(page_address(page),
 | |
| 					   numpages * PAGE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If page allocator is not up yet then do not call c_p_a():
 | |
| 	 */
 | |
| 	if (!debug_pagealloc_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The return value is ignored as the calls cannot fail.
 | |
| 	 * Large pages for identity mappings are not used at boot time
 | |
| 	 * and hence no memory allocations during large page split.
 | |
| 	 */
 | |
| 	if (enable)
 | |
| 		__set_pages_p(page, numpages);
 | |
| 	else
 | |
| 		__set_pages_np(page, numpages);
 | |
| 
 | |
| 	/*
 | |
| 	 * We should perform an IPI and flush all tlbs,
 | |
| 	 * but that can deadlock->flush only current cpu:
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| 
 | |
| bool kernel_page_present(struct page *page)
 | |
| {
 | |
| 	unsigned int level;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (PageHighMem(page))
 | |
| 		return false;
 | |
| 
 | |
| 	pte = lookup_address((unsigned long)page_address(page), &level);
 | |
| 	return (pte_val(*pte) & _PAGE_PRESENT);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HIBERNATION */
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| /*
 | |
|  * The testcases use internal knowledge of the implementation that shouldn't
 | |
|  * be exposed to the rest of the kernel. Include these directly here.
 | |
|  */
 | |
| #ifdef CONFIG_CPA_DEBUG
 | |
| #include "pageattr-test.c"
 | |
| #endif
 |