mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-30 16:13:18 +00:00 
			
		
		
		
	 e8d591dc71
			
		
	
	
		e8d591dc71
		
	
	
	
	
		
			
			manually clean up some of the damage that lindent caused. (this is a separate commit so that in the unlikely case of a typo we can bisect it down to the manual edits.) Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
		
			
				
	
	
		
			379 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			379 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*---------------------------------------------------------------------------+
 | |
|  |  poly_sin.c                                                               |
 | |
|  |                                                                           |
 | |
|  |  Computation of an approximation of the sin function and the cosine       |
 | |
|  |  function by a polynomial.                                                |
 | |
|  |                                                                           |
 | |
|  | Copyright (C) 1992,1993,1994,1997,1999                                    |
 | |
|  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
 | |
|  |                  E-mail   billm@melbpc.org.au                             |
 | |
|  |                                                                           |
 | |
|  |                                                                           |
 | |
|  +---------------------------------------------------------------------------*/
 | |
| 
 | |
| #include "exception.h"
 | |
| #include "reg_constant.h"
 | |
| #include "fpu_emu.h"
 | |
| #include "fpu_system.h"
 | |
| #include "control_w.h"
 | |
| #include "poly.h"
 | |
| 
 | |
| #define	N_COEFF_P	4
 | |
| #define	N_COEFF_N	4
 | |
| 
 | |
| static const unsigned long long pos_terms_l[N_COEFF_P] = {
 | |
| 	0xaaaaaaaaaaaaaaabLL,
 | |
| 	0x00d00d00d00cf906LL,
 | |
| 	0x000006b99159a8bbLL,
 | |
| 	0x000000000d7392e6LL
 | |
| };
 | |
| 
 | |
| static const unsigned long long neg_terms_l[N_COEFF_N] = {
 | |
| 	0x2222222222222167LL,
 | |
| 	0x0002e3bc74aab624LL,
 | |
| 	0x0000000b09229062LL,
 | |
| 	0x00000000000c7973LL
 | |
| };
 | |
| 
 | |
| #define	N_COEFF_PH	4
 | |
| #define	N_COEFF_NH	4
 | |
| static const unsigned long long pos_terms_h[N_COEFF_PH] = {
 | |
| 	0x0000000000000000LL,
 | |
| 	0x05b05b05b05b0406LL,
 | |
| 	0x000049f93edd91a9LL,
 | |
| 	0x00000000c9c9ed62LL
 | |
| };
 | |
| 
 | |
| static const unsigned long long neg_terms_h[N_COEFF_NH] = {
 | |
| 	0xaaaaaaaaaaaaaa98LL,
 | |
| 	0x001a01a01a019064LL,
 | |
| 	0x0000008f76c68a77LL,
 | |
| 	0x0000000000d58f5eLL
 | |
| };
 | |
| 
 | |
| /*--- poly_sine() -----------------------------------------------------------+
 | |
|  |                                                                           |
 | |
|  +---------------------------------------------------------------------------*/
 | |
| void poly_sine(FPU_REG *st0_ptr)
 | |
| {
 | |
| 	int exponent, echange;
 | |
| 	Xsig accumulator, argSqrd, argTo4;
 | |
| 	unsigned long fix_up, adj;
 | |
| 	unsigned long long fixed_arg;
 | |
| 	FPU_REG result;
 | |
| 
 | |
| 	exponent = exponent(st0_ptr);
 | |
| 
 | |
| 	accumulator.lsw = accumulator.midw = accumulator.msw = 0;
 | |
| 
 | |
| 	/* Split into two ranges, for arguments below and above 1.0 */
 | |
| 	/* The boundary between upper and lower is approx 0.88309101259 */
 | |
| 	if ((exponent < -1)
 | |
| 	    || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) {
 | |
| 		/* The argument is <= 0.88309101259 */
 | |
| 
 | |
| 		argSqrd.msw = st0_ptr->sigh;
 | |
| 		argSqrd.midw = st0_ptr->sigl;
 | |
| 		argSqrd.lsw = 0;
 | |
| 		mul64_Xsig(&argSqrd, &significand(st0_ptr));
 | |
| 		shr_Xsig(&argSqrd, 2 * (-1 - exponent));
 | |
| 		argTo4.msw = argSqrd.msw;
 | |
| 		argTo4.midw = argSqrd.midw;
 | |
| 		argTo4.lsw = argSqrd.lsw;
 | |
| 		mul_Xsig_Xsig(&argTo4, &argTo4);
 | |
| 
 | |
| 		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
 | |
| 				N_COEFF_N - 1);
 | |
| 		mul_Xsig_Xsig(&accumulator, &argSqrd);
 | |
| 		negate_Xsig(&accumulator);
 | |
| 
 | |
| 		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
 | |
| 				N_COEFF_P - 1);
 | |
| 
 | |
| 		shr_Xsig(&accumulator, 2);	/* Divide by four */
 | |
| 		accumulator.msw |= 0x80000000;	/* Add 1.0 */
 | |
| 
 | |
| 		mul64_Xsig(&accumulator, &significand(st0_ptr));
 | |
| 		mul64_Xsig(&accumulator, &significand(st0_ptr));
 | |
| 		mul64_Xsig(&accumulator, &significand(st0_ptr));
 | |
| 
 | |
| 		/* Divide by four, FPU_REG compatible, etc */
 | |
| 		exponent = 3 * exponent;
 | |
| 
 | |
| 		/* The minimum exponent difference is 3 */
 | |
| 		shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);
 | |
| 
 | |
| 		negate_Xsig(&accumulator);
 | |
| 		XSIG_LL(accumulator) += significand(st0_ptr);
 | |
| 
 | |
| 		echange = round_Xsig(&accumulator);
 | |
| 
 | |
| 		setexponentpos(&result, exponent(st0_ptr) + echange);
 | |
| 	} else {
 | |
| 		/* The argument is > 0.88309101259 */
 | |
| 		/* We use sin(st(0)) = cos(pi/2-st(0)) */
 | |
| 
 | |
| 		fixed_arg = significand(st0_ptr);
 | |
| 
 | |
| 		if (exponent == 0) {
 | |
| 			/* The argument is >= 1.0 */
 | |
| 
 | |
| 			/* Put the binary point at the left. */
 | |
| 			fixed_arg <<= 1;
 | |
| 		}
 | |
| 		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
 | |
| 		fixed_arg = 0x921fb54442d18469LL - fixed_arg;
 | |
| 		/* There is a special case which arises due to rounding, to fix here. */
 | |
| 		if (fixed_arg == 0xffffffffffffffffLL)
 | |
| 			fixed_arg = 0;
 | |
| 
 | |
| 		XSIG_LL(argSqrd) = fixed_arg;
 | |
| 		argSqrd.lsw = 0;
 | |
| 		mul64_Xsig(&argSqrd, &fixed_arg);
 | |
| 
 | |
| 		XSIG_LL(argTo4) = XSIG_LL(argSqrd);
 | |
| 		argTo4.lsw = argSqrd.lsw;
 | |
| 		mul_Xsig_Xsig(&argTo4, &argTo4);
 | |
| 
 | |
| 		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
 | |
| 				N_COEFF_NH - 1);
 | |
| 		mul_Xsig_Xsig(&accumulator, &argSqrd);
 | |
| 		negate_Xsig(&accumulator);
 | |
| 
 | |
| 		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
 | |
| 				N_COEFF_PH - 1);
 | |
| 		negate_Xsig(&accumulator);
 | |
| 
 | |
| 		mul64_Xsig(&accumulator, &fixed_arg);
 | |
| 		mul64_Xsig(&accumulator, &fixed_arg);
 | |
| 
 | |
| 		shr_Xsig(&accumulator, 3);
 | |
| 		negate_Xsig(&accumulator);
 | |
| 
 | |
| 		add_Xsig_Xsig(&accumulator, &argSqrd);
 | |
| 
 | |
| 		shr_Xsig(&accumulator, 1);
 | |
| 
 | |
| 		accumulator.lsw |= 1;	/* A zero accumulator here would cause problems */
 | |
| 		negate_Xsig(&accumulator);
 | |
| 
 | |
| 		/* The basic computation is complete. Now fix the answer to
 | |
| 		   compensate for the error due to the approximation used for
 | |
| 		   pi/2
 | |
| 		 */
 | |
| 
 | |
| 		/* This has an exponent of -65 */
 | |
| 		fix_up = 0x898cc517;
 | |
| 		/* The fix-up needs to be improved for larger args */
 | |
| 		if (argSqrd.msw & 0xffc00000) {
 | |
| 			/* Get about 32 bit precision in these: */
 | |
| 			fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;
 | |
| 		}
 | |
| 		fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));
 | |
| 
 | |
| 		adj = accumulator.lsw;	/* temp save */
 | |
| 		accumulator.lsw -= fix_up;
 | |
| 		if (accumulator.lsw > adj)
 | |
| 			XSIG_LL(accumulator)--;
 | |
| 
 | |
| 		echange = round_Xsig(&accumulator);
 | |
| 
 | |
| 		setexponentpos(&result, echange - 1);
 | |
| 	}
 | |
| 
 | |
| 	significand(&result) = XSIG_LL(accumulator);
 | |
| 	setsign(&result, getsign(st0_ptr));
 | |
| 	FPU_copy_to_reg0(&result, TAG_Valid);
 | |
| 
 | |
| #ifdef PARANOID
 | |
| 	if ((exponent(&result) >= 0)
 | |
| 	    && (significand(&result) > 0x8000000000000000LL)) {
 | |
| 		EXCEPTION(EX_INTERNAL | 0x150);
 | |
| 	}
 | |
| #endif /* PARANOID */
 | |
| 
 | |
| }
 | |
| 
 | |
| /*--- poly_cos() ------------------------------------------------------------+
 | |
|  |                                                                           |
 | |
|  +---------------------------------------------------------------------------*/
 | |
| void poly_cos(FPU_REG *st0_ptr)
 | |
| {
 | |
| 	FPU_REG result;
 | |
| 	long int exponent, exp2, echange;
 | |
| 	Xsig accumulator, argSqrd, fix_up, argTo4;
 | |
| 	unsigned long long fixed_arg;
 | |
| 
 | |
| #ifdef PARANOID
 | |
| 	if ((exponent(st0_ptr) > 0)
 | |
| 	    || ((exponent(st0_ptr) == 0)
 | |
| 		&& (significand(st0_ptr) > 0xc90fdaa22168c234LL))) {
 | |
| 		EXCEPTION(EX_Invalid);
 | |
| 		FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
 | |
| 		return;
 | |
| 	}
 | |
| #endif /* PARANOID */
 | |
| 
 | |
| 	exponent = exponent(st0_ptr);
 | |
| 
 | |
| 	accumulator.lsw = accumulator.midw = accumulator.msw = 0;
 | |
| 
 | |
| 	if ((exponent < -1)
 | |
| 	    || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) {
 | |
| 		/* arg is < 0.687705 */
 | |
| 
 | |
| 		argSqrd.msw = st0_ptr->sigh;
 | |
| 		argSqrd.midw = st0_ptr->sigl;
 | |
| 		argSqrd.lsw = 0;
 | |
| 		mul64_Xsig(&argSqrd, &significand(st0_ptr));
 | |
| 
 | |
| 		if (exponent < -1) {
 | |
| 			/* shift the argument right by the required places */
 | |
| 			shr_Xsig(&argSqrd, 2 * (-1 - exponent));
 | |
| 		}
 | |
| 
 | |
| 		argTo4.msw = argSqrd.msw;
 | |
| 		argTo4.midw = argSqrd.midw;
 | |
| 		argTo4.lsw = argSqrd.lsw;
 | |
| 		mul_Xsig_Xsig(&argTo4, &argTo4);
 | |
| 
 | |
| 		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
 | |
| 				N_COEFF_NH - 1);
 | |
| 		mul_Xsig_Xsig(&accumulator, &argSqrd);
 | |
| 		negate_Xsig(&accumulator);
 | |
| 
 | |
| 		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
 | |
| 				N_COEFF_PH - 1);
 | |
| 		negate_Xsig(&accumulator);
 | |
| 
 | |
| 		mul64_Xsig(&accumulator, &significand(st0_ptr));
 | |
| 		mul64_Xsig(&accumulator, &significand(st0_ptr));
 | |
| 		shr_Xsig(&accumulator, -2 * (1 + exponent));
 | |
| 
 | |
| 		shr_Xsig(&accumulator, 3);
 | |
| 		negate_Xsig(&accumulator);
 | |
| 
 | |
| 		add_Xsig_Xsig(&accumulator, &argSqrd);
 | |
| 
 | |
| 		shr_Xsig(&accumulator, 1);
 | |
| 
 | |
| 		/* It doesn't matter if accumulator is all zero here, the
 | |
| 		   following code will work ok */
 | |
| 		negate_Xsig(&accumulator);
 | |
| 
 | |
| 		if (accumulator.lsw & 0x80000000)
 | |
| 			XSIG_LL(accumulator)++;
 | |
| 		if (accumulator.msw == 0) {
 | |
| 			/* The result is 1.0 */
 | |
| 			FPU_copy_to_reg0(&CONST_1, TAG_Valid);
 | |
| 			return;
 | |
| 		} else {
 | |
| 			significand(&result) = XSIG_LL(accumulator);
 | |
| 
 | |
| 			/* will be a valid positive nr with expon = -1 */
 | |
| 			setexponentpos(&result, -1);
 | |
| 		}
 | |
| 	} else {
 | |
| 		fixed_arg = significand(st0_ptr);
 | |
| 
 | |
| 		if (exponent == 0) {
 | |
| 			/* The argument is >= 1.0 */
 | |
| 
 | |
| 			/* Put the binary point at the left. */
 | |
| 			fixed_arg <<= 1;
 | |
| 		}
 | |
| 		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
 | |
| 		fixed_arg = 0x921fb54442d18469LL - fixed_arg;
 | |
| 		/* There is a special case which arises due to rounding, to fix here. */
 | |
| 		if (fixed_arg == 0xffffffffffffffffLL)
 | |
| 			fixed_arg = 0;
 | |
| 
 | |
| 		exponent = -1;
 | |
| 		exp2 = -1;
 | |
| 
 | |
| 		/* A shift is needed here only for a narrow range of arguments,
 | |
| 		   i.e. for fixed_arg approx 2^-32, but we pick up more... */
 | |
| 		if (!(LL_MSW(fixed_arg) & 0xffff0000)) {
 | |
| 			fixed_arg <<= 16;
 | |
| 			exponent -= 16;
 | |
| 			exp2 -= 16;
 | |
| 		}
 | |
| 
 | |
| 		XSIG_LL(argSqrd) = fixed_arg;
 | |
| 		argSqrd.lsw = 0;
 | |
| 		mul64_Xsig(&argSqrd, &fixed_arg);
 | |
| 
 | |
| 		if (exponent < -1) {
 | |
| 			/* shift the argument right by the required places */
 | |
| 			shr_Xsig(&argSqrd, 2 * (-1 - exponent));
 | |
| 		}
 | |
| 
 | |
| 		argTo4.msw = argSqrd.msw;
 | |
| 		argTo4.midw = argSqrd.midw;
 | |
| 		argTo4.lsw = argSqrd.lsw;
 | |
| 		mul_Xsig_Xsig(&argTo4, &argTo4);
 | |
| 
 | |
| 		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
 | |
| 				N_COEFF_N - 1);
 | |
| 		mul_Xsig_Xsig(&accumulator, &argSqrd);
 | |
| 		negate_Xsig(&accumulator);
 | |
| 
 | |
| 		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
 | |
| 				N_COEFF_P - 1);
 | |
| 
 | |
| 		shr_Xsig(&accumulator, 2);	/* Divide by four */
 | |
| 		accumulator.msw |= 0x80000000;	/* Add 1.0 */
 | |
| 
 | |
| 		mul64_Xsig(&accumulator, &fixed_arg);
 | |
| 		mul64_Xsig(&accumulator, &fixed_arg);
 | |
| 		mul64_Xsig(&accumulator, &fixed_arg);
 | |
| 
 | |
| 		/* Divide by four, FPU_REG compatible, etc */
 | |
| 		exponent = 3 * exponent;
 | |
| 
 | |
| 		/* The minimum exponent difference is 3 */
 | |
| 		shr_Xsig(&accumulator, exp2 - exponent);
 | |
| 
 | |
| 		negate_Xsig(&accumulator);
 | |
| 		XSIG_LL(accumulator) += fixed_arg;
 | |
| 
 | |
| 		/* The basic computation is complete. Now fix the answer to
 | |
| 		   compensate for the error due to the approximation used for
 | |
| 		   pi/2
 | |
| 		 */
 | |
| 
 | |
| 		/* This has an exponent of -65 */
 | |
| 		XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
 | |
| 		fix_up.lsw = 0;
 | |
| 
 | |
| 		/* The fix-up needs to be improved for larger args */
 | |
| 		if (argSqrd.msw & 0xffc00000) {
 | |
| 			/* Get about 32 bit precision in these: */
 | |
| 			fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;
 | |
| 			fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;
 | |
| 		}
 | |
| 
 | |
| 		exp2 += norm_Xsig(&accumulator);
 | |
| 		shr_Xsig(&accumulator, 1);	/* Prevent overflow */
 | |
| 		exp2++;
 | |
| 		shr_Xsig(&fix_up, 65 + exp2);
 | |
| 
 | |
| 		add_Xsig_Xsig(&accumulator, &fix_up);
 | |
| 
 | |
| 		echange = round_Xsig(&accumulator);
 | |
| 
 | |
| 		setexponentpos(&result, exp2 + echange);
 | |
| 		significand(&result) = XSIG_LL(accumulator);
 | |
| 	}
 | |
| 
 | |
| 	FPU_copy_to_reg0(&result, TAG_Valid);
 | |
| 
 | |
| #ifdef PARANOID
 | |
| 	if ((exponent(&result) >= 0)
 | |
| 	    && (significand(&result) > 0x8000000000000000LL)) {
 | |
| 		EXCEPTION(EX_INTERNAL | 0x151);
 | |
| 	}
 | |
| #endif /* PARANOID */
 | |
| 
 | |
| }
 |