mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 16:38:31 +00:00 
			
		
		
		
	 d9a73c0016
			
		
	
	
		d9a73c0016
		
	
	
	
	
		
			
			* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: um, x86: Cast to (u64 *) inside set_64bit() x86-32, asm: Directly access per-cpu GDT x86-64, asm: Directly access per-cpu IST x86, asm: Merge cmpxchg_486_u64() and cmpxchg8b_emu() x86, asm: Move cmpxchg emulation code to arch/x86/lib x86, asm: Clean up and simplify <asm/cmpxchg.h> x86, asm: Clean up and simplify set_64bit() x86: Add memory modify constraints to xchg() and cmpxchg() x86-64: Simplify loading initial_gs x86: Use symbolic MSR names x86: Remove redundant K6 MSRs
		
			
				
	
	
		
			5701 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5701 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * derived from drivers/kvm/kvm_main.c
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright (C) 2008 Qumranet, Inc.
 | |
|  * Copyright IBM Corporation, 2008
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affilates.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Amit Shah    <amit.shah@qumranet.com>
 | |
|  *   Ben-Ami Yassour <benami@il.ibm.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include "irq.h"
 | |
| #include "mmu.h"
 | |
| #include "i8254.h"
 | |
| #include "tss.h"
 | |
| #include "kvm_cache_regs.h"
 | |
| #include "x86.h"
 | |
| 
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kvm.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/intel-iommu.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/user-return-notifier.h>
 | |
| #include <linux/srcu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <trace/events/kvm.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "trace.h"
 | |
| 
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/mtrr.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/i387.h>
 | |
| #include <asm/xcr.h>
 | |
| 
 | |
| #define MAX_IO_MSRS 256
 | |
| #define CR0_RESERVED_BITS						\
 | |
| 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
 | |
| 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
 | |
| 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
 | |
| #define CR4_RESERVED_BITS						\
 | |
| 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
 | |
| 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
 | |
| 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
 | |
| 			  | X86_CR4_OSXSAVE \
 | |
| 			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
 | |
| 
 | |
| #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
 | |
| 
 | |
| #define KVM_MAX_MCE_BANKS 32
 | |
| #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
 | |
| 
 | |
| /* EFER defaults:
 | |
|  * - enable syscall per default because its emulated by KVM
 | |
|  * - enable LME and LMA per default on 64 bit KVM
 | |
|  */
 | |
| #ifdef CONFIG_X86_64
 | |
| static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
 | |
| #else
 | |
| static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
 | |
| #endif
 | |
| 
 | |
| #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
 | |
| #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
 | |
| 
 | |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 | |
| static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
 | |
| 				    struct kvm_cpuid_entry2 __user *entries);
 | |
| 
 | |
| struct kvm_x86_ops *kvm_x86_ops;
 | |
| EXPORT_SYMBOL_GPL(kvm_x86_ops);
 | |
| 
 | |
| int ignore_msrs = 0;
 | |
| module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
 | |
| 
 | |
| #define KVM_NR_SHARED_MSRS 16
 | |
| 
 | |
| struct kvm_shared_msrs_global {
 | |
| 	int nr;
 | |
| 	u32 msrs[KVM_NR_SHARED_MSRS];
 | |
| };
 | |
| 
 | |
| struct kvm_shared_msrs {
 | |
| 	struct user_return_notifier urn;
 | |
| 	bool registered;
 | |
| 	struct kvm_shared_msr_values {
 | |
| 		u64 host;
 | |
| 		u64 curr;
 | |
| 	} values[KVM_NR_SHARED_MSRS];
 | |
| };
 | |
| 
 | |
| static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 | |
| static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
 | |
| 
 | |
| struct kvm_stats_debugfs_item debugfs_entries[] = {
 | |
| 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
 | |
| 	{ "pf_guest", VCPU_STAT(pf_guest) },
 | |
| 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
 | |
| 	{ "invlpg", VCPU_STAT(invlpg) },
 | |
| 	{ "exits", VCPU_STAT(exits) },
 | |
| 	{ "io_exits", VCPU_STAT(io_exits) },
 | |
| 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
 | |
| 	{ "signal_exits", VCPU_STAT(signal_exits) },
 | |
| 	{ "irq_window", VCPU_STAT(irq_window_exits) },
 | |
| 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
 | |
| 	{ "halt_exits", VCPU_STAT(halt_exits) },
 | |
| 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
 | |
| 	{ "hypercalls", VCPU_STAT(hypercalls) },
 | |
| 	{ "request_irq", VCPU_STAT(request_irq_exits) },
 | |
| 	{ "irq_exits", VCPU_STAT(irq_exits) },
 | |
| 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
 | |
| 	{ "efer_reload", VCPU_STAT(efer_reload) },
 | |
| 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
 | |
| 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
 | |
| 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 | |
| 	{ "irq_injections", VCPU_STAT(irq_injections) },
 | |
| 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
 | |
| 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 | |
| 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
 | |
| 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 | |
| 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 | |
| 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
 | |
| 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
 | |
| 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 | |
| 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
 | |
| 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 | |
| 	{ "largepages", VM_STAT(lpages) },
 | |
| 	{ NULL }
 | |
| };
 | |
| 
 | |
| u64 __read_mostly host_xcr0;
 | |
| 
 | |
| static inline u32 bit(int bitno)
 | |
| {
 | |
| 	return 1 << (bitno & 31);
 | |
| }
 | |
| 
 | |
| static void kvm_on_user_return(struct user_return_notifier *urn)
 | |
| {
 | |
| 	unsigned slot;
 | |
| 	struct kvm_shared_msrs *locals
 | |
| 		= container_of(urn, struct kvm_shared_msrs, urn);
 | |
| 	struct kvm_shared_msr_values *values;
 | |
| 
 | |
| 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 | |
| 		values = &locals->values[slot];
 | |
| 		if (values->host != values->curr) {
 | |
| 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
 | |
| 			values->curr = values->host;
 | |
| 		}
 | |
| 	}
 | |
| 	locals->registered = false;
 | |
| 	user_return_notifier_unregister(urn);
 | |
| }
 | |
| 
 | |
| static void shared_msr_update(unsigned slot, u32 msr)
 | |
| {
 | |
| 	struct kvm_shared_msrs *smsr;
 | |
| 	u64 value;
 | |
| 
 | |
| 	smsr = &__get_cpu_var(shared_msrs);
 | |
| 	/* only read, and nobody should modify it at this time,
 | |
| 	 * so don't need lock */
 | |
| 	if (slot >= shared_msrs_global.nr) {
 | |
| 		printk(KERN_ERR "kvm: invalid MSR slot!");
 | |
| 		return;
 | |
| 	}
 | |
| 	rdmsrl_safe(msr, &value);
 | |
| 	smsr->values[slot].host = value;
 | |
| 	smsr->values[slot].curr = value;
 | |
| }
 | |
| 
 | |
| void kvm_define_shared_msr(unsigned slot, u32 msr)
 | |
| {
 | |
| 	if (slot >= shared_msrs_global.nr)
 | |
| 		shared_msrs_global.nr = slot + 1;
 | |
| 	shared_msrs_global.msrs[slot] = msr;
 | |
| 	/* we need ensured the shared_msr_global have been updated */
 | |
| 	smp_wmb();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 | |
| 
 | |
| static void kvm_shared_msr_cpu_online(void)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < shared_msrs_global.nr; ++i)
 | |
| 		shared_msr_update(i, shared_msrs_global.msrs[i]);
 | |
| }
 | |
| 
 | |
| void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 | |
| {
 | |
| 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
 | |
| 
 | |
| 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
 | |
| 		return;
 | |
| 	smsr->values[slot].curr = value;
 | |
| 	wrmsrl(shared_msrs_global.msrs[slot], value);
 | |
| 	if (!smsr->registered) {
 | |
| 		smsr->urn.on_user_return = kvm_on_user_return;
 | |
| 		user_return_notifier_register(&smsr->urn);
 | |
| 		smsr->registered = true;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 | |
| 
 | |
| static void drop_user_return_notifiers(void *ignore)
 | |
| {
 | |
| 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
 | |
| 
 | |
| 	if (smsr->registered)
 | |
| 		kvm_on_user_return(&smsr->urn);
 | |
| }
 | |
| 
 | |
| u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		return vcpu->arch.apic_base;
 | |
| 	else
 | |
| 		return vcpu->arch.apic_base;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 | |
| 
 | |
| void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	/* TODO: reserve bits check */
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_lapic_set_base(vcpu, data);
 | |
| 	else
 | |
| 		vcpu->arch.apic_base = data;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 | |
| 
 | |
| #define EXCPT_BENIGN		0
 | |
| #define EXCPT_CONTRIBUTORY	1
 | |
| #define EXCPT_PF		2
 | |
| 
 | |
| static int exception_class(int vector)
 | |
| {
 | |
| 	switch (vector) {
 | |
| 	case PF_VECTOR:
 | |
| 		return EXCPT_PF;
 | |
| 	case DE_VECTOR:
 | |
| 	case TS_VECTOR:
 | |
| 	case NP_VECTOR:
 | |
| 	case SS_VECTOR:
 | |
| 	case GP_VECTOR:
 | |
| 		return EXCPT_CONTRIBUTORY;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return EXCPT_BENIGN;
 | |
| }
 | |
| 
 | |
| static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 | |
| 		unsigned nr, bool has_error, u32 error_code,
 | |
| 		bool reinject)
 | |
| {
 | |
| 	u32 prev_nr;
 | |
| 	int class1, class2;
 | |
| 
 | |
| 	if (!vcpu->arch.exception.pending) {
 | |
| 	queue:
 | |
| 		vcpu->arch.exception.pending = true;
 | |
| 		vcpu->arch.exception.has_error_code = has_error;
 | |
| 		vcpu->arch.exception.nr = nr;
 | |
| 		vcpu->arch.exception.error_code = error_code;
 | |
| 		vcpu->arch.exception.reinject = reinject;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* to check exception */
 | |
| 	prev_nr = vcpu->arch.exception.nr;
 | |
| 	if (prev_nr == DF_VECTOR) {
 | |
| 		/* triple fault -> shutdown */
 | |
| 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 	class1 = exception_class(prev_nr);
 | |
| 	class2 = exception_class(nr);
 | |
| 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 | |
| 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 | |
| 		/* generate double fault per SDM Table 5-5 */
 | |
| 		vcpu->arch.exception.pending = true;
 | |
| 		vcpu->arch.exception.has_error_code = true;
 | |
| 		vcpu->arch.exception.nr = DF_VECTOR;
 | |
| 		vcpu->arch.exception.error_code = 0;
 | |
| 	} else
 | |
| 		/* replace previous exception with a new one in a hope
 | |
| 		   that instruction re-execution will regenerate lost
 | |
| 		   exception */
 | |
| 		goto queue;
 | |
| }
 | |
| 
 | |
| void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, false, 0, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_queue_exception);
 | |
| 
 | |
| void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, false, 0, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 | |
| 
 | |
| void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
 | |
| 			   u32 error_code)
 | |
| {
 | |
| 	++vcpu->stat.pf_guest;
 | |
| 	vcpu->arch.cr2 = addr;
 | |
| 	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
 | |
| }
 | |
| 
 | |
| void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.nmi_pending = 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 | |
| 
 | |
| void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 | |
| 
 | |
| void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 | |
| 
 | |
| /*
 | |
|  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 | |
|  * a #GP and return false.
 | |
|  */
 | |
| bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 | |
| {
 | |
| 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 | |
| 		return true;
 | |
| 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_require_cpl);
 | |
| 
 | |
| /*
 | |
|  * Load the pae pdptrs.  Return true is they are all valid.
 | |
|  */
 | |
| int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
 | |
| {
 | |
| 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 | |
| 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
 | |
| 
 | |
| 	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
 | |
| 				  offset * sizeof(u64), sizeof(pdpte));
 | |
| 	if (ret < 0) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 | |
| 		if (is_present_gpte(pdpte[i]) &&
 | |
| 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 1;
 | |
| 
 | |
| 	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
 | |
| 	__set_bit(VCPU_EXREG_PDPTR,
 | |
| 		  (unsigned long *)&vcpu->arch.regs_avail);
 | |
| 	__set_bit(VCPU_EXREG_PDPTR,
 | |
| 		  (unsigned long *)&vcpu->arch.regs_dirty);
 | |
| out:
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(load_pdptrs);
 | |
| 
 | |
| static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
 | |
| 	bool changed = true;
 | |
| 	int r;
 | |
| 
 | |
| 	if (is_long_mode(vcpu) || !is_pae(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!test_bit(VCPU_EXREG_PDPTR,
 | |
| 		      (unsigned long *)&vcpu->arch.regs_avail))
 | |
| 		return true;
 | |
| 
 | |
| 	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
 | |
| out:
 | |
| 
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 | |
| {
 | |
| 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
 | |
| 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
 | |
| 				    X86_CR0_CD | X86_CR0_NW;
 | |
| 
 | |
| 	cr0 |= X86_CR0_ET;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (cr0 & 0xffffffff00000000UL)
 | |
| 		return 1;
 | |
| #endif
 | |
| 
 | |
| 	cr0 &= ~CR0_RESERVED_BITS;
 | |
| 
 | |
| 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 | |
| 		return 1;
 | |
| 
 | |
| 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 | |
| #ifdef CONFIG_X86_64
 | |
| 		if ((vcpu->arch.efer & EFER_LME)) {
 | |
| 			int cs_db, cs_l;
 | |
| 
 | |
| 			if (!is_pae(vcpu))
 | |
| 				return 1;
 | |
| 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 | |
| 			if (cs_l)
 | |
| 				return 1;
 | |
| 		} else
 | |
| #endif
 | |
| 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->set_cr0(vcpu, cr0);
 | |
| 
 | |
| 	if ((cr0 ^ old_cr0) & update_bits)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr0);
 | |
| 
 | |
| void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 | |
| {
 | |
| 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_lmsw);
 | |
| 
 | |
| int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 | |
| {
 | |
| 	u64 xcr0;
 | |
| 
 | |
| 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 | |
| 	if (index != XCR_XFEATURE_ENABLED_MASK)
 | |
| 		return 1;
 | |
| 	xcr0 = xcr;
 | |
| 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
 | |
| 		return 1;
 | |
| 	if (!(xcr0 & XSTATE_FP))
 | |
| 		return 1;
 | |
| 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
 | |
| 		return 1;
 | |
| 	if (xcr0 & ~host_xcr0)
 | |
| 		return 1;
 | |
| 	vcpu->arch.xcr0 = xcr0;
 | |
| 	vcpu->guest_xcr0_loaded = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 | |
| {
 | |
| 	if (__kvm_set_xcr(vcpu, index, xcr)) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_xcr);
 | |
| 
 | |
| static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 
 | |
| 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 | |
| 	return best && (best->ecx & bit(X86_FEATURE_XSAVE));
 | |
| }
 | |
| 
 | |
| static void update_cpuid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 
 | |
| 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 | |
| 	if (!best)
 | |
| 		return;
 | |
| 
 | |
| 	/* Update OSXSAVE bit */
 | |
| 	if (cpu_has_xsave && best->function == 0x1) {
 | |
| 		best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
 | |
| 			best->ecx |= bit(X86_FEATURE_OSXSAVE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 | |
| {
 | |
| 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
 | |
| 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
 | |
| 
 | |
| 	if (cr4 & CR4_RESERVED_BITS)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (is_long_mode(vcpu)) {
 | |
| 		if (!(cr4 & X86_CR4_PAE))
 | |
| 			return 1;
 | |
| 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 | |
| 		   && ((cr4 ^ old_cr4) & pdptr_bits)
 | |
| 		   && !load_pdptrs(vcpu, vcpu->arch.cr3))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (cr4 & X86_CR4_VMXE)
 | |
| 		return 1;
 | |
| 
 | |
| 	kvm_x86_ops->set_cr4(vcpu, cr4);
 | |
| 
 | |
| 	if ((cr4 ^ old_cr4) & pdptr_bits)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
 | |
| 		update_cpuid(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr4);
 | |
| 
 | |
| int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 | |
| {
 | |
| 	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
 | |
| 		kvm_mmu_sync_roots(vcpu);
 | |
| 		kvm_mmu_flush_tlb(vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (is_long_mode(vcpu)) {
 | |
| 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
 | |
| 			return 1;
 | |
| 	} else {
 | |
| 		if (is_pae(vcpu)) {
 | |
| 			if (cr3 & CR3_PAE_RESERVED_BITS)
 | |
| 				return 1;
 | |
| 			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
 | |
| 				return 1;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We don't check reserved bits in nonpae mode, because
 | |
| 		 * this isn't enforced, and VMware depends on this.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Does the new cr3 value map to physical memory? (Note, we
 | |
| 	 * catch an invalid cr3 even in real-mode, because it would
 | |
| 	 * cause trouble later on when we turn on paging anyway.)
 | |
| 	 *
 | |
| 	 * A real CPU would silently accept an invalid cr3 and would
 | |
| 	 * attempt to use it - with largely undefined (and often hard
 | |
| 	 * to debug) behavior on the guest side.
 | |
| 	 */
 | |
| 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
 | |
| 		return 1;
 | |
| 	vcpu->arch.cr3 = cr3;
 | |
| 	vcpu->arch.mmu.new_cr3(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr3);
 | |
| 
 | |
| int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 | |
| {
 | |
| 	if (cr8 & CR8_RESERVED_BITS)
 | |
| 		return 1;
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_lapic_set_tpr(vcpu, cr8);
 | |
| 	else
 | |
| 		vcpu->arch.cr8 = cr8;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 | |
| {
 | |
| 	if (__kvm_set_cr8(vcpu, cr8))
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr8);
 | |
| 
 | |
| unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		return kvm_lapic_get_cr8(vcpu);
 | |
| 	else
 | |
| 		return vcpu->arch.cr8;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_cr8);
 | |
| 
 | |
| static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 | |
| {
 | |
| 	switch (dr) {
 | |
| 	case 0 ... 3:
 | |
| 		vcpu->arch.db[dr] = val;
 | |
| 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 | |
| 			vcpu->arch.eff_db[dr] = val;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 | |
| 			return 1; /* #UD */
 | |
| 		/* fall through */
 | |
| 	case 6:
 | |
| 		if (val & 0xffffffff00000000ULL)
 | |
| 			return -1; /* #GP */
 | |
| 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 | |
| 			return 1; /* #UD */
 | |
| 		/* fall through */
 | |
| 	default: /* 7 */
 | |
| 		if (val & 0xffffffff00000000ULL)
 | |
| 			return -1; /* #GP */
 | |
| 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 | |
| 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
 | |
| 			kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
 | |
| 			vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 | |
| {
 | |
| 	int res;
 | |
| 
 | |
| 	res = __kvm_set_dr(vcpu, dr, val);
 | |
| 	if (res > 0)
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 	else if (res < 0)
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_dr);
 | |
| 
 | |
| static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 | |
| {
 | |
| 	switch (dr) {
 | |
| 	case 0 ... 3:
 | |
| 		*val = vcpu->arch.db[dr];
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 | |
| 			return 1;
 | |
| 		/* fall through */
 | |
| 	case 6:
 | |
| 		*val = vcpu->arch.dr6;
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 | |
| 			return 1;
 | |
| 		/* fall through */
 | |
| 	default: /* 7 */
 | |
| 		*val = vcpu->arch.dr7;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 | |
| {
 | |
| 	if (_kvm_get_dr(vcpu, dr, val)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_dr);
 | |
| 
 | |
| /*
 | |
|  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 | |
|  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 | |
|  *
 | |
|  * This list is modified at module load time to reflect the
 | |
|  * capabilities of the host cpu. This capabilities test skips MSRs that are
 | |
|  * kvm-specific. Those are put in the beginning of the list.
 | |
|  */
 | |
| 
 | |
| #define KVM_SAVE_MSRS_BEGIN	7
 | |
| static u32 msrs_to_save[] = {
 | |
| 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 | |
| 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
 | |
| 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
 | |
| 	HV_X64_MSR_APIC_ASSIST_PAGE,
 | |
| 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 | |
| 	MSR_STAR,
 | |
| #ifdef CONFIG_X86_64
 | |
| 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 | |
| #endif
 | |
| 	MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
 | |
| };
 | |
| 
 | |
| static unsigned num_msrs_to_save;
 | |
| 
 | |
| static u32 emulated_msrs[] = {
 | |
| 	MSR_IA32_MISC_ENABLE,
 | |
| 	MSR_IA32_MCG_STATUS,
 | |
| 	MSR_IA32_MCG_CTL,
 | |
| };
 | |
| 
 | |
| static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
 | |
| {
 | |
| 	u64 old_efer = vcpu->arch.efer;
 | |
| 
 | |
| 	if (efer & efer_reserved_bits)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (is_paging(vcpu)
 | |
| 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (efer & EFER_FFXSR) {
 | |
| 		struct kvm_cpuid_entry2 *feat;
 | |
| 
 | |
| 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 | |
| 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (efer & EFER_SVME) {
 | |
| 		struct kvm_cpuid_entry2 *feat;
 | |
| 
 | |
| 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 | |
| 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	efer &= ~EFER_LMA;
 | |
| 	efer |= vcpu->arch.efer & EFER_LMA;
 | |
| 
 | |
| 	kvm_x86_ops->set_efer(vcpu, efer);
 | |
| 
 | |
| 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	/* Update reserved bits */
 | |
| 	if ((efer ^ old_efer) & EFER_NX)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_enable_efer_bits(u64 mask)
 | |
| {
 | |
|        efer_reserved_bits &= ~mask;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Writes msr value into into the appropriate "register".
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 | |
| {
 | |
| 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adapt set_msr() to msr_io()'s calling convention
 | |
|  */
 | |
| static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 | |
| {
 | |
| 	return kvm_set_msr(vcpu, index, *data);
 | |
| }
 | |
| 
 | |
| static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
 | |
| {
 | |
| 	int version;
 | |
| 	int r;
 | |
| 	struct pvclock_wall_clock wc;
 | |
| 	struct timespec boot;
 | |
| 
 | |
| 	if (!wall_clock)
 | |
| 		return;
 | |
| 
 | |
| 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
 | |
| 	if (r)
 | |
| 		return;
 | |
| 
 | |
| 	if (version & 1)
 | |
| 		++version;  /* first time write, random junk */
 | |
| 
 | |
| 	++version;
 | |
| 
 | |
| 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 | |
| 
 | |
| 	/*
 | |
| 	 * The guest calculates current wall clock time by adding
 | |
| 	 * system time (updated by kvm_write_guest_time below) to the
 | |
| 	 * wall clock specified here.  guest system time equals host
 | |
| 	 * system time for us, thus we must fill in host boot time here.
 | |
| 	 */
 | |
| 	getboottime(&boot);
 | |
| 
 | |
| 	wc.sec = boot.tv_sec;
 | |
| 	wc.nsec = boot.tv_nsec;
 | |
| 	wc.version = version;
 | |
| 
 | |
| 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
 | |
| 
 | |
| 	version++;
 | |
| 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 | |
| }
 | |
| 
 | |
| static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
 | |
| {
 | |
| 	uint32_t quotient, remainder;
 | |
| 
 | |
| 	/* Don't try to replace with do_div(), this one calculates
 | |
| 	 * "(dividend << 32) / divisor" */
 | |
| 	__asm__ ( "divl %4"
 | |
| 		  : "=a" (quotient), "=d" (remainder)
 | |
| 		  : "0" (0), "1" (dividend), "r" (divisor) );
 | |
| 	return quotient;
 | |
| }
 | |
| 
 | |
| static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
 | |
| {
 | |
| 	uint64_t nsecs = 1000000000LL;
 | |
| 	int32_t  shift = 0;
 | |
| 	uint64_t tps64;
 | |
| 	uint32_t tps32;
 | |
| 
 | |
| 	tps64 = tsc_khz * 1000LL;
 | |
| 	while (tps64 > nsecs*2) {
 | |
| 		tps64 >>= 1;
 | |
| 		shift--;
 | |
| 	}
 | |
| 
 | |
| 	tps32 = (uint32_t)tps64;
 | |
| 	while (tps32 <= (uint32_t)nsecs) {
 | |
| 		tps32 <<= 1;
 | |
| 		shift++;
 | |
| 	}
 | |
| 
 | |
| 	hv_clock->tsc_shift = shift;
 | |
| 	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
 | |
| 
 | |
| 	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
 | |
| 		 __func__, tsc_khz, hv_clock->tsc_shift,
 | |
| 		 hv_clock->tsc_to_system_mul);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
 | |
| 
 | |
| static void kvm_write_guest_time(struct kvm_vcpu *v)
 | |
| {
 | |
| 	struct timespec ts;
 | |
| 	unsigned long flags;
 | |
| 	struct kvm_vcpu_arch *vcpu = &v->arch;
 | |
| 	void *shared_kaddr;
 | |
| 	unsigned long this_tsc_khz;
 | |
| 
 | |
| 	if ((!vcpu->time_page))
 | |
| 		return;
 | |
| 
 | |
| 	this_tsc_khz = get_cpu_var(cpu_tsc_khz);
 | |
| 	if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
 | |
| 		kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
 | |
| 		vcpu->hv_clock_tsc_khz = this_tsc_khz;
 | |
| 	}
 | |
| 	put_cpu_var(cpu_tsc_khz);
 | |
| 
 | |
| 	/* Keep irq disabled to prevent changes to the clock */
 | |
| 	local_irq_save(flags);
 | |
| 	kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
 | |
| 	ktime_get_ts(&ts);
 | |
| 	monotonic_to_bootbased(&ts);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/* With all the info we got, fill in the values */
 | |
| 
 | |
| 	vcpu->hv_clock.system_time = ts.tv_nsec +
 | |
| 				     (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
 | |
| 
 | |
| 	vcpu->hv_clock.flags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The interface expects us to write an even number signaling that the
 | |
| 	 * update is finished. Since the guest won't see the intermediate
 | |
| 	 * state, we just increase by 2 at the end.
 | |
| 	 */
 | |
| 	vcpu->hv_clock.version += 2;
 | |
| 
 | |
| 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
 | |
| 
 | |
| 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
 | |
| 	       sizeof(vcpu->hv_clock));
 | |
| 
 | |
| 	kunmap_atomic(shared_kaddr, KM_USER0);
 | |
| 
 | |
| 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| static int kvm_request_guest_time_update(struct kvm_vcpu *v)
 | |
| {
 | |
| 	struct kvm_vcpu_arch *vcpu = &v->arch;
 | |
| 
 | |
| 	if (!vcpu->time_page)
 | |
| 		return 0;
 | |
| 	kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static bool msr_mtrr_valid(unsigned msr)
 | |
| {
 | |
| 	switch (msr) {
 | |
| 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
 | |
| 	case MSR_MTRRfix64K_00000:
 | |
| 	case MSR_MTRRfix16K_80000:
 | |
| 	case MSR_MTRRfix16K_A0000:
 | |
| 	case MSR_MTRRfix4K_C0000:
 | |
| 	case MSR_MTRRfix4K_C8000:
 | |
| 	case MSR_MTRRfix4K_D0000:
 | |
| 	case MSR_MTRRfix4K_D8000:
 | |
| 	case MSR_MTRRfix4K_E0000:
 | |
| 	case MSR_MTRRfix4K_E8000:
 | |
| 	case MSR_MTRRfix4K_F0000:
 | |
| 	case MSR_MTRRfix4K_F8000:
 | |
| 	case MSR_MTRRdefType:
 | |
| 	case MSR_IA32_CR_PAT:
 | |
| 		return true;
 | |
| 	case 0x2f8:
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool valid_pat_type(unsigned t)
 | |
| {
 | |
| 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
 | |
| }
 | |
| 
 | |
| static bool valid_mtrr_type(unsigned t)
 | |
| {
 | |
| 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
 | |
| }
 | |
| 
 | |
| static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!msr_mtrr_valid(msr))
 | |
| 		return false;
 | |
| 
 | |
| 	if (msr == MSR_IA32_CR_PAT) {
 | |
| 		for (i = 0; i < 8; i++)
 | |
| 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
 | |
| 				return false;
 | |
| 		return true;
 | |
| 	} else if (msr == MSR_MTRRdefType) {
 | |
| 		if (data & ~0xcff)
 | |
| 			return false;
 | |
| 		return valid_mtrr_type(data & 0xff);
 | |
| 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
 | |
| 		for (i = 0; i < 8 ; i++)
 | |
| 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
 | |
| 				return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* variable MTRRs */
 | |
| 	return valid_mtrr_type(data & 0xff);
 | |
| }
 | |
| 
 | |
| static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
 | |
| 
 | |
| 	if (!mtrr_valid(vcpu, msr, data))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (msr == MSR_MTRRdefType) {
 | |
| 		vcpu->arch.mtrr_state.def_type = data;
 | |
| 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
 | |
| 	} else if (msr == MSR_MTRRfix64K_00000)
 | |
| 		p[0] = data;
 | |
| 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
 | |
| 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
 | |
| 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
 | |
| 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
 | |
| 	else if (msr == MSR_IA32_CR_PAT)
 | |
| 		vcpu->arch.pat = data;
 | |
| 	else {	/* Variable MTRRs */
 | |
| 		int idx, is_mtrr_mask;
 | |
| 		u64 *pt;
 | |
| 
 | |
| 		idx = (msr - 0x200) / 2;
 | |
| 		is_mtrr_mask = msr - 0x200 - 2 * idx;
 | |
| 		if (!is_mtrr_mask)
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
 | |
| 		else
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
 | |
| 		*pt = data;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 		vcpu->arch.mcg_status = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 		if (!(mcg_cap & MCG_CTL_P))
 | |
| 			return 1;
 | |
| 		if (data != 0 && data != ~(u64)0)
 | |
| 			return -1;
 | |
| 		vcpu->arch.mcg_ctl = data;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (msr >= MSR_IA32_MC0_CTL &&
 | |
| 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
 | |
| 			u32 offset = msr - MSR_IA32_MC0_CTL;
 | |
| 			/* only 0 or all 1s can be written to IA32_MCi_CTL
 | |
| 			 * some Linux kernels though clear bit 10 in bank 4 to
 | |
| 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
 | |
| 			 * this to avoid an uncatched #GP in the guest
 | |
| 			 */
 | |
| 			if ((offset & 0x3) == 0 &&
 | |
| 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
 | |
| 				return -1;
 | |
| 			vcpu->arch.mce_banks[offset] = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	int lm = is_long_mode(vcpu);
 | |
| 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
 | |
| 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
 | |
| 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
 | |
| 		: kvm->arch.xen_hvm_config.blob_size_32;
 | |
| 	u32 page_num = data & ~PAGE_MASK;
 | |
| 	u64 page_addr = data & PAGE_MASK;
 | |
| 	u8 *page;
 | |
| 	int r;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (page_num >= blob_size)
 | |
| 		goto out;
 | |
| 	r = -ENOMEM;
 | |
| 	page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	if (!page)
 | |
| 		goto out;
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
 | |
| 		goto out_free;
 | |
| 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
 | |
| 		goto out_free;
 | |
| 	r = 0;
 | |
| out_free:
 | |
| 	kfree(page);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
 | |
| {
 | |
| 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
 | |
| }
 | |
| 
 | |
| static bool kvm_hv_msr_partition_wide(u32 msr)
 | |
| {
 | |
| 	bool r = false;
 | |
| 	switch (msr) {
 | |
| 	case HV_X64_MSR_GUEST_OS_ID:
 | |
| 	case HV_X64_MSR_HYPERCALL:
 | |
| 		r = true;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case HV_X64_MSR_GUEST_OS_ID:
 | |
| 		kvm->arch.hv_guest_os_id = data;
 | |
| 		/* setting guest os id to zero disables hypercall page */
 | |
| 		if (!kvm->arch.hv_guest_os_id)
 | |
| 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
 | |
| 		break;
 | |
| 	case HV_X64_MSR_HYPERCALL: {
 | |
| 		u64 gfn;
 | |
| 		unsigned long addr;
 | |
| 		u8 instructions[4];
 | |
| 
 | |
| 		/* if guest os id is not set hypercall should remain disabled */
 | |
| 		if (!kvm->arch.hv_guest_os_id)
 | |
| 			break;
 | |
| 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
 | |
| 			kvm->arch.hv_hypercall = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
 | |
| 		addr = gfn_to_hva(kvm, gfn);
 | |
| 		if (kvm_is_error_hva(addr))
 | |
| 			return 1;
 | |
| 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
 | |
| 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
 | |
| 		if (copy_to_user((void __user *)addr, instructions, 4))
 | |
| 			return 1;
 | |
| 		kvm->arch.hv_hypercall = data;
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
 | |
| 			  "data 0x%llx\n", msr, data);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	switch (msr) {
 | |
| 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
 | |
| 			vcpu->arch.hv_vapic = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		addr = gfn_to_hva(vcpu->kvm, data >>
 | |
| 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
 | |
| 		if (kvm_is_error_hva(addr))
 | |
| 			return 1;
 | |
| 		if (clear_user((void __user *)addr, PAGE_SIZE))
 | |
| 			return 1;
 | |
| 		vcpu->arch.hv_vapic = data;
 | |
| 		break;
 | |
| 	}
 | |
| 	case HV_X64_MSR_EOI:
 | |
| 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
 | |
| 	case HV_X64_MSR_ICR:
 | |
| 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
 | |
| 	case HV_X64_MSR_TPR:
 | |
| 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
 | |
| 	default:
 | |
| 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
 | |
| 			  "data 0x%llx\n", msr, data);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	switch (msr) {
 | |
| 	case MSR_EFER:
 | |
| 		return set_efer(vcpu, data);
 | |
| 	case MSR_K7_HWCR:
 | |
| 		data &= ~(u64)0x40;	/* ignore flush filter disable */
 | |
| 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
 | |
| 		if (data != 0) {
 | |
| 			pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
 | |
| 				data);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_FAM10H_MMIO_CONF_BASE:
 | |
| 		if (data != 0) {
 | |
| 			pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
 | |
| 				"0x%llx\n", data);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_AMD64_NB_CFG:
 | |
| 		break;
 | |
| 	case MSR_IA32_DEBUGCTLMSR:
 | |
| 		if (!data) {
 | |
| 			/* We support the non-activated case already */
 | |
| 			break;
 | |
| 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
 | |
| 			/* Values other than LBR and BTF are vendor-specific,
 | |
| 			   thus reserved and should throw a #GP */
 | |
| 			return 1;
 | |
| 		}
 | |
| 		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
 | |
| 			__func__, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_UCODE_REV:
 | |
| 	case MSR_IA32_UCODE_WRITE:
 | |
| 	case MSR_VM_HSAVE_PA:
 | |
| 	case MSR_AMD64_PATCH_LOADER:
 | |
| 		break;
 | |
| 	case 0x200 ... 0x2ff:
 | |
| 		return set_msr_mtrr(vcpu, msr, data);
 | |
| 	case MSR_IA32_APICBASE:
 | |
| 		kvm_set_apic_base(vcpu, data);
 | |
| 		break;
 | |
| 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
 | |
| 		return kvm_x2apic_msr_write(vcpu, msr, data);
 | |
| 	case MSR_IA32_MISC_ENABLE:
 | |
| 		vcpu->arch.ia32_misc_enable_msr = data;
 | |
| 		break;
 | |
| 	case MSR_KVM_WALL_CLOCK_NEW:
 | |
| 	case MSR_KVM_WALL_CLOCK:
 | |
| 		vcpu->kvm->arch.wall_clock = data;
 | |
| 		kvm_write_wall_clock(vcpu->kvm, data);
 | |
| 		break;
 | |
| 	case MSR_KVM_SYSTEM_TIME_NEW:
 | |
| 	case MSR_KVM_SYSTEM_TIME: {
 | |
| 		if (vcpu->arch.time_page) {
 | |
| 			kvm_release_page_dirty(vcpu->arch.time_page);
 | |
| 			vcpu->arch.time_page = NULL;
 | |
| 		}
 | |
| 
 | |
| 		vcpu->arch.time = data;
 | |
| 
 | |
| 		/* we verify if the enable bit is set... */
 | |
| 		if (!(data & 1))
 | |
| 			break;
 | |
| 
 | |
| 		/* ...but clean it before doing the actual write */
 | |
| 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
 | |
| 
 | |
| 		vcpu->arch.time_page =
 | |
| 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
 | |
| 
 | |
| 		if (is_error_page(vcpu->arch.time_page)) {
 | |
| 			kvm_release_page_clean(vcpu->arch.time_page);
 | |
| 			vcpu->arch.time_page = NULL;
 | |
| 		}
 | |
| 
 | |
| 		kvm_request_guest_time_update(vcpu);
 | |
| 		break;
 | |
| 	}
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
 | |
| 		return set_msr_mce(vcpu, msr, data);
 | |
| 
 | |
| 	/* Performance counters are not protected by a CPUID bit,
 | |
| 	 * so we should check all of them in the generic path for the sake of
 | |
| 	 * cross vendor migration.
 | |
| 	 * Writing a zero into the event select MSRs disables them,
 | |
| 	 * which we perfectly emulate ;-). Any other value should be at least
 | |
| 	 * reported, some guests depend on them.
 | |
| 	 */
 | |
| 	case MSR_P6_EVNTSEL0:
 | |
| 	case MSR_P6_EVNTSEL1:
 | |
| 	case MSR_K7_EVNTSEL0:
 | |
| 	case MSR_K7_EVNTSEL1:
 | |
| 	case MSR_K7_EVNTSEL2:
 | |
| 	case MSR_K7_EVNTSEL3:
 | |
| 		if (data != 0)
 | |
| 			pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
 | |
| 				"0x%x data 0x%llx\n", msr, data);
 | |
| 		break;
 | |
| 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
 | |
| 	 * so we ignore writes to make it happy.
 | |
| 	 */
 | |
| 	case MSR_P6_PERFCTR0:
 | |
| 	case MSR_P6_PERFCTR1:
 | |
| 	case MSR_K7_PERFCTR0:
 | |
| 	case MSR_K7_PERFCTR1:
 | |
| 	case MSR_K7_PERFCTR2:
 | |
| 	case MSR_K7_PERFCTR3:
 | |
| 		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
 | |
| 			"0x%x data 0x%llx\n", msr, data);
 | |
| 		break;
 | |
| 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
 | |
| 		if (kvm_hv_msr_partition_wide(msr)) {
 | |
| 			int r;
 | |
| 			mutex_lock(&vcpu->kvm->lock);
 | |
| 			r = set_msr_hyperv_pw(vcpu, msr, data);
 | |
| 			mutex_unlock(&vcpu->kvm->lock);
 | |
| 			return r;
 | |
| 		} else
 | |
| 			return set_msr_hyperv(vcpu, msr, data);
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
 | |
| 			return xen_hvm_config(vcpu, data);
 | |
| 		if (!ignore_msrs) {
 | |
| 			pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
 | |
| 				msr, data);
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
 | |
| 				msr, data);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_msr_common);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Reads an msr value (of 'msr_index') into 'pdata'.
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
 | |
| {
 | |
| 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
 | |
| }
 | |
| 
 | |
| static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
 | |
| 
 | |
| 	if (!msr_mtrr_valid(msr))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (msr == MSR_MTRRdefType)
 | |
| 		*pdata = vcpu->arch.mtrr_state.def_type +
 | |
| 			 (vcpu->arch.mtrr_state.enabled << 10);
 | |
| 	else if (msr == MSR_MTRRfix64K_00000)
 | |
| 		*pdata = p[0];
 | |
| 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
 | |
| 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
 | |
| 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
 | |
| 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
 | |
| 	else if (msr == MSR_IA32_CR_PAT)
 | |
| 		*pdata = vcpu->arch.pat;
 | |
| 	else {	/* Variable MTRRs */
 | |
| 		int idx, is_mtrr_mask;
 | |
| 		u64 *pt;
 | |
| 
 | |
| 		idx = (msr - 0x200) / 2;
 | |
| 		is_mtrr_mask = msr - 0x200 - 2 * idx;
 | |
| 		if (!is_mtrr_mask)
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
 | |
| 		else
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
 | |
| 		*pdata = *pt;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 data;
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_P5_MC_ADDR:
 | |
| 	case MSR_IA32_P5_MC_TYPE:
 | |
| 		data = 0;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CAP:
 | |
| 		data = vcpu->arch.mcg_cap;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 		if (!(mcg_cap & MCG_CTL_P))
 | |
| 			return 1;
 | |
| 		data = vcpu->arch.mcg_ctl;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 		data = vcpu->arch.mcg_status;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (msr >= MSR_IA32_MC0_CTL &&
 | |
| 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
 | |
| 			u32 offset = msr - MSR_IA32_MC0_CTL;
 | |
| 			data = vcpu->arch.mce_banks[offset];
 | |
| 			break;
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 data = 0;
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case HV_X64_MSR_GUEST_OS_ID:
 | |
| 		data = kvm->arch.hv_guest_os_id;
 | |
| 		break;
 | |
| 	case HV_X64_MSR_HYPERCALL:
 | |
| 		data = kvm->arch.hv_hypercall;
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 data = 0;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case HV_X64_MSR_VP_INDEX: {
 | |
| 		int r;
 | |
| 		struct kvm_vcpu *v;
 | |
| 		kvm_for_each_vcpu(r, v, vcpu->kvm)
 | |
| 			if (v == vcpu)
 | |
| 				data = r;
 | |
| 		break;
 | |
| 	}
 | |
| 	case HV_X64_MSR_EOI:
 | |
| 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
 | |
| 	case HV_X64_MSR_ICR:
 | |
| 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
 | |
| 	case HV_X64_MSR_TPR:
 | |
| 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
 | |
| 	default:
 | |
| 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 data;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_PLATFORM_ID:
 | |
| 	case MSR_IA32_UCODE_REV:
 | |
| 	case MSR_IA32_EBL_CR_POWERON:
 | |
| 	case MSR_IA32_DEBUGCTLMSR:
 | |
| 	case MSR_IA32_LASTBRANCHFROMIP:
 | |
| 	case MSR_IA32_LASTBRANCHTOIP:
 | |
| 	case MSR_IA32_LASTINTFROMIP:
 | |
| 	case MSR_IA32_LASTINTTOIP:
 | |
| 	case MSR_K8_SYSCFG:
 | |
| 	case MSR_K7_HWCR:
 | |
| 	case MSR_VM_HSAVE_PA:
 | |
| 	case MSR_P6_PERFCTR0:
 | |
| 	case MSR_P6_PERFCTR1:
 | |
| 	case MSR_P6_EVNTSEL0:
 | |
| 	case MSR_P6_EVNTSEL1:
 | |
| 	case MSR_K7_EVNTSEL0:
 | |
| 	case MSR_K7_PERFCTR0:
 | |
| 	case MSR_K8_INT_PENDING_MSG:
 | |
| 	case MSR_AMD64_NB_CFG:
 | |
| 	case MSR_FAM10H_MMIO_CONF_BASE:
 | |
| 		data = 0;
 | |
| 		break;
 | |
| 	case MSR_MTRRcap:
 | |
| 		data = 0x500 | KVM_NR_VAR_MTRR;
 | |
| 		break;
 | |
| 	case 0x200 ... 0x2ff:
 | |
| 		return get_msr_mtrr(vcpu, msr, pdata);
 | |
| 	case 0xcd: /* fsb frequency */
 | |
| 		data = 3;
 | |
| 		break;
 | |
| 	case MSR_IA32_APICBASE:
 | |
| 		data = kvm_get_apic_base(vcpu);
 | |
| 		break;
 | |
| 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
 | |
| 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
 | |
| 		break;
 | |
| 	case MSR_IA32_MISC_ENABLE:
 | |
| 		data = vcpu->arch.ia32_misc_enable_msr;
 | |
| 		break;
 | |
| 	case MSR_IA32_PERF_STATUS:
 | |
| 		/* TSC increment by tick */
 | |
| 		data = 1000ULL;
 | |
| 		/* CPU multiplier */
 | |
| 		data |= (((uint64_t)4ULL) << 40);
 | |
| 		break;
 | |
| 	case MSR_EFER:
 | |
| 		data = vcpu->arch.efer;
 | |
| 		break;
 | |
| 	case MSR_KVM_WALL_CLOCK:
 | |
| 	case MSR_KVM_WALL_CLOCK_NEW:
 | |
| 		data = vcpu->kvm->arch.wall_clock;
 | |
| 		break;
 | |
| 	case MSR_KVM_SYSTEM_TIME:
 | |
| 	case MSR_KVM_SYSTEM_TIME_NEW:
 | |
| 		data = vcpu->arch.time;
 | |
| 		break;
 | |
| 	case MSR_IA32_P5_MC_ADDR:
 | |
| 	case MSR_IA32_P5_MC_TYPE:
 | |
| 	case MSR_IA32_MCG_CAP:
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
 | |
| 		return get_msr_mce(vcpu, msr, pdata);
 | |
| 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
 | |
| 		if (kvm_hv_msr_partition_wide(msr)) {
 | |
| 			int r;
 | |
| 			mutex_lock(&vcpu->kvm->lock);
 | |
| 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
 | |
| 			mutex_unlock(&vcpu->kvm->lock);
 | |
| 			return r;
 | |
| 		} else
 | |
| 			return get_msr_hyperv(vcpu, msr, pdata);
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (!ignore_msrs) {
 | |
| 			pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
 | |
| 			data = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_msr_common);
 | |
| 
 | |
| /*
 | |
|  * Read or write a bunch of msrs. All parameters are kernel addresses.
 | |
|  *
 | |
|  * @return number of msrs set successfully.
 | |
|  */
 | |
| static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
 | |
| 		    struct kvm_msr_entry *entries,
 | |
| 		    int (*do_msr)(struct kvm_vcpu *vcpu,
 | |
| 				  unsigned index, u64 *data))
 | |
| {
 | |
| 	int i, idx;
 | |
| 
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	for (i = 0; i < msrs->nmsrs; ++i)
 | |
| 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
 | |
| 			break;
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read or write a bunch of msrs. Parameters are user addresses.
 | |
|  *
 | |
|  * @return number of msrs set successfully.
 | |
|  */
 | |
| static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
 | |
| 		  int (*do_msr)(struct kvm_vcpu *vcpu,
 | |
| 				unsigned index, u64 *data),
 | |
| 		  int writeback)
 | |
| {
 | |
| 	struct kvm_msrs msrs;
 | |
| 	struct kvm_msr_entry *entries;
 | |
| 	int r, n;
 | |
| 	unsigned size;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
 | |
| 		goto out;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (msrs.nmsrs >= MAX_IO_MSRS)
 | |
| 		goto out;
 | |
| 
 | |
| 	r = -ENOMEM;
 | |
| 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
 | |
| 	entries = kmalloc(size, GFP_KERNEL);
 | |
| 	if (!entries)
 | |
| 		goto out;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(entries, user_msrs->entries, size))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
 | |
| 	if (r < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = n;
 | |
| 
 | |
| out_free:
 | |
| 	kfree(entries);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_dev_ioctl_check_extension(long ext)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	switch (ext) {
 | |
| 	case KVM_CAP_IRQCHIP:
 | |
| 	case KVM_CAP_HLT:
 | |
| 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
 | |
| 	case KVM_CAP_SET_TSS_ADDR:
 | |
| 	case KVM_CAP_EXT_CPUID:
 | |
| 	case KVM_CAP_CLOCKSOURCE:
 | |
| 	case KVM_CAP_PIT:
 | |
| 	case KVM_CAP_NOP_IO_DELAY:
 | |
| 	case KVM_CAP_MP_STATE:
 | |
| 	case KVM_CAP_SYNC_MMU:
 | |
| 	case KVM_CAP_REINJECT_CONTROL:
 | |
| 	case KVM_CAP_IRQ_INJECT_STATUS:
 | |
| 	case KVM_CAP_ASSIGN_DEV_IRQ:
 | |
| 	case KVM_CAP_IRQFD:
 | |
| 	case KVM_CAP_IOEVENTFD:
 | |
| 	case KVM_CAP_PIT2:
 | |
| 	case KVM_CAP_PIT_STATE2:
 | |
| 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
 | |
| 	case KVM_CAP_XEN_HVM:
 | |
| 	case KVM_CAP_ADJUST_CLOCK:
 | |
| 	case KVM_CAP_VCPU_EVENTS:
 | |
| 	case KVM_CAP_HYPERV:
 | |
| 	case KVM_CAP_HYPERV_VAPIC:
 | |
| 	case KVM_CAP_HYPERV_SPIN:
 | |
| 	case KVM_CAP_PCI_SEGMENT:
 | |
| 	case KVM_CAP_DEBUGREGS:
 | |
| 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
 | |
| 	case KVM_CAP_XSAVE:
 | |
| 		r = 1;
 | |
| 		break;
 | |
| 	case KVM_CAP_COALESCED_MMIO:
 | |
| 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 | |
| 		break;
 | |
| 	case KVM_CAP_VAPIC:
 | |
| 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
 | |
| 		break;
 | |
| 	case KVM_CAP_NR_VCPUS:
 | |
| 		r = KVM_MAX_VCPUS;
 | |
| 		break;
 | |
| 	case KVM_CAP_NR_MEMSLOTS:
 | |
| 		r = KVM_MEMORY_SLOTS;
 | |
| 		break;
 | |
| 	case KVM_CAP_PV_MMU:	/* obsolete */
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_IOMMU:
 | |
| 		r = iommu_found();
 | |
| 		break;
 | |
| 	case KVM_CAP_MCE:
 | |
| 		r = KVM_MAX_MCE_BANKS;
 | |
| 		break;
 | |
| 	case KVM_CAP_XCRS:
 | |
| 		r = cpu_has_xsave;
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	return r;
 | |
| 
 | |
| }
 | |
| 
 | |
| long kvm_arch_dev_ioctl(struct file *filp,
 | |
| 			unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	long r;
 | |
| 
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_GET_MSR_INDEX_LIST: {
 | |
| 		struct kvm_msr_list __user *user_msr_list = argp;
 | |
| 		struct kvm_msr_list msr_list;
 | |
| 		unsigned n;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
 | |
| 			goto out;
 | |
| 		n = msr_list.nmsrs;
 | |
| 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
 | |
| 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
 | |
| 			goto out;
 | |
| 		r = -E2BIG;
 | |
| 		if (n < msr_list.nmsrs)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
 | |
| 				 num_msrs_to_save * sizeof(u32)))
 | |
| 			goto out;
 | |
| 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
 | |
| 				 &emulated_msrs,
 | |
| 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_SUPPORTED_CPUID: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
 | |
| 						      cpuid_arg->entries);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
 | |
| 		u64 mce_cap;
 | |
| 
 | |
| 		mce_cap = KVM_MCE_CAP_SUPPORTED;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void wbinvd_ipi(void *garbage)
 | |
| {
 | |
| 	wbinvd();
 | |
| }
 | |
| 
 | |
| static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->kvm->arch.iommu_domain &&
 | |
| 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	/* Address WBINVD may be executed by guest */
 | |
| 	if (need_emulate_wbinvd(vcpu)) {
 | |
| 		if (kvm_x86_ops->has_wbinvd_exit())
 | |
| 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
 | |
| 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
 | |
| 			smp_call_function_single(vcpu->cpu,
 | |
| 					wbinvd_ipi, NULL, 1);
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->vcpu_load(vcpu, cpu);
 | |
| 	if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
 | |
| 		unsigned long khz = cpufreq_quick_get(cpu);
 | |
| 		if (!khz)
 | |
| 			khz = tsc_khz;
 | |
| 		per_cpu(cpu_tsc_khz, cpu) = khz;
 | |
| 	}
 | |
| 	kvm_request_guest_time_update(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_x86_ops->vcpu_put(vcpu);
 | |
| 	kvm_put_guest_fpu(vcpu);
 | |
| }
 | |
| 
 | |
| static int is_efer_nx(void)
 | |
| {
 | |
| 	unsigned long long efer = 0;
 | |
| 
 | |
| 	rdmsrl_safe(MSR_EFER, &efer);
 | |
| 	return efer & EFER_NX;
 | |
| }
 | |
| 
 | |
| static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_cpuid_entry2 *e, *entry;
 | |
| 
 | |
| 	entry = NULL;
 | |
| 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 | |
| 		e = &vcpu->arch.cpuid_entries[i];
 | |
| 		if (e->function == 0x80000001) {
 | |
| 			entry = e;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
 | |
| 		entry->edx &= ~(1 << 20);
 | |
| 		printk(KERN_INFO "kvm: guest NX capability removed\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* when an old userspace process fills a new kernel module */
 | |
| static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_cpuid *cpuid,
 | |
| 				    struct kvm_cpuid_entry __user *entries)
 | |
| {
 | |
| 	int r, i;
 | |
| 	struct kvm_cpuid_entry *cpuid_entries;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 | |
| 		goto out;
 | |
| 	r = -ENOMEM;
 | |
| 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
 | |
| 	if (!cpuid_entries)
 | |
| 		goto out;
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(cpuid_entries, entries,
 | |
| 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
 | |
| 		goto out_free;
 | |
| 	for (i = 0; i < cpuid->nent; i++) {
 | |
| 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
 | |
| 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
 | |
| 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
 | |
| 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
 | |
| 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
 | |
| 		vcpu->arch.cpuid_entries[i].index = 0;
 | |
| 		vcpu->arch.cpuid_entries[i].flags = 0;
 | |
| 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
 | |
| 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
 | |
| 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
 | |
| 	}
 | |
| 	vcpu->arch.cpuid_nent = cpuid->nent;
 | |
| 	cpuid_fix_nx_cap(vcpu);
 | |
| 	r = 0;
 | |
| 	kvm_apic_set_version(vcpu);
 | |
| 	kvm_x86_ops->cpuid_update(vcpu);
 | |
| 	update_cpuid(vcpu);
 | |
| 
 | |
| out_free:
 | |
| 	vfree(cpuid_entries);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 | |
| 				     struct kvm_cpuid2 *cpuid,
 | |
| 				     struct kvm_cpuid_entry2 __user *entries)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 | |
| 		goto out;
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
 | |
| 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
 | |
| 		goto out;
 | |
| 	vcpu->arch.cpuid_nent = cpuid->nent;
 | |
| 	kvm_apic_set_version(vcpu);
 | |
| 	kvm_x86_ops->cpuid_update(vcpu);
 | |
| 	update_cpuid(vcpu);
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 | |
| 				     struct kvm_cpuid2 *cpuid,
 | |
| 				     struct kvm_cpuid_entry2 __user *entries)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (cpuid->nent < vcpu->arch.cpuid_nent)
 | |
| 		goto out;
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
 | |
| 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 | |
| 		goto out;
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	cpuid->nent = vcpu->arch.cpuid_nent;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 | |
| 			   u32 index)
 | |
| {
 | |
| 	entry->function = function;
 | |
| 	entry->index = index;
 | |
| 	cpuid_count(entry->function, entry->index,
 | |
| 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 | |
| 	entry->flags = 0;
 | |
| }
 | |
| 
 | |
| #define F(x) bit(X86_FEATURE_##x)
 | |
| 
 | |
| static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 | |
| 			 u32 index, int *nent, int maxnent)
 | |
| {
 | |
| 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
 | |
| 				? F(GBPAGES) : 0;
 | |
| 	unsigned f_lm = F(LM);
 | |
| #else
 | |
| 	unsigned f_gbpages = 0;
 | |
| 	unsigned f_lm = 0;
 | |
| #endif
 | |
| 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
 | |
| 
 | |
| 	/* cpuid 1.edx */
 | |
| 	const u32 kvm_supported_word0_x86_features =
 | |
| 		F(FPU) | F(VME) | F(DE) | F(PSE) |
 | |
| 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 | |
| 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 | |
| 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 | |
| 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
 | |
| 		0 /* Reserved, DS, ACPI */ | F(MMX) |
 | |
| 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 | |
| 		0 /* HTT, TM, Reserved, PBE */;
 | |
| 	/* cpuid 0x80000001.edx */
 | |
| 	const u32 kvm_supported_word1_x86_features =
 | |
| 		F(FPU) | F(VME) | F(DE) | F(PSE) |
 | |
| 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 | |
| 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 | |
| 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 | |
| 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 | |
| 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 | |
| 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
 | |
| 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
 | |
| 	/* cpuid 1.ecx */
 | |
| 	const u32 kvm_supported_word4_x86_features =
 | |
| 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 | |
| 		0 /* DS-CPL, VMX, SMX, EST */ |
 | |
| 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 | |
| 		0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
 | |
| 		0 /* Reserved, DCA */ | F(XMM4_1) |
 | |
| 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 | |
| 		0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
 | |
| 	/* cpuid 0x80000001.ecx */
 | |
| 	const u32 kvm_supported_word6_x86_features =
 | |
| 		F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
 | |
| 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 | |
| 		F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
 | |
| 		0 /* SKINIT */ | 0 /* WDT */;
 | |
| 
 | |
| 	/* all calls to cpuid_count() should be made on the same cpu */
 | |
| 	get_cpu();
 | |
| 	do_cpuid_1_ent(entry, function, index);
 | |
| 	++*nent;
 | |
| 
 | |
| 	switch (function) {
 | |
| 	case 0:
 | |
| 		entry->eax = min(entry->eax, (u32)0xd);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		entry->edx &= kvm_supported_word0_x86_features;
 | |
| 		entry->ecx &= kvm_supported_word4_x86_features;
 | |
| 		/* we support x2apic emulation even if host does not support
 | |
| 		 * it since we emulate x2apic in software */
 | |
| 		entry->ecx |= F(X2APIC);
 | |
| 		break;
 | |
| 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
 | |
| 	 * may return different values. This forces us to get_cpu() before
 | |
| 	 * issuing the first command, and also to emulate this annoying behavior
 | |
| 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
 | |
| 	case 2: {
 | |
| 		int t, times = entry->eax & 0xff;
 | |
| 
 | |
| 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
 | |
| 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 | |
| 		for (t = 1; t < times && *nent < maxnent; ++t) {
 | |
| 			do_cpuid_1_ent(&entry[t], function, 0);
 | |
| 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
 | |
| 			++*nent;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	/* function 4 and 0xb have additional index. */
 | |
| 	case 4: {
 | |
| 		int i, cache_type;
 | |
| 
 | |
| 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 		/* read more entries until cache_type is zero */
 | |
| 		for (i = 1; *nent < maxnent; ++i) {
 | |
| 			cache_type = entry[i - 1].eax & 0x1f;
 | |
| 			if (!cache_type)
 | |
| 				break;
 | |
| 			do_cpuid_1_ent(&entry[i], function, i);
 | |
| 			entry[i].flags |=
 | |
| 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 			++*nent;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case 0xb: {
 | |
| 		int i, level_type;
 | |
| 
 | |
| 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 		/* read more entries until level_type is zero */
 | |
| 		for (i = 1; *nent < maxnent; ++i) {
 | |
| 			level_type = entry[i - 1].ecx & 0xff00;
 | |
| 			if (!level_type)
 | |
| 				break;
 | |
| 			do_cpuid_1_ent(&entry[i], function, i);
 | |
| 			entry[i].flags |=
 | |
| 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 			++*nent;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case 0xd: {
 | |
| 		int i;
 | |
| 
 | |
| 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 		for (i = 1; *nent < maxnent; ++i) {
 | |
| 			if (entry[i - 1].eax == 0 && i != 2)
 | |
| 				break;
 | |
| 			do_cpuid_1_ent(&entry[i], function, i);
 | |
| 			entry[i].flags |=
 | |
| 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 			++*nent;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_CPUID_SIGNATURE: {
 | |
| 		char signature[12] = "KVMKVMKVM\0\0";
 | |
| 		u32 *sigptr = (u32 *)signature;
 | |
| 		entry->eax = 0;
 | |
| 		entry->ebx = sigptr[0];
 | |
| 		entry->ecx = sigptr[1];
 | |
| 		entry->edx = sigptr[2];
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_CPUID_FEATURES:
 | |
| 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 | |
| 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
 | |
| 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
 | |
| 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
 | |
| 		entry->ebx = 0;
 | |
| 		entry->ecx = 0;
 | |
| 		entry->edx = 0;
 | |
| 		break;
 | |
| 	case 0x80000000:
 | |
| 		entry->eax = min(entry->eax, 0x8000001a);
 | |
| 		break;
 | |
| 	case 0x80000001:
 | |
| 		entry->edx &= kvm_supported_word1_x86_features;
 | |
| 		entry->ecx &= kvm_supported_word6_x86_features;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->set_supported_cpuid(function, entry);
 | |
| 
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| #undef F
 | |
| 
 | |
| static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
 | |
| 				     struct kvm_cpuid_entry2 __user *entries)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *cpuid_entries;
 | |
| 	int limit, nent = 0, r = -E2BIG;
 | |
| 	u32 func;
 | |
| 
 | |
| 	if (cpuid->nent < 1)
 | |
| 		goto out;
 | |
| 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 | |
| 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 | |
| 	r = -ENOMEM;
 | |
| 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
 | |
| 	if (!cpuid_entries)
 | |
| 		goto out;
 | |
| 
 | |
| 	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
 | |
| 	limit = cpuid_entries[0].eax;
 | |
| 	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
 | |
| 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
 | |
| 			     &nent, cpuid->nent);
 | |
| 	r = -E2BIG;
 | |
| 	if (nent >= cpuid->nent)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
 | |
| 	limit = cpuid_entries[nent - 1].eax;
 | |
| 	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
 | |
| 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
 | |
| 			     &nent, cpuid->nent);
 | |
| 
 | |
| 
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (nent >= cpuid->nent)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
 | |
| 		     cpuid->nent);
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (nent >= cpuid->nent)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
 | |
| 		     cpuid->nent);
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (nent >= cpuid->nent)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_to_user(entries, cpuid_entries,
 | |
| 			 nent * sizeof(struct kvm_cpuid_entry2)))
 | |
| 		goto out_free;
 | |
| 	cpuid->nent = nent;
 | |
| 	r = 0;
 | |
| 
 | |
| out_free:
 | |
| 	vfree(cpuid_entries);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_lapic_state *s)
 | |
| {
 | |
| 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_lapic_state *s)
 | |
| {
 | |
| 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
 | |
| 	kvm_apic_post_state_restore(vcpu);
 | |
| 	update_cr8_intercept(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_interrupt *irq)
 | |
| {
 | |
| 	if (irq->irq < 0 || irq->irq >= 256)
 | |
| 		return -EINVAL;
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	kvm_queue_interrupt(vcpu, irq->irq, false);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_inject_nmi(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
 | |
| 					   struct kvm_tpr_access_ctl *tac)
 | |
| {
 | |
| 	if (tac->flags)
 | |
| 		return -EINVAL;
 | |
| 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
 | |
| 					u64 mcg_cap)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned bank_num = mcg_cap & 0xff, bank;
 | |
| 
 | |
| 	r = -EINVAL;
 | |
| 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
 | |
| 		goto out;
 | |
| 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
 | |
| 		goto out;
 | |
| 	r = 0;
 | |
| 	vcpu->arch.mcg_cap = mcg_cap;
 | |
| 	/* Init IA32_MCG_CTL to all 1s */
 | |
| 	if (mcg_cap & MCG_CTL_P)
 | |
| 		vcpu->arch.mcg_ctl = ~(u64)0;
 | |
| 	/* Init IA32_MCi_CTL to all 1s */
 | |
| 	for (bank = 0; bank < bank_num; bank++)
 | |
| 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
 | |
| 				      struct kvm_x86_mce *mce)
 | |
| {
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 	u64 *banks = vcpu->arch.mce_banks;
 | |
| 
 | |
| 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
 | |
| 	 * reporting is disabled
 | |
| 	 */
 | |
| 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
 | |
| 	    vcpu->arch.mcg_ctl != ~(u64)0)
 | |
| 		return 0;
 | |
| 	banks += 4 * mce->bank;
 | |
| 	/*
 | |
| 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
 | |
| 	 * reporting is disabled for the bank
 | |
| 	 */
 | |
| 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
 | |
| 		return 0;
 | |
| 	if (mce->status & MCI_STATUS_UC) {
 | |
| 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
 | |
| 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
 | |
| 			printk(KERN_DEBUG "kvm: set_mce: "
 | |
| 			       "injects mce exception while "
 | |
| 			       "previous one is in progress!\n");
 | |
| 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (banks[1] & MCI_STATUS_VAL)
 | |
| 			mce->status |= MCI_STATUS_OVER;
 | |
| 		banks[2] = mce->addr;
 | |
| 		banks[3] = mce->misc;
 | |
| 		vcpu->arch.mcg_status = mce->mcg_status;
 | |
| 		banks[1] = mce->status;
 | |
| 		kvm_queue_exception(vcpu, MC_VECTOR);
 | |
| 	} else if (!(banks[1] & MCI_STATUS_VAL)
 | |
| 		   || !(banks[1] & MCI_STATUS_UC)) {
 | |
| 		if (banks[1] & MCI_STATUS_VAL)
 | |
| 			mce->status |= MCI_STATUS_OVER;
 | |
| 		banks[2] = mce->addr;
 | |
| 		banks[3] = mce->misc;
 | |
| 		banks[1] = mce->status;
 | |
| 	} else
 | |
| 		banks[1] |= MCI_STATUS_OVER;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
 | |
| 					       struct kvm_vcpu_events *events)
 | |
| {
 | |
| 	events->exception.injected =
 | |
| 		vcpu->arch.exception.pending &&
 | |
| 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
 | |
| 	events->exception.nr = vcpu->arch.exception.nr;
 | |
| 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
 | |
| 	events->exception.error_code = vcpu->arch.exception.error_code;
 | |
| 
 | |
| 	events->interrupt.injected =
 | |
| 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
 | |
| 	events->interrupt.nr = vcpu->arch.interrupt.nr;
 | |
| 	events->interrupt.soft = 0;
 | |
| 	events->interrupt.shadow =
 | |
| 		kvm_x86_ops->get_interrupt_shadow(vcpu,
 | |
| 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
 | |
| 
 | |
| 	events->nmi.injected = vcpu->arch.nmi_injected;
 | |
| 	events->nmi.pending = vcpu->arch.nmi_pending;
 | |
| 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
 | |
| 
 | |
| 	events->sipi_vector = vcpu->arch.sipi_vector;
 | |
| 
 | |
| 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
 | |
| 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
 | |
| 			 | KVM_VCPUEVENT_VALID_SHADOW);
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
 | |
| 					      struct kvm_vcpu_events *events)
 | |
| {
 | |
| 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
 | |
| 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
 | |
| 			      | KVM_VCPUEVENT_VALID_SHADOW))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vcpu->arch.exception.pending = events->exception.injected;
 | |
| 	vcpu->arch.exception.nr = events->exception.nr;
 | |
| 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
 | |
| 	vcpu->arch.exception.error_code = events->exception.error_code;
 | |
| 
 | |
| 	vcpu->arch.interrupt.pending = events->interrupt.injected;
 | |
| 	vcpu->arch.interrupt.nr = events->interrupt.nr;
 | |
| 	vcpu->arch.interrupt.soft = events->interrupt.soft;
 | |
| 	if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_pic_clear_isr_ack(vcpu->kvm);
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
 | |
| 		kvm_x86_ops->set_interrupt_shadow(vcpu,
 | |
| 						  events->interrupt.shadow);
 | |
| 
 | |
| 	vcpu->arch.nmi_injected = events->nmi.injected;
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
 | |
| 		vcpu->arch.nmi_pending = events->nmi.pending;
 | |
| 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
 | |
| 
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
 | |
| 		vcpu->arch.sipi_vector = events->sipi_vector;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
 | |
| 					     struct kvm_debugregs *dbgregs)
 | |
| {
 | |
| 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
 | |
| 	dbgregs->dr6 = vcpu->arch.dr6;
 | |
| 	dbgregs->dr7 = vcpu->arch.dr7;
 | |
| 	dbgregs->flags = 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
 | |
| 					    struct kvm_debugregs *dbgregs)
 | |
| {
 | |
| 	if (dbgregs->flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
 | |
| 	vcpu->arch.dr6 = dbgregs->dr6;
 | |
| 	vcpu->arch.dr7 = dbgregs->dr7;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
 | |
| 					 struct kvm_xsave *guest_xsave)
 | |
| {
 | |
| 	if (cpu_has_xsave)
 | |
| 		memcpy(guest_xsave->region,
 | |
| 			&vcpu->arch.guest_fpu.state->xsave,
 | |
| 			sizeof(struct xsave_struct));
 | |
| 	else {
 | |
| 		memcpy(guest_xsave->region,
 | |
| 			&vcpu->arch.guest_fpu.state->fxsave,
 | |
| 			sizeof(struct i387_fxsave_struct));
 | |
| 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
 | |
| 			XSTATE_FPSSE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_xsave *guest_xsave)
 | |
| {
 | |
| 	u64 xstate_bv =
 | |
| 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
 | |
| 
 | |
| 	if (cpu_has_xsave)
 | |
| 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
 | |
| 			guest_xsave->region, sizeof(struct xsave_struct));
 | |
| 	else {
 | |
| 		if (xstate_bv & ~XSTATE_FPSSE)
 | |
| 			return -EINVAL;
 | |
| 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
 | |
| 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_xcrs *guest_xcrs)
 | |
| {
 | |
| 	if (!cpu_has_xsave) {
 | |
| 		guest_xcrs->nr_xcrs = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	guest_xcrs->nr_xcrs = 1;
 | |
| 	guest_xcrs->flags = 0;
 | |
| 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
 | |
| 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
 | |
| 				       struct kvm_xcrs *guest_xcrs)
 | |
| {
 | |
| 	int i, r = 0;
 | |
| 
 | |
| 	if (!cpu_has_xsave)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
 | |
| 		/* Only support XCR0 currently */
 | |
| 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
 | |
| 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
 | |
| 				guest_xcrs->xcrs[0].value);
 | |
| 			break;
 | |
| 		}
 | |
| 	if (r)
 | |
| 		r = -EINVAL;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| long kvm_arch_vcpu_ioctl(struct file *filp,
 | |
| 			 unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = filp->private_data;
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	int r;
 | |
| 	union {
 | |
| 		struct kvm_lapic_state *lapic;
 | |
| 		struct kvm_xsave *xsave;
 | |
| 		struct kvm_xcrs *xcrs;
 | |
| 		void *buffer;
 | |
| 	} u;
 | |
| 
 | |
| 	u.buffer = NULL;
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_GET_LAPIC: {
 | |
| 		r = -EINVAL;
 | |
| 		if (!vcpu->arch.apic)
 | |
| 			goto out;
 | |
| 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
 | |
| 
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.lapic)
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_LAPIC: {
 | |
| 		r = -EINVAL;
 | |
| 		if (!vcpu->arch.apic)
 | |
| 			goto out;
 | |
| 		u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.lapic)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_INTERRUPT: {
 | |
| 		struct kvm_interrupt irq;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&irq, argp, sizeof irq))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_NMI: {
 | |
| 		r = kvm_vcpu_ioctl_nmi(vcpu);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CPUID: {
 | |
| 		struct kvm_cpuid __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CPUID2: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
 | |
| 					      cpuid_arg->entries);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_CPUID2: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
 | |
| 					      cpuid_arg->entries);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_MSRS:
 | |
| 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
 | |
| 		break;
 | |
| 	case KVM_SET_MSRS:
 | |
| 		r = msr_io(vcpu, argp, do_set_msr, 0);
 | |
| 		break;
 | |
| 	case KVM_TPR_ACCESS_REPORTING: {
 | |
| 		struct kvm_tpr_access_ctl tac;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&tac, argp, sizeof tac))
 | |
| 			goto out;
 | |
| 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &tac, sizeof tac))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	};
 | |
| 	case KVM_SET_VAPIC_ADDR: {
 | |
| 		struct kvm_vapic_addr va;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (!irqchip_in_kernel(vcpu->kvm))
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&va, argp, sizeof va))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_SETUP_MCE: {
 | |
| 		u64 mcg_cap;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_SET_MCE: {
 | |
| 		struct kvm_x86_mce mce;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&mce, argp, sizeof mce))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_VCPU_EVENTS: {
 | |
| 		struct kvm_vcpu_events events;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_VCPU_EVENTS: {
 | |
| 		struct kvm_vcpu_events events;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
 | |
| 			break;
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_DEBUGREGS: {
 | |
| 		struct kvm_debugregs dbgregs;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &dbgregs,
 | |
| 				 sizeof(struct kvm_debugregs)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_DEBUGREGS: {
 | |
| 		struct kvm_debugregs dbgregs;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&dbgregs, argp,
 | |
| 				   sizeof(struct kvm_debugregs)))
 | |
| 			break;
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_XSAVE: {
 | |
| 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.xsave)
 | |
| 			break;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_XSAVE: {
 | |
| 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.xsave)
 | |
| 			break;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
 | |
| 			break;
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_XCRS: {
 | |
| 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.xcrs)
 | |
| 			break;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.xcrs,
 | |
| 				 sizeof(struct kvm_xcrs)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_XCRS: {
 | |
| 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.xcrs)
 | |
| 			break;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(u.xcrs, argp,
 | |
| 				   sizeof(struct kvm_xcrs)))
 | |
| 			break;
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	kfree(u.buffer);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
 | |
| 		return -1;
 | |
| 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
 | |
| 					      u64 ident_addr)
 | |
| {
 | |
| 	kvm->arch.ept_identity_map_addr = ident_addr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
 | |
| 					  u32 kvm_nr_mmu_pages)
 | |
| {
 | |
| 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&kvm->slots_lock);
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
 | |
| 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
 | |
| 
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 	mutex_unlock(&kvm->slots_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
 | |
| {
 | |
| 	return kvm->arch.n_alloc_mmu_pages;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = 0;
 | |
| 	switch (chip->chip_id) {
 | |
| 	case KVM_IRQCHIP_PIC_MASTER:
 | |
| 		memcpy(&chip->chip.pic,
 | |
| 			&pic_irqchip(kvm)->pics[0],
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_PIC_SLAVE:
 | |
| 		memcpy(&chip->chip.pic,
 | |
| 			&pic_irqchip(kvm)->pics[1],
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_IOAPIC:
 | |
| 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = 0;
 | |
| 	switch (chip->chip_id) {
 | |
| 	case KVM_IRQCHIP_PIC_MASTER:
 | |
| 		raw_spin_lock(&pic_irqchip(kvm)->lock);
 | |
| 		memcpy(&pic_irqchip(kvm)->pics[0],
 | |
| 			&chip->chip.pic,
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		raw_spin_unlock(&pic_irqchip(kvm)->lock);
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_PIC_SLAVE:
 | |
| 		raw_spin_lock(&pic_irqchip(kvm)->lock);
 | |
| 		memcpy(&pic_irqchip(kvm)->pics[1],
 | |
| 			&chip->chip.pic,
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		raw_spin_unlock(&pic_irqchip(kvm)->lock);
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_IOAPIC:
 | |
| 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	kvm_pic_update_irq(pic_irqchip(kvm));
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
 | |
| 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
 | |
| 		sizeof(ps->channels));
 | |
| 	ps->flags = kvm->arch.vpit->pit_state.flags;
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
 | |
| {
 | |
| 	int r = 0, start = 0;
 | |
| 	u32 prev_legacy, cur_legacy;
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
 | |
| 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
 | |
| 	if (!prev_legacy && cur_legacy)
 | |
| 		start = 1;
 | |
| 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
 | |
| 	       sizeof(kvm->arch.vpit->pit_state.channels));
 | |
| 	kvm->arch.vpit->pit_state.flags = ps->flags;
 | |
| 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_reinject(struct kvm *kvm,
 | |
| 				 struct kvm_reinject_control *control)
 | |
| {
 | |
| 	if (!kvm->arch.vpit)
 | |
| 		return -ENXIO;
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get (and clear) the dirty memory log for a memory slot.
 | |
|  */
 | |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
 | |
| 				      struct kvm_dirty_log *log)
 | |
| {
 | |
| 	int r, i;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	unsigned long n;
 | |
| 	unsigned long is_dirty = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->slots_lock);
 | |
| 
 | |
| 	r = -EINVAL;
 | |
| 	if (log->slot >= KVM_MEMORY_SLOTS)
 | |
| 		goto out;
 | |
| 
 | |
| 	memslot = &kvm->memslots->memslots[log->slot];
 | |
| 	r = -ENOENT;
 | |
| 	if (!memslot->dirty_bitmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	n = kvm_dirty_bitmap_bytes(memslot);
 | |
| 
 | |
| 	for (i = 0; !is_dirty && i < n/sizeof(long); i++)
 | |
| 		is_dirty = memslot->dirty_bitmap[i];
 | |
| 
 | |
| 	/* If nothing is dirty, don't bother messing with page tables. */
 | |
| 	if (is_dirty) {
 | |
| 		struct kvm_memslots *slots, *old_slots;
 | |
| 		unsigned long *dirty_bitmap;
 | |
| 
 | |
| 		spin_lock(&kvm->mmu_lock);
 | |
| 		kvm_mmu_slot_remove_write_access(kvm, log->slot);
 | |
| 		spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 		r = -ENOMEM;
 | |
| 		dirty_bitmap = vmalloc(n);
 | |
| 		if (!dirty_bitmap)
 | |
| 			goto out;
 | |
| 		memset(dirty_bitmap, 0, n);
 | |
| 
 | |
| 		r = -ENOMEM;
 | |
| 		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 | |
| 		if (!slots) {
 | |
| 			vfree(dirty_bitmap);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
 | |
| 		slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
 | |
| 
 | |
| 		old_slots = kvm->memslots;
 | |
| 		rcu_assign_pointer(kvm->memslots, slots);
 | |
| 		synchronize_srcu_expedited(&kvm->srcu);
 | |
| 		dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
 | |
| 		kfree(old_slots);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
 | |
| 			vfree(dirty_bitmap);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		vfree(dirty_bitmap);
 | |
| 	} else {
 | |
| 		r = -EFAULT;
 | |
| 		if (clear_user(log->dirty_bitmap, n))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = 0;
 | |
| out:
 | |
| 	mutex_unlock(&kvm->slots_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| long kvm_arch_vm_ioctl(struct file *filp,
 | |
| 		       unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	struct kvm *kvm = filp->private_data;
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	int r = -ENOTTY;
 | |
| 	/*
 | |
| 	 * This union makes it completely explicit to gcc-3.x
 | |
| 	 * that these two variables' stack usage should be
 | |
| 	 * combined, not added together.
 | |
| 	 */
 | |
| 	union {
 | |
| 		struct kvm_pit_state ps;
 | |
| 		struct kvm_pit_state2 ps2;
 | |
| 		struct kvm_pit_config pit_config;
 | |
| 	} u;
 | |
| 
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_SET_TSS_ADDR:
 | |
| 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	case KVM_SET_IDENTITY_MAP_ADDR: {
 | |
| 		u64 ident_addr;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_NR_MMU_PAGES:
 | |
| 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	case KVM_GET_NR_MMU_PAGES:
 | |
| 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
 | |
| 		break;
 | |
| 	case KVM_CREATE_IRQCHIP: {
 | |
| 		struct kvm_pic *vpic;
 | |
| 
 | |
| 		mutex_lock(&kvm->lock);
 | |
| 		r = -EEXIST;
 | |
| 		if (kvm->arch.vpic)
 | |
| 			goto create_irqchip_unlock;
 | |
| 		r = -ENOMEM;
 | |
| 		vpic = kvm_create_pic(kvm);
 | |
| 		if (vpic) {
 | |
| 			r = kvm_ioapic_init(kvm);
 | |
| 			if (r) {
 | |
| 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
 | |
| 							  &vpic->dev);
 | |
| 				kfree(vpic);
 | |
| 				goto create_irqchip_unlock;
 | |
| 			}
 | |
| 		} else
 | |
| 			goto create_irqchip_unlock;
 | |
| 		smp_wmb();
 | |
| 		kvm->arch.vpic = vpic;
 | |
| 		smp_wmb();
 | |
| 		r = kvm_setup_default_irq_routing(kvm);
 | |
| 		if (r) {
 | |
| 			mutex_lock(&kvm->irq_lock);
 | |
| 			kvm_ioapic_destroy(kvm);
 | |
| 			kvm_destroy_pic(kvm);
 | |
| 			mutex_unlock(&kvm->irq_lock);
 | |
| 		}
 | |
| 	create_irqchip_unlock:
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_CREATE_PIT:
 | |
| 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
 | |
| 		goto create_pit;
 | |
| 	case KVM_CREATE_PIT2:
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.pit_config, argp,
 | |
| 				   sizeof(struct kvm_pit_config)))
 | |
| 			goto out;
 | |
| 	create_pit:
 | |
| 		mutex_lock(&kvm->slots_lock);
 | |
| 		r = -EEXIST;
 | |
| 		if (kvm->arch.vpit)
 | |
| 			goto create_pit_unlock;
 | |
| 		r = -ENOMEM;
 | |
| 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
 | |
| 		if (kvm->arch.vpit)
 | |
| 			r = 0;
 | |
| 	create_pit_unlock:
 | |
| 		mutex_unlock(&kvm->slots_lock);
 | |
| 		break;
 | |
| 	case KVM_IRQ_LINE_STATUS:
 | |
| 	case KVM_IRQ_LINE: {
 | |
| 		struct kvm_irq_level irq_event;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (irqchip_in_kernel(kvm)) {
 | |
| 			__s32 status;
 | |
| 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
 | |
| 					irq_event.irq, irq_event.level);
 | |
| 			if (ioctl == KVM_IRQ_LINE_STATUS) {
 | |
| 				r = -EFAULT;
 | |
| 				irq_event.status = status;
 | |
| 				if (copy_to_user(argp, &irq_event,
 | |
| 							sizeof irq_event))
 | |
| 					goto out;
 | |
| 			}
 | |
| 			r = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_IRQCHIP: {
 | |
| 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
 | |
| 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
 | |
| 
 | |
| 		r = -ENOMEM;
 | |
| 		if (!chip)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(chip, argp, sizeof *chip))
 | |
| 			goto get_irqchip_out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!irqchip_in_kernel(kvm))
 | |
| 			goto get_irqchip_out;
 | |
| 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
 | |
| 		if (r)
 | |
| 			goto get_irqchip_out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, chip, sizeof *chip))
 | |
| 			goto get_irqchip_out;
 | |
| 		r = 0;
 | |
| 	get_irqchip_out:
 | |
| 		kfree(chip);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_IRQCHIP: {
 | |
| 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
 | |
| 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
 | |
| 
 | |
| 		r = -ENOMEM;
 | |
| 		if (!chip)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(chip, argp, sizeof *chip))
 | |
| 			goto set_irqchip_out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!irqchip_in_kernel(kvm))
 | |
| 			goto set_irqchip_out;
 | |
| 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
 | |
| 		if (r)
 | |
| 			goto set_irqchip_out;
 | |
| 		r = 0;
 | |
| 	set_irqchip_out:
 | |
| 		kfree(chip);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_PIT: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_PIT: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_PIT2: {
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_PIT2: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_REINJECT_CONTROL: {
 | |
| 		struct kvm_reinject_control control;
 | |
| 		r =  -EFAULT;
 | |
| 		if (copy_from_user(&control, argp, sizeof(control)))
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_reinject(kvm, &control);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_XEN_HVM_CONFIG: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
 | |
| 				   sizeof(struct kvm_xen_hvm_config)))
 | |
| 			goto out;
 | |
| 		r = -EINVAL;
 | |
| 		if (kvm->arch.xen_hvm_config.flags)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CLOCK: {
 | |
| 		struct timespec now;
 | |
| 		struct kvm_clock_data user_ns;
 | |
| 		u64 now_ns;
 | |
| 		s64 delta;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
 | |
| 			goto out;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (user_ns.flags)
 | |
| 			goto out;
 | |
| 
 | |
| 		r = 0;
 | |
| 		ktime_get_ts(&now);
 | |
| 		now_ns = timespec_to_ns(&now);
 | |
| 		delta = user_ns.clock - now_ns;
 | |
| 		kvm->arch.kvmclock_offset = delta;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_CLOCK: {
 | |
| 		struct timespec now;
 | |
| 		struct kvm_clock_data user_ns;
 | |
| 		u64 now_ns;
 | |
| 
 | |
| 		ktime_get_ts(&now);
 | |
| 		now_ns = timespec_to_ns(&now);
 | |
| 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
 | |
| 		user_ns.flags = 0;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void kvm_init_msr_list(void)
 | |
| {
 | |
| 	u32 dummy[2];
 | |
| 	unsigned i, j;
 | |
| 
 | |
| 	/* skip the first msrs in the list. KVM-specific */
 | |
| 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
 | |
| 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
 | |
| 			continue;
 | |
| 		if (j < i)
 | |
| 			msrs_to_save[j] = msrs_to_save[i];
 | |
| 		j++;
 | |
| 	}
 | |
| 	num_msrs_to_save = j;
 | |
| }
 | |
| 
 | |
| static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
 | |
| 			   const void *v)
 | |
| {
 | |
| 	if (vcpu->arch.apic &&
 | |
| 	    !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
 | |
| 		return 0;
 | |
| 
 | |
| 	return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
 | |
| }
 | |
| 
 | |
| static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
 | |
| {
 | |
| 	if (vcpu->arch.apic &&
 | |
| 	    !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
 | |
| 		return 0;
 | |
| 
 | |
| 	return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
 | |
| }
 | |
| 
 | |
| static void kvm_set_segment(struct kvm_vcpu *vcpu,
 | |
| 			struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	kvm_x86_ops->set_segment(vcpu, var, seg);
 | |
| }
 | |
| 
 | |
| void kvm_get_segment(struct kvm_vcpu *vcpu,
 | |
| 		     struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	kvm_x86_ops->get_segment(vcpu, var, seg);
 | |
| }
 | |
| 
 | |
| gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
 | |
| {
 | |
| 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
 | |
| }
 | |
| 
 | |
|  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
 | |
| {
 | |
| 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	access |= PFERR_FETCH_MASK;
 | |
| 	return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
 | |
| }
 | |
| 
 | |
| gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
 | |
| {
 | |
| 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	access |= PFERR_WRITE_MASK;
 | |
| 	return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
 | |
| }
 | |
| 
 | |
| /* uses this to access any guest's mapped memory without checking CPL */
 | |
| gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
 | |
| {
 | |
| 	return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
 | |
| }
 | |
| 
 | |
| static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
 | |
| 				      struct kvm_vcpu *vcpu, u32 access,
 | |
| 				      u32 *error)
 | |
| {
 | |
| 	void *data = val;
 | |
| 	int r = X86EMUL_CONTINUE;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
 | |
| 		unsigned offset = addr & (PAGE_SIZE-1);
 | |
| 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
 | |
| 		int ret;
 | |
| 
 | |
| 		if (gpa == UNMAPPED_GVA) {
 | |
| 			r = X86EMUL_PROPAGATE_FAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
 | |
| 		if (ret < 0) {
 | |
| 			r = X86EMUL_IO_NEEDED;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		bytes -= toread;
 | |
| 		data += toread;
 | |
| 		addr += toread;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /* used for instruction fetching */
 | |
| static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
 | |
| 				struct kvm_vcpu *vcpu, u32 *error)
 | |
| {
 | |
| 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
 | |
| 					  access | PFERR_FETCH_MASK, error);
 | |
| }
 | |
| 
 | |
| static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
 | |
| 			       struct kvm_vcpu *vcpu, u32 *error)
 | |
| {
 | |
| 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
 | |
| 					  error);
 | |
| }
 | |
| 
 | |
| static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
 | |
| 			       struct kvm_vcpu *vcpu, u32 *error)
 | |
| {
 | |
| 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
 | |
| }
 | |
| 
 | |
| static int kvm_write_guest_virt_system(gva_t addr, void *val,
 | |
| 				       unsigned int bytes,
 | |
| 				       struct kvm_vcpu *vcpu,
 | |
| 				       u32 *error)
 | |
| {
 | |
| 	void *data = val;
 | |
| 	int r = X86EMUL_CONTINUE;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		gpa_t gpa =  vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
 | |
| 						       PFERR_WRITE_MASK, error);
 | |
| 		unsigned offset = addr & (PAGE_SIZE-1);
 | |
| 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
 | |
| 		int ret;
 | |
| 
 | |
| 		if (gpa == UNMAPPED_GVA) {
 | |
| 			r = X86EMUL_PROPAGATE_FAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
 | |
| 		if (ret < 0) {
 | |
| 			r = X86EMUL_IO_NEEDED;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		bytes -= towrite;
 | |
| 		data += towrite;
 | |
| 		addr += towrite;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int emulator_read_emulated(unsigned long addr,
 | |
| 				  void *val,
 | |
| 				  unsigned int bytes,
 | |
| 				  unsigned int *error_code,
 | |
| 				  struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	gpa_t                 gpa;
 | |
| 
 | |
| 	if (vcpu->mmio_read_completed) {
 | |
| 		memcpy(val, vcpu->mmio_data, bytes);
 | |
| 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
 | |
| 			       vcpu->mmio_phys_addr, *(u64 *)val);
 | |
| 		vcpu->mmio_read_completed = 0;
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 	}
 | |
| 
 | |
| 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
 | |
| 
 | |
| 	if (gpa == UNMAPPED_GVA)
 | |
| 		return X86EMUL_PROPAGATE_FAULT;
 | |
| 
 | |
| 	/* For APIC access vmexit */
 | |
| 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
 | |
| 		goto mmio;
 | |
| 
 | |
| 	if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
 | |
| 				== X86EMUL_CONTINUE)
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| mmio:
 | |
| 	/*
 | |
| 	 * Is this MMIO handled locally?
 | |
| 	 */
 | |
| 	if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
 | |
| 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
 | |
| 
 | |
| 	vcpu->mmio_needed = 1;
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
 | |
| 	vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
 | |
| 	vcpu->run->mmio.len = vcpu->mmio_size = bytes;
 | |
| 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
 | |
| 
 | |
| 	return X86EMUL_IO_NEEDED;
 | |
| }
 | |
| 
 | |
| int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			  const void *val, int bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
 | |
| 	if (ret < 0)
 | |
| 		return 0;
 | |
| 	kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int emulator_write_emulated_onepage(unsigned long addr,
 | |
| 					   const void *val,
 | |
| 					   unsigned int bytes,
 | |
| 					   unsigned int *error_code,
 | |
| 					   struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	gpa_t                 gpa;
 | |
| 
 | |
| 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
 | |
| 
 | |
| 	if (gpa == UNMAPPED_GVA)
 | |
| 		return X86EMUL_PROPAGATE_FAULT;
 | |
| 
 | |
| 	/* For APIC access vmexit */
 | |
| 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
 | |
| 		goto mmio;
 | |
| 
 | |
| 	if (emulator_write_phys(vcpu, gpa, val, bytes))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| mmio:
 | |
| 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
 | |
| 	/*
 | |
| 	 * Is this MMIO handled locally?
 | |
| 	 */
 | |
| 	if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| 	vcpu->mmio_needed = 1;
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
 | |
| 	vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
 | |
| 	vcpu->run->mmio.len = vcpu->mmio_size = bytes;
 | |
| 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
 | |
| 	memcpy(vcpu->run->mmio.data, val, bytes);
 | |
| 
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| int emulator_write_emulated(unsigned long addr,
 | |
| 			    const void *val,
 | |
| 			    unsigned int bytes,
 | |
| 			    unsigned int *error_code,
 | |
| 			    struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* Crossing a page boundary? */
 | |
| 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
 | |
| 		int rc, now;
 | |
| 
 | |
| 		now = -addr & ~PAGE_MASK;
 | |
| 		rc = emulator_write_emulated_onepage(addr, val, now, error_code,
 | |
| 						     vcpu);
 | |
| 		if (rc != X86EMUL_CONTINUE)
 | |
| 			return rc;
 | |
| 		addr += now;
 | |
| 		val += now;
 | |
| 		bytes -= now;
 | |
| 	}
 | |
| 	return emulator_write_emulated_onepage(addr, val, bytes, error_code,
 | |
| 					       vcpu);
 | |
| }
 | |
| 
 | |
| #define CMPXCHG_TYPE(t, ptr, old, new) \
 | |
| 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
 | |
| #else
 | |
| #  define CMPXCHG64(ptr, old, new) \
 | |
| 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
 | |
| #endif
 | |
| 
 | |
| static int emulator_cmpxchg_emulated(unsigned long addr,
 | |
| 				     const void *old,
 | |
| 				     const void *new,
 | |
| 				     unsigned int bytes,
 | |
| 				     unsigned int *error_code,
 | |
| 				     struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	gpa_t gpa;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	bool exchanged;
 | |
| 
 | |
| 	/* guests cmpxchg8b have to be emulated atomically */
 | |
| 	if (bytes > 8 || (bytes & (bytes - 1)))
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
 | |
| 
 | |
| 	if (gpa == UNMAPPED_GVA ||
 | |
| 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
 | |
| 	if (is_error_page(page)) {
 | |
| 		kvm_release_page_clean(page);
 | |
| 		goto emul_write;
 | |
| 	}
 | |
| 
 | |
| 	kaddr = kmap_atomic(page, KM_USER0);
 | |
| 	kaddr += offset_in_page(gpa);
 | |
| 	switch (bytes) {
 | |
| 	case 1:
 | |
| 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		exchanged = CMPXCHG64(kaddr, old, new);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 	kunmap_atomic(kaddr, KM_USER0);
 | |
| 	kvm_release_page_dirty(page);
 | |
| 
 | |
| 	if (!exchanged)
 | |
| 		return X86EMUL_CMPXCHG_FAILED;
 | |
| 
 | |
| 	kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
 | |
| 
 | |
| 	return X86EMUL_CONTINUE;
 | |
| 
 | |
| emul_write:
 | |
| 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
 | |
| 
 | |
| 	return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
 | |
| }
 | |
| 
 | |
| static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
 | |
| {
 | |
| 	/* TODO: String I/O for in kernel device */
 | |
| 	int r;
 | |
| 
 | |
| 	if (vcpu->arch.pio.in)
 | |
| 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
 | |
| 				    vcpu->arch.pio.size, pd);
 | |
| 	else
 | |
| 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
 | |
| 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
 | |
| 				     pd);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
 | |
| 			     unsigned int count, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.pio.count)
 | |
| 		goto data_avail;
 | |
| 
 | |
| 	trace_kvm_pio(1, port, size, 1);
 | |
| 
 | |
| 	vcpu->arch.pio.port = port;
 | |
| 	vcpu->arch.pio.in = 1;
 | |
| 	vcpu->arch.pio.count  = count;
 | |
| 	vcpu->arch.pio.size = size;
 | |
| 
 | |
| 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
 | |
| 	data_avail:
 | |
| 		memcpy(val, vcpu->arch.pio_data, size * count);
 | |
| 		vcpu->arch.pio.count = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_IO;
 | |
| 	vcpu->run->io.direction = KVM_EXIT_IO_IN;
 | |
| 	vcpu->run->io.size = size;
 | |
| 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
 | |
| 	vcpu->run->io.count = count;
 | |
| 	vcpu->run->io.port = port;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int emulator_pio_out_emulated(int size, unsigned short port,
 | |
| 			      const void *val, unsigned int count,
 | |
| 			      struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	trace_kvm_pio(0, port, size, 1);
 | |
| 
 | |
| 	vcpu->arch.pio.port = port;
 | |
| 	vcpu->arch.pio.in = 0;
 | |
| 	vcpu->arch.pio.count = count;
 | |
| 	vcpu->arch.pio.size = size;
 | |
| 
 | |
| 	memcpy(vcpu->arch.pio_data, val, size * count);
 | |
| 
 | |
| 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
 | |
| 		vcpu->arch.pio.count = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_IO;
 | |
| 	vcpu->run->io.direction = KVM_EXIT_IO_OUT;
 | |
| 	vcpu->run->io.size = size;
 | |
| 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
 | |
| 	vcpu->run->io.count = count;
 | |
| 	vcpu->run->io.port = port;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	return kvm_x86_ops->get_segment_base(vcpu, seg);
 | |
| }
 | |
| 
 | |
| int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
 | |
| {
 | |
| 	kvm_mmu_invlpg(vcpu, address);
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!need_emulate_wbinvd(vcpu))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| 	if (kvm_x86_ops->has_wbinvd_exit()) {
 | |
| 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
 | |
| 				wbinvd_ipi, NULL, 1);
 | |
| 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
 | |
| 	}
 | |
| 	wbinvd();
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
 | |
| 
 | |
| int emulate_clts(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
 | |
| 	kvm_x86_ops->fpu_activate(vcpu);
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return _kvm_get_dr(vcpu, dr, dest);
 | |
| }
 | |
| 
 | |
| int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 
 | |
| 	return __kvm_set_dr(vcpu, dr, value);
 | |
| }
 | |
| 
 | |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val)
 | |
| {
 | |
| 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
 | |
| }
 | |
| 
 | |
| static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long value;
 | |
| 
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		value = kvm_read_cr0(vcpu);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		value = vcpu->arch.cr2;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		value = vcpu->arch.cr3;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		value = kvm_read_cr4(vcpu);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		value = kvm_get_cr8(vcpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int res = 0;
 | |
| 
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		vcpu->arch.cr2 = val;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		res = kvm_set_cr3(vcpu, val);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		res = __kvm_set_cr8(vcpu, val & 0xfUL);
 | |
| 		break;
 | |
| 	default:
 | |
| 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
 | |
| 		res = -1;
 | |
| 	}
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int emulator_get_cpl(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_x86_ops->get_cpl(vcpu);
 | |
| }
 | |
| 
 | |
| static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_x86_ops->get_gdt(vcpu, dt);
 | |
| }
 | |
| 
 | |
| static unsigned long emulator_get_cached_segment_base(int seg,
 | |
| 						      struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return get_segment_base(vcpu, seg);
 | |
| }
 | |
| 
 | |
| static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
 | |
| 					   struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment var;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &var, seg);
 | |
| 
 | |
| 	if (var.unusable)
 | |
| 		return false;
 | |
| 
 | |
| 	if (var.g)
 | |
| 		var.limit >>= 12;
 | |
| 	set_desc_limit(desc, var.limit);
 | |
| 	set_desc_base(desc, (unsigned long)var.base);
 | |
| 	desc->type = var.type;
 | |
| 	desc->s = var.s;
 | |
| 	desc->dpl = var.dpl;
 | |
| 	desc->p = var.present;
 | |
| 	desc->avl = var.avl;
 | |
| 	desc->l = var.l;
 | |
| 	desc->d = var.db;
 | |
| 	desc->g = var.g;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
 | |
| 					   struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment var;
 | |
| 
 | |
| 	/* needed to preserve selector */
 | |
| 	kvm_get_segment(vcpu, &var, seg);
 | |
| 
 | |
| 	var.base = get_desc_base(desc);
 | |
| 	var.limit = get_desc_limit(desc);
 | |
| 	if (desc->g)
 | |
| 		var.limit = (var.limit << 12) | 0xfff;
 | |
| 	var.type = desc->type;
 | |
| 	var.present = desc->p;
 | |
| 	var.dpl = desc->dpl;
 | |
| 	var.db = desc->d;
 | |
| 	var.s = desc->s;
 | |
| 	var.l = desc->l;
 | |
| 	var.g = desc->g;
 | |
| 	var.avl = desc->avl;
 | |
| 	var.present = desc->p;
 | |
| 	var.unusable = !var.present;
 | |
| 	var.padding = 0;
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &var, seg);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment kvm_seg;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &kvm_seg, seg);
 | |
| 	return kvm_seg.selector;
 | |
| }
 | |
| 
 | |
| static void emulator_set_segment_selector(u16 sel, int seg,
 | |
| 					  struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment kvm_seg;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &kvm_seg, seg);
 | |
| 	kvm_seg.selector = sel;
 | |
| 	kvm_set_segment(vcpu, &kvm_seg, seg);
 | |
| }
 | |
| 
 | |
| static struct x86_emulate_ops emulate_ops = {
 | |
| 	.read_std            = kvm_read_guest_virt_system,
 | |
| 	.write_std           = kvm_write_guest_virt_system,
 | |
| 	.fetch               = kvm_fetch_guest_virt,
 | |
| 	.read_emulated       = emulator_read_emulated,
 | |
| 	.write_emulated      = emulator_write_emulated,
 | |
| 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
 | |
| 	.pio_in_emulated     = emulator_pio_in_emulated,
 | |
| 	.pio_out_emulated    = emulator_pio_out_emulated,
 | |
| 	.get_cached_descriptor = emulator_get_cached_descriptor,
 | |
| 	.set_cached_descriptor = emulator_set_cached_descriptor,
 | |
| 	.get_segment_selector = emulator_get_segment_selector,
 | |
| 	.set_segment_selector = emulator_set_segment_selector,
 | |
| 	.get_cached_segment_base = emulator_get_cached_segment_base,
 | |
| 	.get_gdt             = emulator_get_gdt,
 | |
| 	.get_cr              = emulator_get_cr,
 | |
| 	.set_cr              = emulator_set_cr,
 | |
| 	.cpl                 = emulator_get_cpl,
 | |
| 	.get_dr              = emulator_get_dr,
 | |
| 	.set_dr              = emulator_set_dr,
 | |
| 	.set_msr             = kvm_set_msr,
 | |
| 	.get_msr             = kvm_get_msr,
 | |
| };
 | |
| 
 | |
| static void cache_all_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	kvm_register_read(vcpu, VCPU_REGS_RSP);
 | |
| 	kvm_register_read(vcpu, VCPU_REGS_RIP);
 | |
| 	vcpu->arch.regs_dirty = ~0;
 | |
| }
 | |
| 
 | |
| static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
 | |
| {
 | |
| 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
 | |
| 	/*
 | |
| 	 * an sti; sti; sequence only disable interrupts for the first
 | |
| 	 * instruction. So, if the last instruction, be it emulated or
 | |
| 	 * not, left the system with the INT_STI flag enabled, it
 | |
| 	 * means that the last instruction is an sti. We should not
 | |
| 	 * leave the flag on in this case. The same goes for mov ss
 | |
| 	 */
 | |
| 	if (!(int_shadow & mask))
 | |
| 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
 | |
| }
 | |
| 
 | |
| static void inject_emulated_exception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
 | |
| 	if (ctxt->exception == PF_VECTOR)
 | |
| 		kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
 | |
| 	else if (ctxt->error_code_valid)
 | |
| 		kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
 | |
| 	else
 | |
| 		kvm_queue_exception(vcpu, ctxt->exception);
 | |
| }
 | |
| 
 | |
| static int handle_emulation_failure(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.insn_emulation_fail;
 | |
| 	trace_kvm_emulate_insn_failed(vcpu);
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
 | |
| 	vcpu->run->internal.ndata = 0;
 | |
| 	kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 	return EMULATE_FAIL;
 | |
| }
 | |
| 
 | |
| static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	gpa_t gpa;
 | |
| 
 | |
| 	if (tdp_enabled)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * if emulation was due to access to shadowed page table
 | |
| 	 * and it failed try to unshadow page and re-entetr the
 | |
| 	 * guest to let CPU execute the instruction.
 | |
| 	 */
 | |
| 	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
 | |
| 		return true;
 | |
| 
 | |
| 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
 | |
| 
 | |
| 	if (gpa == UNMAPPED_GVA)
 | |
| 		return true; /* let cpu generate fault */
 | |
| 
 | |
| 	if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| int emulate_instruction(struct kvm_vcpu *vcpu,
 | |
| 			unsigned long cr2,
 | |
| 			u16 error_code,
 | |
| 			int emulation_type)
 | |
| {
 | |
| 	int r;
 | |
| 	struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
 | |
| 
 | |
| 	kvm_clear_exception_queue(vcpu);
 | |
| 	vcpu->arch.mmio_fault_cr2 = cr2;
 | |
| 	/*
 | |
| 	 * TODO: fix emulate.c to use guest_read/write_register
 | |
| 	 * instead of direct ->regs accesses, can save hundred cycles
 | |
| 	 * on Intel for instructions that don't read/change RSP, for
 | |
| 	 * for example.
 | |
| 	 */
 | |
| 	cache_all_regs(vcpu);
 | |
| 
 | |
| 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
 | |
| 		int cs_db, cs_l;
 | |
| 		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 | |
| 
 | |
| 		vcpu->arch.emulate_ctxt.vcpu = vcpu;
 | |
| 		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 		vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
 | |
| 		vcpu->arch.emulate_ctxt.mode =
 | |
| 			(!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
 | |
| 			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
 | |
| 			? X86EMUL_MODE_VM86 : cs_l
 | |
| 			? X86EMUL_MODE_PROT64 :	cs_db
 | |
| 			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
 | |
| 		memset(c, 0, sizeof(struct decode_cache));
 | |
| 		memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
 | |
| 		vcpu->arch.emulate_ctxt.interruptibility = 0;
 | |
| 		vcpu->arch.emulate_ctxt.exception = -1;
 | |
| 
 | |
| 		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
 | |
| 		trace_kvm_emulate_insn_start(vcpu);
 | |
| 
 | |
| 		/* Only allow emulation of specific instructions on #UD
 | |
| 		 * (namely VMMCALL, sysenter, sysexit, syscall)*/
 | |
| 		if (emulation_type & EMULTYPE_TRAP_UD) {
 | |
| 			if (!c->twobyte)
 | |
| 				return EMULATE_FAIL;
 | |
| 			switch (c->b) {
 | |
| 			case 0x01: /* VMMCALL */
 | |
| 				if (c->modrm_mod != 3 || c->modrm_rm != 1)
 | |
| 					return EMULATE_FAIL;
 | |
| 				break;
 | |
| 			case 0x34: /* sysenter */
 | |
| 			case 0x35: /* sysexit */
 | |
| 				if (c->modrm_mod != 0 || c->modrm_rm != 0)
 | |
| 					return EMULATE_FAIL;
 | |
| 				break;
 | |
| 			case 0x05: /* syscall */
 | |
| 				if (c->modrm_mod != 0 || c->modrm_rm != 0)
 | |
| 					return EMULATE_FAIL;
 | |
| 				break;
 | |
| 			default:
 | |
| 				return EMULATE_FAIL;
 | |
| 			}
 | |
| 
 | |
| 			if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
 | |
| 				return EMULATE_FAIL;
 | |
| 		}
 | |
| 
 | |
| 		++vcpu->stat.insn_emulation;
 | |
| 		if (r)  {
 | |
| 			if (reexecute_instruction(vcpu, cr2))
 | |
| 				return EMULATE_DONE;
 | |
| 			if (emulation_type & EMULTYPE_SKIP)
 | |
| 				return EMULATE_FAIL;
 | |
| 			return handle_emulation_failure(vcpu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (emulation_type & EMULTYPE_SKIP) {
 | |
| 		kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
 | |
| 		return EMULATE_DONE;
 | |
| 	}
 | |
| 
 | |
| 	/* this is needed for vmware backdor interface to work since it
 | |
| 	   changes registers values  during IO operation */
 | |
| 	memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
 | |
| 
 | |
| restart:
 | |
| 	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
 | |
| 
 | |
| 	if (r) { /* emulation failed */
 | |
| 		if (reexecute_instruction(vcpu, cr2))
 | |
| 			return EMULATE_DONE;
 | |
| 
 | |
| 		return handle_emulation_failure(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
 | |
| 	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
 | |
| 	memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
 | |
| 	kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
 | |
| 
 | |
| 	if (vcpu->arch.emulate_ctxt.exception >= 0) {
 | |
| 		inject_emulated_exception(vcpu);
 | |
| 		return EMULATE_DONE;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.pio.count) {
 | |
| 		if (!vcpu->arch.pio.in)
 | |
| 			vcpu->arch.pio.count = 0;
 | |
| 		return EMULATE_DO_MMIO;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->mmio_needed) {
 | |
| 		if (vcpu->mmio_is_write)
 | |
| 			vcpu->mmio_needed = 0;
 | |
| 		return EMULATE_DO_MMIO;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.emulate_ctxt.restart)
 | |
| 		goto restart;
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(emulate_instruction);
 | |
| 
 | |
| int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
 | |
| {
 | |
| 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
 | |
| 	/* do not return to emulator after return from userspace */
 | |
| 	vcpu->arch.pio.count = 0;
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
 | |
| 
 | |
| static void bounce_off(void *info)
 | |
| {
 | |
| 	/* nothing */
 | |
| }
 | |
| 
 | |
| static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 | |
| 				     void *data)
 | |
| {
 | |
| 	struct cpufreq_freqs *freq = data;
 | |
| 	struct kvm *kvm;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	int i, send_ipi = 0;
 | |
| 
 | |
| 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
 | |
| 		return 0;
 | |
| 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
 | |
| 		return 0;
 | |
| 	per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
 | |
| 
 | |
| 	spin_lock(&kvm_lock);
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 			if (vcpu->cpu != freq->cpu)
 | |
| 				continue;
 | |
| 			if (!kvm_request_guest_time_update(vcpu))
 | |
| 				continue;
 | |
| 			if (vcpu->cpu != smp_processor_id())
 | |
| 				send_ipi++;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&kvm_lock);
 | |
| 
 | |
| 	if (freq->old < freq->new && send_ipi) {
 | |
| 		/*
 | |
| 		 * We upscale the frequency.  Must make the guest
 | |
| 		 * doesn't see old kvmclock values while running with
 | |
| 		 * the new frequency, otherwise we risk the guest sees
 | |
| 		 * time go backwards.
 | |
| 		 *
 | |
| 		 * In case we update the frequency for another cpu
 | |
| 		 * (which might be in guest context) send an interrupt
 | |
| 		 * to kick the cpu out of guest context.  Next time
 | |
| 		 * guest context is entered kvmclock will be updated,
 | |
| 		 * so the guest will not see stale values.
 | |
| 		 */
 | |
| 		smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct notifier_block kvmclock_cpufreq_notifier_block = {
 | |
|         .notifier_call  = kvmclock_cpufreq_notifier
 | |
| };
 | |
| 
 | |
| static void kvm_timer_init(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
 | |
| 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
 | |
| 					  CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			unsigned long khz = cpufreq_get(cpu);
 | |
| 			if (!khz)
 | |
| 				khz = tsc_khz;
 | |
| 			per_cpu(cpu_tsc_khz, cpu) = khz;
 | |
| 		}
 | |
| 	} else {
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
 | |
| 
 | |
| static int kvm_is_in_guest(void)
 | |
| {
 | |
| 	return percpu_read(current_vcpu) != NULL;
 | |
| }
 | |
| 
 | |
| static int kvm_is_user_mode(void)
 | |
| {
 | |
| 	int user_mode = 3;
 | |
| 
 | |
| 	if (percpu_read(current_vcpu))
 | |
| 		user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
 | |
| 
 | |
| 	return user_mode != 0;
 | |
| }
 | |
| 
 | |
| static unsigned long kvm_get_guest_ip(void)
 | |
| {
 | |
| 	unsigned long ip = 0;
 | |
| 
 | |
| 	if (percpu_read(current_vcpu))
 | |
| 		ip = kvm_rip_read(percpu_read(current_vcpu));
 | |
| 
 | |
| 	return ip;
 | |
| }
 | |
| 
 | |
| static struct perf_guest_info_callbacks kvm_guest_cbs = {
 | |
| 	.is_in_guest		= kvm_is_in_guest,
 | |
| 	.is_user_mode		= kvm_is_user_mode,
 | |
| 	.get_guest_ip		= kvm_get_guest_ip,
 | |
| };
 | |
| 
 | |
| void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	percpu_write(current_vcpu, vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
 | |
| 
 | |
| void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	percpu_write(current_vcpu, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
 | |
| 
 | |
| int kvm_arch_init(void *opaque)
 | |
| {
 | |
| 	int r;
 | |
| 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
 | |
| 
 | |
| 	if (kvm_x86_ops) {
 | |
| 		printk(KERN_ERR "kvm: already loaded the other module\n");
 | |
| 		r = -EEXIST;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!ops->cpu_has_kvm_support()) {
 | |
| 		printk(KERN_ERR "kvm: no hardware support\n");
 | |
| 		r = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (ops->disabled_by_bios()) {
 | |
| 		printk(KERN_ERR "kvm: disabled by bios\n");
 | |
| 		r = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_mmu_module_init();
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	kvm_init_msr_list();
 | |
| 
 | |
| 	kvm_x86_ops = ops;
 | |
| 	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
 | |
| 	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
 | |
| 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
 | |
| 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
 | |
| 
 | |
| 	kvm_timer_init();
 | |
| 
 | |
| 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
 | |
| 
 | |
| 	if (cpu_has_xsave)
 | |
| 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_exit(void)
 | |
| {
 | |
| 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 | |
| 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
 | |
| 					    CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 	kvm_x86_ops = NULL;
 | |
| 	kvm_mmu_module_exit();
 | |
| }
 | |
| 
 | |
| int kvm_emulate_halt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.halt_exits;
 | |
| 	if (irqchip_in_kernel(vcpu->kvm)) {
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
 | |
| 		return 1;
 | |
| 	} else {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_HLT;
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt);
 | |
| 
 | |
| static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
 | |
| 			   unsigned long a1)
 | |
| {
 | |
| 	if (is_long_mode(vcpu))
 | |
| 		return a0;
 | |
| 	else
 | |
| 		return a0 | ((gpa_t)a1 << 32);
 | |
| }
 | |
| 
 | |
| int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 param, ingpa, outgpa, ret;
 | |
| 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
 | |
| 	bool fast, longmode;
 | |
| 	int cs_db, cs_l;
 | |
| 
 | |
| 	/*
 | |
| 	 * hypercall generates UD from non zero cpl and real mode
 | |
| 	 * per HYPER-V spec
 | |
| 	 */
 | |
| 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 | |
| 	longmode = is_long_mode(vcpu) && cs_l == 1;
 | |
| 
 | |
| 	if (!longmode) {
 | |
| 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
 | |
| 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
 | |
| 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
 | |
| 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
 | |
| 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
 | |
| 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
 | |
| 	}
 | |
| #ifdef CONFIG_X86_64
 | |
| 	else {
 | |
| 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
 | |
| 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	code = param & 0xffff;
 | |
| 	fast = (param >> 16) & 0x1;
 | |
| 	rep_cnt = (param >> 32) & 0xfff;
 | |
| 	rep_idx = (param >> 48) & 0xfff;
 | |
| 
 | |
| 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
 | |
| 
 | |
| 	switch (code) {
 | |
| 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
 | |
| 		kvm_vcpu_on_spin(vcpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ret = res | (((u64)rep_done & 0xfff) << 32);
 | |
| 	if (longmode) {
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
 | |
| 	} else {
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long nr, a0, a1, a2, a3, ret;
 | |
| 	int r = 1;
 | |
| 
 | |
| 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
 | |
| 		return kvm_hv_hypercall(vcpu);
 | |
| 
 | |
| 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
 | |
| 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
 | |
| 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
 | |
| 
 | |
| 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
 | |
| 
 | |
| 	if (!is_long_mode(vcpu)) {
 | |
| 		nr &= 0xFFFFFFFF;
 | |
| 		a0 &= 0xFFFFFFFF;
 | |
| 		a1 &= 0xFFFFFFFF;
 | |
| 		a2 &= 0xFFFFFFFF;
 | |
| 		a3 &= 0xFFFFFFFF;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
 | |
| 		ret = -KVM_EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	switch (nr) {
 | |
| 	case KVM_HC_VAPIC_POLL_IRQ:
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	case KVM_HC_MMU_OP:
 | |
| 		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -KVM_ENOSYS;
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
 | |
| 	++vcpu->stat.hypercalls;
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
 | |
| 
 | |
| int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	char instruction[3];
 | |
| 	unsigned long rip = kvm_rip_read(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
 | |
| 	 * to ensure that the updated hypercall appears atomically across all
 | |
| 	 * VCPUs.
 | |
| 	 */
 | |
| 	kvm_mmu_zap_all(vcpu->kvm);
 | |
| 
 | |
| 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
 | |
| 
 | |
| 	return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
 | |
| }
 | |
| 
 | |
| void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
 | |
| {
 | |
| 	struct desc_ptr dt = { limit, base };
 | |
| 
 | |
| 	kvm_x86_ops->set_gdt(vcpu, &dt);
 | |
| }
 | |
| 
 | |
| void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
 | |
| {
 | |
| 	struct desc_ptr dt = { limit, base };
 | |
| 
 | |
| 	kvm_x86_ops->set_idt(vcpu, &dt);
 | |
| }
 | |
| 
 | |
| static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
 | |
| 	int j, nent = vcpu->arch.cpuid_nent;
 | |
| 
 | |
| 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
 | |
| 	/* when no next entry is found, the current entry[i] is reselected */
 | |
| 	for (j = i + 1; ; j = (j + 1) % nent) {
 | |
| 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
 | |
| 		if (ej->function == e->function) {
 | |
| 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 | |
| 			return j;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0; /* silence gcc, even though control never reaches here */
 | |
| }
 | |
| 
 | |
| /* find an entry with matching function, matching index (if needed), and that
 | |
|  * should be read next (if it's stateful) */
 | |
| static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
 | |
| 	u32 function, u32 index)
 | |
| {
 | |
| 	if (e->function != function)
 | |
| 		return 0;
 | |
| 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
 | |
| 		return 0;
 | |
| 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
 | |
| 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 | |
| 					      u32 function, u32 index)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_cpuid_entry2 *best = NULL;
 | |
| 
 | |
| 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 | |
| 		struct kvm_cpuid_entry2 *e;
 | |
| 
 | |
| 		e = &vcpu->arch.cpuid_entries[i];
 | |
| 		if (is_matching_cpuid_entry(e, function, index)) {
 | |
| 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
 | |
| 				move_to_next_stateful_cpuid_entry(vcpu, i);
 | |
| 			best = e;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Both basic or both extended?
 | |
| 		 */
 | |
| 		if (((e->function ^ function) & 0x80000000) == 0)
 | |
| 			if (!best || e->function > best->function)
 | |
| 				best = e;
 | |
| 	}
 | |
| 	return best;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
 | |
| 
 | |
| int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 
 | |
| 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 | |
| 	if (!best || best->eax < 0x80000008)
 | |
| 		goto not_found;
 | |
| 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 | |
| 	if (best)
 | |
| 		return best->eax & 0xff;
 | |
| not_found:
 | |
| 	return 36;
 | |
| }
 | |
| 
 | |
| void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 function, index;
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 
 | |
| 	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
 | |
| 	best = kvm_find_cpuid_entry(vcpu, function, index);
 | |
| 	if (best) {
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
 | |
| 	}
 | |
| 	kvm_x86_ops->skip_emulated_instruction(vcpu);
 | |
| 	trace_kvm_cpuid(function,
 | |
| 			kvm_register_read(vcpu, VCPU_REGS_RAX),
 | |
| 			kvm_register_read(vcpu, VCPU_REGS_RBX),
 | |
| 			kvm_register_read(vcpu, VCPU_REGS_RCX),
 | |
| 			kvm_register_read(vcpu, VCPU_REGS_RDX));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
 | |
| 
 | |
| /*
 | |
|  * Check if userspace requested an interrupt window, and that the
 | |
|  * interrupt window is open.
 | |
|  *
 | |
|  * No need to exit to userspace if we already have an interrupt queued.
 | |
|  */
 | |
| static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
 | |
| 		vcpu->run->request_interrupt_window &&
 | |
| 		kvm_arch_interrupt_allowed(vcpu));
 | |
| }
 | |
| 
 | |
| static void post_kvm_run_save(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 
 | |
| 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
 | |
| 	kvm_run->cr8 = kvm_get_cr8(vcpu);
 | |
| 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_run->ready_for_interrupt_injection = 1;
 | |
| 	else
 | |
| 		kvm_run->ready_for_interrupt_injection =
 | |
| 			kvm_arch_interrupt_allowed(vcpu) &&
 | |
| 			!kvm_cpu_has_interrupt(vcpu) &&
 | |
| 			!kvm_event_needs_reinjection(vcpu);
 | |
| }
 | |
| 
 | |
| static void vapic_enter(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_lapic *apic = vcpu->arch.apic;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!apic || !apic->vapic_addr)
 | |
| 		return;
 | |
| 
 | |
| 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
 | |
| 
 | |
| 	vcpu->arch.apic->vapic_page = page;
 | |
| }
 | |
| 
 | |
| static void vapic_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_lapic *apic = vcpu->arch.apic;
 | |
| 	int idx;
 | |
| 
 | |
| 	if (!apic || !apic->vapic_addr)
 | |
| 		return;
 | |
| 
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	kvm_release_page_dirty(apic->vapic_page);
 | |
| 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| }
 | |
| 
 | |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int max_irr, tpr;
 | |
| 
 | |
| 	if (!kvm_x86_ops->update_cr8_intercept)
 | |
| 		return;
 | |
| 
 | |
| 	if (!vcpu->arch.apic)
 | |
| 		return;
 | |
| 
 | |
| 	if (!vcpu->arch.apic->vapic_addr)
 | |
| 		max_irr = kvm_lapic_find_highest_irr(vcpu);
 | |
| 	else
 | |
| 		max_irr = -1;
 | |
| 
 | |
| 	if (max_irr != -1)
 | |
| 		max_irr >>= 4;
 | |
| 
 | |
| 	tpr = kvm_lapic_get_cr8(vcpu);
 | |
| 
 | |
| 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
 | |
| }
 | |
| 
 | |
| static void inject_pending_event(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* try to reinject previous events if any */
 | |
| 	if (vcpu->arch.exception.pending) {
 | |
| 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
 | |
| 					vcpu->arch.exception.has_error_code,
 | |
| 					vcpu->arch.exception.error_code);
 | |
| 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
 | |
| 					  vcpu->arch.exception.has_error_code,
 | |
| 					  vcpu->arch.exception.error_code,
 | |
| 					  vcpu->arch.exception.reinject);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.nmi_injected) {
 | |
| 		kvm_x86_ops->set_nmi(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.interrupt.pending) {
 | |
| 		kvm_x86_ops->set_irq(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* try to inject new event if pending */
 | |
| 	if (vcpu->arch.nmi_pending) {
 | |
| 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
 | |
| 			vcpu->arch.nmi_pending = false;
 | |
| 			vcpu->arch.nmi_injected = true;
 | |
| 			kvm_x86_ops->set_nmi(vcpu);
 | |
| 		}
 | |
| 	} else if (kvm_cpu_has_interrupt(vcpu)) {
 | |
| 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
 | |
| 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
 | |
| 					    false);
 | |
| 			kvm_x86_ops->set_irq(vcpu);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
 | |
| 			!vcpu->guest_xcr0_loaded) {
 | |
| 		/* kvm_set_xcr() also depends on this */
 | |
| 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 | |
| 		vcpu->guest_xcr0_loaded = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->guest_xcr0_loaded) {
 | |
| 		if (vcpu->arch.xcr0 != host_xcr0)
 | |
| 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 | |
| 		vcpu->guest_xcr0_loaded = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
 | |
| 		vcpu->run->request_interrupt_window;
 | |
| 
 | |
| 	if (vcpu->requests) {
 | |
| 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
 | |
| 			kvm_mmu_unload(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
 | |
| 			__kvm_migrate_timers(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu))
 | |
| 			kvm_write_guest_time(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
 | |
| 			kvm_mmu_sync_roots(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
 | |
| 			kvm_x86_ops->tlb_flush(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
 | |
| 			vcpu->fpu_active = 0;
 | |
| 			kvm_x86_ops->fpu_deactivate(vcpu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_mmu_reload(vcpu);
 | |
| 	if (unlikely(r))
 | |
| 		goto out;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	kvm_x86_ops->prepare_guest_switch(vcpu);
 | |
| 	if (vcpu->fpu_active)
 | |
| 		kvm_load_guest_fpu(vcpu);
 | |
| 	kvm_load_guest_xcr0(vcpu);
 | |
| 
 | |
| 	atomic_set(&vcpu->guest_mode, 1);
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
 | |
| 	    || need_resched() || signal_pending(current)) {
 | |
| 		atomic_set(&vcpu->guest_mode, 0);
 | |
| 		smp_wmb();
 | |
| 		local_irq_enable();
 | |
| 		preempt_enable();
 | |
| 		r = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	inject_pending_event(vcpu);
 | |
| 
 | |
| 	/* enable NMI/IRQ window open exits if needed */
 | |
| 	if (vcpu->arch.nmi_pending)
 | |
| 		kvm_x86_ops->enable_nmi_window(vcpu);
 | |
| 	else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
 | |
| 		kvm_x86_ops->enable_irq_window(vcpu);
 | |
| 
 | |
| 	if (kvm_lapic_enabled(vcpu)) {
 | |
| 		update_cr8_intercept(vcpu);
 | |
| 		kvm_lapic_sync_to_vapic(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
 | |
| 
 | |
| 	kvm_guest_enter();
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.switch_db_regs)) {
 | |
| 		set_debugreg(0, 7);
 | |
| 		set_debugreg(vcpu->arch.eff_db[0], 0);
 | |
| 		set_debugreg(vcpu->arch.eff_db[1], 1);
 | |
| 		set_debugreg(vcpu->arch.eff_db[2], 2);
 | |
| 		set_debugreg(vcpu->arch.eff_db[3], 3);
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_entry(vcpu->vcpu_id);
 | |
| 	kvm_x86_ops->run(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the guest has used debug registers, at least dr7
 | |
| 	 * will be disabled while returning to the host.
 | |
| 	 * If we don't have active breakpoints in the host, we don't
 | |
| 	 * care about the messed up debug address registers. But if
 | |
| 	 * we have some of them active, restore the old state.
 | |
| 	 */
 | |
| 	if (hw_breakpoint_active())
 | |
| 		hw_breakpoint_restore();
 | |
| 
 | |
| 	atomic_set(&vcpu->guest_mode, 0);
 | |
| 	smp_wmb();
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	++vcpu->stat.exits;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must have an instruction between local_irq_enable() and
 | |
| 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
 | |
| 	 * the interrupt shadow.  The stat.exits increment will do nicely.
 | |
| 	 * But we need to prevent reordering, hence this barrier():
 | |
| 	 */
 | |
| 	barrier();
 | |
| 
 | |
| 	kvm_guest_exit();
 | |
| 
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Profile KVM exit RIPs:
 | |
| 	 */
 | |
| 	if (unlikely(prof_on == KVM_PROFILING)) {
 | |
| 		unsigned long rip = kvm_rip_read(vcpu);
 | |
| 		profile_hit(KVM_PROFILING, (void *)rip);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	kvm_lapic_sync_from_vapic(vcpu);
 | |
| 
 | |
| 	r = kvm_x86_ops->handle_exit(vcpu);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __vcpu_run(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
 | |
| 		pr_debug("vcpu %d received sipi with vector # %x\n",
 | |
| 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
 | |
| 		kvm_lapic_reset(vcpu);
 | |
| 		r = kvm_arch_vcpu_reset(vcpu);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
 | |
| 	vapic_enter(vcpu);
 | |
| 
 | |
| 	r = 1;
 | |
| 	while (r > 0) {
 | |
| 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
 | |
| 			r = vcpu_enter_guest(vcpu);
 | |
| 		else {
 | |
| 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
 | |
| 			kvm_vcpu_block(vcpu);
 | |
| 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
 | |
| 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
 | |
| 			{
 | |
| 				switch(vcpu->arch.mp_state) {
 | |
| 				case KVM_MP_STATE_HALTED:
 | |
| 					vcpu->arch.mp_state =
 | |
| 						KVM_MP_STATE_RUNNABLE;
 | |
| 				case KVM_MP_STATE_RUNNABLE:
 | |
| 					break;
 | |
| 				case KVM_MP_STATE_SIPI_RECEIVED:
 | |
| 				default:
 | |
| 					r = -EINTR;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (r <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
 | |
| 		if (kvm_cpu_has_pending_timer(vcpu))
 | |
| 			kvm_inject_pending_timer_irqs(vcpu);
 | |
| 
 | |
| 		if (dm_request_for_irq_injection(vcpu)) {
 | |
| 			r = -EINTR;
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_INTR;
 | |
| 			++vcpu->stat.request_irq_exits;
 | |
| 		}
 | |
| 		if (signal_pending(current)) {
 | |
| 			r = -EINTR;
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_INTR;
 | |
| 			++vcpu->stat.signal_exits;
 | |
| 		}
 | |
| 		if (need_resched()) {
 | |
| 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
 | |
| 			kvm_resched(vcpu);
 | |
| 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
 | |
| 
 | |
| 	vapic_exit(vcpu);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
 | |
| {
 | |
| 	int r;
 | |
| 	sigset_t sigsaved;
 | |
| 
 | |
| 	if (vcpu->sigset_active)
 | |
| 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
 | |
| 		kvm_vcpu_block(vcpu);
 | |
| 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
 | |
| 		r = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* re-sync apic's tpr */
 | |
| 	if (!irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_set_cr8(vcpu, kvm_run->cr8);
 | |
| 
 | |
| 	if (vcpu->arch.pio.count || vcpu->mmio_needed ||
 | |
| 	    vcpu->arch.emulate_ctxt.restart) {
 | |
| 		if (vcpu->mmio_needed) {
 | |
| 			memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
 | |
| 			vcpu->mmio_read_completed = 1;
 | |
| 			vcpu->mmio_needed = 0;
 | |
| 		}
 | |
| 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 		r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
 | |
| 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
 | |
| 		if (r != EMULATE_DONE) {
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RAX,
 | |
| 				     kvm_run->hypercall.ret);
 | |
| 
 | |
| 	r = __vcpu_run(vcpu);
 | |
| 
 | |
| out:
 | |
| 	post_kvm_run_save(vcpu);
 | |
| 	if (vcpu->sigset_active)
 | |
| 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 | |
| {
 | |
| 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
 | |
| 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
 | |
| 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
 | |
| 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
 | |
| 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
 | |
| 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
 | |
| 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
 | |
| 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
 | |
| 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
 | |
| 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
 | |
| 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
 | |
| 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
 | |
| 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
 | |
| #endif
 | |
| 
 | |
| 	regs->rip = kvm_rip_read(vcpu);
 | |
| 	regs->rflags = kvm_get_rflags(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 | |
| {
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
 | |
| #endif
 | |
| 
 | |
| 	kvm_rip_write(vcpu, regs->rip);
 | |
| 	kvm_set_rflags(vcpu, regs->rflags);
 | |
| 
 | |
| 	vcpu->arch.exception.pending = false;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
 | |
| {
 | |
| 	struct kvm_segment cs;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	*db = cs.db;
 | |
| 	*l = cs.l;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_sregs *sregs)
 | |
| {
 | |
| 	struct desc_ptr dt;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
 | |
| 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
 | |
| 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
 | |
| 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
 | |
| 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
 | |
| 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
 | |
| 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	kvm_x86_ops->get_idt(vcpu, &dt);
 | |
| 	sregs->idt.limit = dt.size;
 | |
| 	sregs->idt.base = dt.address;
 | |
| 	kvm_x86_ops->get_gdt(vcpu, &dt);
 | |
| 	sregs->gdt.limit = dt.size;
 | |
| 	sregs->gdt.base = dt.address;
 | |
| 
 | |
| 	sregs->cr0 = kvm_read_cr0(vcpu);
 | |
| 	sregs->cr2 = vcpu->arch.cr2;
 | |
| 	sregs->cr3 = vcpu->arch.cr3;
 | |
| 	sregs->cr4 = kvm_read_cr4(vcpu);
 | |
| 	sregs->cr8 = kvm_get_cr8(vcpu);
 | |
| 	sregs->efer = vcpu->arch.efer;
 | |
| 	sregs->apic_base = kvm_get_apic_base(vcpu);
 | |
| 
 | |
| 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
 | |
| 
 | |
| 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
 | |
| 		set_bit(vcpu->arch.interrupt.nr,
 | |
| 			(unsigned long *)sregs->interrupt_bitmap);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mp_state *mp_state)
 | |
| {
 | |
| 	mp_state->mp_state = vcpu->arch.mp_state;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mp_state *mp_state)
 | |
| {
 | |
| 	vcpu->arch.mp_state = mp_state->mp_state;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
 | |
| 		    bool has_error_code, u32 error_code)
 | |
| {
 | |
| 	struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
 | |
| 	int cs_db, cs_l, ret;
 | |
| 	cache_all_regs(vcpu);
 | |
| 
 | |
| 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 | |
| 
 | |
| 	vcpu->arch.emulate_ctxt.vcpu = vcpu;
 | |
| 	vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 	vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
 | |
| 	vcpu->arch.emulate_ctxt.mode =
 | |
| 		(!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
 | |
| 		(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
 | |
| 		? X86EMUL_MODE_VM86 : cs_l
 | |
| 		? X86EMUL_MODE_PROT64 :	cs_db
 | |
| 		? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
 | |
| 	memset(c, 0, sizeof(struct decode_cache));
 | |
| 	memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
 | |
| 
 | |
| 	ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
 | |
| 				   tss_selector, reason, has_error_code,
 | |
| 				   error_code);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return EMULATE_FAIL;
 | |
| 
 | |
| 	memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
 | |
| 	kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
 | |
| 	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_task_switch);
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_sregs *sregs)
 | |
| {
 | |
| 	int mmu_reset_needed = 0;
 | |
| 	int pending_vec, max_bits;
 | |
| 	struct desc_ptr dt;
 | |
| 
 | |
| 	dt.size = sregs->idt.limit;
 | |
| 	dt.address = sregs->idt.base;
 | |
| 	kvm_x86_ops->set_idt(vcpu, &dt);
 | |
| 	dt.size = sregs->gdt.limit;
 | |
| 	dt.address = sregs->gdt.base;
 | |
| 	kvm_x86_ops->set_gdt(vcpu, &dt);
 | |
| 
 | |
| 	vcpu->arch.cr2 = sregs->cr2;
 | |
| 	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
 | |
| 	vcpu->arch.cr3 = sregs->cr3;
 | |
| 
 | |
| 	kvm_set_cr8(vcpu, sregs->cr8);
 | |
| 
 | |
| 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
 | |
| 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
 | |
| 	kvm_set_apic_base(vcpu, sregs->apic_base);
 | |
| 
 | |
| 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
 | |
| 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
 | |
| 	vcpu->arch.cr0 = sregs->cr0;
 | |
| 
 | |
| 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
 | |
| 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
 | |
| 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
 | |
| 		load_pdptrs(vcpu, vcpu->arch.cr3);
 | |
| 		mmu_reset_needed = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (mmu_reset_needed)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
 | |
| 	pending_vec = find_first_bit(
 | |
| 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
 | |
| 	if (pending_vec < max_bits) {
 | |
| 		kvm_queue_interrupt(vcpu, pending_vec, false);
 | |
| 		pr_debug("Set back pending irq %d\n", pending_vec);
 | |
| 		if (irqchip_in_kernel(vcpu->kvm))
 | |
| 			kvm_pic_clear_isr_ack(vcpu->kvm);
 | |
| 	}
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
 | |
| 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
 | |
| 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
 | |
| 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
 | |
| 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
 | |
| 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
 | |
| 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	update_cr8_intercept(vcpu);
 | |
| 
 | |
| 	/* Older userspace won't unhalt the vcpu on reset. */
 | |
| 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
 | |
| 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
 | |
| 	    !is_protmode(vcpu))
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_guest_debug *dbg)
 | |
| {
 | |
| 	unsigned long rflags;
 | |
| 	int i, r;
 | |
| 
 | |
| 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
 | |
| 		r = -EBUSY;
 | |
| 		if (vcpu->arch.exception.pending)
 | |
| 			goto out;
 | |
| 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
 | |
| 			kvm_queue_exception(vcpu, DB_VECTOR);
 | |
| 		else
 | |
| 			kvm_queue_exception(vcpu, BP_VECTOR);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read rflags as long as potentially injected trace flags are still
 | |
| 	 * filtered out.
 | |
| 	 */
 | |
| 	rflags = kvm_get_rflags(vcpu);
 | |
| 
 | |
| 	vcpu->guest_debug = dbg->control;
 | |
| 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
 | |
| 		vcpu->guest_debug = 0;
 | |
| 
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
 | |
| 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
 | |
| 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
 | |
| 		vcpu->arch.switch_db_regs =
 | |
| 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
 | |
| 	} else {
 | |
| 		for (i = 0; i < KVM_NR_DB_REGS; i++)
 | |
| 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
 | |
| 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
 | |
| 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
 | |
| 			get_segment_base(vcpu, VCPU_SREG_CS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Trigger an rflags update that will inject or remove the trace
 | |
| 	 * flags.
 | |
| 	 */
 | |
| 	kvm_set_rflags(vcpu, rflags);
 | |
| 
 | |
| 	kvm_x86_ops->set_guest_debug(vcpu, dbg);
 | |
| 
 | |
| 	r = 0;
 | |
| 
 | |
| out:
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Translate a guest virtual address to a guest physical address.
 | |
|  */
 | |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_translation *tr)
 | |
| {
 | |
| 	unsigned long vaddr = tr->linear_address;
 | |
| 	gpa_t gpa;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 	tr->physical_address = gpa;
 | |
| 	tr->valid = gpa != UNMAPPED_GVA;
 | |
| 	tr->writeable = 1;
 | |
| 	tr->usermode = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 | |
| {
 | |
| 	struct i387_fxsave_struct *fxsave =
 | |
| 			&vcpu->arch.guest_fpu.state->fxsave;
 | |
| 
 | |
| 	memcpy(fpu->fpr, fxsave->st_space, 128);
 | |
| 	fpu->fcw = fxsave->cwd;
 | |
| 	fpu->fsw = fxsave->swd;
 | |
| 	fpu->ftwx = fxsave->twd;
 | |
| 	fpu->last_opcode = fxsave->fop;
 | |
| 	fpu->last_ip = fxsave->rip;
 | |
| 	fpu->last_dp = fxsave->rdp;
 | |
| 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 | |
| {
 | |
| 	struct i387_fxsave_struct *fxsave =
 | |
| 			&vcpu->arch.guest_fpu.state->fxsave;
 | |
| 
 | |
| 	memcpy(fxsave->st_space, fpu->fpr, 128);
 | |
| 	fxsave->cwd = fpu->fcw;
 | |
| 	fxsave->swd = fpu->fsw;
 | |
| 	fxsave->twd = fpu->ftwx;
 | |
| 	fxsave->fop = fpu->last_opcode;
 | |
| 	fxsave->rip = fpu->last_ip;
 | |
| 	fxsave->rdp = fpu->last_dp;
 | |
| 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int fx_init(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = fpu_alloc(&vcpu->arch.guest_fpu);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	fpu_finit(&vcpu->arch.guest_fpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure guest xcr0 is valid for loading
 | |
| 	 */
 | |
| 	vcpu->arch.xcr0 = XSTATE_FP;
 | |
| 
 | |
| 	vcpu->arch.cr0 |= X86_CR0_ET;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(fx_init);
 | |
| 
 | |
| static void fx_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	fpu_free(&vcpu->arch.guest_fpu);
 | |
| }
 | |
| 
 | |
| void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->guest_fpu_loaded)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore all possible states in the guest,
 | |
| 	 * and assume host would use all available bits.
 | |
| 	 * Guest xcr0 would be loaded later.
 | |
| 	 */
 | |
| 	kvm_put_guest_xcr0(vcpu);
 | |
| 	vcpu->guest_fpu_loaded = 1;
 | |
| 	unlazy_fpu(current);
 | |
| 	fpu_restore_checking(&vcpu->arch.guest_fpu);
 | |
| 	trace_kvm_fpu(1);
 | |
| }
 | |
| 
 | |
| void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_put_guest_xcr0(vcpu);
 | |
| 
 | |
| 	if (!vcpu->guest_fpu_loaded)
 | |
| 		return;
 | |
| 
 | |
| 	vcpu->guest_fpu_loaded = 0;
 | |
| 	fpu_save_init(&vcpu->arch.guest_fpu);
 | |
| 	++vcpu->stat.fpu_reload;
 | |
| 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
 | |
| 	trace_kvm_fpu(0);
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.time_page) {
 | |
| 		kvm_release_page_dirty(vcpu->arch.time_page);
 | |
| 		vcpu->arch.time_page = NULL;
 | |
| 	}
 | |
| 
 | |
| 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
 | |
| 	fx_free(vcpu);
 | |
| 	kvm_x86_ops->vcpu_free(vcpu);
 | |
| }
 | |
| 
 | |
| struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
 | |
| 						unsigned int id)
 | |
| {
 | |
| 	return kvm_x86_ops->vcpu_create(kvm, id);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	vcpu->arch.mtrr_state.have_fixed = 1;
 | |
| 	vcpu_load(vcpu);
 | |
| 	r = kvm_arch_vcpu_reset(vcpu);
 | |
| 	if (r == 0)
 | |
| 		r = kvm_mmu_setup(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 	if (r < 0)
 | |
| 		goto free_vcpu;
 | |
| 
 | |
| 	return 0;
 | |
| free_vcpu:
 | |
| 	kvm_x86_ops->vcpu_free(vcpu);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	fx_free(vcpu);
 | |
| 	kvm_x86_ops->vcpu_free(vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.nmi_pending = false;
 | |
| 	vcpu->arch.nmi_injected = false;
 | |
| 
 | |
| 	vcpu->arch.switch_db_regs = 0;
 | |
| 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
 | |
| 	vcpu->arch.dr6 = DR6_FIXED_1;
 | |
| 	vcpu->arch.dr7 = DR7_FIXED_1;
 | |
| 
 | |
| 	return kvm_x86_ops->vcpu_reset(vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_arch_hardware_enable(void *garbage)
 | |
| {
 | |
| 	/*
 | |
| 	 * Since this may be called from a hotplug notifcation,
 | |
| 	 * we can't get the CPU frequency directly.
 | |
| 	 */
 | |
| 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
 | |
| 		int cpu = raw_smp_processor_id();
 | |
| 		per_cpu(cpu_tsc_khz, cpu) = 0;
 | |
| 	}
 | |
| 
 | |
| 	kvm_shared_msr_cpu_online();
 | |
| 
 | |
| 	return kvm_x86_ops->hardware_enable(garbage);
 | |
| }
 | |
| 
 | |
| void kvm_arch_hardware_disable(void *garbage)
 | |
| {
 | |
| 	kvm_x86_ops->hardware_disable(garbage);
 | |
| 	drop_user_return_notifiers(garbage);
 | |
| }
 | |
| 
 | |
| int kvm_arch_hardware_setup(void)
 | |
| {
 | |
| 	return kvm_x86_ops->hardware_setup();
 | |
| }
 | |
| 
 | |
| void kvm_arch_hardware_unsetup(void)
 | |
| {
 | |
| 	kvm_x86_ops->hardware_unsetup();
 | |
| }
 | |
| 
 | |
| void kvm_arch_check_processor_compat(void *rtn)
 | |
| {
 | |
| 	kvm_x86_ops->check_processor_compatibility(rtn);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct kvm *kvm;
 | |
| 	int r;
 | |
| 
 | |
| 	BUG_ON(vcpu->kvm == NULL);
 | |
| 	kvm = vcpu->kvm;
 | |
| 
 | |
| 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 	else
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
 | |
| 
 | |
| 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 	if (!page) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	vcpu->arch.pio_data = page_address(page);
 | |
| 
 | |
| 	r = kvm_mmu_create(vcpu);
 | |
| 	if (r < 0)
 | |
| 		goto fail_free_pio_data;
 | |
| 
 | |
| 	if (irqchip_in_kernel(kvm)) {
 | |
| 		r = kvm_create_lapic(vcpu);
 | |
| 		if (r < 0)
 | |
| 			goto fail_mmu_destroy;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
 | |
| 				       GFP_KERNEL);
 | |
| 	if (!vcpu->arch.mce_banks) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto fail_free_lapic;
 | |
| 	}
 | |
| 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
 | |
| 		goto fail_free_mce_banks;
 | |
| 
 | |
| 	return 0;
 | |
| fail_free_mce_banks:
 | |
| 	kfree(vcpu->arch.mce_banks);
 | |
| fail_free_lapic:
 | |
| 	kvm_free_lapic(vcpu);
 | |
| fail_mmu_destroy:
 | |
| 	kvm_mmu_destroy(vcpu);
 | |
| fail_free_pio_data:
 | |
| 	free_page((unsigned long)vcpu->arch.pio_data);
 | |
| fail:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int idx;
 | |
| 
 | |
| 	kfree(vcpu->arch.mce_banks);
 | |
| 	kvm_free_lapic(vcpu);
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	kvm_mmu_destroy(vcpu);
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 	free_page((unsigned long)vcpu->arch.pio_data);
 | |
| }
 | |
| 
 | |
| struct  kvm *kvm_arch_create_vm(void)
 | |
| {
 | |
| 	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
 | |
| 
 | |
| 	if (!kvm)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
 | |
| 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
 | |
| 
 | |
| 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
 | |
| 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
 | |
| 
 | |
| 	rdtscll(kvm->arch.vm_init_tsc);
 | |
| 
 | |
| 	return kvm;
 | |
| }
 | |
| 
 | |
| static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| }
 | |
| 
 | |
| static void kvm_free_vcpus(struct kvm *kvm)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unpin any mmu pages first.
 | |
| 	 */
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		kvm_unload_vcpu_mmu(vcpu);
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		kvm_arch_vcpu_free(vcpu);
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 | |
| 		kvm->vcpus[i] = NULL;
 | |
| 
 | |
| 	atomic_set(&kvm->online_vcpus, 0);
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| }
 | |
| 
 | |
| void kvm_arch_sync_events(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_free_all_assigned_devices(kvm);
 | |
| 	kvm_free_pit(kvm);
 | |
| }
 | |
| 
 | |
| void kvm_arch_destroy_vm(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_iommu_unmap_guest(kvm);
 | |
| 	kfree(kvm->arch.vpic);
 | |
| 	kfree(kvm->arch.vioapic);
 | |
| 	kvm_free_vcpus(kvm);
 | |
| 	kvm_free_physmem(kvm);
 | |
| 	if (kvm->arch.apic_access_page)
 | |
| 		put_page(kvm->arch.apic_access_page);
 | |
| 	if (kvm->arch.ept_identity_pagetable)
 | |
| 		put_page(kvm->arch.ept_identity_pagetable);
 | |
| 	cleanup_srcu_struct(&kvm->srcu);
 | |
| 	kfree(kvm);
 | |
| }
 | |
| 
 | |
| int kvm_arch_prepare_memory_region(struct kvm *kvm,
 | |
| 				struct kvm_memory_slot *memslot,
 | |
| 				struct kvm_memory_slot old,
 | |
| 				struct kvm_userspace_memory_region *mem,
 | |
| 				int user_alloc)
 | |
| {
 | |
| 	int npages = memslot->npages;
 | |
| 	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
 | |
| 
 | |
| 	/* Prevent internal slot pages from being moved by fork()/COW. */
 | |
| 	if (memslot->id >= KVM_MEMORY_SLOTS)
 | |
| 		map_flags = MAP_SHARED | MAP_ANONYMOUS;
 | |
| 
 | |
| 	/*To keep backward compatibility with older userspace,
 | |
| 	 *x86 needs to hanlde !user_alloc case.
 | |
| 	 */
 | |
| 	if (!user_alloc) {
 | |
| 		if (npages && !old.rmap) {
 | |
| 			unsigned long userspace_addr;
 | |
| 
 | |
| 			down_write(¤t->mm->mmap_sem);
 | |
| 			userspace_addr = do_mmap(NULL, 0,
 | |
| 						 npages * PAGE_SIZE,
 | |
| 						 PROT_READ | PROT_WRITE,
 | |
| 						 map_flags,
 | |
| 						 0);
 | |
| 			up_write(¤t->mm->mmap_sem);
 | |
| 
 | |
| 			if (IS_ERR((void *)userspace_addr))
 | |
| 				return PTR_ERR((void *)userspace_addr);
 | |
| 
 | |
| 			memslot->userspace_addr = userspace_addr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_commit_memory_region(struct kvm *kvm,
 | |
| 				struct kvm_userspace_memory_region *mem,
 | |
| 				struct kvm_memory_slot old,
 | |
| 				int user_alloc)
 | |
| {
 | |
| 
 | |
| 	int npages = mem->memory_size >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
 | |
| 		int ret;
 | |
| 
 | |
| 		down_write(¤t->mm->mmap_sem);
 | |
| 		ret = do_munmap(current->mm, old.userspace_addr,
 | |
| 				old.npages * PAGE_SIZE);
 | |
| 		up_write(¤t->mm->mmap_sem);
 | |
| 		if (ret < 0)
 | |
| 			printk(KERN_WARNING
 | |
| 			       "kvm_vm_ioctl_set_memory_region: "
 | |
| 			       "failed to munmap memory\n");
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	if (!kvm->arch.n_requested_mmu_pages) {
 | |
| 		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
 | |
| 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| void kvm_arch_flush_shadow(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_mmu_zap_all(kvm);
 | |
| 	kvm_reload_remote_mmus(kvm);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
 | |
| 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
 | |
| 		|| vcpu->arch.nmi_pending ||
 | |
| 		(kvm_arch_interrupt_allowed(vcpu) &&
 | |
| 		 kvm_cpu_has_interrupt(vcpu));
 | |
| }
 | |
| 
 | |
| void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int me;
 | |
| 	int cpu = vcpu->cpu;
 | |
| 
 | |
| 	if (waitqueue_active(&vcpu->wq)) {
 | |
| 		wake_up_interruptible(&vcpu->wq);
 | |
| 		++vcpu->stat.halt_wakeup;
 | |
| 	}
 | |
| 
 | |
| 	me = get_cpu();
 | |
| 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
 | |
| 		if (atomic_xchg(&vcpu->guest_mode, 0))
 | |
| 			smp_send_reschedule(cpu);
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_x86_ops->interrupt_allowed(vcpu);
 | |
| }
 | |
| 
 | |
| bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
 | |
| {
 | |
| 	unsigned long current_rip = kvm_rip_read(vcpu) +
 | |
| 		get_segment_base(vcpu, VCPU_SREG_CS);
 | |
| 
 | |
| 	return current_rip == linear_rip;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
 | |
| 
 | |
| unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long rflags;
 | |
| 
 | |
| 	rflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
 | |
| 		rflags &= ~X86_EFLAGS_TF;
 | |
| 	return rflags;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_rflags);
 | |
| 
 | |
| void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
 | |
| {
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
 | |
| 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
 | |
| 		rflags |= X86_EFLAGS_TF;
 | |
| 	kvm_x86_ops->set_rflags(vcpu, rflags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_rflags);
 | |
| 
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
 |