mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 00:01:35 +00:00 
			
		
		
		
	 4a386c3e17
			
		
	
	
		4a386c3e17
		
	
	
	
	
		
			
			* 'x86-xsave-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86, xsave: Make xstate_enable_boot_cpu() __init, protect on CPU 0 x86, xsave: Add __init attribute to setup_xstate_features() x86, xsave: Make init_xstate_buf static x86, xsave: Check cpuid level for XSTATE_CPUID (0x0d) x86, xsave: Introduce xstate enable functions x86, xsave: Separate fpu and xsave initialization x86, xsave: Move boot cpu initialization to xsave_init() x86, xsave: 32/64 bit boot cpu check unification in initialization x86, xsave: Do not include asm/i387.h in asm/xsave.h x86, xsave: Use xsaveopt in context-switch path when supported x86, xsave: Sync xsave memory layout with its header for user handling x86, xsave: Track the offset, size of state in the xsave layout
		
			
				
	
	
		
			1278 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1278 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/bootmem.h>
 | |
| #include <linux/linkage.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kgdb.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <asm/stackprotector.h>
 | |
| #include <asm/perf_event.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/hypervisor.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/sections.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/atomic.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/i387.h>
 | |
| #include <asm/mtrr.h>
 | |
| #include <linux/numa.h>
 | |
| #include <asm/asm.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/pat.h>
 | |
| 
 | |
| #ifdef CONFIG_X86_LOCAL_APIC
 | |
| #include <asm/uv/uv.h>
 | |
| #endif
 | |
| 
 | |
| #include "cpu.h"
 | |
| 
 | |
| /* all of these masks are initialized in setup_cpu_local_masks() */
 | |
| cpumask_var_t cpu_initialized_mask;
 | |
| cpumask_var_t cpu_callout_mask;
 | |
| cpumask_var_t cpu_callin_mask;
 | |
| 
 | |
| /* representing cpus for which sibling maps can be computed */
 | |
| cpumask_var_t cpu_sibling_setup_mask;
 | |
| 
 | |
| /* correctly size the local cpu masks */
 | |
| void __init setup_cpu_local_masks(void)
 | |
| {
 | |
| 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
 | |
| 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
 | |
| 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
 | |
| 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
 | |
| }
 | |
| 
 | |
| static void __cpuinit default_init(struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	cpu_detect_cache_sizes(c);
 | |
| #else
 | |
| 	/* Not much we can do here... */
 | |
| 	/* Check if at least it has cpuid */
 | |
| 	if (c->cpuid_level == -1) {
 | |
| 		/* No cpuid. It must be an ancient CPU */
 | |
| 		if (c->x86 == 4)
 | |
| 			strcpy(c->x86_model_id, "486");
 | |
| 		else if (c->x86 == 3)
 | |
| 			strcpy(c->x86_model_id, "386");
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static const struct cpu_dev __cpuinitconst default_cpu = {
 | |
| 	.c_init		= default_init,
 | |
| 	.c_vendor	= "Unknown",
 | |
| 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
 | |
| };
 | |
| 
 | |
| static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
 | |
| 
 | |
| DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/*
 | |
| 	 * We need valid kernel segments for data and code in long mode too
 | |
| 	 * IRET will check the segment types  kkeil 2000/10/28
 | |
| 	 * Also sysret mandates a special GDT layout
 | |
| 	 *
 | |
| 	 * TLS descriptors are currently at a different place compared to i386.
 | |
| 	 * Hopefully nobody expects them at a fixed place (Wine?)
 | |
| 	 */
 | |
| 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 | |
| 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 | |
| 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 | |
| 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 | |
| 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 | |
| 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 | |
| #else
 | |
| 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 | |
| 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 | |
| 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 | |
| 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 | |
| 	/*
 | |
| 	 * Segments used for calling PnP BIOS have byte granularity.
 | |
| 	 * They code segments and data segments have fixed 64k limits,
 | |
| 	 * the transfer segment sizes are set at run time.
 | |
| 	 */
 | |
| 	/* 32-bit code */
 | |
| 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 | |
| 	/* 16-bit code */
 | |
| 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 | |
| 	/* 16-bit data */
 | |
| 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 | |
| 	/* 16-bit data */
 | |
| 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
 | |
| 	/* 16-bit data */
 | |
| 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
 | |
| 	/*
 | |
| 	 * The APM segments have byte granularity and their bases
 | |
| 	 * are set at run time.  All have 64k limits.
 | |
| 	 */
 | |
| 	/* 32-bit code */
 | |
| 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 | |
| 	/* 16-bit code */
 | |
| 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 | |
| 	/* data */
 | |
| 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 | |
| 
 | |
| 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 | |
| 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 | |
| 	GDT_STACK_CANARY_INIT
 | |
| #endif
 | |
| } };
 | |
| EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 | |
| 
 | |
| static int __init x86_xsave_setup(char *s)
 | |
| {
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noxsave", x86_xsave_setup);
 | |
| 
 | |
| static int __init x86_xsaveopt_setup(char *s)
 | |
| {
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noxsaveopt", x86_xsaveopt_setup);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| static int cachesize_override __cpuinitdata = -1;
 | |
| static int disable_x86_serial_nr __cpuinitdata = 1;
 | |
| 
 | |
| static int __init cachesize_setup(char *str)
 | |
| {
 | |
| 	get_option(&str, &cachesize_override);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("cachesize=", cachesize_setup);
 | |
| 
 | |
| static int __init x86_fxsr_setup(char *s)
 | |
| {
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_XMM);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("nofxsr", x86_fxsr_setup);
 | |
| 
 | |
| static int __init x86_sep_setup(char *s)
 | |
| {
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_SEP);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("nosep", x86_sep_setup);
 | |
| 
 | |
| /* Standard macro to see if a specific flag is changeable */
 | |
| static inline int flag_is_changeable_p(u32 flag)
 | |
| {
 | |
| 	u32 f1, f2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cyrix and IDT cpus allow disabling of CPUID
 | |
| 	 * so the code below may return different results
 | |
| 	 * when it is executed before and after enabling
 | |
| 	 * the CPUID. Add "volatile" to not allow gcc to
 | |
| 	 * optimize the subsequent calls to this function.
 | |
| 	 */
 | |
| 	asm volatile ("pushfl		\n\t"
 | |
| 		      "pushfl		\n\t"
 | |
| 		      "popl %0		\n\t"
 | |
| 		      "movl %0, %1	\n\t"
 | |
| 		      "xorl %2, %0	\n\t"
 | |
| 		      "pushl %0		\n\t"
 | |
| 		      "popfl		\n\t"
 | |
| 		      "pushfl		\n\t"
 | |
| 		      "popl %0		\n\t"
 | |
| 		      "popfl		\n\t"
 | |
| 
 | |
| 		      : "=&r" (f1), "=&r" (f2)
 | |
| 		      : "ir" (flag));
 | |
| 
 | |
| 	return ((f1^f2) & flag) != 0;
 | |
| }
 | |
| 
 | |
| /* Probe for the CPUID instruction */
 | |
| static int __cpuinit have_cpuid_p(void)
 | |
| {
 | |
| 	return flag_is_changeable_p(X86_EFLAGS_ID);
 | |
| }
 | |
| 
 | |
| static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	unsigned long lo, hi;
 | |
| 
 | |
| 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 | |
| 		return;
 | |
| 
 | |
| 	/* Disable processor serial number: */
 | |
| 
 | |
| 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 | |
| 	lo |= 0x200000;
 | |
| 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 | |
| 
 | |
| 	printk(KERN_NOTICE "CPU serial number disabled.\n");
 | |
| 	clear_cpu_cap(c, X86_FEATURE_PN);
 | |
| 
 | |
| 	/* Disabling the serial number may affect the cpuid level */
 | |
| 	c->cpuid_level = cpuid_eax(0);
 | |
| }
 | |
| 
 | |
| static int __init x86_serial_nr_setup(char *s)
 | |
| {
 | |
| 	disable_x86_serial_nr = 0;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("serialnumber", x86_serial_nr_setup);
 | |
| #else
 | |
| static inline int flag_is_changeable_p(u32 flag)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| /* Probe for the CPUID instruction */
 | |
| static inline int have_cpuid_p(void)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some CPU features depend on higher CPUID levels, which may not always
 | |
|  * be available due to CPUID level capping or broken virtualization
 | |
|  * software.  Add those features to this table to auto-disable them.
 | |
|  */
 | |
| struct cpuid_dependent_feature {
 | |
| 	u32 feature;
 | |
| 	u32 level;
 | |
| };
 | |
| 
 | |
| static const struct cpuid_dependent_feature __cpuinitconst
 | |
| cpuid_dependent_features[] = {
 | |
| 	{ X86_FEATURE_MWAIT,		0x00000005 },
 | |
| 	{ X86_FEATURE_DCA,		0x00000009 },
 | |
| 	{ X86_FEATURE_XSAVE,		0x0000000d },
 | |
| 	{ 0, 0 }
 | |
| };
 | |
| 
 | |
| static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 | |
| {
 | |
| 	const struct cpuid_dependent_feature *df;
 | |
| 
 | |
| 	for (df = cpuid_dependent_features; df->feature; df++) {
 | |
| 
 | |
| 		if (!cpu_has(c, df->feature))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Note: cpuid_level is set to -1 if unavailable, but
 | |
| 		 * extended_extended_level is set to 0 if unavailable
 | |
| 		 * and the legitimate extended levels are all negative
 | |
| 		 * when signed; hence the weird messing around with
 | |
| 		 * signs here...
 | |
| 		 */
 | |
| 		if (!((s32)df->level < 0 ?
 | |
| 		     (u32)df->level > (u32)c->extended_cpuid_level :
 | |
| 		     (s32)df->level > (s32)c->cpuid_level))
 | |
| 			continue;
 | |
| 
 | |
| 		clear_cpu_cap(c, df->feature);
 | |
| 		if (!warn)
 | |
| 			continue;
 | |
| 
 | |
| 		printk(KERN_WARNING
 | |
| 		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
 | |
| 				x86_cap_flags[df->feature], df->level);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Naming convention should be: <Name> [(<Codename>)]
 | |
|  * This table only is used unless init_<vendor>() below doesn't set it;
 | |
|  * in particular, if CPUID levels 0x80000002..4 are supported, this
 | |
|  * isn't used
 | |
|  */
 | |
| 
 | |
| /* Look up CPU names by table lookup. */
 | |
| static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	const struct cpu_model_info *info;
 | |
| 
 | |
| 	if (c->x86_model >= 16)
 | |
| 		return NULL;	/* Range check */
 | |
| 
 | |
| 	if (!this_cpu)
 | |
| 		return NULL;
 | |
| 
 | |
| 	info = this_cpu->c_models;
 | |
| 
 | |
| 	while (info && info->family) {
 | |
| 		if (info->family == c->x86)
 | |
| 			return info->model_names[c->x86_model];
 | |
| 		info++;
 | |
| 	}
 | |
| 	return NULL;		/* Not found */
 | |
| }
 | |
| 
 | |
| __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
 | |
| __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
 | |
| 
 | |
| void load_percpu_segment(int cpu)
 | |
| {
 | |
| #ifdef CONFIG_X86_32
 | |
| 	loadsegment(fs, __KERNEL_PERCPU);
 | |
| #else
 | |
| 	loadsegment(gs, 0);
 | |
| 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
 | |
| #endif
 | |
| 	load_stack_canary_segment();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Current gdt points %fs at the "master" per-cpu area: after this,
 | |
|  * it's on the real one.
 | |
|  */
 | |
| void switch_to_new_gdt(int cpu)
 | |
| {
 | |
| 	struct desc_ptr gdt_descr;
 | |
| 
 | |
| 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
 | |
| 	gdt_descr.size = GDT_SIZE - 1;
 | |
| 	load_gdt(&gdt_descr);
 | |
| 	/* Reload the per-cpu base */
 | |
| 
 | |
| 	load_percpu_segment(cpu);
 | |
| }
 | |
| 
 | |
| static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
 | |
| 
 | |
| static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	unsigned int *v;
 | |
| 	char *p, *q;
 | |
| 
 | |
| 	if (c->extended_cpuid_level < 0x80000004)
 | |
| 		return;
 | |
| 
 | |
| 	v = (unsigned int *)c->x86_model_id;
 | |
| 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 | |
| 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 | |
| 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 | |
| 	c->x86_model_id[48] = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Intel chips right-justify this string for some dumb reason;
 | |
| 	 * undo that brain damage:
 | |
| 	 */
 | |
| 	p = q = &c->x86_model_id[0];
 | |
| 	while (*p == ' ')
 | |
| 		p++;
 | |
| 	if (p != q) {
 | |
| 		while (*p)
 | |
| 			*q++ = *p++;
 | |
| 		while (q <= &c->x86_model_id[48])
 | |
| 			*q++ = '\0';	/* Zero-pad the rest */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	unsigned int n, dummy, ebx, ecx, edx, l2size;
 | |
| 
 | |
| 	n = c->extended_cpuid_level;
 | |
| 
 | |
| 	if (n >= 0x80000005) {
 | |
| 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 | |
| 		c->x86_cache_size = (ecx>>24) + (edx>>24);
 | |
| #ifdef CONFIG_X86_64
 | |
| 		/* On K8 L1 TLB is inclusive, so don't count it */
 | |
| 		c->x86_tlbsize = 0;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (n < 0x80000006)	/* Some chips just has a large L1. */
 | |
| 		return;
 | |
| 
 | |
| 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 | |
| 	l2size = ecx >> 16;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 | |
| #else
 | |
| 	/* do processor-specific cache resizing */
 | |
| 	if (this_cpu->c_size_cache)
 | |
| 		l2size = this_cpu->c_size_cache(c, l2size);
 | |
| 
 | |
| 	/* Allow user to override all this if necessary. */
 | |
| 	if (cachesize_override != -1)
 | |
| 		l2size = cachesize_override;
 | |
| 
 | |
| 	if (l2size == 0)
 | |
| 		return;		/* Again, no L2 cache is possible */
 | |
| #endif
 | |
| 
 | |
| 	c->x86_cache_size = l2size;
 | |
| }
 | |
| 
 | |
| void __cpuinit detect_ht(struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_X86_HT
 | |
| 	u32 eax, ebx, ecx, edx;
 | |
| 	int index_msb, core_bits;
 | |
| 	static bool printed;
 | |
| 
 | |
| 	if (!cpu_has(c, X86_FEATURE_HT))
 | |
| 		return;
 | |
| 
 | |
| 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 | |
| 		return;
 | |
| 
 | |
| 	cpuid(1, &eax, &ebx, &ecx, &edx);
 | |
| 
 | |
| 	smp_num_siblings = (ebx & 0xff0000) >> 16;
 | |
| 
 | |
| 	if (smp_num_siblings == 1) {
 | |
| 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (smp_num_siblings <= 1)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (smp_num_siblings > nr_cpu_ids) {
 | |
| 		pr_warning("CPU: Unsupported number of siblings %d",
 | |
| 			   smp_num_siblings);
 | |
| 		smp_num_siblings = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	index_msb = get_count_order(smp_num_siblings);
 | |
| 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 | |
| 
 | |
| 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 | |
| 
 | |
| 	index_msb = get_count_order(smp_num_siblings);
 | |
| 
 | |
| 	core_bits = get_count_order(c->x86_max_cores);
 | |
| 
 | |
| 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 | |
| 				       ((1 << core_bits) - 1);
 | |
| 
 | |
| out:
 | |
| 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
 | |
| 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
 | |
| 		       c->phys_proc_id);
 | |
| 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
 | |
| 		       c->cpu_core_id);
 | |
| 		printed = 1;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	char *v = c->x86_vendor_id;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < X86_VENDOR_NUM; i++) {
 | |
| 		if (!cpu_devs[i])
 | |
| 			break;
 | |
| 
 | |
| 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 | |
| 		    (cpu_devs[i]->c_ident[1] &&
 | |
| 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 | |
| 
 | |
| 			this_cpu = cpu_devs[i];
 | |
| 			c->x86_vendor = this_cpu->c_x86_vendor;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printk_once(KERN_ERR
 | |
| 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
 | |
| 			"CPU: Your system may be unstable.\n", v);
 | |
| 
 | |
| 	c->x86_vendor = X86_VENDOR_UNKNOWN;
 | |
| 	this_cpu = &default_cpu;
 | |
| }
 | |
| 
 | |
| void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	/* Get vendor name */
 | |
| 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 | |
| 	      (unsigned int *)&c->x86_vendor_id[0],
 | |
| 	      (unsigned int *)&c->x86_vendor_id[8],
 | |
| 	      (unsigned int *)&c->x86_vendor_id[4]);
 | |
| 
 | |
| 	c->x86 = 4;
 | |
| 	/* Intel-defined flags: level 0x00000001 */
 | |
| 	if (c->cpuid_level >= 0x00000001) {
 | |
| 		u32 junk, tfms, cap0, misc;
 | |
| 
 | |
| 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 | |
| 		c->x86 = (tfms >> 8) & 0xf;
 | |
| 		c->x86_model = (tfms >> 4) & 0xf;
 | |
| 		c->x86_mask = tfms & 0xf;
 | |
| 
 | |
| 		if (c->x86 == 0xf)
 | |
| 			c->x86 += (tfms >> 20) & 0xff;
 | |
| 		if (c->x86 >= 0x6)
 | |
| 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
 | |
| 
 | |
| 		if (cap0 & (1<<19)) {
 | |
| 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 | |
| 			c->x86_cache_alignment = c->x86_clflush_size;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	u32 tfms, xlvl;
 | |
| 	u32 ebx;
 | |
| 
 | |
| 	/* Intel-defined flags: level 0x00000001 */
 | |
| 	if (c->cpuid_level >= 0x00000001) {
 | |
| 		u32 capability, excap;
 | |
| 
 | |
| 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
 | |
| 		c->x86_capability[0] = capability;
 | |
| 		c->x86_capability[4] = excap;
 | |
| 	}
 | |
| 
 | |
| 	/* Additional Intel-defined flags: level 0x00000007 */
 | |
| 	if (c->cpuid_level >= 0x00000007) {
 | |
| 		u32 eax, ebx, ecx, edx;
 | |
| 
 | |
| 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 | |
| 
 | |
| 		if (eax > 0)
 | |
| 			c->x86_capability[9] = ebx;
 | |
| 	}
 | |
| 
 | |
| 	/* AMD-defined flags: level 0x80000001 */
 | |
| 	xlvl = cpuid_eax(0x80000000);
 | |
| 	c->extended_cpuid_level = xlvl;
 | |
| 
 | |
| 	if ((xlvl & 0xffff0000) == 0x80000000) {
 | |
| 		if (xlvl >= 0x80000001) {
 | |
| 			c->x86_capability[1] = cpuid_edx(0x80000001);
 | |
| 			c->x86_capability[6] = cpuid_ecx(0x80000001);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (c->extended_cpuid_level >= 0x80000008) {
 | |
| 		u32 eax = cpuid_eax(0x80000008);
 | |
| 
 | |
| 		c->x86_virt_bits = (eax >> 8) & 0xff;
 | |
| 		c->x86_phys_bits = eax & 0xff;
 | |
| 	}
 | |
| #ifdef CONFIG_X86_32
 | |
| 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 | |
| 		c->x86_phys_bits = 36;
 | |
| #endif
 | |
| 
 | |
| 	if (c->extended_cpuid_level >= 0x80000007)
 | |
| 		c->x86_power = cpuid_edx(0x80000007);
 | |
| 
 | |
| 	init_scattered_cpuid_features(c);
 | |
| }
 | |
| 
 | |
| static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_X86_32
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * First of all, decide if this is a 486 or higher
 | |
| 	 * It's a 486 if we can modify the AC flag
 | |
| 	 */
 | |
| 	if (flag_is_changeable_p(X86_EFLAGS_AC))
 | |
| 		c->x86 = 4;
 | |
| 	else
 | |
| 		c->x86 = 3;
 | |
| 
 | |
| 	for (i = 0; i < X86_VENDOR_NUM; i++)
 | |
| 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
 | |
| 			c->x86_vendor_id[0] = 0;
 | |
| 			cpu_devs[i]->c_identify(c);
 | |
| 			if (c->x86_vendor_id[0]) {
 | |
| 				get_cpu_vendor(c);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do minimum CPU detection early.
 | |
|  * Fields really needed: vendor, cpuid_level, family, model, mask,
 | |
|  * cache alignment.
 | |
|  * The others are not touched to avoid unwanted side effects.
 | |
|  *
 | |
|  * WARNING: this function is only called on the BP.  Don't add code here
 | |
|  * that is supposed to run on all CPUs.
 | |
|  */
 | |
| static void __init early_identify_cpu(struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	c->x86_clflush_size = 64;
 | |
| 	c->x86_phys_bits = 36;
 | |
| 	c->x86_virt_bits = 48;
 | |
| #else
 | |
| 	c->x86_clflush_size = 32;
 | |
| 	c->x86_phys_bits = 32;
 | |
| 	c->x86_virt_bits = 32;
 | |
| #endif
 | |
| 	c->x86_cache_alignment = c->x86_clflush_size;
 | |
| 
 | |
| 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
 | |
| 	c->extended_cpuid_level = 0;
 | |
| 
 | |
| 	if (!have_cpuid_p())
 | |
| 		identify_cpu_without_cpuid(c);
 | |
| 
 | |
| 	/* cyrix could have cpuid enabled via c_identify()*/
 | |
| 	if (!have_cpuid_p())
 | |
| 		return;
 | |
| 
 | |
| 	cpu_detect(c);
 | |
| 
 | |
| 	get_cpu_vendor(c);
 | |
| 
 | |
| 	get_cpu_cap(c);
 | |
| 
 | |
| 	if (this_cpu->c_early_init)
 | |
| 		this_cpu->c_early_init(c);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	c->cpu_index = boot_cpu_id;
 | |
| #endif
 | |
| 	filter_cpuid_features(c, false);
 | |
| }
 | |
| 
 | |
| void __init early_cpu_init(void)
 | |
| {
 | |
| 	const struct cpu_dev *const *cdev;
 | |
| 	int count = 0;
 | |
| 
 | |
| #ifdef PROCESSOR_SELECT
 | |
| 	printk(KERN_INFO "KERNEL supported cpus:\n");
 | |
| #endif
 | |
| 
 | |
| 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
 | |
| 		const struct cpu_dev *cpudev = *cdev;
 | |
| 
 | |
| 		if (count >= X86_VENDOR_NUM)
 | |
| 			break;
 | |
| 		cpu_devs[count] = cpudev;
 | |
| 		count++;
 | |
| 
 | |
| #ifdef PROCESSOR_SELECT
 | |
| 		{
 | |
| 			unsigned int j;
 | |
| 
 | |
| 			for (j = 0; j < 2; j++) {
 | |
| 				if (!cpudev->c_ident[j])
 | |
| 					continue;
 | |
| 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
 | |
| 					cpudev->c_ident[j]);
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 	early_identify_cpu(&boot_cpu_data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The NOPL instruction is supposed to exist on all CPUs with
 | |
|  * family >= 6; unfortunately, that's not true in practice because
 | |
|  * of early VIA chips and (more importantly) broken virtualizers that
 | |
|  * are not easy to detect.  In the latter case it doesn't even *fail*
 | |
|  * reliably, so probing for it doesn't even work.  Disable it completely
 | |
|  * unless we can find a reliable way to detect all the broken cases.
 | |
|  */
 | |
| static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	clear_cpu_cap(c, X86_FEATURE_NOPL);
 | |
| }
 | |
| 
 | |
| static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	c->extended_cpuid_level = 0;
 | |
| 
 | |
| 	if (!have_cpuid_p())
 | |
| 		identify_cpu_without_cpuid(c);
 | |
| 
 | |
| 	/* cyrix could have cpuid enabled via c_identify()*/
 | |
| 	if (!have_cpuid_p())
 | |
| 		return;
 | |
| 
 | |
| 	cpu_detect(c);
 | |
| 
 | |
| 	get_cpu_vendor(c);
 | |
| 
 | |
| 	get_cpu_cap(c);
 | |
| 
 | |
| 	if (c->cpuid_level >= 0x00000001) {
 | |
| 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
 | |
| #ifdef CONFIG_X86_32
 | |
| # ifdef CONFIG_X86_HT
 | |
| 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
 | |
| # else
 | |
| 		c->apicid = c->initial_apicid;
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_HT
 | |
| 		c->phys_proc_id = c->initial_apicid;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	get_model_name(c); /* Default name */
 | |
| 
 | |
| 	detect_nopl(c);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This does the hard work of actually picking apart the CPU stuff...
 | |
|  */
 | |
| static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	c->loops_per_jiffy = loops_per_jiffy;
 | |
| 	c->x86_cache_size = -1;
 | |
| 	c->x86_vendor = X86_VENDOR_UNKNOWN;
 | |
| 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
 | |
| 	c->x86_vendor_id[0] = '\0'; /* Unset */
 | |
| 	c->x86_model_id[0] = '\0';  /* Unset */
 | |
| 	c->x86_max_cores = 1;
 | |
| 	c->x86_coreid_bits = 0;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	c->x86_clflush_size = 64;
 | |
| 	c->x86_phys_bits = 36;
 | |
| 	c->x86_virt_bits = 48;
 | |
| #else
 | |
| 	c->cpuid_level = -1;	/* CPUID not detected */
 | |
| 	c->x86_clflush_size = 32;
 | |
| 	c->x86_phys_bits = 32;
 | |
| 	c->x86_virt_bits = 32;
 | |
| #endif
 | |
| 	c->x86_cache_alignment = c->x86_clflush_size;
 | |
| 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
 | |
| 
 | |
| 	generic_identify(c);
 | |
| 
 | |
| 	if (this_cpu->c_identify)
 | |
| 		this_cpu->c_identify(c);
 | |
| 
 | |
| 	/* Clear/Set all flags overriden by options, after probe */
 | |
| 	for (i = 0; i < NCAPINTS; i++) {
 | |
| 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
 | |
| 		c->x86_capability[i] |= cpu_caps_set[i];
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Vendor-specific initialization.  In this section we
 | |
| 	 * canonicalize the feature flags, meaning if there are
 | |
| 	 * features a certain CPU supports which CPUID doesn't
 | |
| 	 * tell us, CPUID claiming incorrect flags, or other bugs,
 | |
| 	 * we handle them here.
 | |
| 	 *
 | |
| 	 * At the end of this section, c->x86_capability better
 | |
| 	 * indicate the features this CPU genuinely supports!
 | |
| 	 */
 | |
| 	if (this_cpu->c_init)
 | |
| 		this_cpu->c_init(c);
 | |
| 
 | |
| 	/* Disable the PN if appropriate */
 | |
| 	squash_the_stupid_serial_number(c);
 | |
| 
 | |
| 	/*
 | |
| 	 * The vendor-specific functions might have changed features.
 | |
| 	 * Now we do "generic changes."
 | |
| 	 */
 | |
| 
 | |
| 	/* Filter out anything that depends on CPUID levels we don't have */
 | |
| 	filter_cpuid_features(c, true);
 | |
| 
 | |
| 	/* If the model name is still unset, do table lookup. */
 | |
| 	if (!c->x86_model_id[0]) {
 | |
| 		const char *p;
 | |
| 		p = table_lookup_model(c);
 | |
| 		if (p)
 | |
| 			strcpy(c->x86_model_id, p);
 | |
| 		else
 | |
| 			/* Last resort... */
 | |
| 			sprintf(c->x86_model_id, "%02x/%02x",
 | |
| 				c->x86, c->x86_model);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	detect_ht(c);
 | |
| #endif
 | |
| 
 | |
| 	init_hypervisor(c);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear/Set all flags overriden by options, need do it
 | |
| 	 * before following smp all cpus cap AND.
 | |
| 	 */
 | |
| 	for (i = 0; i < NCAPINTS; i++) {
 | |
| 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
 | |
| 		c->x86_capability[i] |= cpu_caps_set[i];
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * On SMP, boot_cpu_data holds the common feature set between
 | |
| 	 * all CPUs; so make sure that we indicate which features are
 | |
| 	 * common between the CPUs.  The first time this routine gets
 | |
| 	 * executed, c == &boot_cpu_data.
 | |
| 	 */
 | |
| 	if (c != &boot_cpu_data) {
 | |
| 		/* AND the already accumulated flags with these */
 | |
| 		for (i = 0; i < NCAPINTS; i++)
 | |
| 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
 | |
| 	}
 | |
| 
 | |
| 	/* Init Machine Check Exception if available. */
 | |
| 	mcheck_cpu_init(c);
 | |
| 
 | |
| 	select_idle_routine(c);
 | |
| 
 | |
| #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
 | |
| 	numa_add_cpu(smp_processor_id());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void vgetcpu_set_mode(void)
 | |
| {
 | |
| 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
 | |
| 		vgetcpu_mode = VGETCPU_RDTSCP;
 | |
| 	else
 | |
| 		vgetcpu_mode = VGETCPU_LSL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init identify_boot_cpu(void)
 | |
| {
 | |
| 	identify_cpu(&boot_cpu_data);
 | |
| 	init_c1e_mask();
 | |
| #ifdef CONFIG_X86_32
 | |
| 	sysenter_setup();
 | |
| 	enable_sep_cpu();
 | |
| #else
 | |
| 	vgetcpu_set_mode();
 | |
| #endif
 | |
| 	init_hw_perf_events();
 | |
| }
 | |
| 
 | |
| void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	BUG_ON(c == &boot_cpu_data);
 | |
| 	identify_cpu(c);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	enable_sep_cpu();
 | |
| #endif
 | |
| 	mtrr_ap_init();
 | |
| }
 | |
| 
 | |
| struct msr_range {
 | |
| 	unsigned	min;
 | |
| 	unsigned	max;
 | |
| };
 | |
| 
 | |
| static const struct msr_range msr_range_array[] __cpuinitconst = {
 | |
| 	{ 0x00000000, 0x00000418},
 | |
| 	{ 0xc0000000, 0xc000040b},
 | |
| 	{ 0xc0010000, 0xc0010142},
 | |
| 	{ 0xc0011000, 0xc001103b},
 | |
| };
 | |
| 
 | |
| static void __cpuinit print_cpu_msr(void)
 | |
| {
 | |
| 	unsigned index_min, index_max;
 | |
| 	unsigned index;
 | |
| 	u64 val;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
 | |
| 		index_min = msr_range_array[i].min;
 | |
| 		index_max = msr_range_array[i].max;
 | |
| 
 | |
| 		for (index = index_min; index < index_max; index++) {
 | |
| 			if (rdmsrl_amd_safe(index, &val))
 | |
| 				continue;
 | |
| 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int show_msr __cpuinitdata;
 | |
| 
 | |
| static __init int setup_show_msr(char *arg)
 | |
| {
 | |
| 	int num;
 | |
| 
 | |
| 	get_option(&arg, &num);
 | |
| 
 | |
| 	if (num > 0)
 | |
| 		show_msr = num;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("show_msr=", setup_show_msr);
 | |
| 
 | |
| static __init int setup_noclflush(char *arg)
 | |
| {
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noclflush", setup_noclflush);
 | |
| 
 | |
| void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	const char *vendor = NULL;
 | |
| 
 | |
| 	if (c->x86_vendor < X86_VENDOR_NUM) {
 | |
| 		vendor = this_cpu->c_vendor;
 | |
| 	} else {
 | |
| 		if (c->cpuid_level >= 0)
 | |
| 			vendor = c->x86_vendor_id;
 | |
| 	}
 | |
| 
 | |
| 	if (vendor && !strstr(c->x86_model_id, vendor))
 | |
| 		printk(KERN_CONT "%s ", vendor);
 | |
| 
 | |
| 	if (c->x86_model_id[0])
 | |
| 		printk(KERN_CONT "%s", c->x86_model_id);
 | |
| 	else
 | |
| 		printk(KERN_CONT "%d86", c->x86);
 | |
| 
 | |
| 	if (c->x86_mask || c->cpuid_level >= 0)
 | |
| 		printk(KERN_CONT " stepping %02x\n", c->x86_mask);
 | |
| 	else
 | |
| 		printk(KERN_CONT "\n");
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (c->cpu_index < show_msr)
 | |
| 		print_cpu_msr();
 | |
| #else
 | |
| 	if (show_msr)
 | |
| 		print_cpu_msr();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static __init int setup_disablecpuid(char *arg)
 | |
| {
 | |
| 	int bit;
 | |
| 
 | |
| 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
 | |
| 		setup_clear_cpu_cap(bit);
 | |
| 	else
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("clearcpuid=", setup_disablecpuid);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
 | |
| 
 | |
| DEFINE_PER_CPU_FIRST(union irq_stack_union,
 | |
| 		     irq_stack_union) __aligned(PAGE_SIZE);
 | |
| 
 | |
| /*
 | |
|  * The following four percpu variables are hot.  Align current_task to
 | |
|  * cacheline size such that all four fall in the same cacheline.
 | |
|  */
 | |
| DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
 | |
| 	&init_task;
 | |
| EXPORT_PER_CPU_SYMBOL(current_task);
 | |
| 
 | |
| DEFINE_PER_CPU(unsigned long, kernel_stack) =
 | |
| 	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
 | |
| EXPORT_PER_CPU_SYMBOL(kernel_stack);
 | |
| 
 | |
| DEFINE_PER_CPU(char *, irq_stack_ptr) =
 | |
| 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
 | |
| 
 | |
| DEFINE_PER_CPU(unsigned int, irq_count) = -1;
 | |
| 
 | |
| /*
 | |
|  * Special IST stacks which the CPU switches to when it calls
 | |
|  * an IST-marked descriptor entry. Up to 7 stacks (hardware
 | |
|  * limit), all of them are 4K, except the debug stack which
 | |
|  * is 8K.
 | |
|  */
 | |
| static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
 | |
| 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
 | |
| 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
 | |
| 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
 | |
| 
 | |
| /* May not be marked __init: used by software suspend */
 | |
| void syscall_init(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * LSTAR and STAR live in a bit strange symbiosis.
 | |
| 	 * They both write to the same internal register. STAR allows to
 | |
| 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
 | |
| 	 */
 | |
| 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
 | |
| 	wrmsrl(MSR_LSTAR, system_call);
 | |
| 	wrmsrl(MSR_CSTAR, ignore_sysret);
 | |
| 
 | |
| #ifdef CONFIG_IA32_EMULATION
 | |
| 	syscall32_cpu_init();
 | |
| #endif
 | |
| 
 | |
| 	/* Flags to clear on syscall */
 | |
| 	wrmsrl(MSR_SYSCALL_MASK,
 | |
| 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
 | |
| }
 | |
| 
 | |
| unsigned long kernel_eflags;
 | |
| 
 | |
| /*
 | |
|  * Copies of the original ist values from the tss are only accessed during
 | |
|  * debugging, no special alignment required.
 | |
|  */
 | |
| DEFINE_PER_CPU(struct orig_ist, orig_ist);
 | |
| 
 | |
| #else	/* CONFIG_X86_64 */
 | |
| 
 | |
| DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
 | |
| EXPORT_PER_CPU_SYMBOL(current_task);
 | |
| 
 | |
| #ifdef CONFIG_CC_STACKPROTECTOR
 | |
| DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
 | |
| #endif
 | |
| 
 | |
| /* Make sure %fs and %gs are initialized properly in idle threads */
 | |
| struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
 | |
| {
 | |
| 	memset(regs, 0, sizeof(struct pt_regs));
 | |
| 	regs->fs = __KERNEL_PERCPU;
 | |
| 	regs->gs = __KERNEL_STACK_CANARY;
 | |
| 
 | |
| 	return regs;
 | |
| }
 | |
| #endif	/* CONFIG_X86_64 */
 | |
| 
 | |
| /*
 | |
|  * Clear all 6 debug registers:
 | |
|  */
 | |
| static void clear_all_debug_regs(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		/* Ignore db4, db5 */
 | |
| 		if ((i == 4) || (i == 5))
 | |
| 			continue;
 | |
| 
 | |
| 		set_debugreg(0, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KGDB
 | |
| /*
 | |
|  * Restore debug regs if using kgdbwait and you have a kernel debugger
 | |
|  * connection established.
 | |
|  */
 | |
| static void dbg_restore_debug_regs(void)
 | |
| {
 | |
| 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
 | |
| 		arch_kgdb_ops.correct_hw_break();
 | |
| }
 | |
| #else /* ! CONFIG_KGDB */
 | |
| #define dbg_restore_debug_regs()
 | |
| #endif /* ! CONFIG_KGDB */
 | |
| 
 | |
| /*
 | |
|  * cpu_init() initializes state that is per-CPU. Some data is already
 | |
|  * initialized (naturally) in the bootstrap process, such as the GDT
 | |
|  * and IDT. We reload them nevertheless, this function acts as a
 | |
|  * 'CPU state barrier', nothing should get across.
 | |
|  * A lot of state is already set up in PDA init for 64 bit
 | |
|  */
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| void __cpuinit cpu_init(void)
 | |
| {
 | |
| 	struct orig_ist *oist;
 | |
| 	struct task_struct *me;
 | |
| 	struct tss_struct *t;
 | |
| 	unsigned long v;
 | |
| 	int cpu;
 | |
| 	int i;
 | |
| 
 | |
| 	cpu = stack_smp_processor_id();
 | |
| 	t = &per_cpu(init_tss, cpu);
 | |
| 	oist = &per_cpu(orig_ist, cpu);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	if (cpu != 0 && percpu_read(numa_node) == 0 &&
 | |
| 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
 | |
| 		set_numa_node(early_cpu_to_node(cpu));
 | |
| #endif
 | |
| 
 | |
| 	me = current;
 | |
| 
 | |
| 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
 | |
| 		panic("CPU#%d already initialized!\n", cpu);
 | |
| 
 | |
| 	pr_debug("Initializing CPU#%d\n", cpu);
 | |
| 
 | |
| 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the per-CPU GDT with the boot GDT,
 | |
| 	 * and set up the GDT descriptor:
 | |
| 	 */
 | |
| 
 | |
| 	switch_to_new_gdt(cpu);
 | |
| 	loadsegment(fs, 0);
 | |
| 
 | |
| 	load_idt((const struct desc_ptr *)&idt_descr);
 | |
| 
 | |
| 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
 | |
| 	syscall_init();
 | |
| 
 | |
| 	wrmsrl(MSR_FS_BASE, 0);
 | |
| 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
 | |
| 	barrier();
 | |
| 
 | |
| 	x86_configure_nx();
 | |
| 	if (cpu != 0)
 | |
| 		enable_x2apic();
 | |
| 
 | |
| 	/*
 | |
| 	 * set up and load the per-CPU TSS
 | |
| 	 */
 | |
| 	if (!oist->ist[0]) {
 | |
| 		char *estacks = per_cpu(exception_stacks, cpu);
 | |
| 
 | |
| 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
 | |
| 			estacks += exception_stack_sizes[v];
 | |
| 			oist->ist[v] = t->x86_tss.ist[v] =
 | |
| 					(unsigned long)estacks;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
 | |
| 
 | |
| 	/*
 | |
| 	 * <= is required because the CPU will access up to
 | |
| 	 * 8 bits beyond the end of the IO permission bitmap.
 | |
| 	 */
 | |
| 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
 | |
| 		t->io_bitmap[i] = ~0UL;
 | |
| 
 | |
| 	atomic_inc(&init_mm.mm_count);
 | |
| 	me->active_mm = &init_mm;
 | |
| 	BUG_ON(me->mm);
 | |
| 	enter_lazy_tlb(&init_mm, me);
 | |
| 
 | |
| 	load_sp0(t, ¤t->thread);
 | |
| 	set_tss_desc(cpu, t);
 | |
| 	load_TR_desc();
 | |
| 	load_LDT(&init_mm.context);
 | |
| 
 | |
| 	clear_all_debug_regs();
 | |
| 	dbg_restore_debug_regs();
 | |
| 
 | |
| 	fpu_init();
 | |
| 	xsave_init();
 | |
| 
 | |
| 	raw_local_save_flags(kernel_eflags);
 | |
| 
 | |
| 	if (is_uv_system())
 | |
| 		uv_cpu_init();
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void __cpuinit cpu_init(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct task_struct *curr = current;
 | |
| 	struct tss_struct *t = &per_cpu(init_tss, cpu);
 | |
| 	struct thread_struct *thread = &curr->thread;
 | |
| 
 | |
| 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
 | |
| 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
 | |
| 		for (;;)
 | |
| 			local_irq_enable();
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
 | |
| 
 | |
| 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
 | |
| 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
 | |
| 
 | |
| 	load_idt(&idt_descr);
 | |
| 	switch_to_new_gdt(cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up and load the per-CPU TSS and LDT
 | |
| 	 */
 | |
| 	atomic_inc(&init_mm.mm_count);
 | |
| 	curr->active_mm = &init_mm;
 | |
| 	BUG_ON(curr->mm);
 | |
| 	enter_lazy_tlb(&init_mm, curr);
 | |
| 
 | |
| 	load_sp0(t, thread);
 | |
| 	set_tss_desc(cpu, t);
 | |
| 	load_TR_desc();
 | |
| 	load_LDT(&init_mm.context);
 | |
| 
 | |
| 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
 | |
| 
 | |
| #ifdef CONFIG_DOUBLEFAULT
 | |
| 	/* Set up doublefault TSS pointer in the GDT */
 | |
| 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
 | |
| #endif
 | |
| 
 | |
| 	clear_all_debug_regs();
 | |
| 	dbg_restore_debug_regs();
 | |
| 
 | |
| 	/*
 | |
| 	 * Force FPU initialization:
 | |
| 	 */
 | |
| 	current_thread_info()->status = 0;
 | |
| 	clear_used_math();
 | |
| 	mxcsr_feature_mask_init();
 | |
| 
 | |
| 	fpu_init();
 | |
| 	xsave_init();
 | |
| }
 | |
| #endif
 |