mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 02:59:34 +00:00 
			
		
		
		
	 979f867191
			
		
	
	
		979f867191
		
	
	
	
	
		
			
			This implements hardware performance events for the EV67 and later CPUs within the Linux performance events subsystem. Only using the performance monitoring unit in HP/Compaq's so called "Aggregrate mode" is supported. The code has been implemented in a manner that makes extension to other older Alpha CPUs relatively straightforward should some mug wish to indulge themselves. Signed-off-by: Michael Cree <mcree@orcon.net.nz> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jay Estabrook <jay.estabrook@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			843 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			843 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Hardware performance events for the Alpha.
 | |
|  *
 | |
|  * We implement HW counts on the EV67 and subsequent CPUs only.
 | |
|  *
 | |
|  * (C) 2010 Michael J. Cree
 | |
|  *
 | |
|  * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and
 | |
|  * ARM code, which are copyright by their respective authors.
 | |
|  */
 | |
| 
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/mutex.h>
 | |
| 
 | |
| #include <asm/hwrpb.h>
 | |
| #include <asm/atomic.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/irq_regs.h>
 | |
| #include <asm/pal.h>
 | |
| #include <asm/wrperfmon.h>
 | |
| #include <asm/hw_irq.h>
 | |
| 
 | |
| 
 | |
| /* The maximum number of PMCs on any Alpha CPU whatsoever. */
 | |
| #define MAX_HWEVENTS 3
 | |
| #define PMC_NO_INDEX -1
 | |
| 
 | |
| /* For tracking PMCs and the hw events they monitor on each CPU. */
 | |
| struct cpu_hw_events {
 | |
| 	int			enabled;
 | |
| 	/* Number of events scheduled; also number entries valid in arrays below. */
 | |
| 	int			n_events;
 | |
| 	/* Number events added since last hw_perf_disable(). */
 | |
| 	int			n_added;
 | |
| 	/* Events currently scheduled. */
 | |
| 	struct perf_event	*event[MAX_HWEVENTS];
 | |
| 	/* Event type of each scheduled event. */
 | |
| 	unsigned long		evtype[MAX_HWEVENTS];
 | |
| 	/* Current index of each scheduled event; if not yet determined
 | |
| 	 * contains PMC_NO_INDEX.
 | |
| 	 */
 | |
| 	int			current_idx[MAX_HWEVENTS];
 | |
| 	/* The active PMCs' config for easy use with wrperfmon(). */
 | |
| 	unsigned long		config;
 | |
| 	/* The active counters' indices for easy use with wrperfmon(). */
 | |
| 	unsigned long		idx_mask;
 | |
| };
 | |
| DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * A structure to hold the description of the PMCs available on a particular
 | |
|  * type of Alpha CPU.
 | |
|  */
 | |
| struct alpha_pmu_t {
 | |
| 	/* Mapping of the perf system hw event types to indigenous event types */
 | |
| 	const int *event_map;
 | |
| 	/* The number of entries in the event_map */
 | |
| 	int  max_events;
 | |
| 	/* The number of PMCs on this Alpha */
 | |
| 	int  num_pmcs;
 | |
| 	/*
 | |
| 	 * All PMC counters reside in the IBOX register PCTR.  This is the
 | |
| 	 * LSB of the counter.
 | |
| 	 */
 | |
| 	int  pmc_count_shift[MAX_HWEVENTS];
 | |
| 	/*
 | |
| 	 * The mask that isolates the PMC bits when the LSB of the counter
 | |
| 	 * is shifted to bit 0.
 | |
| 	 */
 | |
| 	unsigned long pmc_count_mask[MAX_HWEVENTS];
 | |
| 	/* The maximum period the PMC can count. */
 | |
| 	unsigned long pmc_max_period[MAX_HWEVENTS];
 | |
| 	/*
 | |
| 	 * The maximum value that may be written to the counter due to
 | |
| 	 * hardware restrictions is pmc_max_period - pmc_left.
 | |
| 	 */
 | |
| 	long pmc_left[3];
 | |
| 	 /* Subroutine for allocation of PMCs.  Enforces constraints. */
 | |
| 	int (*check_constraints)(struct perf_event **, unsigned long *, int);
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The Alpha CPU PMU description currently in operation.  This is set during
 | |
|  * the boot process to the specific CPU of the machine.
 | |
|  */
 | |
| static const struct alpha_pmu_t *alpha_pmu;
 | |
| 
 | |
| 
 | |
| #define HW_OP_UNSUPPORTED -1
 | |
| 
 | |
| /*
 | |
|  * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs
 | |
|  * follow. Since they are identical we refer to them collectively as the
 | |
|  * EV67 henceforth.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * EV67 PMC event types
 | |
|  *
 | |
|  * There is no one-to-one mapping of the possible hw event types to the
 | |
|  * actual codes that are used to program the PMCs hence we introduce our
 | |
|  * own hw event type identifiers.
 | |
|  */
 | |
| enum ev67_pmc_event_type {
 | |
| 	EV67_CYCLES = 1,
 | |
| 	EV67_INSTRUCTIONS,
 | |
| 	EV67_BCACHEMISS,
 | |
| 	EV67_MBOXREPLAY,
 | |
| 	EV67_LAST_ET
 | |
| };
 | |
| #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES)
 | |
| 
 | |
| 
 | |
| /* Mapping of the hw event types to the perf tool interface */
 | |
| static const int ev67_perfmon_event_map[] = {
 | |
| 	[PERF_COUNT_HW_CPU_CYCLES]	 = EV67_CYCLES,
 | |
| 	[PERF_COUNT_HW_INSTRUCTIONS]	 = EV67_INSTRUCTIONS,
 | |
| 	[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
 | |
| 	[PERF_COUNT_HW_CACHE_MISSES]	 = EV67_BCACHEMISS,
 | |
| };
 | |
| 
 | |
| struct ev67_mapping_t {
 | |
| 	int config;
 | |
| 	int idx;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The mapping used for one event only - these must be in same order as enum
 | |
|  * ev67_pmc_event_type definition.
 | |
|  */
 | |
| static const struct ev67_mapping_t ev67_mapping[] = {
 | |
| 	{EV67_PCTR_INSTR_CYCLES, 1},	 /* EV67_CYCLES, */
 | |
| 	{EV67_PCTR_INSTR_CYCLES, 0},	 /* EV67_INSTRUCTIONS */
 | |
| 	{EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */
 | |
| 	{EV67_PCTR_CYCLES_MBOX, 1}	 /* EV67_MBOXREPLAY */
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Check that a group of events can be simultaneously scheduled on to the
 | |
|  * EV67 PMU.  Also allocate counter indices and config.
 | |
|  */
 | |
| static int ev67_check_constraints(struct perf_event **event,
 | |
| 				unsigned long *evtype, int n_ev)
 | |
| {
 | |
| 	int idx0;
 | |
| 	unsigned long config;
 | |
| 
 | |
| 	idx0 = ev67_mapping[evtype[0]-1].idx;
 | |
| 	config = ev67_mapping[evtype[0]-1].config;
 | |
| 	if (n_ev == 1)
 | |
| 		goto success;
 | |
| 
 | |
| 	BUG_ON(n_ev != 2);
 | |
| 
 | |
| 	if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) {
 | |
| 		/* MBOX replay traps must be on PMC 1 */
 | |
| 		idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0;
 | |
| 		/* Only cycles can accompany MBOX replay traps */
 | |
| 		if (evtype[idx0] == EV67_CYCLES) {
 | |
| 			config = EV67_PCTR_CYCLES_MBOX;
 | |
| 			goto success;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) {
 | |
| 		/* Bcache misses must be on PMC 1 */
 | |
| 		idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0;
 | |
| 		/* Only instructions can accompany Bcache misses */
 | |
| 		if (evtype[idx0] == EV67_INSTRUCTIONS) {
 | |
| 			config = EV67_PCTR_INSTR_BCACHEMISS;
 | |
| 			goto success;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) {
 | |
| 		/* Instructions must be on PMC 0 */
 | |
| 		idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1;
 | |
| 		/* By this point only cycles can accompany instructions */
 | |
| 		if (evtype[idx0^1] == EV67_CYCLES) {
 | |
| 			config = EV67_PCTR_INSTR_CYCLES;
 | |
| 			goto success;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Otherwise, darn it, there is a conflict.  */
 | |
| 	return -1;
 | |
| 
 | |
| success:
 | |
| 	event[0]->hw.idx = idx0;
 | |
| 	event[0]->hw.config_base = config;
 | |
| 	if (n_ev == 2) {
 | |
| 		event[1]->hw.idx = idx0 ^ 1;
 | |
| 		event[1]->hw.config_base = config;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static const struct alpha_pmu_t ev67_pmu = {
 | |
| 	.event_map = ev67_perfmon_event_map,
 | |
| 	.max_events = ARRAY_SIZE(ev67_perfmon_event_map),
 | |
| 	.num_pmcs = 2,
 | |
| 	.pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0},
 | |
| 	.pmc_count_mask = {EV67_PCTR_0_COUNT_MASK,  EV67_PCTR_1_COUNT_MASK,  0},
 | |
| 	.pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0},
 | |
| 	.pmc_left = {16, 4, 0},
 | |
| 	.check_constraints = ev67_check_constraints
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Helper routines to ensure that we read/write only the correct PMC bits
 | |
|  * when calling the wrperfmon PALcall.
 | |
|  */
 | |
| static inline void alpha_write_pmc(int idx, unsigned long val)
 | |
| {
 | |
| 	val &= alpha_pmu->pmc_count_mask[idx];
 | |
| 	val <<= alpha_pmu->pmc_count_shift[idx];
 | |
| 	val |= (1<<idx);
 | |
| 	wrperfmon(PERFMON_CMD_WRITE, val);
 | |
| }
 | |
| 
 | |
| static inline unsigned long alpha_read_pmc(int idx)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	val = wrperfmon(PERFMON_CMD_READ, 0);
 | |
| 	val >>= alpha_pmu->pmc_count_shift[idx];
 | |
| 	val &= alpha_pmu->pmc_count_mask[idx];
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /* Set a new period to sample over */
 | |
| static int alpha_perf_event_set_period(struct perf_event *event,
 | |
| 				struct hw_perf_event *hwc, int idx)
 | |
| {
 | |
| 	long left = atomic64_read(&hwc->period_left);
 | |
| 	long period = hwc->sample_period;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (unlikely(left <= -period)) {
 | |
| 		left = period;
 | |
| 		atomic64_set(&hwc->period_left, left);
 | |
| 		hwc->last_period = period;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(left <= 0)) {
 | |
| 		left += period;
 | |
| 		atomic64_set(&hwc->period_left, left);
 | |
| 		hwc->last_period = period;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Hardware restrictions require that the counters must not be
 | |
| 	 * written with values that are too close to the maximum period.
 | |
| 	 */
 | |
| 	if (unlikely(left < alpha_pmu->pmc_left[idx]))
 | |
| 		left = alpha_pmu->pmc_left[idx];
 | |
| 
 | |
| 	if (left > (long)alpha_pmu->pmc_max_period[idx])
 | |
| 		left = alpha_pmu->pmc_max_period[idx];
 | |
| 
 | |
| 	atomic64_set(&hwc->prev_count, (unsigned long)(-left));
 | |
| 
 | |
| 	alpha_write_pmc(idx, (unsigned long)(-left));
 | |
| 
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Calculates the count (the 'delta') since the last time the PMC was read.
 | |
|  *
 | |
|  * As the PMCs' full period can easily be exceeded within the perf system
 | |
|  * sampling period we cannot use any high order bits as a guard bit in the
 | |
|  * PMCs to detect overflow as is done by other architectures.  The code here
 | |
|  * calculates the delta on the basis that there is no overflow when ovf is
 | |
|  * zero.  The value passed via ovf by the interrupt handler corrects for
 | |
|  * overflow.
 | |
|  *
 | |
|  * This can be racey on rare occasions -- a call to this routine can occur
 | |
|  * with an overflowed counter just before the PMI service routine is called.
 | |
|  * The check for delta negative hopefully always rectifies this situation.
 | |
|  */
 | |
| static unsigned long alpha_perf_event_update(struct perf_event *event,
 | |
| 					struct hw_perf_event *hwc, int idx, long ovf)
 | |
| {
 | |
| 	long prev_raw_count, new_raw_count;
 | |
| 	long delta;
 | |
| 
 | |
| again:
 | |
| 	prev_raw_count = atomic64_read(&hwc->prev_count);
 | |
| 	new_raw_count = alpha_read_pmc(idx);
 | |
| 
 | |
| 	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
 | |
| 			     new_raw_count) != prev_raw_count)
 | |
| 		goto again;
 | |
| 
 | |
| 	delta = (new_raw_count  - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf;
 | |
| 
 | |
| 	/* It is possible on very rare occasions that the PMC has overflowed
 | |
| 	 * but the interrupt is yet to come.  Detect and fix this situation.
 | |
| 	 */
 | |
| 	if (unlikely(delta < 0)) {
 | |
| 		delta += alpha_pmu->pmc_max_period[idx] + 1;
 | |
| 	}
 | |
| 
 | |
| 	atomic64_add(delta, &event->count);
 | |
| 	atomic64_sub(delta, &hwc->period_left);
 | |
| 
 | |
| 	return new_raw_count;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Collect all HW events into the array event[].
 | |
|  */
 | |
| static int collect_events(struct perf_event *group, int max_count,
 | |
| 			  struct perf_event *event[], unsigned long *evtype,
 | |
| 			  int *current_idx)
 | |
| {
 | |
| 	struct perf_event *pe;
 | |
| 	int n = 0;
 | |
| 
 | |
| 	if (!is_software_event(group)) {
 | |
| 		if (n >= max_count)
 | |
| 			return -1;
 | |
| 		event[n] = group;
 | |
| 		evtype[n] = group->hw.event_base;
 | |
| 		current_idx[n++] = PMC_NO_INDEX;
 | |
| 	}
 | |
| 	list_for_each_entry(pe, &group->sibling_list, group_entry) {
 | |
| 		if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) {
 | |
| 			if (n >= max_count)
 | |
| 				return -1;
 | |
| 			event[n] = pe;
 | |
| 			evtype[n] = pe->hw.event_base;
 | |
| 			current_idx[n++] = PMC_NO_INDEX;
 | |
| 		}
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Check that a group of events can be simultaneously scheduled on to the PMU.
 | |
|  */
 | |
| static int alpha_check_constraints(struct perf_event **events,
 | |
| 				   unsigned long *evtypes, int n_ev)
 | |
| {
 | |
| 
 | |
| 	/* No HW events is possible from hw_perf_group_sched_in(). */
 | |
| 	if (n_ev == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (n_ev > alpha_pmu->num_pmcs)
 | |
| 		return -1;
 | |
| 
 | |
| 	return alpha_pmu->check_constraints(events, evtypes, n_ev);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * If new events have been scheduled then update cpuc with the new
 | |
|  * configuration.  This may involve shifting cycle counts from one PMC to
 | |
|  * another.
 | |
|  */
 | |
| static void maybe_change_configuration(struct cpu_hw_events *cpuc)
 | |
| {
 | |
| 	int j;
 | |
| 
 | |
| 	if (cpuc->n_added == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Find counters that are moving to another PMC and update */
 | |
| 	for (j = 0; j < cpuc->n_events; j++) {
 | |
| 		struct perf_event *pe = cpuc->event[j];
 | |
| 
 | |
| 		if (cpuc->current_idx[j] != PMC_NO_INDEX &&
 | |
| 			cpuc->current_idx[j] != pe->hw.idx) {
 | |
| 			alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0);
 | |
| 			cpuc->current_idx[j] = PMC_NO_INDEX;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Assign to counters all unassigned events. */
 | |
| 	cpuc->idx_mask = 0;
 | |
| 	for (j = 0; j < cpuc->n_events; j++) {
 | |
| 		struct perf_event *pe = cpuc->event[j];
 | |
| 		struct hw_perf_event *hwc = &pe->hw;
 | |
| 		int idx = hwc->idx;
 | |
| 
 | |
| 		if (cpuc->current_idx[j] != PMC_NO_INDEX) {
 | |
| 			cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		alpha_perf_event_set_period(pe, hwc, idx);
 | |
| 		cpuc->current_idx[j] = idx;
 | |
| 		cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
 | |
| 	}
 | |
| 	cpuc->config = cpuc->event[0]->hw.config_base;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Schedule perf HW event on to PMU.
 | |
|  *  - this function is called from outside this module via the pmu struct
 | |
|  *    returned from perf event initialisation.
 | |
|  */
 | |
| static int alpha_pmu_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	int n0;
 | |
| 	int ret;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * The Sparc code has the IRQ disable first followed by the perf
 | |
| 	 * disable, however this can lead to an overflowed counter with the
 | |
| 	 * PMI disabled on rare occasions.  The alpha_perf_event_update()
 | |
| 	 * routine should detect this situation by noting a negative delta,
 | |
| 	 * nevertheless we disable the PMCs first to enable a potential
 | |
| 	 * final PMI to occur before we disable interrupts.
 | |
| 	 */
 | |
| 	perf_disable();
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/* Default to error to be returned */
 | |
| 	ret = -EAGAIN;
 | |
| 
 | |
| 	/* Insert event on to PMU and if successful modify ret to valid return */
 | |
| 	n0 = cpuc->n_events;
 | |
| 	if (n0 < alpha_pmu->num_pmcs) {
 | |
| 		cpuc->event[n0] = event;
 | |
| 		cpuc->evtype[n0] = event->hw.event_base;
 | |
| 		cpuc->current_idx[n0] = PMC_NO_INDEX;
 | |
| 
 | |
| 		if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) {
 | |
| 			cpuc->n_events++;
 | |
| 			cpuc->n_added++;
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 	perf_enable();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Disable performance monitoring unit
 | |
|  *  - this function is called from outside this module via the pmu struct
 | |
|  *    returned from perf event initialisation.
 | |
|  */
 | |
| static void alpha_pmu_disable(struct perf_event *event)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	unsigned long flags;
 | |
| 	int j;
 | |
| 
 | |
| 	perf_disable();
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	for (j = 0; j < cpuc->n_events; j++) {
 | |
| 		if (event == cpuc->event[j]) {
 | |
| 			int idx = cpuc->current_idx[j];
 | |
| 
 | |
| 			/* Shift remaining entries down into the existing
 | |
| 			 * slot.
 | |
| 			 */
 | |
| 			while (++j < cpuc->n_events) {
 | |
| 				cpuc->event[j - 1] = cpuc->event[j];
 | |
| 				cpuc->evtype[j - 1] = cpuc->evtype[j];
 | |
| 				cpuc->current_idx[j - 1] =
 | |
| 					cpuc->current_idx[j];
 | |
| 			}
 | |
| 
 | |
| 			/* Absorb the final count and turn off the event. */
 | |
| 			alpha_perf_event_update(event, hwc, idx, 0);
 | |
| 			perf_event_update_userpage(event);
 | |
| 
 | |
| 			cpuc->idx_mask &= ~(1UL<<idx);
 | |
| 			cpuc->n_events--;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 	perf_enable();
 | |
| }
 | |
| 
 | |
| 
 | |
| static void alpha_pmu_read(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	alpha_perf_event_update(event, hwc, hwc->idx, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void alpha_pmu_unthrottle(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	cpuc->idx_mask |= 1UL<<hwc->idx;
 | |
| 	wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Check that CPU performance counters are supported.
 | |
|  * - currently support EV67 and later CPUs.
 | |
|  * - actually some later revisions of the EV6 have the same PMC model as the
 | |
|  *     EV67 but we don't do suffiently deep CPU detection to detect them.
 | |
|  *     Bad luck to the very few people who might have one, I guess.
 | |
|  */
 | |
| static int supported_cpu(void)
 | |
| {
 | |
| 	struct percpu_struct *cpu;
 | |
| 	unsigned long cputype;
 | |
| 
 | |
| 	/* Get cpu type from HW */
 | |
| 	cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset);
 | |
| 	cputype = cpu->type & 0xffffffff;
 | |
| 	/* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */
 | |
| 	return (cputype >= EV67_CPU) && (cputype <= EV69_CPU);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static void hw_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	/* Nothing to be done! */
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static int __hw_perf_event_init(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_attr *attr = &event->attr;
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	struct perf_event *evts[MAX_HWEVENTS];
 | |
| 	unsigned long evtypes[MAX_HWEVENTS];
 | |
| 	int idx_rubbish_bin[MAX_HWEVENTS];
 | |
| 	int ev;
 | |
| 	int n;
 | |
| 
 | |
| 	/* We only support a limited range of HARDWARE event types with one
 | |
| 	 * only programmable via a RAW event type.
 | |
| 	 */
 | |
| 	if (attr->type == PERF_TYPE_HARDWARE) {
 | |
| 		if (attr->config >= alpha_pmu->max_events)
 | |
| 			return -EINVAL;
 | |
| 		ev = alpha_pmu->event_map[attr->config];
 | |
| 	} else if (attr->type == PERF_TYPE_HW_CACHE) {
 | |
| 		return -EOPNOTSUPP;
 | |
| 	} else if (attr->type == PERF_TYPE_RAW) {
 | |
| 		ev = attr->config & 0xff;
 | |
| 	} else {
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (ev < 0) {
 | |
| 		return ev;
 | |
| 	}
 | |
| 
 | |
| 	/* The EV67 does not support mode exclusion */
 | |
| 	if (attr->exclude_kernel || attr->exclude_user
 | |
| 			|| attr->exclude_hv || attr->exclude_idle) {
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We place the event type in event_base here and leave calculation
 | |
| 	 * of the codes to programme the PMU for alpha_pmu_enable() because
 | |
| 	 * it is only then we will know what HW events are actually
 | |
| 	 * scheduled on to the PMU.  At that point the code to programme the
 | |
| 	 * PMU is put into config_base and the PMC to use is placed into
 | |
| 	 * idx.  We initialise idx (below) to PMC_NO_INDEX to indicate that
 | |
| 	 * it is yet to be determined.
 | |
| 	 */
 | |
| 	hwc->event_base = ev;
 | |
| 
 | |
| 	/* Collect events in a group together suitable for calling
 | |
| 	 * alpha_check_constraints() to verify that the group as a whole can
 | |
| 	 * be scheduled on to the PMU.
 | |
| 	 */
 | |
| 	n = 0;
 | |
| 	if (event->group_leader != event) {
 | |
| 		n = collect_events(event->group_leader,
 | |
| 				alpha_pmu->num_pmcs - 1,
 | |
| 				evts, evtypes, idx_rubbish_bin);
 | |
| 		if (n < 0)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 	evtypes[n] = hwc->event_base;
 | |
| 	evts[n] = event;
 | |
| 
 | |
| 	if (alpha_check_constraints(evts, evtypes, n + 1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Indicate that PMU config and idx are yet to be determined. */
 | |
| 	hwc->config_base = 0;
 | |
| 	hwc->idx = PMC_NO_INDEX;
 | |
| 
 | |
| 	event->destroy = hw_perf_event_destroy;
 | |
| 
 | |
| 	/*
 | |
| 	 * Most architectures reserve the PMU for their use at this point.
 | |
| 	 * As there is no existing mechanism to arbitrate usage and there
 | |
| 	 * appears to be no other user of the Alpha PMU we just assume
 | |
| 	 * that we can just use it, hence a NO-OP here.
 | |
| 	 *
 | |
| 	 * Maybe an alpha_reserve_pmu() routine should be implemented but is
 | |
| 	 * anything else ever going to use it?
 | |
| 	 */
 | |
| 
 | |
| 	if (!hwc->sample_period) {
 | |
| 		hwc->sample_period = alpha_pmu->pmc_max_period[0];
 | |
| 		hwc->last_period = hwc->sample_period;
 | |
| 		atomic64_set(&hwc->period_left, hwc->sample_period);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct pmu pmu = {
 | |
| 	.enable		= alpha_pmu_enable,
 | |
| 	.disable	= alpha_pmu_disable,
 | |
| 	.read		= alpha_pmu_read,
 | |
| 	.unthrottle	= alpha_pmu_unthrottle,
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Main entry point to initialise a HW performance event.
 | |
|  */
 | |
| const struct pmu *hw_perf_event_init(struct perf_event *event)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!alpha_pmu)
 | |
| 		return ERR_PTR(-ENODEV);
 | |
| 
 | |
| 	/* Do the real initialisation work. */
 | |
| 	err = __hw_perf_event_init(event);
 | |
| 
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	return &pmu;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Main entry point - enable HW performance counters.
 | |
|  */
 | |
| void hw_perf_enable(void)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	if (cpuc->enabled)
 | |
| 		return;
 | |
| 
 | |
| 	cpuc->enabled = 1;
 | |
| 	barrier();
 | |
| 
 | |
| 	if (cpuc->n_events > 0) {
 | |
| 		/* Update cpuc with information from any new scheduled events. */
 | |
| 		maybe_change_configuration(cpuc);
 | |
| 
 | |
| 		/* Start counting the desired events. */
 | |
| 		wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE);
 | |
| 		wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config);
 | |
| 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Main entry point - disable HW performance counters.
 | |
|  */
 | |
| 
 | |
| void hw_perf_disable(void)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	if (!cpuc->enabled)
 | |
| 		return;
 | |
| 
 | |
| 	cpuc->enabled = 0;
 | |
| 	cpuc->n_added = 0;
 | |
| 
 | |
| 	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Main entry point - don't know when this is called but it
 | |
|  * obviously dumps debug info.
 | |
|  */
 | |
| void perf_event_print_debug(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long pcr;
 | |
| 	int pcr0, pcr1;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!supported_cpu())
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 
 | |
| 	pcr = wrperfmon(PERFMON_CMD_READ, 0);
 | |
| 	pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0];
 | |
| 	pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1];
 | |
| 
 | |
| 	pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Performance Monitoring Interrupt Service Routine called when a PMC
 | |
|  * overflows.  The PMC that overflowed is passed in la_ptr.
 | |
|  */
 | |
| static void alpha_perf_event_irq_handler(unsigned long la_ptr,
 | |
| 					struct pt_regs *regs)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc;
 | |
| 	struct perf_sample_data data;
 | |
| 	struct perf_event *event;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	int idx, j;
 | |
| 
 | |
| 	__get_cpu_var(irq_pmi_count)++;
 | |
| 	cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	/* Completely counting through the PMC's period to trigger a new PMC
 | |
| 	 * overflow interrupt while in this interrupt routine is utterly
 | |
| 	 * disastrous!  The EV6 and EV67 counters are sufficiently large to
 | |
| 	 * prevent this but to be really sure disable the PMCs.
 | |
| 	 */
 | |
| 	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
 | |
| 
 | |
| 	/* la_ptr is the counter that overflowed. */
 | |
| 	if (unlikely(la_ptr >= perf_max_events)) {
 | |
| 		/* This should never occur! */
 | |
| 		irq_err_count++;
 | |
| 		pr_warning("PMI: silly index %ld\n", la_ptr);
 | |
| 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	idx = la_ptr;
 | |
| 
 | |
| 	perf_sample_data_init(&data, 0);
 | |
| 	for (j = 0; j < cpuc->n_events; j++) {
 | |
| 		if (cpuc->current_idx[j] == idx)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(j == cpuc->n_events)) {
 | |
| 		/* This can occur if the event is disabled right on a PMC overflow. */
 | |
| 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	event = cpuc->event[j];
 | |
| 
 | |
| 	if (unlikely(!event)) {
 | |
| 		/* This should never occur! */
 | |
| 		irq_err_count++;
 | |
| 		pr_warning("PMI: No event at index %d!\n", idx);
 | |
| 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	hwc = &event->hw;
 | |
| 	alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1);
 | |
| 	data.period = event->hw.last_period;
 | |
| 
 | |
| 	if (alpha_perf_event_set_period(event, hwc, idx)) {
 | |
| 		if (perf_event_overflow(event, 1, &data, regs)) {
 | |
| 			/* Interrupts coming too quickly; "throttle" the
 | |
| 			 * counter, i.e., disable it for a little while.
 | |
| 			 */
 | |
| 			cpuc->idx_mask &= ~(1UL<<idx);
 | |
| 		}
 | |
| 	}
 | |
| 	wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Init call to initialise performance events at kernel startup.
 | |
|  */
 | |
| void __init init_hw_perf_events(void)
 | |
| {
 | |
| 	pr_info("Performance events: ");
 | |
| 
 | |
| 	if (!supported_cpu()) {
 | |
| 		pr_cont("No support for your CPU.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pr_cont("Supported CPU type!\n");
 | |
| 
 | |
| 	/* Override performance counter IRQ vector */
 | |
| 
 | |
| 	perf_irq = alpha_perf_event_irq_handler;
 | |
| 
 | |
| 	/* And set up PMU specification */
 | |
| 	alpha_pmu = &ev67_pmu;
 | |
| 	perf_max_events = alpha_pmu->num_pmcs;
 | |
| }
 | |
| 
 |