mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 01:24:43 +00:00 
			
		
		
		
	 8413ac9d8c
			
		
	
	
		8413ac9d8c
		
	
	
	
	
		
			
			trylock_page, unlock_page open and close a critical section. Hence, we can use the lock bitops to get the desired memory ordering. Also, mark trylock as likely to succeed (and remove the annotation from callers). Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			456 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			456 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _LINUX_PAGEMAP_H
 | |
| #define _LINUX_PAGEMAP_H
 | |
| 
 | |
| /*
 | |
|  * Copyright 1995 Linus Torvalds
 | |
|  */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/hardirq.h> /* for in_interrupt() */
 | |
| 
 | |
| /*
 | |
|  * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
 | |
|  * allocation mode flags.
 | |
|  */
 | |
| #define	AS_EIO		(__GFP_BITS_SHIFT + 0)	/* IO error on async write */
 | |
| #define AS_ENOSPC	(__GFP_BITS_SHIFT + 1)	/* ENOSPC on async write */
 | |
| #define AS_MM_ALL_LOCKS	(__GFP_BITS_SHIFT + 2)	/* under mm_take_all_locks() */
 | |
| 
 | |
| static inline void mapping_set_error(struct address_space *mapping, int error)
 | |
| {
 | |
| 	if (unlikely(error)) {
 | |
| 		if (error == -ENOSPC)
 | |
| 			set_bit(AS_ENOSPC, &mapping->flags);
 | |
| 		else
 | |
| 			set_bit(AS_EIO, &mapping->flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_UNEVICTABLE_LRU
 | |
| #define AS_UNEVICTABLE	(__GFP_BITS_SHIFT + 2)	/* e.g., ramdisk, SHM_LOCK */
 | |
| 
 | |
| static inline void mapping_set_unevictable(struct address_space *mapping)
 | |
| {
 | |
| 	set_bit(AS_UNEVICTABLE, &mapping->flags);
 | |
| }
 | |
| 
 | |
| static inline void mapping_clear_unevictable(struct address_space *mapping)
 | |
| {
 | |
| 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
 | |
| }
 | |
| 
 | |
| static inline int mapping_unevictable(struct address_space *mapping)
 | |
| {
 | |
| 	if (likely(mapping))
 | |
| 		return test_bit(AS_UNEVICTABLE, &mapping->flags);
 | |
| 	return !!mapping;
 | |
| }
 | |
| #else
 | |
| static inline void mapping_set_unevictable(struct address_space *mapping) { }
 | |
| static inline void mapping_clear_unevictable(struct address_space *mapping) { }
 | |
| static inline int mapping_unevictable(struct address_space *mapping)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
 | |
| {
 | |
| 	return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is non-atomic.  Only to be used before the mapping is activated.
 | |
|  * Probably needs a barrier...
 | |
|  */
 | |
| static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
 | |
| {
 | |
| 	m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
 | |
| 				(__force unsigned long)mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The page cache can done in larger chunks than
 | |
|  * one page, because it allows for more efficient
 | |
|  * throughput (it can then be mapped into user
 | |
|  * space in smaller chunks for same flexibility).
 | |
|  *
 | |
|  * Or rather, it _will_ be done in larger chunks.
 | |
|  */
 | |
| #define PAGE_CACHE_SHIFT	PAGE_SHIFT
 | |
| #define PAGE_CACHE_SIZE		PAGE_SIZE
 | |
| #define PAGE_CACHE_MASK		PAGE_MASK
 | |
| #define PAGE_CACHE_ALIGN(addr)	(((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
 | |
| 
 | |
| #define page_cache_get(page)		get_page(page)
 | |
| #define page_cache_release(page)	put_page(page)
 | |
| void release_pages(struct page **pages, int nr, int cold);
 | |
| 
 | |
| /*
 | |
|  * speculatively take a reference to a page.
 | |
|  * If the page is free (_count == 0), then _count is untouched, and 0
 | |
|  * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
 | |
|  *
 | |
|  * This function must be called inside the same rcu_read_lock() section as has
 | |
|  * been used to lookup the page in the pagecache radix-tree (or page table):
 | |
|  * this allows allocators to use a synchronize_rcu() to stabilize _count.
 | |
|  *
 | |
|  * Unless an RCU grace period has passed, the count of all pages coming out
 | |
|  * of the allocator must be considered unstable. page_count may return higher
 | |
|  * than expected, and put_page must be able to do the right thing when the
 | |
|  * page has been finished with, no matter what it is subsequently allocated
 | |
|  * for (because put_page is what is used here to drop an invalid speculative
 | |
|  * reference).
 | |
|  *
 | |
|  * This is the interesting part of the lockless pagecache (and lockless
 | |
|  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
 | |
|  * has the following pattern:
 | |
|  * 1. find page in radix tree
 | |
|  * 2. conditionally increment refcount
 | |
|  * 3. check the page is still in pagecache (if no, goto 1)
 | |
|  *
 | |
|  * Remove-side that cares about stability of _count (eg. reclaim) has the
 | |
|  * following (with tree_lock held for write):
 | |
|  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
 | |
|  * B. remove page from pagecache
 | |
|  * C. free the page
 | |
|  *
 | |
|  * There are 2 critical interleavings that matter:
 | |
|  * - 2 runs before A: in this case, A sees elevated refcount and bails out
 | |
|  * - A runs before 2: in this case, 2 sees zero refcount and retries;
 | |
|  *   subsequently, B will complete and 1 will find no page, causing the
 | |
|  *   lookup to return NULL.
 | |
|  *
 | |
|  * It is possible that between 1 and 2, the page is removed then the exact same
 | |
|  * page is inserted into the same position in pagecache. That's OK: the
 | |
|  * old find_get_page using tree_lock could equally have run before or after
 | |
|  * such a re-insertion, depending on order that locks are granted.
 | |
|  *
 | |
|  * Lookups racing against pagecache insertion isn't a big problem: either 1
 | |
|  * will find the page or it will not. Likewise, the old find_get_page could run
 | |
|  * either before the insertion or afterwards, depending on timing.
 | |
|  */
 | |
| static inline int page_cache_get_speculative(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON(in_interrupt());
 | |
| 
 | |
| #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
 | |
| # ifdef CONFIG_PREEMPT
 | |
| 	VM_BUG_ON(!in_atomic());
 | |
| # endif
 | |
| 	/*
 | |
| 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
 | |
| 	 * this for us.
 | |
| 	 *
 | |
| 	 * Pagecache won't be truncated from interrupt context, so if we have
 | |
| 	 * found a page in the radix tree here, we have pinned its refcount by
 | |
| 	 * disabling preempt, and hence no need for the "speculative get" that
 | |
| 	 * SMP requires.
 | |
| 	 */
 | |
| 	VM_BUG_ON(page_count(page) == 0);
 | |
| 	atomic_inc(&page->_count);
 | |
| 
 | |
| #else
 | |
| 	if (unlikely(!get_page_unless_zero(page))) {
 | |
| 		/*
 | |
| 		 * Either the page has been freed, or will be freed.
 | |
| 		 * In either case, retry here and the caller should
 | |
| 		 * do the right thing (see comments above).
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	}
 | |
| #endif
 | |
| 	VM_BUG_ON(PageTail(page));
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same as above, but add instead of inc (could just be merged)
 | |
|  */
 | |
| static inline int page_cache_add_speculative(struct page *page, int count)
 | |
| {
 | |
| 	VM_BUG_ON(in_interrupt());
 | |
| 
 | |
| #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
 | |
| # ifdef CONFIG_PREEMPT
 | |
| 	VM_BUG_ON(!in_atomic());
 | |
| # endif
 | |
| 	VM_BUG_ON(page_count(page) == 0);
 | |
| 	atomic_add(count, &page->_count);
 | |
| 
 | |
| #else
 | |
| 	if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
 | |
| 		return 0;
 | |
| #endif
 | |
| 	VM_BUG_ON(PageCompound(page) && page != compound_head(page));
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline int page_freeze_refs(struct page *page, int count)
 | |
| {
 | |
| 	return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
 | |
| }
 | |
| 
 | |
| static inline void page_unfreeze_refs(struct page *page, int count)
 | |
| {
 | |
| 	VM_BUG_ON(page_count(page) != 0);
 | |
| 	VM_BUG_ON(count == 0);
 | |
| 
 | |
| 	atomic_set(&page->_count, count);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| extern struct page *__page_cache_alloc(gfp_t gfp);
 | |
| #else
 | |
| static inline struct page *__page_cache_alloc(gfp_t gfp)
 | |
| {
 | |
| 	return alloc_pages(gfp, 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline struct page *page_cache_alloc(struct address_space *x)
 | |
| {
 | |
| 	return __page_cache_alloc(mapping_gfp_mask(x));
 | |
| }
 | |
| 
 | |
| static inline struct page *page_cache_alloc_cold(struct address_space *x)
 | |
| {
 | |
| 	return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
 | |
| }
 | |
| 
 | |
| typedef int filler_t(void *, struct page *);
 | |
| 
 | |
| extern struct page * find_get_page(struct address_space *mapping,
 | |
| 				pgoff_t index);
 | |
| extern struct page * find_lock_page(struct address_space *mapping,
 | |
| 				pgoff_t index);
 | |
| extern struct page * find_or_create_page(struct address_space *mapping,
 | |
| 				pgoff_t index, gfp_t gfp_mask);
 | |
| unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 | |
| 			unsigned int nr_pages, struct page **pages);
 | |
| unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
 | |
| 			       unsigned int nr_pages, struct page **pages);
 | |
| unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 | |
| 			int tag, unsigned int nr_pages, struct page **pages);
 | |
| 
 | |
| struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index);
 | |
| 
 | |
| /*
 | |
|  * Returns locked page at given index in given cache, creating it if needed.
 | |
|  */
 | |
| static inline struct page *grab_cache_page(struct address_space *mapping,
 | |
| 								pgoff_t index)
 | |
| {
 | |
| 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
 | |
| }
 | |
| 
 | |
| extern struct page * grab_cache_page_nowait(struct address_space *mapping,
 | |
| 				pgoff_t index);
 | |
| extern struct page * read_cache_page_async(struct address_space *mapping,
 | |
| 				pgoff_t index, filler_t *filler,
 | |
| 				void *data);
 | |
| extern struct page * read_cache_page(struct address_space *mapping,
 | |
| 				pgoff_t index, filler_t *filler,
 | |
| 				void *data);
 | |
| extern int read_cache_pages(struct address_space *mapping,
 | |
| 		struct list_head *pages, filler_t *filler, void *data);
 | |
| 
 | |
| static inline struct page *read_mapping_page_async(
 | |
| 						struct address_space *mapping,
 | |
| 						     pgoff_t index, void *data)
 | |
| {
 | |
| 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 | |
| 	return read_cache_page_async(mapping, index, filler, data);
 | |
| }
 | |
| 
 | |
| static inline struct page *read_mapping_page(struct address_space *mapping,
 | |
| 					     pgoff_t index, void *data)
 | |
| {
 | |
| 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 | |
| 	return read_cache_page(mapping, index, filler, data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return byte-offset into filesystem object for page.
 | |
|  */
 | |
| static inline loff_t page_offset(struct page *page)
 | |
| {
 | |
| 	return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
 | |
| 					unsigned long address)
 | |
| {
 | |
| 	pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
 | |
| 	pgoff += vma->vm_pgoff;
 | |
| 	return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| extern void __lock_page(struct page *page);
 | |
| extern int __lock_page_killable(struct page *page);
 | |
| extern void __lock_page_nosync(struct page *page);
 | |
| extern void unlock_page(struct page *page);
 | |
| 
 | |
| static inline void __set_page_locked(struct page *page)
 | |
| {
 | |
| 	__set_bit(PG_locked, &page->flags);
 | |
| }
 | |
| 
 | |
| static inline void __clear_page_locked(struct page *page)
 | |
| {
 | |
| 	__clear_bit(PG_locked, &page->flags);
 | |
| }
 | |
| 
 | |
| static inline int trylock_page(struct page *page)
 | |
| {
 | |
| 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lock_page may only be called if we have the page's inode pinned.
 | |
|  */
 | |
| static inline void lock_page(struct page *page)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	if (!trylock_page(page))
 | |
| 		__lock_page(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lock_page_killable is like lock_page but can be interrupted by fatal
 | |
|  * signals.  It returns 0 if it locked the page and -EINTR if it was
 | |
|  * killed while waiting.
 | |
|  */
 | |
| static inline int lock_page_killable(struct page *page)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	if (!trylock_page(page))
 | |
| 		return __lock_page_killable(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lock_page_nosync should only be used if we can't pin the page's inode.
 | |
|  * Doesn't play quite so well with block device plugging.
 | |
|  */
 | |
| static inline void lock_page_nosync(struct page *page)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	if (!trylock_page(page))
 | |
| 		__lock_page_nosync(page);
 | |
| }
 | |
| 	
 | |
| /*
 | |
|  * This is exported only for wait_on_page_locked/wait_on_page_writeback.
 | |
|  * Never use this directly!
 | |
|  */
 | |
| extern void wait_on_page_bit(struct page *page, int bit_nr);
 | |
| 
 | |
| /* 
 | |
|  * Wait for a page to be unlocked.
 | |
|  *
 | |
|  * This must be called with the caller "holding" the page,
 | |
|  * ie with increased "page->count" so that the page won't
 | |
|  * go away during the wait..
 | |
|  */
 | |
| static inline void wait_on_page_locked(struct page *page)
 | |
| {
 | |
| 	if (PageLocked(page))
 | |
| 		wait_on_page_bit(page, PG_locked);
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * Wait for a page to complete writeback
 | |
|  */
 | |
| static inline void wait_on_page_writeback(struct page *page)
 | |
| {
 | |
| 	if (PageWriteback(page))
 | |
| 		wait_on_page_bit(page, PG_writeback);
 | |
| }
 | |
| 
 | |
| extern void end_page_writeback(struct page *page);
 | |
| 
 | |
| /*
 | |
|  * Fault a userspace page into pagetables.  Return non-zero on a fault.
 | |
|  *
 | |
|  * This assumes that two userspace pages are always sufficient.  That's
 | |
|  * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
 | |
|  */
 | |
| static inline int fault_in_pages_writeable(char __user *uaddr, int size)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(size == 0))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Writing zeroes into userspace here is OK, because we know that if
 | |
| 	 * the zero gets there, we'll be overwriting it.
 | |
| 	 */
 | |
| 	ret = __put_user(0, uaddr);
 | |
| 	if (ret == 0) {
 | |
| 		char __user *end = uaddr + size - 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the page was already mapped, this will get a cache miss
 | |
| 		 * for sure, so try to avoid doing it.
 | |
| 		 */
 | |
| 		if (((unsigned long)uaddr & PAGE_MASK) !=
 | |
| 				((unsigned long)end & PAGE_MASK))
 | |
| 		 	ret = __put_user(0, end);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int fault_in_pages_readable(const char __user *uaddr, int size)
 | |
| {
 | |
| 	volatile char c;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(size == 0))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = __get_user(c, uaddr);
 | |
| 	if (ret == 0) {
 | |
| 		const char __user *end = uaddr + size - 1;
 | |
| 
 | |
| 		if (((unsigned long)uaddr & PAGE_MASK) !=
 | |
| 				((unsigned long)end & PAGE_MASK))
 | |
| 		 	ret = __get_user(c, end);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 | |
| 				pgoff_t index, gfp_t gfp_mask);
 | |
| int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 | |
| 				pgoff_t index, gfp_t gfp_mask);
 | |
| extern void remove_from_page_cache(struct page *page);
 | |
| extern void __remove_from_page_cache(struct page *page);
 | |
| 
 | |
| /*
 | |
|  * Like add_to_page_cache_locked, but used to add newly allocated pages:
 | |
|  * the page is new, so we can just run __set_page_locked() against it.
 | |
|  */
 | |
| static inline int add_to_page_cache(struct page *page,
 | |
| 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	__set_page_locked(page);
 | |
| 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
 | |
| 	if (unlikely(error))
 | |
| 		__clear_page_locked(page);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| #endif /* _LINUX_PAGEMAP_H */
 |