mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 12:39:23 +00:00 
			
		
		
		
	 48c1fd3882
			
		
	
	
		48c1fd3882
		
	
	
	
	
		
			
			Signed-off-by: Marco Stornelli <marco.stornelli@gmail.com> Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com>
		
			
				
	
	
		
			595 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			595 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2004-2006 Atmel Corporation
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/clk.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/console.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/root_dev.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/kernel.h>
 | |
| 
 | |
| #include <asm/sections.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/sysreg.h>
 | |
| 
 | |
| #include <mach/board.h>
 | |
| #include <mach/init.h>
 | |
| 
 | |
| extern int root_mountflags;
 | |
| 
 | |
| /*
 | |
|  * Initialize loops_per_jiffy as 5000000 (500MIPS).
 | |
|  * Better make it too large than too small...
 | |
|  */
 | |
| struct avr32_cpuinfo boot_cpu_data = {
 | |
| 	.loops_per_jiffy = 5000000
 | |
| };
 | |
| EXPORT_SYMBOL(boot_cpu_data);
 | |
| 
 | |
| static char __initdata command_line[COMMAND_LINE_SIZE];
 | |
| 
 | |
| /*
 | |
|  * Standard memory resources
 | |
|  */
 | |
| static struct resource __initdata kernel_data = {
 | |
| 	.name	= "Kernel data",
 | |
| 	.start	= 0,
 | |
| 	.end	= 0,
 | |
| 	.flags	= IORESOURCE_MEM,
 | |
| };
 | |
| static struct resource __initdata kernel_code = {
 | |
| 	.name	= "Kernel code",
 | |
| 	.start	= 0,
 | |
| 	.end	= 0,
 | |
| 	.flags	= IORESOURCE_MEM,
 | |
| 	.sibling = &kernel_data,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Available system RAM and reserved regions as singly linked
 | |
|  * lists. These lists are traversed using the sibling pointer in
 | |
|  * struct resource and are kept sorted at all times.
 | |
|  */
 | |
| static struct resource *__initdata system_ram;
 | |
| static struct resource *__initdata reserved = &kernel_code;
 | |
| 
 | |
| /*
 | |
|  * We need to allocate these before the bootmem allocator is up and
 | |
|  * running, so we need this "cache". 32 entries are probably enough
 | |
|  * for all but the most insanely complex systems.
 | |
|  */
 | |
| static struct resource __initdata res_cache[32];
 | |
| static unsigned int __initdata res_cache_next_free;
 | |
| 
 | |
| static void __init resource_init(void)
 | |
| {
 | |
| 	struct resource *mem, *res;
 | |
| 	struct resource *new;
 | |
| 
 | |
| 	kernel_code.start = __pa(init_mm.start_code);
 | |
| 
 | |
| 	for (mem = system_ram; mem; mem = mem->sibling) {
 | |
| 		new = alloc_bootmem_low(sizeof(struct resource));
 | |
| 		memcpy(new, mem, sizeof(struct resource));
 | |
| 
 | |
| 		new->sibling = NULL;
 | |
| 		if (request_resource(&iomem_resource, new))
 | |
| 			printk(KERN_WARNING "Bad RAM resource %08x-%08x\n",
 | |
| 			       mem->start, mem->end);
 | |
| 	}
 | |
| 
 | |
| 	for (res = reserved; res; res = res->sibling) {
 | |
| 		new = alloc_bootmem_low(sizeof(struct resource));
 | |
| 		memcpy(new, res, sizeof(struct resource));
 | |
| 
 | |
| 		new->sibling = NULL;
 | |
| 		if (insert_resource(&iomem_resource, new))
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Bad reserved resource %s (%08x-%08x)\n",
 | |
| 			       res->name, res->start, res->end);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init
 | |
| add_physical_memory(resource_size_t start, resource_size_t end)
 | |
| {
 | |
| 	struct resource *new, *next, **pprev;
 | |
| 
 | |
| 	for (pprev = &system_ram, next = system_ram; next;
 | |
| 	     pprev = &next->sibling, next = next->sibling) {
 | |
| 		if (end < next->start)
 | |
| 			break;
 | |
| 		if (start <= next->end) {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Warning: Physical memory map is broken\n");
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Warning: %08x-%08x overlaps %08x-%08x\n",
 | |
| 			       start, end, next->start, next->end);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (res_cache_next_free >= ARRAY_SIZE(res_cache)) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "Warning: Failed to add physical memory %08x-%08x\n",
 | |
| 		       start, end);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	new = &res_cache[res_cache_next_free++];
 | |
| 	new->start = start;
 | |
| 	new->end = end;
 | |
| 	new->name = "System RAM";
 | |
| 	new->flags = IORESOURCE_MEM;
 | |
| 
 | |
| 	*pprev = new;
 | |
| }
 | |
| 
 | |
| static int __init
 | |
| add_reserved_region(resource_size_t start, resource_size_t end,
 | |
| 		    const char *name)
 | |
| {
 | |
| 	struct resource *new, *next, **pprev;
 | |
| 
 | |
| 	if (end < start)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (res_cache_next_free >= ARRAY_SIZE(res_cache))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (pprev = &reserved, next = reserved; next;
 | |
| 	     pprev = &next->sibling, next = next->sibling) {
 | |
| 		if (end < next->start)
 | |
| 			break;
 | |
| 		if (start <= next->end)
 | |
| 			return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	new = &res_cache[res_cache_next_free++];
 | |
| 	new->start = start;
 | |
| 	new->end = end;
 | |
| 	new->name = name;
 | |
| 	new->sibling = next;
 | |
| 	new->flags = IORESOURCE_MEM;
 | |
| 
 | |
| 	*pprev = new;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long __init
 | |
| find_free_region(const struct resource *mem, resource_size_t size,
 | |
| 		 resource_size_t align)
 | |
| {
 | |
| 	struct resource *res;
 | |
| 	unsigned long target;
 | |
| 
 | |
| 	target = ALIGN(mem->start, align);
 | |
| 	for (res = reserved; res; res = res->sibling) {
 | |
| 		if ((target + size) <= res->start)
 | |
| 			break;
 | |
| 		if (target <= res->end)
 | |
| 			target = ALIGN(res->end + 1, align);
 | |
| 	}
 | |
| 
 | |
| 	if ((target + size) > (mem->end + 1))
 | |
| 		return mem->end + 1;
 | |
| 
 | |
| 	return target;
 | |
| }
 | |
| 
 | |
| static int __init
 | |
| alloc_reserved_region(resource_size_t *start, resource_size_t size,
 | |
| 		      resource_size_t align, const char *name)
 | |
| {
 | |
| 	struct resource *mem;
 | |
| 	resource_size_t target;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (mem = system_ram; mem; mem = mem->sibling) {
 | |
| 		target = find_free_region(mem, size, align);
 | |
| 		if (target <= mem->end) {
 | |
| 			ret = add_reserved_region(target, target + size - 1,
 | |
| 						  name);
 | |
| 			if (!ret)
 | |
| 				*start = target;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Early framebuffer allocation. Works as follows:
 | |
|  *   - If fbmem_size is zero, nothing will be allocated or reserved.
 | |
|  *   - If fbmem_start is zero when setup_bootmem() is called,
 | |
|  *     a block of fbmem_size bytes will be reserved before bootmem
 | |
|  *     initialization. It will be aligned to the largest page size
 | |
|  *     that fbmem_size is a multiple of.
 | |
|  *   - If fbmem_start is nonzero, an area of size fbmem_size will be
 | |
|  *     reserved at the physical address fbmem_start if possible. If
 | |
|  *     it collides with other reserved memory, a different block of
 | |
|  *     same size will be allocated, just as if fbmem_start was zero.
 | |
|  *
 | |
|  * Board-specific code may use these variables to set up platform data
 | |
|  * for the framebuffer driver if fbmem_size is nonzero.
 | |
|  */
 | |
| resource_size_t __initdata fbmem_start;
 | |
| resource_size_t __initdata fbmem_size;
 | |
| 
 | |
| /*
 | |
|  * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
 | |
|  * use as framebuffer.
 | |
|  *
 | |
|  * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
 | |
|  * starting at yyy to be reserved for use as framebuffer.
 | |
|  *
 | |
|  * The kernel won't verify that the memory region starting at yyy
 | |
|  * actually contains usable RAM.
 | |
|  */
 | |
| static int __init early_parse_fbmem(char *p)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long align;
 | |
| 
 | |
| 	fbmem_size = memparse(p, &p);
 | |
| 	if (*p == '@') {
 | |
| 		fbmem_start = memparse(p + 1, &p);
 | |
| 		ret = add_reserved_region(fbmem_start,
 | |
| 					  fbmem_start + fbmem_size - 1,
 | |
| 					  "Framebuffer");
 | |
| 		if (ret) {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Failed to reserve framebuffer memory\n");
 | |
| 			fbmem_start = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!fbmem_start) {
 | |
| 		if ((fbmem_size & 0x000fffffUL) == 0)
 | |
| 			align = 0x100000;	/* 1 MiB */
 | |
| 		else if ((fbmem_size & 0x0000ffffUL) == 0)
 | |
| 			align = 0x10000;	/* 64 KiB */
 | |
| 		else
 | |
| 			align = 0x1000;		/* 4 KiB */
 | |
| 
 | |
| 		ret = alloc_reserved_region(&fbmem_start, fbmem_size,
 | |
| 					    align, "Framebuffer");
 | |
| 		if (ret) {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Failed to allocate framebuffer memory\n");
 | |
| 			fbmem_size = 0;
 | |
| 		} else {
 | |
| 			memset(__va(fbmem_start), 0, fbmem_size);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("fbmem", early_parse_fbmem);
 | |
| 
 | |
| /*
 | |
|  * Pick out the memory size.  We look for mem=size@start,
 | |
|  * where start and size are "size[KkMmGg]"
 | |
|  */
 | |
| static int __init early_mem(char *p)
 | |
| {
 | |
| 	resource_size_t size, start;
 | |
| 
 | |
| 	start = system_ram->start;
 | |
| 	size  = memparse(p, &p);
 | |
| 	if (*p == '@')
 | |
| 		start = memparse(p + 1, &p);
 | |
| 
 | |
| 	system_ram->start = start;
 | |
| 	system_ram->end = system_ram->start + size - 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("mem", early_mem);
 | |
| 
 | |
| static int __init parse_tag_core(struct tag *tag)
 | |
| {
 | |
| 	if (tag->hdr.size > 2) {
 | |
| 		if ((tag->u.core.flags & 1) == 0)
 | |
| 			root_mountflags &= ~MS_RDONLY;
 | |
| 		ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| __tagtable(ATAG_CORE, parse_tag_core);
 | |
| 
 | |
| static int __init parse_tag_mem(struct tag *tag)
 | |
| {
 | |
| 	unsigned long start, end;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore zero-sized entries. If we're running standalone, the
 | |
| 	 * SDRAM code may emit such entries if something goes
 | |
| 	 * wrong...
 | |
| 	 */
 | |
| 	if (tag->u.mem_range.size == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	start = tag->u.mem_range.addr;
 | |
| 	end = tag->u.mem_range.addr + tag->u.mem_range.size - 1;
 | |
| 
 | |
| 	add_physical_memory(start, end);
 | |
| 	return 0;
 | |
| }
 | |
| __tagtable(ATAG_MEM, parse_tag_mem);
 | |
| 
 | |
| static int __init parse_tag_rdimg(struct tag *tag)
 | |
| {
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	struct tag_mem_range *mem = &tag->u.mem_range;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (initrd_start) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "Warning: Only the first initrd image will be used\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1,
 | |
| 				  "initrd");
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "Warning: Failed to reserve initrd memory\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	initrd_start = (unsigned long)__va(mem->addr);
 | |
| 	initrd_end = initrd_start + mem->size;
 | |
| #else
 | |
| 	printk(KERN_WARNING "RAM disk image present, but "
 | |
| 	       "no initrd support in kernel, ignoring\n");
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __tagtable(ATAG_RDIMG, parse_tag_rdimg);
 | |
| 
 | |
| static int __init parse_tag_rsvd_mem(struct tag *tag)
 | |
| {
 | |
| 	struct tag_mem_range *mem = &tag->u.mem_range;
 | |
| 
 | |
| 	return add_reserved_region(mem->addr, mem->addr + mem->size - 1,
 | |
| 				   "Reserved");
 | |
| }
 | |
| __tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
 | |
| 
 | |
| static int __init parse_tag_cmdline(struct tag *tag)
 | |
| {
 | |
| 	strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
 | |
| 	return 0;
 | |
| }
 | |
| __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
 | |
| 
 | |
| static int __init parse_tag_clock(struct tag *tag)
 | |
| {
 | |
| 	/*
 | |
| 	 * We'll figure out the clocks by peeking at the system
 | |
| 	 * manager regs directly.
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| __tagtable(ATAG_CLOCK, parse_tag_clock);
 | |
| 
 | |
| /*
 | |
|  * Scan the tag table for this tag, and call its parse function. The
 | |
|  * tag table is built by the linker from all the __tagtable
 | |
|  * declarations.
 | |
|  */
 | |
| static int __init parse_tag(struct tag *tag)
 | |
| {
 | |
| 	extern struct tagtable __tagtable_begin, __tagtable_end;
 | |
| 	struct tagtable *t;
 | |
| 
 | |
| 	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
 | |
| 		if (tag->hdr.tag == t->tag) {
 | |
| 			t->parse(tag);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	return t < &__tagtable_end;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse all tags in the list we got from the boot loader
 | |
|  */
 | |
| static void __init parse_tags(struct tag *t)
 | |
| {
 | |
| 	for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
 | |
| 		if (!parse_tag(t))
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Ignoring unrecognised tag 0x%08x\n",
 | |
| 			       t->hdr.tag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a free memory region large enough for storing the
 | |
|  * bootmem bitmap.
 | |
|  */
 | |
| static unsigned long __init
 | |
| find_bootmap_pfn(const struct resource *mem)
 | |
| {
 | |
| 	unsigned long bootmap_pages, bootmap_len;
 | |
| 	unsigned long node_pages = PFN_UP(mem->end - mem->start + 1);
 | |
| 	unsigned long bootmap_start;
 | |
| 
 | |
| 	bootmap_pages = bootmem_bootmap_pages(node_pages);
 | |
| 	bootmap_len = bootmap_pages << PAGE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a large enough region without reserved pages for
 | |
| 	 * storing the bootmem bitmap. We can take advantage of the
 | |
| 	 * fact that all lists have been sorted.
 | |
| 	 *
 | |
| 	 * We have to check that we don't collide with any reserved
 | |
| 	 * regions, which includes the kernel image and any RAMDISK
 | |
| 	 * images.
 | |
| 	 */
 | |
| 	bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE);
 | |
| 
 | |
| 	return bootmap_start >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| #define MAX_LOWMEM	HIGHMEM_START
 | |
| #define MAX_LOWMEM_PFN	PFN_DOWN(MAX_LOWMEM)
 | |
| 
 | |
| static void __init setup_bootmem(void)
 | |
| {
 | |
| 	unsigned bootmap_size;
 | |
| 	unsigned long first_pfn, bootmap_pfn, pages;
 | |
| 	unsigned long max_pfn, max_low_pfn;
 | |
| 	unsigned node = 0;
 | |
| 	struct resource *res;
 | |
| 
 | |
| 	printk(KERN_INFO "Physical memory:\n");
 | |
| 	for (res = system_ram; res; res = res->sibling)
 | |
| 		printk("  %08x-%08x\n", res->start, res->end);
 | |
| 	printk(KERN_INFO "Reserved memory:\n");
 | |
| 	for (res = reserved; res; res = res->sibling)
 | |
| 		printk("  %08x-%08x: %s\n",
 | |
| 		       res->start, res->end, res->name);
 | |
| 
 | |
| 	nodes_clear(node_online_map);
 | |
| 
 | |
| 	if (system_ram->sibling)
 | |
| 		printk(KERN_WARNING "Only using first memory bank\n");
 | |
| 
 | |
| 	for (res = system_ram; res; res = NULL) {
 | |
| 		first_pfn = PFN_UP(res->start);
 | |
| 		max_low_pfn = max_pfn = PFN_DOWN(res->end + 1);
 | |
| 		bootmap_pfn = find_bootmap_pfn(res);
 | |
| 		if (bootmap_pfn > max_pfn)
 | |
| 			panic("No space for bootmem bitmap!\n");
 | |
| 
 | |
| 		if (max_low_pfn > MAX_LOWMEM_PFN) {
 | |
| 			max_low_pfn = MAX_LOWMEM_PFN;
 | |
| #ifndef CONFIG_HIGHMEM
 | |
| 			/*
 | |
| 			 * Lowmem is memory that can be addressed
 | |
| 			 * directly through P1/P2
 | |
| 			 */
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Node %u: Only %ld MiB of memory will be used.\n",
 | |
| 			       node, MAX_LOWMEM >> 20);
 | |
| 			printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
 | |
| #else
 | |
| #error HIGHMEM is not supported by AVR32 yet
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		/* Initialize the boot-time allocator with low memory only. */
 | |
| 		bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
 | |
| 						 first_pfn, max_low_pfn);
 | |
| 
 | |
| 		/*
 | |
| 		 * Register fully available RAM pages with the bootmem
 | |
| 		 * allocator.
 | |
| 		 */
 | |
| 		pages = max_low_pfn - first_pfn;
 | |
| 		free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
 | |
| 				   PFN_PHYS(pages));
 | |
| 
 | |
| 		/* Reserve space for the bootmem bitmap... */
 | |
| 		reserve_bootmem_node(NODE_DATA(node),
 | |
| 				     PFN_PHYS(bootmap_pfn),
 | |
| 				     bootmap_size,
 | |
| 				     BOOTMEM_DEFAULT);
 | |
| 
 | |
| 		/* ...and any other reserved regions. */
 | |
| 		for (res = reserved; res; res = res->sibling) {
 | |
| 			if (res->start > PFN_PHYS(max_pfn))
 | |
| 				break;
 | |
| 
 | |
| 			/*
 | |
| 			 * resource_init will complain about partial
 | |
| 			 * overlaps, so we'll just ignore such
 | |
| 			 * resources for now.
 | |
| 			 */
 | |
| 			if (res->start >= PFN_PHYS(first_pfn)
 | |
| 			    && res->end < PFN_PHYS(max_pfn))
 | |
| 				reserve_bootmem_node(
 | |
| 					NODE_DATA(node), res->start,
 | |
| 					res->end - res->start + 1,
 | |
| 					BOOTMEM_DEFAULT);
 | |
| 		}
 | |
| 
 | |
| 		node_set_online(node);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init setup_arch (char **cmdline_p)
 | |
| {
 | |
| 	struct clk *cpu_clk;
 | |
| 
 | |
| 	init_mm.start_code = (unsigned long)_text;
 | |
| 	init_mm.end_code = (unsigned long)_etext;
 | |
| 	init_mm.end_data = (unsigned long)_edata;
 | |
| 	init_mm.brk = (unsigned long)_end;
 | |
| 
 | |
| 	/*
 | |
| 	 * Include .init section to make allocations easier. It will
 | |
| 	 * be removed before the resource is actually requested.
 | |
| 	 */
 | |
| 	kernel_code.start = __pa(__init_begin);
 | |
| 	kernel_code.end = __pa(init_mm.end_code - 1);
 | |
| 	kernel_data.start = __pa(init_mm.end_code);
 | |
| 	kernel_data.end = __pa(init_mm.brk - 1);
 | |
| 
 | |
| 	parse_tags(bootloader_tags);
 | |
| 
 | |
| 	setup_processor();
 | |
| 	setup_platform();
 | |
| 	setup_board();
 | |
| 
 | |
| 	cpu_clk = clk_get(NULL, "cpu");
 | |
| 	if (IS_ERR(cpu_clk)) {
 | |
| 		printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
 | |
| 	} else {
 | |
| 		unsigned long cpu_hz = clk_get_rate(cpu_clk);
 | |
| 
 | |
| 		/*
 | |
| 		 * Well, duh, but it's probably a good idea to
 | |
| 		 * increment the use count.
 | |
| 		 */
 | |
| 		clk_enable(cpu_clk);
 | |
| 
 | |
| 		boot_cpu_data.clk = cpu_clk;
 | |
| 		boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
 | |
| 		printk("CPU: Running at %lu.%03lu MHz\n",
 | |
| 		       ((cpu_hz + 500) / 1000) / 1000,
 | |
| 		       ((cpu_hz + 500) / 1000) % 1000);
 | |
| 	}
 | |
| 
 | |
| 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 | |
| 	*cmdline_p = command_line;
 | |
| 	parse_early_param();
 | |
| 
 | |
| 	setup_bootmem();
 | |
| 
 | |
| #ifdef CONFIG_VT
 | |
| 	conswitchp = &dummy_con;
 | |
| #endif
 | |
| 
 | |
| 	paging_init();
 | |
| 	resource_init();
 | |
| }
 |