mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 08:26:29 +00:00 
			
		
		
		
	 eb68450715
			
		
	
	
		eb68450715
		
	
	
	
	
		
			
			Magic numerical values are just bad style. Particularly so when undocumented. Signed-off-by: Jörn Engel <joern@logfs.org> Signed-off-by: David Woodhouse <dwmw2@infradead.org>
		
			
				
	
	
		
			272 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * lib/reed_solomon/decode_rs.c
 | |
|  *
 | |
|  * Overview:
 | |
|  *   Generic Reed Solomon encoder / decoder library
 | |
|  *
 | |
|  * Copyright 2002, Phil Karn, KA9Q
 | |
|  * May be used under the terms of the GNU General Public License (GPL)
 | |
|  *
 | |
|  * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
 | |
|  *
 | |
|  * $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* Generic data width independent code which is included by the
 | |
|  * wrappers.
 | |
|  */
 | |
| {
 | |
| 	int deg_lambda, el, deg_omega;
 | |
| 	int i, j, r, k, pad;
 | |
| 	int nn = rs->nn;
 | |
| 	int nroots = rs->nroots;
 | |
| 	int fcr = rs->fcr;
 | |
| 	int prim = rs->prim;
 | |
| 	int iprim = rs->iprim;
 | |
| 	uint16_t *alpha_to = rs->alpha_to;
 | |
| 	uint16_t *index_of = rs->index_of;
 | |
| 	uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
 | |
| 	/* Err+Eras Locator poly and syndrome poly The maximum value
 | |
| 	 * of nroots is 8. So the necessary stack size will be about
 | |
| 	 * 220 bytes max.
 | |
| 	 */
 | |
| 	uint16_t lambda[nroots + 1], syn[nroots];
 | |
| 	uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
 | |
| 	uint16_t root[nroots], reg[nroots + 1], loc[nroots];
 | |
| 	int count = 0;
 | |
| 	uint16_t msk = (uint16_t) rs->nn;
 | |
| 
 | |
| 	/* Check length parameter for validity */
 | |
| 	pad = nn - nroots - len;
 | |
| 	BUG_ON(pad < 0 || pad >= nn);
 | |
| 
 | |
| 	/* Does the caller provide the syndrome ? */
 | |
| 	if (s != NULL)
 | |
| 		goto decode;
 | |
| 
 | |
| 	/* form the syndromes; i.e., evaluate data(x) at roots of
 | |
| 	 * g(x) */
 | |
| 	for (i = 0; i < nroots; i++)
 | |
| 		syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
 | |
| 
 | |
| 	for (j = 1; j < len; j++) {
 | |
| 		for (i = 0; i < nroots; i++) {
 | |
| 			if (syn[i] == 0) {
 | |
| 				syn[i] = (((uint16_t) data[j]) ^
 | |
| 					  invmsk) & msk;
 | |
| 			} else {
 | |
| 				syn[i] = ((((uint16_t) data[j]) ^
 | |
| 					   invmsk) & msk) ^
 | |
| 					alpha_to[rs_modnn(rs, index_of[syn[i]] +
 | |
| 						       (fcr + i) * prim)];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (j = 0; j < nroots; j++) {
 | |
| 		for (i = 0; i < nroots; i++) {
 | |
| 			if (syn[i] == 0) {
 | |
| 				syn[i] = ((uint16_t) par[j]) & msk;
 | |
| 			} else {
 | |
| 				syn[i] = (((uint16_t) par[j]) & msk) ^
 | |
| 					alpha_to[rs_modnn(rs, index_of[syn[i]] +
 | |
| 						       (fcr+i)*prim)];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	s = syn;
 | |
| 
 | |
| 	/* Convert syndromes to index form, checking for nonzero condition */
 | |
| 	syn_error = 0;
 | |
| 	for (i = 0; i < nroots; i++) {
 | |
| 		syn_error |= s[i];
 | |
| 		s[i] = index_of[s[i]];
 | |
| 	}
 | |
| 
 | |
| 	if (!syn_error) {
 | |
| 		/* if syndrome is zero, data[] is a codeword and there are no
 | |
| 		 * errors to correct. So return data[] unmodified
 | |
| 		 */
 | |
| 		count = 0;
 | |
| 		goto finish;
 | |
| 	}
 | |
| 
 | |
|  decode:
 | |
| 	memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
 | |
| 	lambda[0] = 1;
 | |
| 
 | |
| 	if (no_eras > 0) {
 | |
| 		/* Init lambda to be the erasure locator polynomial */
 | |
| 		lambda[1] = alpha_to[rs_modnn(rs,
 | |
| 					      prim * (nn - 1 - eras_pos[0]))];
 | |
| 		for (i = 1; i < no_eras; i++) {
 | |
| 			u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
 | |
| 			for (j = i + 1; j > 0; j--) {
 | |
| 				tmp = index_of[lambda[j - 1]];
 | |
| 				if (tmp != nn) {
 | |
| 					lambda[j] ^=
 | |
| 						alpha_to[rs_modnn(rs, u + tmp)];
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nroots + 1; i++)
 | |
| 		b[i] = index_of[lambda[i]];
 | |
| 
 | |
| 	/*
 | |
| 	 * Begin Berlekamp-Massey algorithm to determine error+erasure
 | |
| 	 * locator polynomial
 | |
| 	 */
 | |
| 	r = no_eras;
 | |
| 	el = no_eras;
 | |
| 	while (++r <= nroots) {	/* r is the step number */
 | |
| 		/* Compute discrepancy at the r-th step in poly-form */
 | |
| 		discr_r = 0;
 | |
| 		for (i = 0; i < r; i++) {
 | |
| 			if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
 | |
| 				discr_r ^=
 | |
| 					alpha_to[rs_modnn(rs,
 | |
| 							  index_of[lambda[i]] +
 | |
| 							  s[r - i - 1])];
 | |
| 			}
 | |
| 		}
 | |
| 		discr_r = index_of[discr_r];	/* Index form */
 | |
| 		if (discr_r == nn) {
 | |
| 			/* 2 lines below: B(x) <-- x*B(x) */
 | |
| 			memmove (&b[1], b, nroots * sizeof (b[0]));
 | |
| 			b[0] = nn;
 | |
| 		} else {
 | |
| 			/* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
 | |
| 			t[0] = lambda[0];
 | |
| 			for (i = 0; i < nroots; i++) {
 | |
| 				if (b[i] != nn) {
 | |
| 					t[i + 1] = lambda[i + 1] ^
 | |
| 						alpha_to[rs_modnn(rs, discr_r +
 | |
| 								  b[i])];
 | |
| 				} else
 | |
| 					t[i + 1] = lambda[i + 1];
 | |
| 			}
 | |
| 			if (2 * el <= r + no_eras - 1) {
 | |
| 				el = r + no_eras - el;
 | |
| 				/*
 | |
| 				 * 2 lines below: B(x) <-- inv(discr_r) *
 | |
| 				 * lambda(x)
 | |
| 				 */
 | |
| 				for (i = 0; i <= nroots; i++) {
 | |
| 					b[i] = (lambda[i] == 0) ? nn :
 | |
| 						rs_modnn(rs, index_of[lambda[i]]
 | |
| 							 - discr_r + nn);
 | |
| 				}
 | |
| 			} else {
 | |
| 				/* 2 lines below: B(x) <-- x*B(x) */
 | |
| 				memmove(&b[1], b, nroots * sizeof(b[0]));
 | |
| 				b[0] = nn;
 | |
| 			}
 | |
| 			memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Convert lambda to index form and compute deg(lambda(x)) */
 | |
| 	deg_lambda = 0;
 | |
| 	for (i = 0; i < nroots + 1; i++) {
 | |
| 		lambda[i] = index_of[lambda[i]];
 | |
| 		if (lambda[i] != nn)
 | |
| 			deg_lambda = i;
 | |
| 	}
 | |
| 	/* Find roots of error+erasure locator polynomial by Chien search */
 | |
| 	memcpy(®[1], &lambda[1], nroots * sizeof(reg[0]));
 | |
| 	count = 0;		/* Number of roots of lambda(x) */
 | |
| 	for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
 | |
| 		q = 1;		/* lambda[0] is always 0 */
 | |
| 		for (j = deg_lambda; j > 0; j--) {
 | |
| 			if (reg[j] != nn) {
 | |
| 				reg[j] = rs_modnn(rs, reg[j] + j);
 | |
| 				q ^= alpha_to[reg[j]];
 | |
| 			}
 | |
| 		}
 | |
| 		if (q != 0)
 | |
| 			continue;	/* Not a root */
 | |
| 		/* store root (index-form) and error location number */
 | |
| 		root[count] = i;
 | |
| 		loc[count] = k;
 | |
| 		/* If we've already found max possible roots,
 | |
| 		 * abort the search to save time
 | |
| 		 */
 | |
| 		if (++count == deg_lambda)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (deg_lambda != count) {
 | |
| 		/*
 | |
| 		 * deg(lambda) unequal to number of roots => uncorrectable
 | |
| 		 * error detected
 | |
| 		 */
 | |
| 		count = -EBADMSG;
 | |
| 		goto finish;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
 | |
| 	 * x**nroots). in index form. Also find deg(omega).
 | |
| 	 */
 | |
| 	deg_omega = deg_lambda - 1;
 | |
| 	for (i = 0; i <= deg_omega; i++) {
 | |
| 		tmp = 0;
 | |
| 		for (j = i; j >= 0; j--) {
 | |
| 			if ((s[i - j] != nn) && (lambda[j] != nn))
 | |
| 				tmp ^=
 | |
| 				    alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
 | |
| 		}
 | |
| 		omega[i] = index_of[tmp];
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
 | |
| 	 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
 | |
| 	 */
 | |
| 	for (j = count - 1; j >= 0; j--) {
 | |
| 		num1 = 0;
 | |
| 		for (i = deg_omega; i >= 0; i--) {
 | |
| 			if (omega[i] != nn)
 | |
| 				num1 ^= alpha_to[rs_modnn(rs, omega[i] +
 | |
| 							i * root[j])];
 | |
| 		}
 | |
| 		num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
 | |
| 		den = 0;
 | |
| 
 | |
| 		/* lambda[i+1] for i even is the formal derivative
 | |
| 		 * lambda_pr of lambda[i] */
 | |
| 		for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
 | |
| 			if (lambda[i + 1] != nn) {
 | |
| 				den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
 | |
| 						       i * root[j])];
 | |
| 			}
 | |
| 		}
 | |
| 		/* Apply error to data */
 | |
| 		if (num1 != 0 && loc[j] >= pad) {
 | |
| 			uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
 | |
| 						       index_of[num2] +
 | |
| 						       nn - index_of[den])];
 | |
| 			/* Store the error correction pattern, if a
 | |
| 			 * correction buffer is available */
 | |
| 			if (corr) {
 | |
| 				corr[j] = cor;
 | |
| 			} else {
 | |
| 				/* If a data buffer is given and the
 | |
| 				 * error is inside the message,
 | |
| 				 * correct it */
 | |
| 				if (data && (loc[j] < (nn - nroots)))
 | |
| 					data[loc[j] - pad] ^= cor;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| finish:
 | |
| 	if (eras_pos != NULL) {
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			eras_pos[i] = loc[i] - pad;
 | |
| 	}
 | |
| 	return count;
 | |
| 
 | |
| }
 |