mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 6f485b4187
			
		
	
	
		6f485b4187
		
	
	
	
	
		
			
			The write buffer may not have been written and may no longer be written due to an interrupted write in the affected page. Signed-off-by: Joern Engel <joern@logfs.org>
		
			
				
	
	
		
			733 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			733 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * fs/logfs/gc.c	- garbage collection code
 | |
|  *
 | |
|  * As should be obvious for Linux kernel code, license is GPLv2
 | |
|  *
 | |
|  * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
 | |
|  */
 | |
| #include "logfs.h"
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| /*
 | |
|  * Wear leveling needs to kick in when the difference between low erase
 | |
|  * counts and high erase counts gets too big.  A good value for "too big"
 | |
|  * may be somewhat below 10% of maximum erase count for the device.
 | |
|  * Why not 397, to pick a nice round number with no specific meaning? :)
 | |
|  *
 | |
|  * WL_RATELIMIT is the minimum time between two wear level events.  A huge
 | |
|  * number of segments may fulfil the requirements for wear leveling at the
 | |
|  * same time.  If that happens we don't want to cause a latency from hell,
 | |
|  * but just gently pick one segment every so often and minimize overhead.
 | |
|  */
 | |
| #define WL_DELTA 397
 | |
| #define WL_RATELIMIT 100
 | |
| #define MAX_OBJ_ALIASES	2600
 | |
| #define SCAN_RATIO 512	/* number of scanned segments per gc'd segment */
 | |
| #define LIST_SIZE 64	/* base size of candidate lists */
 | |
| #define SCAN_ROUNDS 128	/* maximum number of complete medium scans */
 | |
| #define SCAN_ROUNDS_HIGH 4 /* maximum number of higher-level scans */
 | |
| 
 | |
| static int no_free_segments(struct super_block *sb)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 
 | |
| 	return super->s_free_list.count;
 | |
| }
 | |
| 
 | |
| /* journal has distance -1, top-most ifile layer distance 0 */
 | |
| static u8 root_distance(struct super_block *sb, gc_level_t __gc_level)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	u8 gc_level = (__force u8)__gc_level;
 | |
| 
 | |
| 	switch (gc_level) {
 | |
| 	case 0: /* fall through */
 | |
| 	case 1: /* fall through */
 | |
| 	case 2: /* fall through */
 | |
| 	case 3:
 | |
| 		/* file data or indirect blocks */
 | |
| 		return super->s_ifile_levels + super->s_iblock_levels - gc_level;
 | |
| 	case 6: /* fall through */
 | |
| 	case 7: /* fall through */
 | |
| 	case 8: /* fall through */
 | |
| 	case 9:
 | |
| 		/* inode file data or indirect blocks */
 | |
| 		return super->s_ifile_levels - (gc_level - 6);
 | |
| 	default:
 | |
| 		printk(KERN_ERR"LOGFS: segment of unknown level %x found\n",
 | |
| 				gc_level);
 | |
| 		WARN_ON(1);
 | |
| 		return super->s_ifile_levels + super->s_iblock_levels;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int segment_is_reserved(struct super_block *sb, u32 segno)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	struct logfs_area *area;
 | |
| 	void *reserved;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Some segments are reserved.  Just pretend they were all valid */
 | |
| 	reserved = btree_lookup32(&super->s_reserved_segments, segno);
 | |
| 	if (reserved)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Currently open segments */
 | |
| 	for_each_area(i) {
 | |
| 		area = super->s_area[i];
 | |
| 		if (area->a_is_open && area->a_segno == segno)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void logfs_mark_segment_bad(struct super_block *sb, u32 segno)
 | |
| {
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the bytes consumed by valid objects in this segment.  Object headers
 | |
|  * are counted, the segment header is not.
 | |
|  */
 | |
| static u32 logfs_valid_bytes(struct super_block *sb, u32 segno, u32 *ec,
 | |
| 		gc_level_t *gc_level)
 | |
| {
 | |
| 	struct logfs_segment_entry se;
 | |
| 	u32 ec_level;
 | |
| 
 | |
| 	logfs_get_segment_entry(sb, segno, &se);
 | |
| 	if (se.ec_level == cpu_to_be32(BADSEG) ||
 | |
| 			se.valid == cpu_to_be32(RESERVED))
 | |
| 		return RESERVED;
 | |
| 
 | |
| 	ec_level = be32_to_cpu(se.ec_level);
 | |
| 	*ec = ec_level >> 4;
 | |
| 	*gc_level = GC_LEVEL(ec_level & 0xf);
 | |
| 	return be32_to_cpu(se.valid);
 | |
| }
 | |
| 
 | |
| static void logfs_cleanse_block(struct super_block *sb, u64 ofs, u64 ino,
 | |
| 		u64 bix, gc_level_t gc_level)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	int err, cookie;
 | |
| 
 | |
| 	inode = logfs_safe_iget(sb, ino, &cookie);
 | |
| 	err = logfs_rewrite_block(inode, bix, ofs, gc_level, 0);
 | |
| 	BUG_ON(err);
 | |
| 	logfs_safe_iput(inode, cookie);
 | |
| }
 | |
| 
 | |
| static u32 logfs_gc_segment(struct super_block *sb, u32 segno)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	struct logfs_segment_header sh;
 | |
| 	struct logfs_object_header oh;
 | |
| 	u64 ofs, ino, bix;
 | |
| 	u32 seg_ofs, logical_segno, cleaned = 0;
 | |
| 	int err, len, valid;
 | |
| 	gc_level_t gc_level;
 | |
| 
 | |
| 	LOGFS_BUG_ON(segment_is_reserved(sb, segno), sb);
 | |
| 
 | |
| 	btree_insert32(&super->s_reserved_segments, segno, (void *)1, GFP_NOFS);
 | |
| 	err = wbuf_read(sb, dev_ofs(sb, segno, 0), sizeof(sh), &sh);
 | |
| 	BUG_ON(err);
 | |
| 	gc_level = GC_LEVEL(sh.level);
 | |
| 	logical_segno = be32_to_cpu(sh.segno);
 | |
| 	if (sh.crc != logfs_crc32(&sh, sizeof(sh), 4)) {
 | |
| 		logfs_mark_segment_bad(sb, segno);
 | |
| 		cleaned = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (seg_ofs = LOGFS_SEGMENT_HEADERSIZE;
 | |
| 			seg_ofs + sizeof(oh) < super->s_segsize; ) {
 | |
| 		ofs = dev_ofs(sb, logical_segno, seg_ofs);
 | |
| 		err = wbuf_read(sb, dev_ofs(sb, segno, seg_ofs), sizeof(oh),
 | |
| 				&oh);
 | |
| 		BUG_ON(err);
 | |
| 
 | |
| 		if (!memchr_inv(&oh, 0xff, sizeof(oh)))
 | |
| 			break;
 | |
| 
 | |
| 		if (oh.crc != logfs_crc32(&oh, sizeof(oh) - 4, 4)) {
 | |
| 			logfs_mark_segment_bad(sb, segno);
 | |
| 			cleaned = super->s_segsize - 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		ino = be64_to_cpu(oh.ino);
 | |
| 		bix = be64_to_cpu(oh.bix);
 | |
| 		len = sizeof(oh) + be16_to_cpu(oh.len);
 | |
| 		valid = logfs_is_valid_block(sb, ofs, ino, bix, gc_level);
 | |
| 		if (valid == 1) {
 | |
| 			logfs_cleanse_block(sb, ofs, ino, bix, gc_level);
 | |
| 			cleaned += len;
 | |
| 		} else if (valid == 2) {
 | |
| 			/* Will be invalid upon journal commit */
 | |
| 			cleaned += len;
 | |
| 		}
 | |
| 		seg_ofs += len;
 | |
| 	}
 | |
| out:
 | |
| 	btree_remove32(&super->s_reserved_segments, segno);
 | |
| 	return cleaned;
 | |
| }
 | |
| 
 | |
| static struct gc_candidate *add_list(struct gc_candidate *cand,
 | |
| 		struct candidate_list *list)
 | |
| {
 | |
| 	struct rb_node **p = &list->rb_tree.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct gc_candidate *cur;
 | |
| 	int comp;
 | |
| 
 | |
| 	cand->list = list;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		cur = rb_entry(parent, struct gc_candidate, rb_node);
 | |
| 
 | |
| 		if (list->sort_by_ec)
 | |
| 			comp = cand->erase_count < cur->erase_count;
 | |
| 		else
 | |
| 			comp = cand->valid < cur->valid;
 | |
| 
 | |
| 		if (comp)
 | |
| 			p = &parent->rb_left;
 | |
| 		else
 | |
| 			p = &parent->rb_right;
 | |
| 	}
 | |
| 	rb_link_node(&cand->rb_node, parent, p);
 | |
| 	rb_insert_color(&cand->rb_node, &list->rb_tree);
 | |
| 
 | |
| 	if (list->count <= list->maxcount) {
 | |
| 		list->count++;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	cand = rb_entry(rb_last(&list->rb_tree), struct gc_candidate, rb_node);
 | |
| 	rb_erase(&cand->rb_node, &list->rb_tree);
 | |
| 	cand->list = NULL;
 | |
| 	return cand;
 | |
| }
 | |
| 
 | |
| static void remove_from_list(struct gc_candidate *cand)
 | |
| {
 | |
| 	struct candidate_list *list = cand->list;
 | |
| 
 | |
| 	rb_erase(&cand->rb_node, &list->rb_tree);
 | |
| 	list->count--;
 | |
| }
 | |
| 
 | |
| static void free_candidate(struct super_block *sb, struct gc_candidate *cand)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 
 | |
| 	btree_remove32(&super->s_cand_tree, cand->segno);
 | |
| 	kfree(cand);
 | |
| }
 | |
| 
 | |
| u32 get_best_cand(struct super_block *sb, struct candidate_list *list, u32 *ec)
 | |
| {
 | |
| 	struct gc_candidate *cand;
 | |
| 	u32 segno;
 | |
| 
 | |
| 	BUG_ON(list->count == 0);
 | |
| 
 | |
| 	cand = rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node);
 | |
| 	remove_from_list(cand);
 | |
| 	segno = cand->segno;
 | |
| 	if (ec)
 | |
| 		*ec = cand->erase_count;
 | |
| 	free_candidate(sb, cand);
 | |
| 	return segno;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We have several lists to manage segments with.  The reserve_list is used to
 | |
|  * deal with bad blocks.  We try to keep the best (lowest ec) segments on this
 | |
|  * list.
 | |
|  * The free_list contains free segments for normal usage.  It usually gets the
 | |
|  * second pick after the reserve_list.  But when the free_list is running short
 | |
|  * it is more important to keep the free_list full than to keep a reserve.
 | |
|  *
 | |
|  * Segments that are not free are put onto a per-level low_list.  If we have
 | |
|  * to run garbage collection, we pick a candidate from there.  All segments on
 | |
|  * those lists should have at least some free space so GC will make progress.
 | |
|  *
 | |
|  * And last we have the ec_list, which is used to pick segments for wear
 | |
|  * leveling.
 | |
|  *
 | |
|  * If all appropriate lists are full, we simply free the candidate and forget
 | |
|  * about that segment for a while.  We have better candidates for each purpose.
 | |
|  */
 | |
| static void __add_candidate(struct super_block *sb, struct gc_candidate *cand)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	u32 full = super->s_segsize - LOGFS_SEGMENT_RESERVE;
 | |
| 
 | |
| 	if (cand->valid == 0) {
 | |
| 		/* 100% free segments */
 | |
| 		log_gc_noisy("add reserve segment %x (ec %x) at %llx\n",
 | |
| 				cand->segno, cand->erase_count,
 | |
| 				dev_ofs(sb, cand->segno, 0));
 | |
| 		cand = add_list(cand, &super->s_reserve_list);
 | |
| 		if (cand) {
 | |
| 			log_gc_noisy("add free segment %x (ec %x) at %llx\n",
 | |
| 					cand->segno, cand->erase_count,
 | |
| 					dev_ofs(sb, cand->segno, 0));
 | |
| 			cand = add_list(cand, &super->s_free_list);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* good candidates for Garbage Collection */
 | |
| 		if (cand->valid < full)
 | |
| 			cand = add_list(cand, &super->s_low_list[cand->dist]);
 | |
| 		/* good candidates for wear leveling,
 | |
| 		 * segments that were recently written get ignored */
 | |
| 		if (cand)
 | |
| 			cand = add_list(cand, &super->s_ec_list);
 | |
| 	}
 | |
| 	if (cand)
 | |
| 		free_candidate(sb, cand);
 | |
| }
 | |
| 
 | |
| static int add_candidate(struct super_block *sb, u32 segno, u32 valid, u32 ec,
 | |
| 		u8 dist)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	struct gc_candidate *cand;
 | |
| 
 | |
| 	cand = kmalloc(sizeof(*cand), GFP_NOFS);
 | |
| 	if (!cand)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cand->segno = segno;
 | |
| 	cand->valid = valid;
 | |
| 	cand->erase_count = ec;
 | |
| 	cand->dist = dist;
 | |
| 
 | |
| 	btree_insert32(&super->s_cand_tree, segno, cand, GFP_NOFS);
 | |
| 	__add_candidate(sb, cand);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void remove_segment_from_lists(struct super_block *sb, u32 segno)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	struct gc_candidate *cand;
 | |
| 
 | |
| 	cand = btree_lookup32(&super->s_cand_tree, segno);
 | |
| 	if (cand) {
 | |
| 		remove_from_list(cand);
 | |
| 		free_candidate(sb, cand);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scan_segment(struct super_block *sb, u32 segno)
 | |
| {
 | |
| 	u32 valid, ec = 0;
 | |
| 	gc_level_t gc_level = 0;
 | |
| 	u8 dist;
 | |
| 
 | |
| 	if (segment_is_reserved(sb, segno))
 | |
| 		return;
 | |
| 
 | |
| 	remove_segment_from_lists(sb, segno);
 | |
| 	valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
 | |
| 	if (valid == RESERVED)
 | |
| 		return;
 | |
| 
 | |
| 	dist = root_distance(sb, gc_level);
 | |
| 	add_candidate(sb, segno, valid, ec, dist);
 | |
| }
 | |
| 
 | |
| static struct gc_candidate *first_in_list(struct candidate_list *list)
 | |
| {
 | |
| 	if (list->count == 0)
 | |
| 		return NULL;
 | |
| 	return rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the best segment for garbage collection.  Main criterion is
 | |
|  * the segment requiring the least effort to clean.  Secondary
 | |
|  * criterion is to GC on the lowest level available.
 | |
|  *
 | |
|  * So we search the least effort segment on the lowest level first,
 | |
|  * then move up and pick another segment iff is requires significantly
 | |
|  * less effort.  Hence the LOGFS_MAX_OBJECTSIZE in the comparison.
 | |
|  */
 | |
| static struct gc_candidate *get_candidate(struct super_block *sb)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	int i, max_dist;
 | |
| 	struct gc_candidate *cand = NULL, *this;
 | |
| 
 | |
| 	max_dist = min(no_free_segments(sb), LOGFS_NO_AREAS);
 | |
| 
 | |
| 	for (i = max_dist; i >= 0; i--) {
 | |
| 		this = first_in_list(&super->s_low_list[i]);
 | |
| 		if (!this)
 | |
| 			continue;
 | |
| 		if (!cand)
 | |
| 			cand = this;
 | |
| 		if (this->valid + LOGFS_MAX_OBJECTSIZE <= cand->valid)
 | |
| 			cand = this;
 | |
| 	}
 | |
| 	return cand;
 | |
| }
 | |
| 
 | |
| static int __logfs_gc_once(struct super_block *sb, struct gc_candidate *cand)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	gc_level_t gc_level;
 | |
| 	u32 cleaned, valid, segno, ec;
 | |
| 	u8 dist;
 | |
| 
 | |
| 	if (!cand) {
 | |
| 		log_gc("GC attempted, but no candidate found\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	segno = cand->segno;
 | |
| 	dist = cand->dist;
 | |
| 	valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
 | |
| 	free_candidate(sb, cand);
 | |
| 	log_gc("GC segment #%02x at %llx, %x required, %x free, %x valid, %llx free\n",
 | |
| 			segno, (u64)segno << super->s_segshift,
 | |
| 			dist, no_free_segments(sb), valid,
 | |
| 			super->s_free_bytes);
 | |
| 	cleaned = logfs_gc_segment(sb, segno);
 | |
| 	log_gc("GC segment #%02x complete - now %x valid\n", segno,
 | |
| 			valid - cleaned);
 | |
| 	BUG_ON(cleaned != valid);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int logfs_gc_once(struct super_block *sb)
 | |
| {
 | |
| 	struct gc_candidate *cand;
 | |
| 
 | |
| 	cand = get_candidate(sb);
 | |
| 	if (cand)
 | |
| 		remove_from_list(cand);
 | |
| 	return __logfs_gc_once(sb, cand);
 | |
| }
 | |
| 
 | |
| /* returns 1 if a wrap occurs, 0 otherwise */
 | |
| static int logfs_scan_some(struct super_block *sb)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	u32 segno;
 | |
| 	int i, ret = 0;
 | |
| 
 | |
| 	segno = super->s_sweeper;
 | |
| 	for (i = SCAN_RATIO; i > 0; i--) {
 | |
| 		segno++;
 | |
| 		if (segno >= super->s_no_segs) {
 | |
| 			segno = 0;
 | |
| 			ret = 1;
 | |
| 			/* Break out of the loop.  We want to read a single
 | |
| 			 * block from the segment size on next invocation if
 | |
| 			 * SCAN_RATIO is set to match block size
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		scan_segment(sb, segno);
 | |
| 	}
 | |
| 	super->s_sweeper = segno;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In principle, this function should loop forever, looking for GC candidates
 | |
|  * and moving data.  LogFS is designed in such a way that this loop is
 | |
|  * guaranteed to terminate.
 | |
|  *
 | |
|  * Limiting the loop to some iterations serves purely to catch cases when
 | |
|  * these guarantees have failed.  An actual endless loop is an obvious bug
 | |
|  * and should be reported as such.
 | |
|  */
 | |
| static void __logfs_gc_pass(struct super_block *sb, int target)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	struct logfs_block *block;
 | |
| 	int round, progress, last_progress = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Doing too many changes to the segfile at once would result
 | |
| 	 * in a large number of aliases.  Write the journal before
 | |
| 	 * things get out of hand.
 | |
| 	 */
 | |
| 	if (super->s_shadow_tree.no_shadowed_segments >= MAX_OBJ_ALIASES)
 | |
| 		logfs_write_anchor(sb);
 | |
| 
 | |
| 	if (no_free_segments(sb) >= target &&
 | |
| 			super->s_no_object_aliases < MAX_OBJ_ALIASES)
 | |
| 		return;
 | |
| 
 | |
| 	log_gc("__logfs_gc_pass(%x)\n", target);
 | |
| 	for (round = 0; round < SCAN_ROUNDS; ) {
 | |
| 		if (no_free_segments(sb) >= target)
 | |
| 			goto write_alias;
 | |
| 
 | |
| 		/* Sync in-memory state with on-medium state in case they
 | |
| 		 * diverged */
 | |
| 		logfs_write_anchor(sb);
 | |
| 		round += logfs_scan_some(sb);
 | |
| 		if (no_free_segments(sb) >= target)
 | |
| 			goto write_alias;
 | |
| 		progress = logfs_gc_once(sb);
 | |
| 		if (progress)
 | |
| 			last_progress = round;
 | |
| 		else if (round - last_progress > 2)
 | |
| 			break;
 | |
| 		continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * The goto logic is nasty, I just don't know a better way to
 | |
| 		 * code it.  GC is supposed to ensure two things:
 | |
| 		 * 1. Enough free segments are available.
 | |
| 		 * 2. The number of aliases is bounded.
 | |
| 		 * When 1. is achieved, we take a look at 2. and write back
 | |
| 		 * some alias-containing blocks, if necessary.  However, after
 | |
| 		 * each such write we need to go back to 1., as writes can
 | |
| 		 * consume free segments.
 | |
| 		 */
 | |
| write_alias:
 | |
| 		if (super->s_no_object_aliases < MAX_OBJ_ALIASES)
 | |
| 			return;
 | |
| 		if (list_empty(&super->s_object_alias)) {
 | |
| 			/* All aliases are still in btree */
 | |
| 			return;
 | |
| 		}
 | |
| 		log_gc("Write back one alias\n");
 | |
| 		block = list_entry(super->s_object_alias.next,
 | |
| 				struct logfs_block, alias_list);
 | |
| 		block->ops->write_block(block);
 | |
| 		/*
 | |
| 		 * To round off the nasty goto logic, we reset round here.  It
 | |
| 		 * is a safety-net for GC not making any progress and limited
 | |
| 		 * to something reasonably small.  If incremented it for every
 | |
| 		 * single alias, the loop could terminate rather quickly.
 | |
| 		 */
 | |
| 		round = 0;
 | |
| 	}
 | |
| 	LOGFS_BUG(sb);
 | |
| }
 | |
| 
 | |
| static int wl_ratelimit(struct super_block *sb, u64 *next_event)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 
 | |
| 	if (*next_event < super->s_gec) {
 | |
| 		*next_event = super->s_gec + WL_RATELIMIT;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void logfs_wl_pass(struct super_block *sb)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	struct gc_candidate *wl_cand, *free_cand;
 | |
| 
 | |
| 	if (wl_ratelimit(sb, &super->s_wl_gec_ostore))
 | |
| 		return;
 | |
| 
 | |
| 	wl_cand = first_in_list(&super->s_ec_list);
 | |
| 	if (!wl_cand)
 | |
| 		return;
 | |
| 	free_cand = first_in_list(&super->s_free_list);
 | |
| 	if (!free_cand)
 | |
| 		return;
 | |
| 
 | |
| 	if (wl_cand->erase_count < free_cand->erase_count + WL_DELTA) {
 | |
| 		remove_from_list(wl_cand);
 | |
| 		__logfs_gc_once(sb, wl_cand);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The journal needs wear leveling as well.  But moving the journal is an
 | |
|  * expensive operation so we try to avoid it as much as possible.  And if we
 | |
|  * have to do it, we move the whole journal, not individual segments.
 | |
|  *
 | |
|  * Ratelimiting is not strictly necessary here, it mainly serves to avoid the
 | |
|  * calculations.  First we check whether moving the journal would be a
 | |
|  * significant improvement.  That means that a) the current journal segments
 | |
|  * have more wear than the future journal segments and b) the current journal
 | |
|  * segments have more wear than normal ostore segments.
 | |
|  * Rationale for b) is that we don't have to move the journal if it is aging
 | |
|  * less than the ostore, even if the reserve segments age even less (they are
 | |
|  * excluded from wear leveling, after all).
 | |
|  * Next we check that the superblocks have less wear than the journal.  Since
 | |
|  * moving the journal requires writing the superblocks, we have to protect the
 | |
|  * superblocks even more than the journal.
 | |
|  *
 | |
|  * Also we double the acceptable wear difference, compared to ostore wear
 | |
|  * leveling.  Journal data is read and rewritten rapidly, comparatively.  So
 | |
|  * soft errors have much less time to accumulate and we allow the journal to
 | |
|  * be a bit worse than the ostore.
 | |
|  */
 | |
| static void logfs_journal_wl_pass(struct super_block *sb)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	struct gc_candidate *cand;
 | |
| 	u32 min_journal_ec = -1, max_reserve_ec = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (wl_ratelimit(sb, &super->s_wl_gec_journal))
 | |
| 		return;
 | |
| 
 | |
| 	if (super->s_reserve_list.count < super->s_no_journal_segs) {
 | |
| 		/* Reserve is not full enough to move complete journal */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	journal_for_each(i)
 | |
| 		if (super->s_journal_seg[i])
 | |
| 			min_journal_ec = min(min_journal_ec,
 | |
| 					super->s_journal_ec[i]);
 | |
| 	cand = rb_entry(rb_first(&super->s_free_list.rb_tree),
 | |
| 			struct gc_candidate, rb_node);
 | |
| 	max_reserve_ec = cand->erase_count;
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		struct logfs_segment_entry se;
 | |
| 		u32 segno = seg_no(sb, super->s_sb_ofs[i]);
 | |
| 		u32 ec;
 | |
| 
 | |
| 		logfs_get_segment_entry(sb, segno, &se);
 | |
| 		ec = be32_to_cpu(se.ec_level) >> 4;
 | |
| 		max_reserve_ec = max(max_reserve_ec, ec);
 | |
| 	}
 | |
| 
 | |
| 	if (min_journal_ec > max_reserve_ec + 2 * WL_DELTA) {
 | |
| 		do_logfs_journal_wl_pass(sb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void logfs_gc_pass(struct super_block *sb)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 
 | |
| 	//BUG_ON(mutex_trylock(&logfs_super(sb)->s_w_mutex));
 | |
| 	/* Write journal before free space is getting saturated with dirty
 | |
| 	 * objects.
 | |
| 	 */
 | |
| 	if (super->s_dirty_used_bytes + super->s_dirty_free_bytes
 | |
| 			+ LOGFS_MAX_OBJECTSIZE >= super->s_free_bytes)
 | |
| 		logfs_write_anchor(sb);
 | |
| 	__logfs_gc_pass(sb, super->s_total_levels);
 | |
| 	logfs_wl_pass(sb);
 | |
| 	logfs_journal_wl_pass(sb);
 | |
| }
 | |
| 
 | |
| static int check_area(struct super_block *sb, int i)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	struct logfs_area *area = super->s_area[i];
 | |
| 	gc_level_t gc_level;
 | |
| 	u32 cleaned, valid, ec;
 | |
| 	u32 segno = area->a_segno;
 | |
| 	u64 ofs = dev_ofs(sb, area->a_segno, area->a_written_bytes);
 | |
| 
 | |
| 	if (!area->a_is_open)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (super->s_devops->can_write_buf(sb, ofs) == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	printk(KERN_INFO"LogFS: Possibly incomplete write at %llx\n", ofs);
 | |
| 	/*
 | |
| 	 * The device cannot write back the write buffer.  Most likely the
 | |
| 	 * wbuf was already written out and the system crashed at some point
 | |
| 	 * before the journal commit happened.  In that case we wouldn't have
 | |
| 	 * to do anything.  But if the crash happened before the wbuf was
 | |
| 	 * written out correctly, we must GC this segment.  So assume the
 | |
| 	 * worst and always do the GC run.
 | |
| 	 */
 | |
| 	area->a_is_open = 0;
 | |
| 	valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
 | |
| 	cleaned = logfs_gc_segment(sb, segno);
 | |
| 	if (cleaned != valid)
 | |
| 		return -EIO;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int logfs_check_areas(struct super_block *sb)
 | |
| {
 | |
| 	int i, err;
 | |
| 
 | |
| 	for_each_area(i) {
 | |
| 		err = check_area(sb, i);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void logfs_init_candlist(struct candidate_list *list, int maxcount,
 | |
| 		int sort_by_ec)
 | |
| {
 | |
| 	list->count = 0;
 | |
| 	list->maxcount = maxcount;
 | |
| 	list->sort_by_ec = sort_by_ec;
 | |
| 	list->rb_tree = RB_ROOT;
 | |
| }
 | |
| 
 | |
| int logfs_init_gc(struct super_block *sb)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	int i;
 | |
| 
 | |
| 	btree_init_mempool32(&super->s_cand_tree, super->s_btree_pool);
 | |
| 	logfs_init_candlist(&super->s_free_list, LIST_SIZE + SCAN_RATIO, 1);
 | |
| 	logfs_init_candlist(&super->s_reserve_list,
 | |
| 			super->s_bad_seg_reserve, 1);
 | |
| 	for_each_area(i)
 | |
| 		logfs_init_candlist(&super->s_low_list[i], LIST_SIZE, 0);
 | |
| 	logfs_init_candlist(&super->s_ec_list, LIST_SIZE, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void logfs_cleanup_list(struct super_block *sb,
 | |
| 		struct candidate_list *list)
 | |
| {
 | |
| 	struct gc_candidate *cand;
 | |
| 
 | |
| 	while (list->count) {
 | |
| 		cand = rb_entry(list->rb_tree.rb_node, struct gc_candidate,
 | |
| 				rb_node);
 | |
| 		remove_from_list(cand);
 | |
| 		free_candidate(sb, cand);
 | |
| 	}
 | |
| 	BUG_ON(list->rb_tree.rb_node);
 | |
| }
 | |
| 
 | |
| void logfs_cleanup_gc(struct super_block *sb)
 | |
| {
 | |
| 	struct logfs_super *super = logfs_super(sb);
 | |
| 	int i;
 | |
| 
 | |
| 	if (!super->s_free_list.count)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: The btree may still contain a single empty node.  So we
 | |
| 	 * call the grim visitor to clean up that mess.  Btree code should
 | |
| 	 * do it for us, really.
 | |
| 	 */
 | |
| 	btree_grim_visitor32(&super->s_cand_tree, 0, NULL);
 | |
| 	logfs_cleanup_list(sb, &super->s_free_list);
 | |
| 	logfs_cleanup_list(sb, &super->s_reserve_list);
 | |
| 	for_each_area(i)
 | |
| 		logfs_cleanup_list(sb, &super->s_low_list[i]);
 | |
| 	logfs_cleanup_list(sb, &super->s_ec_list);
 | |
| }
 |